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INTRODUCTION 

Ranking functions have been introduced under the name of ordinal conditional 

functions in Spohn (1988; 1990). They are representations of epistemic states and their 

dynamics. The most comprehensive and up to date presentation is Spohn (manuscript). 

 

BACKGROUND 

The literature on knowledge, belief, and uncertainty in artificial intelligence is 

divided into two broad classes. In epistemic logic (Hintikka 1961, Halpern & Fagin & 

Moses & Vardi 1995), belief revision theory (Alchourrón & Gärdenfors & Makinson 

1985, Gärdenfors 1988, Rott 2001), and nonmonotonic reasoning (Kraus & Lehmann & 

Magidor 1990, Makinson 2005) qualitative approaches are used to represent the 

epistemic state of an agent. In probability theory (Pearl 1988, Jeffrey 2004) and 

alternatives (Dempster 1968, Shafer 1976, Dubois & Prade 1988) epistemic states are 

represented quantitatively as degrees of belief rather than yes-or-no beliefs (see Halpern 

2003 for an overview). One of the distinctive features of ranking functions is that they are 

quantitative, but nevertheless induce a notion of yes-or-no belief that satisfies the 

standard requirements of rationality, viz. consistency and deductive closure. 

 



 

RANKING FUNCTIONS 

Let W be a non-empty set of possibilities or worlds, and let A be a field of 

propositions over W. That is, A is a set of subsets of W that includes the empty set  ( 

 A) and is closed under complementation with respect to W (if A  A, then W\A  A) 

and finite intersection (if A  A and B  A, then AB  A). A function  from the field 

A over W into the natural numbers N extended by , : A  N{}, is a (finitely 

minimitive) ranking function on A if and only if for all propositions A, B in A: 

(1) (W) = 0 

(2) () =  

(3) (AB) = min{(A), (B)} 

If the field of propositions A is closed under countable intersection (if A1  A, …, An  

A, …, n  N, then A1…An…  A) so that A is a -field, a ranking function  on A 

is countably minimitive if and only if it holds for all propositions A1  A,… An  A, … 

(4) (A1…An…) = min{(A1), …, (An), …} 

If the field of propositions A is closed under arbitrary intersection (if B  A, then B  

A) so that A is a -field, a ranking function  on A is completely minimitive if and only if 

it holds for all sets of propositions B  A: 

(5) (B) = min{(A): A  B} 

A ranking function  on A is regular just in case (A) <  for each non-empty or 

consistent proposition A in A. 

The conditional ranking function (|): AA  N{} based on the ranking function  

on A is defined such that for all propositions A, B in A: 



 

(6) (A|B) = (AB) – (B) if A  , and (|B) =  

(|B) is a ranking function on A, for each proposition B in A. 

A function  from the set of worlds W into the natural numbers N, : W  N, is a 

pointwise ranking function on W if and only if (w) = 0 for at least one world w in W. 

Each pointwise ranking function  on W induces a regular and completely minimitive 

ranking function  on every field of propositions A over W by defining 

 (5) (A) = min{(w): w  A} (=  if A = ) 

Huber (2006) discusses under which conditions a ranking function on a field of 

propositions A induces a pointwise ranking function on the underlying set of worlds W. 

The rank of a proposition A, (A), represents the degree to which an agent with 

ranking function  disbelieves A. If (A) = 0, the agent does not disbelieve A. However, 

this does not mean that she believes A. She may well suspend judgment and neither 

disbelieve A nor its complement or negation W\A (in this case (A) = (W\A) = 0). 

Rather, belief in a proposition is characterized by disbelief in its negation: an agent with 

ranking function : A  N{} believes A  A if and only if (W\A) > 0. The belief set 

Bel of an agent with ranking function : A  N{} is the set of all propositions she 

believes: 

 Bel = {A  A: (W\A) > 0} 

The axioms of ranking theory require an agent to not disbelieve both a proposition and its 

negation – i.e. at least one of A, W\A has to be assigned rank 0. Thus an agent with 

ranking function : A  N{} believes A  A if and only if (W\A) > (A). For a 



 

given : A  N{}, this suggests to define the belief function induced by , : A  

Z{}, such that for all propositions A in A: 

(A) = (W\A) – (A) 

 assigns positive numbers to the propositions that are believed, negative numbers to the 

propositions that are disbelieved, and 0 to those propositions and their negations with 

respect to which the agent suspends judgment. As a consequence, 

 Bel = {A  A: (A) > 0} 

Bel is consistent and deductively closed in the finite sense, for every ranking function  

on A. That is, B   for every finite B  Bel; and A  Bel if there is a finite B  Bel 

such that B  A, for any A  A. If : A  N{} is countably/completely minimitive, 

Bel is consistent and deductively closed in the following countable/complete sense: B 

  for every countable/arbitrary B  Bel; and A  Bel if there is a countable/arbitrary 

B  Bel such that B  A, for any A  A. As will be seen below, from a diachronic 

point of view the converse is true as well. However, first we have to discuss how an 

epistemic agent is to update her ranking function when she learns new information. 

 

Update Rules 

A theory of epistemic states is incomplete if it does not account for the way the 

epistemic states are updated when the agent receives new information. As there are 

different formats in which the agent may receive new information, there are different 

update rules. The simplest and most unrealistic case is that of the agent becoming certain 

of a new proposition. This case is covered by 

Plain Conditionalization 



 

If the agent’s epistemic state at time t is represented by the ranking function  on A, 

and if, between t and t’, the agent becomes certain of the proposition E  A and of 

no logically stronger proposition E+  E, E+  A, then the agent’s epistemic state 

at time t’ should be represented by the ranking function ’ = (|E) on A. 

We usually do not learn by becoming certain of a proposition, though. In most cases the 

new information merely changes the strength of our beliefs in various propositions. This 

is illustrated by a variation of an example due to Jeffrey (1983). Let our agent be 

interested in the color of the carpet of her hotel room. At time t, before checking in, she 

neither believes nor disbelieves any of the following three hypotheses: the carpet is beige 

(beige), the carpet is brown (brown), the carpet is black (black). However, she is certain 

that the carpet is either beige or brown or black. The relevant part of her ranking function 

at time t thus looks as follows: (beige) = (not beige) = (brown) = (not brown) = 

(black) = (not black) = (beige or brown or black) = 0, (neither beige nor brown nor 

black) = . 

At time t’, after checking in and when opening the door to her room, it appears to 

the agent that the carpet is rather dark. As a consequence she now believes that the carpet 

is either brown or black. But since it is late at night, the curtains are closed, and she has 

not turned on the light yet, she cannot tell whether the carpet is brown or black. Her ranks 

for the relevant propositions thus change to the following values: ’(beige) = ’(not 

brown) = ’(not black) = 1, ’(not beige) = ’(brown) = ’(black) = 0. 

A change in the strength of the agent’s beliefs about the color of the carpet will 

affect the strength of her beliefs about the color of, say, the furniture in the hotel room. 

For instance, at time t, our agent is pretty confident that the hotel room does not have 



 

dark furniture if the carpet is brown – and similarly if the carpet is black. She is also 

pretty confident that the hotel room has dark furniture if the carpet is beige. The relevant 

part of her ranking function at time t looks as follows: (dark|brown) = (dark|black) = 3, 

(dark|beige) = 0. This implies that, at time t, the agent neither believes the furniture is 

dark nor that it is not dark, (dark) = (not dark) = 0. 

The important question now is how the agent should update the rest of her ranking 

function (including the ranks for the propositions about the color of the furniture) when 

her ranks for the propositions about the color of the carpet change as specified above. The 

answer, already formulated in Spohn (1988), is given by 

Spohn Conditionalization 

If the agent’s epistemic state at time t is represented by the ranking function  on 

A, and if, between t and t’, the agent’s ranks on the partition {E1, …, En, …} 

change to r1, …, rn, …, respectively, where min{r1, …, rn, …} = 0, then the 

agent’s epistemic state at time t’ should be represented by the ranking function ’ 

= min{(|E1) + r1, …, (|En) + rn, …} on A. 

Applied to our example this means that, at time t’, the agent’s rank for the proposition 

that the furniture is dark should be ’(dark) = min{(dark|beige) + 1, (dark|brown) + 0, 

(dark|black) + 0} = 1. That is, at time t’, the agent believes, if only very weakly, that the 

furniture is not dark. 

Spohn Conditionalization covers Plain Conditionalization as a special case. Shenoy 

(1991) presents an update rule for evidence of a still different format. 

 



 

Justification 

Ranking theory tells an epistemic agent how to organize her beliefs, and how to 

update her beliefs when she receives new information of various formats. Why should the 

agent follow those prescriptions? 

The answer to this question requires a bit of terminology. An agent’s degree of 

entrenchment for the proposition A is the number of information sources providing the 

information A that it takes for the agent to give up her disbelief in A. If the agent does not 

disbelieve A to begin with, her degree of entrenchment for A is 0. If no finite number of 

information sources providing the information A makes the agent give up her disbelief in 

A, her degree of entrenchment for A is . 

Degrees of entrenchment are used to measure an epistemic agent’s degrees of 

disbelief. If you want to measure my degree of disbelief for the proposition that Madrid is 

the capitol of Spain, you put me on a busy plaza in the center of Madrid and count the 

number of people passing by and telling me that Madrid is the capitol of Spain. My 

degree of entrenchment for the proposition that Madrid is the capitol of Spain equals n 

just in case I stop disbelieving that Madrid is the capitol of Spain after n people have 

passed by and told me it is – provided all those people are independent and equally 

reliable, indeed minimally positively reliable. Most people (and certainly all people in 

Madrid) are more than minimally positively reliable, though. An agent’s degree of 

disbelief in A is therefore defined as the number of information sources providing the 

information A that it would take for the agent to give up her disbelief that A if those 

information sources were independent and minimally positively reliable. 



 

Now we can explain why an agent’s degrees of disbelief should obey the ranking 

calculus and thus be ranks, and why she should update her ranks according to Spohn 

Conditionalization. She should do so because doing so is necessary and sufficient for her 

to always have consistent and deductively closed beliefs. More precisely, Huber (2007) 

proves the following 

Consistency Theorem 

An agent’s belief set is and will always be consistent and deductively closed in the 

finite/countable/complete sense (and possibly conditional on some evidential 

proposition) if and only if this agent’s degree of disbelief function is a 

finitely/countable/completely minimitive ranking function and the agent updates 

according to Plain/Spohn/Shenoy Conditionalization when she receives information 

of the appropriate format. 

Seen this way, the axioms and update rules of ranking theory are nothing but a diachronic 

version of consistency and deductive closure. 

 

FUTURE TRENDS 

One question in artificial intelligence is how an agent should update her epistemic 

state if she learns new conceptual information without also learning anything factual 

about the world she lives in. There are several ways in which such a conceptual change 

may occur. The agent may learn a new concept as when an enological ignoramus learns 

the concept barrique. Or the agent may learn that she has omitted a possibility from her 

set of worlds as when an enological illiterate learns that there are rosé wines besides red 

and white wines. All these conceptual changes involve the adoption of a new set of 



 

worlds W and, consequently, a new field of propositions A on the side of the agent. None 

of these conceptual changes seems to be adequately modeled by any of the formalisms 

mentioned at the beginning. Ranking theory is able to adequately model those conceptual 

changes by employing the so called ur or tabula rasa ranking – i.e. that ranking function 

that assigns rank 0 to every proposition. If the agent adds new possibilities to her set of 

worlds she should simply assign rank 0 to all those new possibilities. Similarly in case the 

agent replaces the old worlds by richer worlds. Huber (2008) discusses this and other 

future trends. 

 

CONCLUSION  

Ranking functions are an indispensable tool for artificial intelligence. First, they 

seem to adequately model most if not all of those phenomena that are dealt with in both 

qualitative as well as quantitative approaches to uncertainty. Second, they provide a link 

between these two classes of approaches that has been missing so far. Third, they can 

deal with phenomena that neither qualitative nor quantitative approaches seem to be able 

to deal with. 
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TERMS AND DEFINITIONS 

Belief: An agent with ranking function : A  N{} believes A if and only if (W\A) > 

0 – equivalently, if and only if (W\A) > (A). 

Belief Set: The belief set of an agent with ranking function : A  N{} is the set of 

propositions the agent believes, Bel = {A  A: (W\A) > 0}. 



 

Conditional Ranking Function: The conditional ranking function (|): AA  

N{} based on the ranking function  on A is defined such that for all 

propositions A, B in A: (A|B) = (AB) – (B) if A  , and (|B) = . 

Completely Minimitive Ranking Function: A ranking function  on a -field of 

propositions A is completely minimitive if and only if (B) = min{(A): A  B} 

for each set of propositions B  A. 

Countably Minimitive Ranking Function: A ranking function  on a -field of 

propositions A is countably minimitive if and only if (A1…An) = min{(A1), 

…, (An), …} for all propositions A1  A,… An  A, … 

Pointwise Ranking Function: A function  from the set of worlds W into the natural 

numbers N, : W  N, is a pointwise ranking function on W if and only if (w) = 0 

for at least one world w in W. 

Degree of Disbelief: An agent’s degree of disbelief in the proposition A is the number of 

information sources providing the information A that it would take for the agent to 

give up her disbelief that A if those information sources were independent and 

minimally positively reliable. 

Degree of Entrenchment: An agent’s degree of entrenchment for the proposition A is 

the number of information sources providing the information A that it takes for the 

agent to give up her disbelief in A. 

Ranking Function: A function  on a field of propositions A over a set of worlds W into 

the natural numbers extended by , : A  N{}, is a (finitely minimitive) 

ranking function on A if and only if for all propositions A, B in A: (W) = 0, () 

= , (AB) = min{(A), (B)}. 


