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Abstract

The Spohnian paradigm of ranking functions is in many respects like an
order-of-magnitude reverse of subjective probability theory. Unlike prob-
abilities, however, ranking functions are only indirectly – via a pointwise
ranking function on the underlying set of possibilities W – defined on a
field of propositions A over W . This research note shows under which con-
ditions ranking functions on a field of propositions A over W and rankings
on a language L are induced by pointwise ranking functions on W and the
set of models for L, ModL, respectively.

Keywords: Extension Theorem for Rankings on Languages, Probabilities, Rank-
ing Functions, Rankings on Languages, Spohn.
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1 Introduction: Pointwise Ranking Functions
The Spohnian paradigm of ranking functions (Spohn 1988, 1990) is in many re-
spects like an order-of-magnitude reverse of subjective probability theory (Gold-
szmidt & Pearl 1996). “Ranks represent degrees” – or rather: grades – “of dis-
belief” (Spohn 1999: 6). Whereas a high probability indicates a high degree of
belief, a high rank indicates a high grade of disbelief.

There are many parallels between probability theory and ranking theory (Spohn
1988, 1994), and in fn. 22 of his (1988), Spohn “wonder[s] how far the mathemat-
ical analogy [of his ranking functions to probabilities] could be extended”.1 The
starting point of this paper is one of the few places where ranking theory differs
from subjective probability theory as well as qualitative-logical approaches to the
representation of epistemic states such as entrenchment orderings in belief revi-
sion theory: the domain on which these models are defined, that is, what they take
to be the objects of belief.

Unlike probabilities, ranking functions are only indirectly – via a pointwise
ranking function on a non-empty set of possibilities (possible worlds, models)
W – defined on some finitary/σ-/complete field A over W , i.e. a set of sub-
sets of W containing the empty set and closed under complementation and fi-
nite/countable/arbitrary intersections. Let us have a closer look.

A function κ from W into the set of natural numbers N is a pointwise ranking
function on W iff κ (ω) = 0 for at least on ω ∈ W . A pointwise ranking function
κ : W → N is extended to a function %κ on a fieldA overW with rangeN ∪{∞}
by defining, for each A ∈ A,

%κ (A) =

{
min {κ (ω) : ω ∈ A} , if A 6= ∅,
∞, if A = ∅.

As will be seen below, it is useful to allow that some possibility ω ∈ W is sent to
∞, which amounts to ω being a “virtually impossible possibility” (according to
κ). In order to distinguish the more restricted notion of a pointwise ranking func-
tion as defined above from the more liberal one allowing for virtually impossible
possibilities, let us call the former natural pointwise ranking functions (because
the range of κ is restricted to the set of natural numbers N ).

Pointwise ranking functions κ are functions defined on a non-empty set of
possibilities W that take natural numbers or ∞ as values. They are extended

1Ranking theory is very similar to possibility theory (Dubois & Prade 1988), and it would
be highly desirable to know to what extent the results below also hold for possibility measures.
Unfortunately this goes beyond the scope of this research note.
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to functions %κ on a field A over W by stipulating that the rank of any non-
empty proposition A ∈ A equals the minimum rank of the possibilities in A,
i.e. %κ (A) = min {κ (ω) : ω ∈ A}, and the empty proposition is sent to∞.

In case W is a finite set of possibilities and A its powerset, every possibil-
ity corresponds to a proposition (viz. the singleton containing it). But already
when W is the set of all models ModL for a propositional language L with in-
finitely many propositional variables andA is the field {Mod (α) ⊆ W : α ∈ L},
no possibility corresponds to a proposition. Furthermore, one has to specify a
ranking over uncountably many possibilities in order to assign a positive finite
rank to a single proposition. But clearly, we often have a definite opinion about
a single proposition (represented in terms of a sentence) even if we do not have
an idea of what the underlying set of possibilities looks like – let alone what our
ranking over these possibilities might be. For instance, I strongly disbelieve that
one can buy a bottle of Schilcher for less than 1 Euro, though I lack the relevant
enological vocabulary in order to know what all the possibilities are. Indeed, it
seems the underlying set of possibilities should not matter for my disbelief in this
proposition.

More generally, we should be able to theorize about our epistemic states even
if all we are given is a ranking over the sentences or propositions of some language
or field, and we have no ranking over the underlying set of possibilities. After all,
what we as ordinary or scientific believers do have are plenty of beliefs and grades
of belief in various propositions – usually if not always via beliefs and grades of
belief in sentences or other representations of these propositions. When we want
to attach ranks to sentences, pointwise ranking theory first has us specify a set
of possible worlds for the language the sentences are taken from; then we have
to specify a ranking over these possible worlds, which in turn induces a ranking
over sets of possible worlds; and only then can we identify the rank of a sentence
with the rank of the proposition containing exactly the possible worlds making
our sentence true.

This is a bit awkward. What one would like to do is to start with a ranking
of the sentences in L, and then be able to induce a pointwise ranking function
on the corresponding set of possible worlds that yields the original ranking. The
question is whether this is always possible. In order to answer it, let us first define
ranking functions on fields of propositions and rankings on languages. (For a
similar generalization of pointwise ranking functions see Weydert 1994.)
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2 Ranking Functions and Rankings on Languages
(Finitely minimitive) ranking functions are functions % from a fieldA over a set of
possibilities W into the set of natural numbers extended by ∞2 such that for all
A,B ∈ A:

1. % (∅) =∞

2. % (W ) = 0

3. % (A ∪B) = min {% (A) , % (B)}

IfA is a σ-field/complete field, % is a σ-minimitive/completely minimitive ranking
function iff, in addition to 1-3, we have for every countable/possibly uncountable
B ⊆ A:

4. % (
⋃
B) = min {% (B) : B ∈ B}

In caseA is finite, i.e. ifA contains only finitely many elements, these distinctions
collapse. According to 4, the range of ranking functions has to be well-ordered.
Therefore N is a natural choice. A ranking function % on A is a pre-ranking iff %
is a finitely minimitive ranking function on A such that

%
(⋃
B
)

= min {% (A) : A ∈ B}

for every countable B ⊆ A such that
⋃
B ∈ A. A ranking function % is regular

iff % (A) < % (∅) for every non-empty A ∈ A. The conditional ranking function
% (· | ·) : A×A → N ∪ {∞} based on the ranking function % : A → N ∪ {∞}
is defined such that for all A,B ∈ A with B 6= ∅,

5. % (B | A) =

{
% (B ∩ A)− % (A) , if % (A) <∞,
0, if % (A) =∞.

The second clause says that, conditional on a (virtually) impossible proposition,
no non-tautological proposition is believed in %. Goldszmidt & Pearl (1996: 63)
define % (B | A) =∞ forA = ∅, which means that, conditional on the impossible
proposition, every proposition is maximally believed in %. We further stipulate that
% (∅ | A) = ∞ for every A ∈ A, which completes the definition of a conditional
ranking function and ensures that % (· | A) : A → N ∪{∞} is a ranking function.

2One can also take the set of ordinal numbers smaller than or equal to some limit ordinal β and
send ∅ to β, but we do not need this generality here.
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If the function %κ : A → N ∪ {∞} is induced by a (natural) pointwise rank-
ing function κ : W → N , %κ is a (regular and) completely minimitive ranking
function. The converse is not true. The triple A = 〈W,A, %〉 with W a set of pos-
sibilities,A a finitary/σ-/complete field over W , and % : A → N ∪{∞} a ranking
function is called a finitary/σ-/complete ranking space. A is called regular iff % is
regular, and A is called natural iff % is induced by some natural pointwise ranking
function κ.

A proposition A ∈ A is believed in % iff %
(
A
)
> 0. %’s belief set Bel% ={

A ∈ A : %
(
A
)
> 0
}

is consistent and deductively closed in the finite / countable
/ complete sense whenever % is finitely / σ- / completely minimitive. Here Bel is
consistent in the finite / countable / complete sense iff

⋂
B 6= ∅ for every finite /

countable / possibly uncountable B ⊆ Bel; and Bel is deductively closed in the
finite / countable / complete sense iff for all A ∈ A: A ∈ Bel whenever

⋂
B ⊆ A

for some finite / countable / possibly uncountable B ⊆ Bel.3

Observation 1 For any ranking space A = 〈W,A, %〉 and all A,B ∈ A:

1. min
{
% (A) , %

(
A
)}

= 0

2. A ⊆ B ⇒ % (B) ≤ % (A)

Rankings κ : L → N∪{∞} on languagesL are defined such that for all α, β ∈ L:

0. α a` β ⇒ % (α) = % (β)

1. α ` ⊥ ⇒ % (α) =∞

2. ` α ⇒ % (α) = 0

3. % (α ∨ β) = min {% (α) , % (β)}

4. β 6` ⊥ ⇒ % (β | α) = % (α ∧ β)− % (α) (= 0 if % (α) =∞)

5. β ` ⊥ ⇒ % (β | α) =∞
To be sure: ` ⊆ ℘ (L) × L is the classical consequence relation (and singletons
on the left hand side are identified with the wff they contain). The corresponding
definitions and observations for finitely minimitive ranking functions also apply
for rankings on languages. Finally, the minimitivity labels correspond to the addi-
tivity labels of probabilities, where it is to be noted that complete additivity does
not make sense for probabilities.

3If possibility theory is interpreted in terms of uncertainty rather than imprecision, one can
define a notion of belief – positive degree of necessity, or equivalently, degree of possibility smaller
than 1 – that is consistent and deductivey closed in the finite, though not in the countable sense.
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3 Extending Rankings on Languages
In probability theory we can start with a probability Pr on a language L, i.e. a
function assigning non-negative real numbers to all sentences in L such that logi-
cally equivalent sentences are assigned the same number, tautologies are assigned
probability 1, and a disjunction of two logically incompatible sentences is as-
signed the sum of the probabilities of its two disjuncts. This probability Pr on
L induces a finitely additive probability measure, in fact, a pre-probability Pr∗0
on the field A = {Mod (α) : α ∈ L} by defining Pr∗0 (Mod (α)) = Pr (α). By
Carathéodory’s theorem, Pr∗0 is then uniquely extended to a σ-additive probability
measure Pr∗ on the smallest σ-field σ (A) containing A.

More precisely, Carathéodory’s theorem says that whenever we have a pre-
probability, i.e. a finitely additive probability measure Pr∗0 on a finitary field A
such that

Pr ∗0

(⋃
B
)

=
∞∑
A∈B

Pr ∗0 (A)

whenever A contains the union
⋃
B of a countable set B of disjoint elements

A ∈ A, then we are guaranteed the existence and uniqueness of a σ-additive Pr∗

on σ (A) that coincides with Pr∗0 on A.
This is different in ranking theory. If we start with a ranking % on a language

L, i.e. a function that assigns the same rank to logically equivalent sentences,
that sends contradictions to ∞ and tautologies to 0, and that assigns to a dis-
junction as its rank the minimum of the ranks of the two disjuncts, then we also
get a finitely minimitive ranking function, in fact, a pre-ranking %∗0 on A by set-
ting %∗0 (Mod (α)) = % (α). However, there may be uncountably many pairs of
σ-minimitive (and also completely minimitive) ranking functions %∗1, %

∗
2 on σ (A)

that extend %∗0, i.e. %∗0 (A) = %∗1 (A) = %∗2 (A) for every A ∈ A, but that are
not even ordinally equivalent in the sense that there are B,C ∈ σ (A) such that
%∗1 (B) ≤ %∗1 (C) and %∗2 (B) > %∗2 (C). This is shown by the following example.

Example 1 (No Unique Extension): The first example shows that regular a pre-
ranking cannot always be uniquely extended to a σ-minimitive ranking function.
This means in particular that there need not be a unique pointwise ranking func-
tion inducing a given pre-ranking.

Consider the smallest set of wffs closed under the propositional connectives
¬ and ∧ (with ∨, →, and ↔ defined in the usual way) and containing the set of
propositional variables PV = {pi : i ∈ N}. % on L is defined by assigning each
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consistent sentence rank 0, and contradictions are sent to ∞. As mentioned, %
induces a finitely minimitive ranking function %∗0 on A = {Mod (α) : α ∈ L} by
defining %∗0 (Mod (α)) = % (α). Indeed, %∗0 is a regular pre-ranking. Note that for
every α ∈ L, Mod (α) ∈ A is either empty or uncountable.

The smallest σ-field σ (A) containing A has as elements, among others, the
singletons containing ω, for every ω ∈ModL, because

{ω} =
⋂
{Mod (α) ∈ A : ω |= α, α ∈ L} ∈ σ (A)

(there are but countably many wffs α ∈ L, so this is an intersection of countably
many elements of A). Now consider any of the uncountably many countable sub-
set S of ModL, and let κ be any pointwise ranking function on ModL such that
κ (ω) > 0 for ω ∈ S, and κ (ω) = 0 for ω ∈ ModL \ S. %κ (Mod (α)) = 0 =
%∗0 (Mod (α)) for every non-empty Mod (α) ∈ A, and %κ (∅) =∞ = %∗0 (∅). 2

Still, one might argue, the interesting question is not uniqueness, but whether there
exists a pointwise ranking function that induces the pre-ranking %∗0 one started
with. In case of existence, one can further ask whether there is a unique minimal
pointwise ranking function κ∗ that induces the pre-ranking %∗0, i.e. a pointwise
ranking function κ∗ inducing %∗0 and such that no pointwise ranking function κ
with κ (ω) < κ∗ (ω), for some ω ∈ W , also induces κ∗0. As shown by the follow-
ing example, one cannot expect there to be a natural pointwise ranking function
inducing the pre-ranking %∗0, even if %∗0 is regular.

Example 2 (No Regular σ-Minimitive and No Natural Pointwise Extension):
The second example shows that a regular pre-ranking cannot always be extended
to a regular and σ-minimitive ranking function. This means in particular that a
regular pre-ranking need not be induced by a natural pointwise ranking function.

For PV , L, and A as in Example 1, let % be defined as follows:

% (pi) = i+ 1,

% (¬pi) = 0,

% (±pi1 ∧ . . . ∧ ±pin) =

 max
{
%
(
pij
)

: ±pij = pij , 1 ≤ j ≤ n
}
,

if ± pi1 ∧ . . . ∧ ±pin 6` ⊥
∞, if ± pi1 ∧ . . . ∧ ±pin ` ⊥

% (α1 ∨ . . . ∨ αn) = min {% (αi) : 1 ≤ i ≤ n} ,

where max ∅ = 0. By putting every wff α ∈ L into disjunctive normal form we
get a regular ranking on L, and hence a regular pre-ranking %∗0 on A. However, in
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order to extend %∗0 to a σ-minimitive ranking function on σ (A) – and hence also
in order for %∗0 to be induced by a pointwise ranking function on ModL – all but
countably many of the (singletons {ω} containing the) possibilities ω ∈ ModL
must be sent to∞.

This is seen as follows: Every ω ∈ModL can be represented by an infinite se-
quence ω = 〈±p1, . . . ,±pn, . . .〉, where +pn means ω (pn) = 1, and −pn means
ω (pn) = 0. If there are infinitely many i ∈ N such that ω (pi) = 1, then ω must
get rank ∞. (Suppose the rank of ω is n < ∞. Then there is m ≥ n such that
ω (pm) = 1. %∗0 (Mod (pm)) = m + 1 > n, although ω |= pm – a contradiction.)
So ω has a finite rank only if ω (pi) = 0 for all but finitely many i ∈ N . For each
n ∈ N there are but countably many ωs such that ω (pi) = 1 for exactly n natural
numbers i ∈ N . So there are only countably many ωs with ω (pi) = 1 for all but
finitely many i ∈ N , and hence only countably many ωs with a finite rank. 2

Still, one might continue to argue, the naturalness of pointwise ranking functions –
in contrast to the regularity of rankings – is too restrictive anyway, and the above
example is not sufficient to rule out the existence of an “unnatural” pointwise
ranking function that induces %∗0. After all, the important thing is that we do not
send any consistent sentence from L or any non-empty proposition from A to∞,
even though we may have to consider some possibilities as virtually impossible.
This is a familiar phenomenon from probability theory, where the Lebesgue mea-
sure on the σ-field of Borel sets over the reals assigns any singleton containing a
real number – indeed, any countable set of real numbers – measure 0, though no
non-trivial interval gets Lebesgue measure 0.

So, when we start with a ranking % on L, and thus get a pre-ranking %∗0 on A,
is it the case that we always get a unique minimal pointwise ranking function κ∗

on ModL that induces %∗0 on A, and hence % on L, even though one is sometimes
forced to send some possibilities ω ∈ModL to∞? The answer is given by

Theorem 1 (Extension Theorem for Rankings on Languages) Let L be a lan-
guage, i.e. a countable set of wffs closed under negation and conjunction, and let %
be a ranking onL so that %∗0 is a pre-ranking on the fieldA = {Mod (α) : α ∈ L},
where %∗0 (Mod (α)) = % (α).

Then there is a unique minimal pointwise ranking function κ∗ on ModL that
induces %∗0. That is, %∗0 (A) = min {κ∗ (ω) : ω ∈ A} for every non-empty A ∈ A;
and for every pointwise ranking function κ on ModL such that κ (ω) < κ∗ (ω) for
at least one ω ∈ModL, %∗0 (A) 6= min {κ (ω) : ω ∈ A} for some A ∈ A.

PROOF:
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LetA1 = Mod (α1) , . . . , An = Mod (αn) , . . . be an enumeration of all the count-
ably many elements of A, and define κ∗n as follows:

κ∗n (ω) = %∗0 ((±A1 ∩ . . .± An)ω) ,

where (±A1 ∩ . . .± An)ω is the unique element of the finite partition

Pn = {±A1 ∩ . . .± An} ⊆ A

of W = ModL such that ω ∈ (±A1 ∩ . . .± An)ω. For each ω ∈ W , κ∗1 (ω), . . .,
κ∗n (ω), . . . is a non-decreasing sequence of natural numbers, i.e. κ∗m (ω) ≤ κ∗n (ω)
for m ≤ n. κ∗ (ω) is defined as the limit of this sequence, if this limit exists, and
as∞ otherwise, i.e. κ∗ (ω) = limn→∞ κ

∗
n (ω).

We first show that κ∗ is a pointwise ranking function on W , i.e. that at least
one ω ∈ W is assigned κ∗-rank 0. Either %∗0 (A1) = 0 or %∗0

(
A1

)
= 0. Let

B1 = A1, if %∗0 (A1) = 0, and B1 = A1 otherwise. Hence

%∗0 (B1) = 0 = min
{
%∗0 (B1 ∩ A2) , %

∗
0

(
B1 ∩ A2

)}
.

Let B2 = A2, if %∗0 (B1 ∩ A2) = 0, and B2 = A2 otherwise. In general, let
Bn = An, if %∗0 (B1 ∩ . . . ∩Bn) = 0 = %∗0 (B1 ∩ . . . ∩Bn−1 ∩ An), and Bn = An
otherwise. So for each n,

%∗0 (B1 ∩ . . . ∩Bn) = 0 = κ∗n (ω) for all ω ∈ B1 ∩ . . . Bn.

As κ∗−1n (0) ⊇ B1 ∩ . . . ∩ Bn, for each n, we have κ∗−1 (0) =
⋂∞
n=1 κ

∗−1
n (0) ⊇⋂∞

n=1Bn. It remains to be shown that
⋂∞
n=1Bn 6= ∅. Suppose for reductio that⋂∞

n=1Bn = ∅. This means that the set of wffs B = {βi ∈ L : Mod (βi) = Bi}
is inconsistent. By the compactness of classical logic, there is a finite subset
Bfin = {βi1 , . . . , βin} ⊆ B that is inconsistent, i.e.

n⋂
j=1

{
Mod

(
βij
)
∈ A : 1 ≤ j ≤ n

}
= ∅.

Let m = max {ij : 1 ≤ j ≤ n}. Then B1 ∩ . . .∩Bm = ∅, and, by construction of
the Bi, %∗0 (B1 ∩ . . . ∩Bm) = 0 – a contradiction.

So κ∗ is a pointwise ranking function on W : κ∗ sends at least one ω to 0, but it
may send uncountably many ωs to∞. (For each n ∈ N , κ∗n is a natural pointwise
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ranking function on W that sends uncountably many ωs to 0.) Let us show next
that κ∗ induces %∗0, i.e. for every non-empty A ∈ A:

%∗0 (A) = min {κ∗ (ω) : ω ∈ A} .

For every A ∈ A there is an mA such that for all n ≥ mA, A is equal to the finite
union of all (at most 2n) elements of Pn that are subsets of A. Let %∗0 (A) = r ∈
N ∪ {∞}. By finite minimitivity,

%∗0 (A) = %∗0

(⋃
{±A1 ∩ . . . ∩ ±AmA

∈ PmA
: ±A1 ∩ . . . ∩ ±AmA

⊆ A}
)

= min {%∗0 (±A1 ∩ . . . ∩ ±AmA
) : PmA

3 ±A1 ∩ . . . ∩ ±AmA
⊆ A} .

Let D1, . . . , Dl be the l ≤ 2mA disjoint “disjuncts” ±A1 ∩ . . . ∩ ±AmA
⊆ A in

this union, and pick any A′ := ±A1 ∩ . . . ∩ AmA
such that %∗0 (A) = %∗0 (A′). For

each n, each of the l · 2n elements of PmA+n whose union is equal to A, and each
i, 1 ≤ i ≤ l:

%∗0 (A) = %∗0 (A′)

≤ %∗0 (Di ∩ ±AmA+1 ∩ . . . ∩ ±AmA+n)

= κmA+n (ω) for all ω ∈ Di ∩ ±AmA+1 ∩ . . . ∩ ±AmA+n

As each ω ∈ A is in exactly one Di∩±AmA+1∩ . . .∩±AmA+n we have for every
n and every ω ∈ A:

%∗0 (A) ≤ κ∗mA+n (ω) ≤ lim
n→∞

κ∗n (ω) .

If %∗0 (A) = ∞, we are already done. So suppose %∗0 (A) = r < ∞, whence A is
non-empty. As before,

%∗0 (A) = %∗0 (A′) = min
{
%∗0 (A′ ∩ AmA+1) , %

∗
0

(
A′ ∩ AmA+1

)}
.

Let C1 = AmA+1, if %∗0 (A′) = %∗0 (A′ ∩ AmA+1), and let C1 = AmA+1 otherwise.
In general, let Cn+1 = AmA+n+1, if

%∗0 (A′ ∩ CmA+1 ∩ . . . ∩ CmA+n) = %∗0 (A′ ∩ CmA+1 ∩ . . . ∩ CmA+n ∩ AmA+n+1) ,

and Cn+1 = AmA+n+1 otherwise. Then we have for each n:

%∗0 (A) = %∗0 (A′ ∩ C1 ∩ . . . ∩ Cn)

= κ∗mA+n (ω) = r for all ω ∈ A′ ∩ C1 ∩ . . . ∩ Cn

10



As κ∗−1mA+n (r) ⊇ A′ ∩
⋂n
i=1Ci, for each n, we have κ∗−1 (r) =

⋂∞
n=1 κ

∗−1
n (r) ⊇

A′∩
⋂∞
n=1Cn. We only have to show thatA′∩

⋂∞
n=1Cn 6= ∅; for then κ∗ (ω) = r =

%∗0 (A) for at least one ω ∈ A. As before, suppose for reductio thatA′∩
⋂∞
n=1Cn =

∅. Then the set of wffs

C = {α′ ∈ L : A′ = Mod (α′)} ∪ {γn ∈ L : Cn = Mod (γn) , n ∈ N}

is inconsistent. By the compactness of classical logic, there is a finite subset
Cfin = {α′, γi1 , . . . , γin} ⊆ C that is inconsistent, which implies that A′ ∩ C1 ∩
. . . ∩ Cm = ∅, where m = max {ij : 1 ≤ j ≤ n}. But by construction of the Cn,
%∗0 (A′ ∩ C1 ∩ . . . ∩ Cm) = r <∞ – a contradiction.

It remains to be shown that κ∗ is minimal. Suppose there is a pointwise ranking
function κ on W such that κ (ω) < κ∗ (ω) for some ω ∈ W . This means κ (ω) <
limn→∞ κ

∗
n (ω), where κ∗ (ω) =∞ if this limit does not exist. If this limit exists,

there is n such that for all m ≥ n, κ (ω) < κ∗n (ω) = κ∗m (ω) < ∞. If this limit
does not exist, then for each n there is m > n such that κ∗n (ω) < κ∗m (ω) < ∞
(remember: κ∗m is a natural pointwise ranking function, for each m ∈ N ). So in
both cases there is n such that κ (ω) < κ∗n (ω) <∞. As κ∗n (ω) = %∗0 (A′) for that
element A′ := ±A1 ∩ . . .∩±An of Pn such that ω ∈ A′, we have κ (ω) < %∗0 (A′)
for some ω ∈ A′ ∈ A. Hence κ does not induce %∗0. 2

Theorem 1 is encouraging, but does not extend to pre-rankings on arbitrary fields.

Example 3 (No Pointwise Extension on Arbitrary Fields): The third example
shows that a regular and σ-minimitive ranking function on a σ-field cannot always
be induced by a pointwise ranking function. This means in particular that a regular
pre-ranking on a field need not be induced by a pointwise ranking function.

Let the σ-field over < be

R =
{
A ⊆ < : A is countable or A is countable

}
,

and let % (A) = ∞, if A is empty, % (A) = 1 if A is non-empty and count-
able, and % (A) = 0 if A is uncountable. % is a regular and σ-minimitive ranking
function: % (∅) = ∞, % (<) = 0, and for every countable B ⊆ R, % (

⋃
B) =

min {% (A) : A ∈ B}. This is seen as follows: If
⋃
B is empty, then so is every

A ∈ B; and if
⋃
B is non-empty and countable, then every A ∈ B is countable,

and at least one A ∈ B is non-empty. Finally, if
⋃
B is uncountable, then at least

one A ∈ B must be uncountable, too.
Clearly % cannot be induced by a pointwise ranking function κ. % ({r}) = 1,

and so κ (r) = 1 for every r ∈ <. But then min {κ (r) : r ∈ <} = 1 > % (<). 2
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Note, though, that Example 3 leaves open the question whether a pre-ranking
on a field A can be extended to a σ-minimitive ranking function on σ (A).

Given that logically equivalent sentences are assigned the same rank, it might
seem it should not matter whether one works with rankings on languages or rank-
ing functions on fields. However, the above shows that this is not quite correct.
The propositions on a set of models ModL induced by the sentences of a lan-
guage L are not just any subsets of an arbitrary set of possibilities W – as they
often are when one considers measure-theoretic fields in general. Rather, they
come with their own structure – most notably, closure under finite intersections
only and compactness – that is inherited from the structure of L. Ranking func-
tions behave nicely on this structure, but they do not do so in general. Assuming
that we believe in representations of propositions, say sentences, and not proposi-
tions themselves – that is, assuming that belief is a sentential or representational,
and not a propositional attitude – and assuming that the structure of its objects is
of importance for the representation of belief, this might be taken to be another
reason for modeling epistemic states by ranking functions.

There are several other areas where one needs finitely minimitive ranking
functions. They are a sine qua non when one wants to have the reals as range
(or some other set of numbers that is not well-ordered by the smaller-than relation
<). The reason is that in this case the minimum of a sequence of real-valued ranks
need not exist.

As is well known, the lottery-paradox (Kyburg 1961) does not arise for ranking
functions %κ induced by pointwise ranking functions κ. Considering a lottery with
n tickets where exactly one ticket wins, we have as set of possibilities the set
Wn = {ωi : i ≤ n, i ∈ N}, where ωi is the possibility that ticket i will win (the
field is the powerset of W ). By definition, a pointwise ranking function assigns
rank 0 to at least one possibility ωi ∈ Wn. Hence one cannot model the situation
that somebody believes of every ticket that it will not win, i.e. %κ ({ωi}) > 0 for
every ωi ∈ Wn. If, on the other hand, one allows sending all possibilities to a rank
greater than 0, then one cannot model the situation that one believes that some
ticket will win, i.e. %κ (∅) > 0 and %κ (Wn) = 0.

In the finite case this is true for arbitrary ranking functions. However, if we
turn to an infinite lottery with countably many tickets, the set of possibilities is
W∞ = {ωi : i ∈ N} (we take as field the powerset of W∞). Now we can send
every singleton {ωi} to a rank greater than 0 and still get a finitely minimitive
ranking function that assigns rank 0 to W∞. For instance, we can assign rank
0 to A whenever A is not finite – say because we go by the slogan: plausibility
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is cardinality of the set of possibilities; and whenever A is finite, we assign it
the minimum of the ranks % ({ωi}), for all possibilities ωi in A (whatever these
singleton ranks are). Then we have a finitely minimitive ranking function that is
compatible with any ranking of the singletons {ωi}. In particular, if we believe,
for every ticket in this infinite lottery, that it will not win, i.e. % ({ωi}) > 0 for
every ωi ∈ W , we can nevertheless be maximally convinced that some ticket will
win: % (∅) = ∞ and % (W∞) = 0. This is not possible for a ranking function %κ
induced by a pointwise ranking function κ. We can have the above ranking with
0 for every infinite A only if we send at most finitely many ωis to a rank greater
than 0. Similarly for pre-rankings.

4 Probabilities, Entrenchments, Rankings
Specifying a pointwise ranking function over uncountably many possible worlds
is not feasible. In view of this fact it might be surprising that there are applica-
tions in artificial intelligence (e.g. Darwiche & Pearl 1997, Goldszmidt & Pearl
1996) that apparently do work with pointwise ranking functions. However, these
applications actually work with ranking functions on fields, which are trivially in-
duced by pointwise ranking functions as long as the set of possibilities is finite –
and the languages and sets of possible worlds considered in the above mentioned
literature are finite so that each possible world corresponds to a sentence.

Ranking theory is a middle course between probabilistic and logical approaches
to the representation of partial belief and belief revision – in the sense that ranking
functions are measured on a proportional scale, whereas probabilites are measured
on an absolute scale, and entrenchments on an ordinal scale4. In the literature on
AGM belief revision theory (Alchourron & Gärdenfors & Makinson 1985, Gär-
denfors 1988) the objects of belief are sentences – or, because of extensionality,
the propositions expressed by these sentences (though not any sets of possibili-
ties). These logical accounts enable one to express that A is more entrenched or
believed than B, and that B is more believed than C. But in this framework an
epistemic agent is not allowed to quantify the strength of her beliefs. Indeed, she
cannot even say that the difference between the strengths of her beliefs in A and
B is greater than the difference between the strengths of her beliefs in B and C.
Probabilistic accounts more or less share the objects of belief (though the focus is
more on the semantic side, and any set of possibilities can be a proposition), but

4I am grateful to an anonymous referee for pressing me further on this point.
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require the epistemic agent to have precise numerical degrees of belief. Ranking
theory is a moderate middle course: The epistemic agent can say whether A is
more believed than B and that B is in turn more believed than C. In addition,
the epistemic agent can express that the difference between her grades of belief
in A and B is greater than the difference between her grades of belief in B and
C without having to specify with complete accuracy a numerical degree of belief
for each of A,B,C. More precisely, the agent can express her grades of belief as
multiples of some minimally positive grade of belief.5

Given this ranking theory should be welcomed by both subjective probabilists
and epistemic logicians. As a matter of fact, however, neither is the case. Lo-
gicians object that it is a mystery where the numbers (ranks) come from (see,
however, Spohn 1999), and probabilists complain about the ordinal nature of the
ranking apparatus. Yet there is one feature that is shared by both probabilistic
and logical accounts of partial belief and belief revision, but that is not present in
pointwise ranking theory: In both approaches the objects of belief are sentences
or propositions, whereas in Spohnian pointwise ranking theory the objects of be-
lief are the possible worlds one level below. So by formulating ranking theory
in terms of ranking functions on a field and rankings on languages we simultane-
ously approach probabilistic as well as logical accounts; and we also get rid of the
ideal of specifying a ranking over all possible worlds, a requirement no real-world
epistemic agent could ever meet.6

Continuing this comparison we note that probabilists have the notions of pos-
itive and negative relevance and of independence between propositions, which
seem to be of utmost importance.7 Furthermore, they have a way of revising one’s

5The epistemic logician will note that the ordering α < β ⇔ % (¬α) < % (¬β) satisfies all
conditions for entrenchment orderings mentioned in section 4.2 of Gärdenfors & Rott (1995), with
K = {α ∈ L : % (¬α) > 0}.

6In his (1999) Spohn presents the theory of measurement for his ranking theory, but does
so only for the finite case. It should be clear that a theory of measurement for σ-minimitive,
let alone completely minimitive or pointwise ranking functions also covering the infinite case
is inapplicable. One necessary condition for an ordering of disbelief to be represented by a σ-
minimitive (or completely minimitive or pointwise) ranking function is that whenever A is not
more disbelieved than any of infinitely many propositions Bi, then A is not less disbelieved than
the union

⋃
i∈N Bi of all these propositions Bi. For finitely minimitive ranking functions and

rankings on languages this condition reduces to the following finite version: Whenever A is not
less disbelieved than either one of B and C, then A is not less disbelieved than B ∪ C.

7Conditional probabilistic independence and its (incomplete) axiomatization, the (semi-)
graphoid axioms, started to become of interest with Dawid (1979) and Spohn (1978, 1980). Judea
Pearl and his group at UCLA started to work with independence in the eighties (e.g. Geiger & Paz
& Pearl 1991, Pearl 1988, Pearl & Paz 1987); for a survey see Spohn (1994) or Dawid (1998). A
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epistemic state represented by a probability measure over a field A, viz. Jeffrey
conditionalisation, when the incoming evidence is represented by a probability
measure over a subfield of A. Logicians neither have the notions of positive and
negative relevance and independence nor do they have an appropriate way of up-
dating their epistemic state represented by a selection function or an entrenchment
ordering. Pointwise ranking theory has both of these desirable features (Spohn
1988), and the question is whether they are preserved when we generalize these
to ranking functions on fields. The answer is that they are. Copying from Spohn
(1999), A is positively relevant for/independent of/negatively relevant for B given
C in the sense of the ranking function % iff

% (A ∩B | C) + %
(
A ∩B | C

) <
=
>
%
(
A ∩B | C

)
+ %

(
A ∩B | C

)
.

If % : A → N ∪{∞} is the agent’s ranking function on the fieldA over W at time
t, and between t and t′ the agent’s ranking function on the field E ⊆ A changes to
%′ : E → N ∪{∞}, and the agent’s ranking function does not change on any field
B such that E ⊂ B ⊆ A, then the agent’s ranking function on A at time t′ should
be %%→%′ : A → N ∪ {∞},

%%→%′ (·) = min {κ (· | Ei) + %′ (Ei) : i ∈ I} ,

where {Ei ∈ E : i ∈ I} is a partition of W for which there is no finer partition
{Ej ∈ E : j ∈ J}, and I, J are any index sets.

On the other hand, epistemic logicians have the notion of a belief set that
is consistent and deductively closed (Hintikka 1962). As shown by the lottery
paradox, there is no ε > 0 such that the set of all propositions A with Pr (A) ≥
1 − ε is deductively closed and consistent. So probabilists lack the notion of a
belief set (as long as belief is sufficiently high degree of belief). Any pointwise
ranking function κ gives rise to a belief set Bel =

{
A ∈ A : %κ

(
A
)
> 0
}

which
is consistent and deductively closed in the following complete sense (even ifBel is
uncountable):

⋂
Bel 6= ∅, and for every A ∈ A: A ∈ Bel whenever

⋂
Bel ⊆ A.

We have already noted in section 2 that the same holds true for ranking func-
tions on fields, and conclude by working out this observation for rankings on
languages. The belief set Bel = {α ∈ L : % (¬α) > 0} induced by a ranking %
on L is consistent and deductively closed in the classical finite sense. If Bel `

lot of work on axiomatizing independence has been done by Milan Studený (e.g. Studený 1992).
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β, for some β ∈ L, then, by the compactness of classical logic, there is a fi-
nite Belfin ⊆ Bel such that Belfin ` β. Let Belfin = {α1, . . . , αn}. Then
¬β ` ¬α1∨ . . .∨¬αn. % (¬β) ≥ % (¬α1 ∨ . . . ∨ ¬αn) by Observation 1 for rank-
ings on languages, and % (¬α1 ∨ . . . ∨ ¬αn) = min {% (¬αi) : 1 ≤ i ≤ n, i ∈ N}
by clause 3 in the definition of rankings on languages. Hence % (¬β) > 0, i.e.
β ∈ Bel. As to consistency, suppose for reductio that Bel is inconsistent. Then
Bel ` ⊥, which means % (>) > 0 – in contradiction to clause 2 in the definition
of rankings on languages.

5 Conclusion
In this paper we have generalized pointwise ranking functions on sets of possibil-
ities to ranking functions on fields of propositions and rankings on languages. In
doing so we have kept the important notions of positive and negative relevance as
well as independence. Through the belief set induced by a ranking function, we
also save the link between belief and degrees of belief – the very feature distin-
guishing ranking theory from other theories of degrees of belief8. Finally, Theo-
rem 1 and Examples 1-3 from section 3 clarify the conditions under which ranking
functions and rankings on languages are induced by pointwise ranking functions.
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