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Abstract. We conduct a case study analysis of a proposal for the emergence of

time based upon the approximate derivation of three grades of temporal structure

within an explicit quantum cosmological model which obeys a Wheeler-DeWitt

type equation without an extrinsic time parameter. Our main focus will be issues

regarding the consistency of the approximations and derivations in question. Our

conclusion is that the model provides a self-consistent account of the emergence

of chronordinal, chronometric and chronodirected structure. Residual concerns

relate to explanatory rather than consistency considerations.
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1. Introduction

Time may change me, but I can’t trace time. An immortal philosopher once

said. But could the trace of time itself change? Might the structure of time be

emergent? And, if so, could such temporal structure not de-emerge? And then even

re-emerge again? In this paper we will consider, in detail, the formal and physical

features of a quantum cosmological model due to Kiefer (1988) and Kiefer and Zeh

(1995) which displays precisely such remarkable emergent temporal structure.

By temporal structure we will mean the basic features of time that provide

us with a temporal betweenness relation, or chronordinal structure, a quantitative

duration relation between events, or chronometric structure, and temporal direc-

tionality, or chronodirected structure. By emergent we will mean derivation under

some approximation.

Our central goal will be to explore, in the context of a concrete model, a clus-

ter of challenges to the temporal emergentist story that each seek to undermine the

relevant approximate derivations on the grounds that they assume what they are

aiming to show. We will consider a specific challenge in the context of the appeal

to the Born-Oppenheimer (BO) and Wentzel-Kramers-Brillouin (WKB) approxi-

mations in the approximate derivation of chronordinal and chronometric structures

due to Chua and Callender (2021), and the idea of ‘temporal double standards’ due

to Price (1996) in the context derivation of chronodirected structure.

The paper is organised as follows: §2 provides more details regarding what

we mean by the structure and emergence of time. §3 contains an extended discus-

sion of explicit quantum cosmological models in context of the emergence of time.

In §3.1 we consider the application of the Born-Oppenheimer approximation to a

simple quantum cosmological model, in comparison with its standard application

in molecular chemistry. In §3.2 we then consider the approximate derivation of

chronordinal and chronometric structure in the semi-classical approximation. Fi-

nally, in §3.3 we examine the potential for failure of the semi-classical approximation

to be remedied via a decoherence based argument that contains a mechanism for the

potential emergence of chronodirected structure. §4 considers sceptical arguments

that challenge the cogency of the temporal emergentist story based upon the idea of

temporal double standards, or assuming the temporal structure that you are trying

to derive. In particular, we provide reconstructions of double standards arguments

regarding the emergence of chronordinal and chronometric structure due to Chua

and Callender (2021) and regarding the emergence of chronodirected structure due
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to Price (1996). In each case, the relevant charges is found to fail. The model thus

provides a self-consistent account of the emergence of chronordinal, chronometric

and chronodirected structure. Residual concerns related to explanatory rather than

consistency considerations.

2. The Structure and Emergence of Time

Even restricting attention to mechanics, physical time is not a unitary con-

cept; rather, we can distinguish various properties and structures. So doing will

help us analyse the emergence of time in quantum cosmology later in the paper.

They are partially ordered, so we will label them ‘grades’ of temporal structure.1

They should be thought of as structuring spacetime in the first place, though here

we will define them in terms of relations between ‘events’ in a linear order. In

the case of Friedmann-Lemaitre-Robinson-Walker (FLRW) universes that concerns

us here, these ‘events’ are the well-defined instants of ‘cosmological time’. While

in more general relativistic spacetimes, the corresponding relations can be defined

as invariant structures for points on timelike curves, in terms of the causal and

metrical structures of spacetime, or as surplus structures based upon a space-like

foliation (Gryb and Thébault 2024).

The first grade of temporal structure that we consider orders sets of events

with respect to a 3-place relation of temporal ‘betweeness’: such a ‘chronordinal’

structure is that of an undirected temporal line, which McTaggart named ‘C-series

time’.2 That is, given three chronordinally structured events, a, b, c, it is determi-

nate, for example, that b is temporally between a and c but not (necessarily) whether

it is before or after a. We assume that a is not also between a and c (ruling out

cyclic time) though of course one could consider relaxing that assumption.3

The second grade of temporal structure that we shall consider is chrono-

metric: the temporal distance relations between events. For every pair {a, b} of

chronordinally structured events there is also a unique (since we consider non-cyclic

1This account of the structure of time builds on Gryb and Thébault (2024) which focuses on
analysis of ‘chronordinal’ and ‘chronometric’ structure in the context of the so-called problem of
time. For a fascinating and wide-ranging philosophical investigation of temporal structure we
highly recommend Newton-Smith (1982).
2For more general discussion on the status of time ordering structure we strongly recommend the
work of Farr (2012, 2016, 2020). Building upon upon the ideas of McTaggart (1908), Reichenbach
(1956) and Black (1959), Farr advocates a ‘C theory of time’ in which there exists a undirected
causal relation sufficient to define a partial ordering on the space of events.
3Moreover, if b is between a and c, and d is between a and b, then d is between a and c. In
relativistic spacetime these temporal lines can be specified invariantly as timelike curves, defined
in terms of the lightcone structure; on such a curve, b is temporally between a and c, iff it lies in
their ‘causal diamond’.
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time) non-negative real number, the duration of the interval between them, τab

(with τab = 0 for a = b), satisfying the ‘triangle equality’: for any triple of events

a, b, c, the sum of two of the durations equals the third, τac = τab + τbc, say.

However, we can strengthen chronordinal structure in another way, by im-

posing chronodirected structure on chronordinally structured events: the relation of

‘not-later-than’ between pairs, a ≤ b (b is between a and c, if c ≤ a∧ c ≤ b∧ b ≤ a,

assuming that they are distinct). This relation gives McTaggart’s B-series, our third

grade of temporal structure.

Chronometric and chronodirected structures are logically independent. On

the one hand, chronodirected structures are often not posited within physical the-

ories with a temporal metric, leading to a long tradition of attempts to derive an

arrow of time from special initial conditions (e.g., Callender (2021)). On the other

hand, one could envision a chronodirected world in which no durations are given;

times organised as a directed line with no fact of the matter about the duration be-

tween pairs of points. However, if the set of events possesses a ‘clock’, a real-valued

quantity that is strictly increasing with respect to some total ordering of time, then

it will provide both chronometric and chronodirected – hence chronordinal – struc-

ture: the duration between two events is the difference between their times, and a

is earlier than b just in case a’s time is less than b’s.

Now, when a set of objects possesses structures with the formal properties

that we have described, it is still legitimate to ask whether they are in fact tempo-

ral : perhaps instead they refer to some other physical relations (spatial relations,

for instance). We take the general attitude that a structure can be identified as

temporal in virtue of the roles it plays in dynamical physical theories. We do not

offer a general account of what these roles are; rather we appeal to the fact that

time is already identified in existing physical theories, and in this paper aim to

pinpoint the (emergent) structures playing those roles.4

This is not the only attitude one could take to the temporal nature of the

structures. Suppose one posits that temporal structures are metaphysically ‘abso-

lute’. So doing is compatible with our position, since we do not claim that temporal

structures are identified with their roles in physical theories, but by them. How-

ever, one might deny even our weaker claim, so that temporal structures might come

apart from physical theories. For instance, suppose a temporally oriented world,

in which entropy is a monotonic function; even if one identifies the orientability

of time by the arrow of increasing entropy, there would still remain the question

4See Huggett and Wuthrich (2021) for more on such spacetime functionalism.
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of whether that arrow points to the absolute future or past. On our view, on the

contrary, it is a matter of definition that the entropic arrow points to the ‘future’,

since that is how we use the term (assuming the alignment of that arrow with those

of other physical processes). There is no further issue once we assume that tem-

poral structures are identified by their roles in physical theory.5 In short, once we

have identified an emergent arrow that aligns with familiar temporal arrows, we are

done; we do not need to – and so won’t! – argue that it is future directed.

Having clarified what we will mean by temporal structure, let us next explain

what we will mean by ‘emergence’ of such a structure in a quantum cosmological

model. We are interested in situations in which the following three features obtain:

1. A given temporal structure is not explicitly specified in the basic equations

of a quantum cosmological model.

2. There exists a formal derivation of the relevant structure, or an approxima-

tion to such a structure, in some limit of the model.

3. The formal derivation can be physically justified in low-energy and/or semi-

classical regimes.

This approach is along the lines of the view of emergence, common in physics

and becoming more popular in philosophy, in which emergence is compatible with

reduction. We will assume, and not argue for, the basic structure of such an ap-

proach in what follows.6

Our focus in the paper will be a package of approaches to quantum cosmol-

ogy, developed both separately and in collaboration by the physicists Claus Kiefer

and Dieter Zeh, in which all three grades of temporal structure (putatively) emerge

in our sense.7

3. Emergence of Temporal Structure in Quantum Cosmology

...the “time ordering of events” is a notion devoid of meaning

[...] the concept of spacetime and time itself are not primary

but secondary ideas in the structure of physical theory. These

concepts are valid in the classical approximation. However, they

have neither meaning nor application under circumstances when

5This attitude is compatible with asking how posited temporal structures that do not play a role
in physical theory relate to those that do. For instance, does entropy increase or decrease with
respect to growth of the ‘growing block’?
6For more details see Butterfield (2011); Huggett and Wuthrich (2021); Huggett (2021); Palacios
(2022).
7See in particular Zeh (1986); Kiefer (1988); Zeh (1989); Kiefer and Zeh (1995); Kiefer (2012).



6 Finding Time for Wheeler-DeWitt Cosmology

quantum-geometrodynamic effects become important. Then one

has to forgo that view of nature in which every event, past, present,

or future, occupies its preordained position in a grand catalog called

“spacetime”. There is no spacetime, there is no time, there is no

before, there is no after. The question what happens “next” is

without meaning.

(Wheeler 1968, p. 1124)

The full gravitational Wheeler-DeWitt equation (DeWitt 1967) is a heuristic

semi-mathematical expression that results from informal application of the Dirac

constraint quantization algorithm (Dirac 1964) to the Hamiltonian formulation of

general relativity (Dirac 1958; Arnowitt et al. 1960). Famously, as indicated by

Wheeler himself in the quote above, the equation does not contain any extrinsic

temporal structure. Its formal and physical justification, both in general and in

specific simple cosmological applications is open to dispute. We will not enter into

these debates here.8 Rather, we will assume the general pattern of argument leading

to the Wheeler-DeWitt equation to be well enough justified and consider the explicit

details of a particular model resulting from the quantization of symmetry reduced

minisuperspace cosmology.

Explicit model building in the context of quantum cosmology is usually based

upon the quantization of classical FLRW cosmologies, in which spacetime can be

foliated into homogeneous and isotropic spatial slices (or their generalization into

Bianchi spacetimes, with homogeneous but anisotropic spatial slices). The only

remaining variables are a scale factor a for the spatial geometry, capturing the

gravitational degrees of freedom, and the chosen matter degrees of freedom: for

instance φ describing a spatially homogeneous scalar field. (For future reference,

it is worth noting that these degrees of freedom can be thought of as mean field

values for more realistic models, with other gravitation and field degrees of free-

dom appearing as higher moments that are ignored in a first approximation.) The

space parameterized by these quantities is ‘mini-superspace’ (MSS), and the stan-

dard form of the Wheeler-DeWitt equation in quantum cosmology (QC) is in the

8For discussion see Gryb and Thébault (2011, 2014); Gryb and Thébault (2016b,a, 2017); Gryb
and Thébault (2018); Gryb and Thébault (2024). Note that a full understanding of Wheeler’s
assertion (which will not be necessary here) requires consideration of the ‘problem of time’.
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mini-superspace representation: an equation for a wavefunction Ψ(a, φ).9 This for-

mulation brings the disappearance of time in quantum gravity into sharp relief:

what kind of universe is described by a solution in which Ψ(a, φ) has support across

a large swathe of MSS? It seems to describe amplitudes for all kinds of spatial slices,

and no evolution through them (see Warrier (2022) for a recent discussion of such

issues) – returning us to the quotation from Wheeler.

3.1. Wheeler-DeWitt meets Born-Oppenheimer. Even in such a restricted

context as MSS finding solutions to the relevant equations requires semi-classical

approximations; typically one or both of the WKB-approximation and the BO-

approximation.10 Here we consider some of the explicit details of such an approach

to the quantization of an MSS model with no cosmological constant, found in Kiefer

(1988). The Wheeler-DeWitt equation of the model is:

(1) ĤΨ(α, φ) =
[ 2

3πm2
p

∂2

∂α2
− ∂2

∂φ2
−

3πm2
p

2
ke4α +m2e6αφ2

]
Ψ(α, φ) = 0,

where k ∈ {−1, 0,+1} is the sign of the spatial curvature, the scale factor a (relative

to some reference scale a0 which we set to 1) is written in terms of a logarithmic

variable α = ln a, the matter content is given entirely by a homogeneous scalar field

φ with mass m, and mp � m is the Planck mass.11

Our Wheeler-DeWitt equation has the form

(2) (T̂1 + T̂2 + Ŵ )Ψ(x1, x2) = E,

with E = 0. The Hamiltonian is the sum of the ‘kinetic energies’ (∼ ∂2/∂x2i ) of

two subsystems, with a potential term that describes their interaction. Moreover,

for a realistic field, the masses of the two subsystems are very different: the Planck

mass of the gravitation field is much greater than that of the matter field, mp � m.

Thus the equation is formally analogous – with E = 0 – to the time-independent

9Analysis of these models goes back to DeWitt (1967) and includes notable work by Blyth and
Isham (1975); Gotay and Isenberg (1980); Hartle and Hawking (1983); Vilenkin (1984); Kuchař
and Ryan (1989); Bojowald (2001); Ashtekar et al. (2006). See Ashtekar and Bianchi (2021);
Gielen and Menéndez-Pidal (2022) and citations therein for recent work. In what follows we will
focus on the work on Claus Kiefer and provide full citations. Further work includes study of
symmetry reduced but infinite dimensional midi-superspace models and so-called Gowdy models
that feature gravitational waves. See for example, Barbero G and Villaseñor (2010), (Ashtekar
and Singh 2011, §6), Tarŕıo et al. (2013); de Blas et al. (2017).
10Early work is Banks (1985); Halliwell and Hawking (1985); Kiefer (1988); Vilenkin (1989). See
Kiefer (2005, 2013); Kuchař (2011); Kiefer and Peter (2022); Maniccia et al. (2022) for reviews.
11Note our treatment here, mainly following Kiefer (1988), does not include full details of the
quantum formalism. A fully rigourous presentation of this model would require explicit definition
of the Hilbert space and operators and would encounter issues with self-adjointness related to the
a→ 0 singularity. Neglect of these features is justified here since the behaviour we are interested
in is far away from the singular ‘region’. See Thébault (2023).
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Schrödinger equation for the kind of molecular system, containing heavy nuclei and

light electrons, for which the Born-Oppenheimer (BO) approximation was developed

(Born and Oppenheimer 1927; Born et al. 1955). However, we will see that the

rationale for its use in quantum cosmology is importantly different to that in atomic

physics, a point that is relevant to addressing recent criticisms of derivations like

Kiefer’s.

In the molecular case, the BO approximation can be understood as a three

step method (see Jecko (2014) for a rigorous treatment.):

Step 1: solve the (normalized) eigenvector equation for the ‘reduced Hamiltonian’:

(3)
(
T̂2 + Ŵ (x1)

)
ψn(x1;x2) = λn(x1)ψn(x1;x2).

This equation treats the ‘heavy’ subsystem as if it were fixed at a definite location

x1, and the ‘light’ subsystem as moving in the resulting potential Ŵ (x1); for

instance, the equation could describe how electrons would move for a certain

classical configuration of nuclei.12 As a result (3) is parameterized by x1, including

the eigenvalues (see Figure 1) and solutions: hence here ψn(x1;x2) is a function of

x2 (only), of a solution for the potential Ŵ (x1) (hence the semicolon).

Step 2: since the
(
T̂2 + Ŵ (x1)

)
are commuting Hermitian operators for the full

system, the ψn(x1;x2) form an orthonormal basis for states Ψ(x1, x2), provided that

the observable is non-degenerate. Thus any solution to (3) can be written

(4) Ψ(x1, x2) =
∑
n

cnθn(x1)ψn(x1;x2),

for some (normalized) coefficients θn(x1). This equation is exact, but now one makes

the first approximation and makes a separation ansatz :

(5) Ψ(x1, x2) ≈ θn(x1)ψn(x1;x2).

The rationale for this separation is that because of the separation of masses, there

will be far more kinetic energy in the light subsystem than the heavy one, and

E ≈ λn. In particular, in the regime of stable molecules we have energies and

12This step is typically given a heuristic gloss in terms of treating the ‘heavy’ subsystem as if
it were ‘fixed’ or ‘clamped’ at a definite location x1, and the ‘light’ subsystem as moving in the
resulting potential Ŵ (x1). Physically, however, there is no sense in which the nuclei are literally
fixed at points, since they are quantum objects. Rather the step should be understood as a formal
move in an approximation scheme, and the ‘fixed’ description a heuristic gloss, which is ultimately
both unphysical and unncessary.
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x
x1

E

λ1(x1)

λ3(x1)

λ2(x1)

Figure 1. The eigenvalues λn of the reduced Hamiltonian, as (hypo-
thetical) functions of the heavy degrees of freedom x1. In the region
around x1 = x the first three electronic energy levels can be seen to
be widely separated: specifically, by far more than the kinetic energy
of the nuclei. This is the condition for stable molecules, and for the
BO approximation.

atomic configurations for which the separation between λns for different values of n

are much greater than the kinetic energy of the heavy subsystem: |λm − λn| � T1.

But then (see the Appendix [1]) a superposition of ψn cannot be an eigenvector of

total energy, and (5) holds.

Step 3: it follows from (5) (see the Appendix [2]) that solutions to (3) have small

variation with respect to x1: for molecules, that the electron wavefunction is un-

changed by small changes of the nuclei position parameters.

(6)
∂ψn(x1;x2)

∂x1
≈ 0.

Using this adiabatic approximation, an equation for θn(x1) can be found from (2),

(3), and (5):

(7)
(
T̂1 − (E − λn))

)
θn(x1) = 0.

In sum, for molecules, the overall BO method is to solve (3) and (7), and then

insert into (5) to yield an approximate solution to (2). This is a formal technique

to construct approximate solutions to a partial differential equation within a well

controlled regime of validity. The approximation requires neither time dependent

dynamics nor ‘fixed’ nuclear positions for its application.13

13The second point is significant for the interpretation of Born-Oppenheimer in the context of
the reduction-emergence debate and will be considered in detail in future work. See Woolley and
Sutcliffe (1977); Woolley (1978); Claverie and Diner (1980); Hendry (1998, 2006, 2010a,b, 2017);
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For the MSS Wheeler-DeWitt equation the rationale – hence method – is

somewhat different. In particular, we are not interested in finding solutions to (2)

for different values of E, but only for E = 0. As a result, we are not interested

solving (3) for values of λn – the energy of the light subsystem — widely separated

with respect to the kinetic energy of the heavy subsystem, T1, since these would

correspond to different energy levels for the total system. We are concerned with

an energy spectrum of a different character than that depicted in Figure 1. Hence,

(1) we cannot justify the separation ansatz (5) of Step 2, since it depends on such

energy gaps, and we instead look for superpositions of the form (4). This turns out

to be important, since finding solutions that plausibly describe classical spacetimes

requires forming states from such superpositions, as we shall soon see. Then, (2) we

cannot justify the adiabatic approximation of Step (3) (6) in terms of the separation

ansatz, and a different justification must be given to obtain it and hence (7).

That is to say that, for quantum cosmology, the BO method is first to follow

Step 1, and find (normalized) solutions to (3) for the light – field – subsystem.

(8)
(
− ∂2

∂φ2
− ke4α +m2e6αφ2

)
ψn(α;φ) = λn(α)ψn(α;φ),

where x1 and x2 are replaced by α and φ, respectively. As before, both the ‘po-

tential’ Ŵ (α) = −ke4α + m2e6αφ2, and the reduced energy eigenfunctions λ(α)

are parameterized by the heavy coordinate α, which is considered to be a ‘fixed’

c-number parameter rather than a wavefunction variable: as if the field were prop-

agating in a fixed spatial geometry α. The (exact) solutions are given in Kiefer

(1988, (5.15)). As before, they form a basis (4) for the joint system, and we can

write any state as a superposition:

(9) Ψ(α, φ) =
∑
n

cnθn(α)ψn(α;φ).

Then second one follows Step 3, and makes the adiabatic approximation

(10)
∂ψn(α;φ)

∂α
≈ 0,

and use the Wheeler-DeWitt equation (1) and (9) to derive an equation for the

wavefunction of the ‘heavy’ degree of freedom:

(11)
[ ∂2
∂2α

+ λn(α)
]
θn(α) = 0.

Fortin and Lombardi (2021); Accorinti and González (2022); Chang (2015); González et al. (2019);
Cartwright (2022); Scerri (2012); Hettema (2017); Franklin and Seifert (2020); Seifert (2020, 2022).
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Of course, compared to (7) we have E = 0. Moreover, one can further show that

products θnψn are solutions of the Wheeler-DeWitt equation (1), as of course are

their superpositions, by linearity.

This equation one solves under a semi-classical Wentzel-Kramers-Brillouin

(WKB) approximation with wave-packets peaked about classical trajectories for α;

we are ultimately interested in understanding the emergence of classical spacetime.

We will not investigate here the application of the WKB approximation in the same

detail as the Born-Oppenheimer method, but rather refer the reader to (Kiefer 1988,

Eq. 5.23) for the explicit expression for θn(α). It is important for our later anal-

ysis that in general terms, the validity of WKB approximation can be understood

in terms of a restriction on the time-independent characteristic functional of the

Hamilton-Jacobi formalism. This, in turn, can be shown to imply that the approx-

imation is valid for regimes in which the de Broglie wavelength is small compared

to the characteristic distance over which the spatial potential varies (Sakurai and

Commins 1995, pp. 112-6). (Or, for the Wheeler-DeWitt equation, for regimes in

which the wavelength of Ψ(α, φ) with respect to α is small compared to the distance

over which W (α) varies.)

What of the required justification of the BO approximation (10)? (Recall,

in the molecular case it was justified by the separation ansatz, itself justified by the

large electronic energy gaps, which does not now hold.) In the third step, once one

has solved for ψn(α;φ) and θn(α), then one can simply check by explicit calculation

whether (10) holds. Kiefer (1987, (5.24)) identifies the regime of validity as

(12) n� m3α,

where n is the excitation level of the reduced eigenvalue problem (8). When this con-

dition is satisfied, the adiabatic approximation holds, and the Born-Oppenheimer

method is formally valid. The functions θn(α) and ψn(α;φ) obtained satisfy the

equations for the light and heavy parts – (7) and (8), respectively – derived from

(1) and the adiabatic approximation: so their products are approximate solutions

of the Wheeler-DeWitt equation. That is, (10) is an ansatz whose validity can –

and is – checked after putative solutions are found. We will return to this point

below.

3.2. Approximate Derivation of Chronordinal and Chronometric Struc-

ture. With the general solution found (in the specified regime), the next step is

to fix boundary conditions and construct explicit solutions for an emergent FLRW

model in which the appropriate semi-classical behaviour is obtained. In particular,
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we require that we: i) have a well-posed boundary problem for the wavefunction;

and ii) it is possible to construct quantum states that form narrow wave-packets

that follow the classical solution according the Ehrenfest relation (i.e., with the cen-

troid of the wave-packet approximating the classical behaviour). Significantly, the

emergence of such semi-classical behaviour is not guaranteed merely by the validity

of the WKB-approximation.

In Kiefer’s model, one finds that the spatially flat, k = 0, case allows the for-

mulation of a well-posed Cauchy problem for ‘initial’ data surfaces α0 = constant.

The full wavefunction (4) is uniquely determined by a choice of Ψ(α0, φ) and
∂
∂α

Ψ(α, φ)|α=α0 . For this case, Kiefer shows that (11) can be solved under the WKB

approximation and that, within this approximation, it is possible to construct a

wave-packet Ψ(α, φ) that follows the classical trajectory with minimal dispersion.

Specifically, we have a wave packet whose support lies along a classical FLRW tra-

jectory in MSS; which is uniquely determined by an ‘initial’ wavefunction Ψ(α0, φ);

and which is a Gaussian state with respect to φ. Such states are the quantum

MSS versions of the quantum coherent states considered to describe approximately

classical systems. Then, the solution Ψ(α0, φ) to the Wheeler-DeWitt equation (1)

remains (approximately) Gaussian – hence classical – in φ as α varies, and the peak

of the Gaussian follows an FLRW trajectory φ(α) as per the Ehrenfest relation

(Kiefer 1988, pp. 1768-9), cf. Kiefer (1990).

The spatially flat case allows us to identify the features required for a quan-

tum variable within a Wheeler-DeWitt type model to be identified as an approxi-

mate internal time – that is, to play ‘classical-time-parameter-like’ functional role

in the emergent dynamics, as discussed in §2. The first is for it to be possible to

interpret the specification of boundary conditions on the wavefunction as initial (or

initial and final) ‘time’ boundary problems. That is, we should be able to fully

specify the wavefunction via conditions of the relevant variable and then construct

determinate ‘evolution’ of the wavefunction. As we noted, α has this feature. The

second feature is that the variable should define a metric for points along this tra-

jectory as, again, α does: τab ≡ |αa − αb|. Hence, in light of the discussion of §2, α

provides chronometric (hence chronordinal) structure, provided it plays an appro-

priate temporal role in the emergent dynamics. If Kiefer’s model is interpreted as

intended, so that α and φ are the spatial scale factor and a scalar field, respectively,

then we say yes: classical FLRW physics is recovered, in which α does play the role

of time.
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Note that in this interpretation φ and α are treated in very different ways:

φ is treated as classical in virtue of being in quantum state corresponding to a

classical field. But the wavefunction is not localised with respect to α (even for

fixed φ), and so is not treated as classical in an approximation to a quantum state.

Instead it is postulated to correspond to the observed classical time and scale factor;

such a correspondence cannot be derived from existing physical principles. That

such a new physical postulate will be typically be required for classical spacetime

to emerge from quantum gravity is argued in Huggett and Wuthrich (2021) and

Huggett (2021); without it the derivation is purely formal, lacking in ‘physical

salience’. Since chronometrical structure does not entail chronodirected structure,

this model does not contain an arrow: no basis to say whether the universe is

expanding or contracting; for that we need to consider a different model, as we will

in §3.3.

Whether or not these features obtain in the model depends on the satisfaction

of the conditions that allow for the BO and WKB approximations to be applied.

In particular, by having a wave packet approximately peaked along the classical

trajectory while the condition (10) holds, we know we can label the waveforms

in {α, φ} by a parameter that tracks a change that will be, at least locally in

configuration space, ‘continuous’ and single valued, namely α. By contrast, φ does

not play the functional role of time in the model since the failure of the analogue of

condition (10) means that the wave-packet can very rapidly vary along the φ-axis

in {α, φ} space.

It is worth noting that our characterisation of the requirements for a quantum

variable to play a functional role a semi-classical time does not include the ability to

recover an explicit Schrödinger-like equation with time dependence with respect to

the internal time. One could add such a further role, of course, and this additional

role does feature in various semi-classical time approaches to the Wheeler-DeWitt

equation, see (Kiefer 2012, p.179) and references therein. As noted by Chua and

Callender (2021) this is a plausible sufficient condition for a variable to play the

functional role of time. However, it is clearly not a necessary condition as is shown

by the case in hand where such an equation is not derived.

In sum, the overall result is that from the timeless Equation (1), we have

extracted an (approximate) diachronic structure whereby the internal α degree of

freedom plays the functional role of time in the sense of chronometric and chronor-

dinal structures.



14 Finding Time for Wheeler-DeWitt Cosmology

3.3. Approximate Derivation of Chronodirected Structure. Of particular

relevance to our present discussion is that models of (1) display a breakdown of the

semi-classical approximation in the case of a closed, k = +1, universe. Classical

FLRW closed universes with vanishing cosmological constant expand from a big

bang then recollapse at a big crunch: the trajectory that we want our Wheeler-

DeWitt wavefunction to approximate is a curve in MSS that starts and ends at

α → −∞, and reaches a maximum value of α. Therefore, to find a solution to

the (k = +1) Wheeler-DeWitt equation one therefore: (i) specifies an ‘initial’,

α0 = constant, state that is a superposition of expanding and recollapsing com-

ponents; (ii) imposes the boundary condition Ψ → 0 as α → ∞; and (iii) seeks

dual trajectories approaching a common point as α grows. Such a solution, found

by Kiefer, is shown in Figure 2: particularly the upper plot, of the wavepacket for

smaller values of α. As before, in such a solution α would provide chronometrical,

hence chronordinal structure; though, obviously, that α grows from both the ‘be-

ginning’ and the ‘end’ of the trajectory will affect its identification as time, as we

will discuss in §4.2, as we will discuss in §4.2.

The crucial point for now, however, is that (ii) prevents the construction

of narrow wave-packets with minimal dispersion that would allow us to represent

classical trajectories for sufficiently large values of α, (Kiefer 1988, p.1770), (Kiefer

2012, p.268-9). In such circumstances, semi-classical behaviour of the quantum

state is not obtained and the putative emergence of temporal structure fails. The

failure of putative emergence of temporal structure in the k = +1 model is vividly

illustrated in the lower plot of Figure 2 which extends the same wavepacket for

larger values of α.

Fascinatingly, according to Kiefer (1988, 2012), the breakdown of the semi-

classical limit in this model is precisely the context in which we must invoke the

role of the ‘environment’ in inducing classical behaviour. At this point there is an

obvious conceptual challenge. On standard approaches to cosmology the universe

must be considered a closed system.14 Thus, from this perspective, the role of the

environment in a quantum cosmological context must be played by an endogenous

system.

14The closed system view is not a physical or logical necessity in cosmology. In particular, open
classical statistical systems are standardly defined in terms of conservation of phase space measure
and thus the existence of empirically adequate cosmological models based upon contact dynamics
which display measure compression indicates that one may model the universe as an open system
in the classical domain at least. See Sloan (2021); Cuffaro and Hartmann (2021); Bravetti et al.
(2022); Sloan (2023); Ladyman and Thébault (2024).
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Figure 2. The wavepacket as a function of the geometric degrees
of freedom (a = eα) and matter degree of freedom (φ) in the case
of a closed, k = +1, universe. The upper figure shows the region in
which a classical trajectory can be recognised with a playing the role
of an approximate time parameter. The lower figure shows that at
increasing values of a, the wave packet begins to spread around the
classical trajectory. It is no longer possible to use a as an approximate
time parameter and thus the semi-classical emergence of temporal
structure fails. (Note the different scales of the plots, which over lap
for 14 ≤ a ≤ 16.) Reprinted figures with permission from Kiefer
C. , Physical Review D, 38, 1770, Copyright 1988 by the American
Physical Society.

The approach followed in pioneering work by Kiefer and Zeh is to consider

small inhomogeneous degrees of freedom as an endogenous environment and then

apply an internal version of standard decoherence arguments (Zeh 1986; Kiefer

1987, 1988; Zeh 1989; Kiefer and Zeh 1995; Kiefer 2012). Recall that the FLRW
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cosmology is formulated in terms of variables defined on spatial scales in which the

universe can be assumed to be homogeneous and isotropic. These ‘hydrodynamic’

variables accurately capture the bulk behaviour of classical spacetimes and are the

starting point for building Wheeler-DeWitt type quantum cosmological models. In

reality, of course, the universe is not, thankfully, homogeneous and isotropic on all

scales.

A first step towards de-idealisation of a FLRW-type model is to include small

inhomogeneities in the classical equations of motion, specifically higher moments of

the fields. This is analogous to considering hydrodynamics of bulk fluid variables

together with first order fluctuations. This approach can be transferred to the

quantum context also. In particular, following (Kiefer 2012, p.347), if we write the

small inhomogeneous degrees of freedom as {xi} we can arrive at a Wheeler-DeWitt

equation of the form:

(13)
[ ∂2
∂2α

+
∑
i

∂2

∂2xi
+ Vi(α, xi)

]
Ψ = 0

where the potentials Vi(α, xi)→ 0 for α→ −∞. The form of the potentials means

that the Wheeler-DeWitt equation possess an asymmetry with respect to intrinsic

time α. Furthermore, since the potential is such that the coupling between the bulk

variables and inhomogeneities tends towards zero for α → −∞ (a → 0) one can

impose a Simple Boundary Condition on the packets of the form (Conradi and Zeh

(1991)):

(14) Ψ −−−−→
α→−∞

ψ0(α)
∏
i

ψi(xi).

In other words, we assume an ‘initial state’ which (asymptotically) takes the form

of a product state in which the bulk variables and inhomogeneities have vanishingly

small entanglement.

We then have that if Equation (14) is taken as an ‘initial’ condition, the

Wheeler-DeWitt equation will, through the form of the potential, lead to a wave-

function with an intrinsic arrow of time. This would be to derive chronodirected

structure in precisely the sense that we described. The crucial formal feature upon

which such claims can be justified is that if the intrinsic dynamics of Equation (13)

is combined with the simple boundary condition Equation (14), for increasing α we

get increasing entanglement between α and the other modes.

Kiefer (2012) (see §10.3 in particular) interprets this process in terms of

an increase in local entanglement entropy as defined with reference to a subset of
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‘relevant’ degrees of freedom, {yi}, where one defines:

(15) S(α, {yi}) = −kBtr(ρlnρ)

where ρ is the reduced density matrix corresponding to α and {yi}.
The final step is then to interpret the von Neumann entropy of the reduced

density matrix as providing a chronodirected structure. That is, we understand

the increase in S(α, {yi}) for increasing α as demarcating earlier from later times.

As such, it appears that we have a means to derive not just chronordinal and

chronometric structure but chronodirected structure also, all starting from a basic

equation without an extrinsic time parameter. It is, of course, open to question at

this point why we interpret the von Neumann entropy as providing chronodirected

structure. In essence what we have done is simply stipulate that the arrow of time

is equivalent to the von Neumann entropy. Much more is required of the derivation

of an arrow of time, including connecting the direction of the von Neumann entropy

of the reduced density matrix to the entropy arrows of other physical systems. We

will not enter into detailed discussion of this point here, though we will return to

related issues in §4.2.

Let us conclude our discussion by isolating the three crucial assumptions that

have gone into the derivation of chronodirected structure in quantum cosmology.

The assumptions are:

Simple Boundary Condition: The quantum state of the universe, including

bulk degrees of freedom and inhomogeneities, at some boundary (initial and

final) value of the internal time parameter, can be written approximately as

a product state, i.e., such that the bulk variables and inhomogeneities have

vanishingly small entanglement.

Relevant Coarse-Graining : The degrees of freedom representing inhomo-

geneities can be divided into relevant and irrelevant subsets and we can

represent the state of the universe by a reduced density matrix where the

irrelevant subset have been traced out.

Entropic-Arrow : Chronodirected structure can be defined via the behaviour

of the von Neumann entropy of the reduced density matrix such that an

increase in the von Neumann entropy of the reduced density matrix is suf-

ficient to establish a future orientated chronodirected structure.

Forms of these assumptions will be familiar from analogous derivations found in

statistical mechanics and quantum mechanics. We will return to these connections

and the putative justification of the assumptions in §4.2.
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4. Temporal Double Standards

In this section we will consider challenges to various aspects of the approx-

imate derivation of temporal structure detailed in the previous section. The par-

ticular focus is a generalisation of the idea of ‘temporal double standards’ – due

to Price (1996) – in which there is a prima facie worry regarding the cogency of

some derivation of temporal structure in physical theory due to implicit appeal to

or assumption of such structure within the derivation. We will turn to the specific

details of Price’s worry relating to the derivation of chronodirected structure in

the context in the Kiefer-Zeh approach in §4.2. In §4.1, we will consider a specific

challenge to the cogency of the work of Kiefer due to Chua and Callender (2021).

4.1. Time from No Time? The reader may have noticed that our presentation

of the BO method, for both molecules and quantum cosmology, – unlike typical

pedagogical presentations – avoided appeal to time dependent physics: for instance,

nothing depended on the fact that electrons, being lighter, respond more quickly to

perturbations than nuclei. This approach was taken with one eye to responding to

a pair of critical challenges due to Chua and Callender (2021).15

The general form of this challenge is concisely stated by the Chua and Cal-

lender as follows:

Programs in quantum gravity often claim that time emerges from

fundamentally timeless physics. In the semiclassical time program,

time arises only after approximations are taken. Here we ask what

justifies taking these approximations and show that time seems to

sneak in when answering this question. This raises the worry that

the approach is either unjustified or circular in deriving time from

no-time. (Chua and Callender 2021, p.1172)

There are several aspects to this challenge, which we should consider sys-

tematically. First, we will have to consider their critique of both the BO and WKB

approximations. Second, it is unclear whether the time allegedly sneaking in is

external or internal time, since the authors do not explicitly make the distinction

in their critique (although they do talk about a ‘background time metric’ as we will

see later). If the former then, since there is no external time in canonical quantum

gravity, the charge is the devastating one that derivation is incoherent. If the latter,

15It should be noted that Chua and Callender also provide a very short sketch of a third critical
challenge relating to appeal to decoherence. We will here neglect such important considerations,
which would inevitably lead into a discussion of the measurement problem, due to restrictions of
space.
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the concern seems weaker: for if one assumes emergent time in one’s solutions, and

then finds solutions consistent with that assumption, one has shown the existence

of emergent time solutions. One has shown that time can emerge from no time, but

not that it should be expected; something important has been achieved, though one

should indeed be clear on its limits. Let us work through these issues one by one.

First then, let us consider the possibility that either the BO or WKB ap-

proximations presuppose external time, BO first. Chua and Callender claim that

the approximation is ‘is thoroughly laden with temporal notions’ (p.1178) since the

light vs. heavy system distinction is a proxy for a slow vs. quick distinction. ‘The

change in the lighter subsystem happens on such a short timescale that there is not

enough time for the heavier sub-system to react in that relevant timescale, and so it

is effectively independent of lighter subsystems in that period of time’ (1178). They

assume this to be the case in the context of the molecular version of the approx-

imation and then consider the possibility that it is also the case in the quantum

cosmology version. Let us suppose the time scale in question to be extrinsic, so

that the putative issue is one of incoherence.

But our explication shows that in the molecular case the central claim is

incorrect (or at least unnecessary): the mass separation is rather proxy for the

electronic energy level separation, so a property of solutions of the time-independent

Schrödinger equation. Now it is true that textbook presentations do justify the BO

approximation along the lines given by Callender and Chua; for instance, the highly

influential Messiah (1962, XVIII.iii) essentially uses it to justify the explicit use of

the adiabatic approximation (less explicitly, the move is also made in Born et al.

(1955, §14)). But this is for heuristic convenience not necessity, as our presentation

– and indeed that of Born and Oppenheimer – shows.16

For molecules, the Born and Oppenheimer approximation rests upon the

relative size of terms in a time-independent Hamiltonian and the consequent split-

ting of the energy spectrum, which implies separability and adiabaticity. These

features justify the approximation, but do not require temporal considerations,

though of course they imply dynamical properties too, through the time-dependent

Schrödinger equation. Things are somewhat different for quantum cosmology, since

the splitting of eigenstates does not occur in the desired solutions; so in this case

putative solutions obtained by the BO method must be checked formally to verify

that they do indeed satisfy the conditions of the approximation – which they do, in a

16To be clear, we do not claim originality for our demonstration, which draws on Jecko (2014)
to reframe Born and Oppenheimer (1927). Note that Messiah discusses the relation between his
approach and that of Born and Oppenheimer.
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specified regime, as we saw. One may consider the relation of the time-independent

properties to time-scales and the intuitive dynamical picture if the Hamiltonian

can be taken as the generator of time translations; such an assumption is possible,

but unnecessary in the molecular context and inconsistent in the Wheeler-DeWitt

context if the Hamiltonian constraint is interpreted as a ‘gauge generator’ as in the

standard interpretation that follows Henneaux and Teitelboim (1992).17

These reflections point to the futility of arguing that any computation can

only be understood by invoking a time-dependent property of a quantum system.

For such a property supervenes on the Hamiltonian, and hence on the energy eigen-

states and eigenvalues, and hence on the time-independent Schrödinger equations

– as these examples illustrate.18

Therefore, because the BO approximation can be justified without appeal

to temporal properties, it most certainly does not assume an appeal to an external

time, and so its use in quantum cosmology is perfectly coherent. What about the

WKB approximation? In this case, Chua and Callender recognise the prima facie

atemporality of the approximation. In particular, the fact that the crucial feature

is spatial smoothness of the potential function which can be expressed more pre-

cisely in terms of de Broglie wavelength being small compared to the characteristic

distance over which the spatial potential varies. However, they contend:

Still, time is present. There are many ways to see this. [...] In quan-

tum mechanics, we know that the momentum operator depends only

on spatial variables and not time [...] However, the classical momen-

tum does depend on time since p = mdx
dt

[...] The time dependence,

evident when talking about velocities/momenta, becomes masked

when we replace velocities with notions of wavelengths and spatial

variations. Yet the time dependence is plainly there. From [the de

Broglie relation and dimensional analysis] if [the scale of variation of

the potential] is large, the WKB approximation will be good for long

[time scales] and if small then only for short [time scales]. In stan-

dard cases WKB is thus justified via a background time metric. In

the case of semiclassical time, however, there is no such background

17For detailed arguments towards the view (not defended here) that the standard treatment is
problematic see Gryb and Thébault (2024).
18At least for time independent Hamiltonians. A similar argument can be run for classical systems
via the Hamilton-Jacobi formalism. In particular, for time-independent classical Hamiltonians,
the separation anzatz for the principal functional in terms of the time-independent characteristic
functional together with an Et term establishes an analogous supervenience claim.
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time metric, so we again face our challenge to justify the assumption

without invoking time. (Chua and Callender 2021, pp. 1179-81)

What should we make of these claims? Most straightforwardly, it is in

general incorrect that the classical canonical momenta variables are given by mdx
dt

.

This is an expression for a particular family of Newtonian mechanical theories in a

particular choice of canonical coordinates. In the general context, p is a generalised

canonical momentum variable given by an element of the phase space. In particular,

we have that p ∈ Γ where (Γ, ω) is the symplectic manifold given by the cotangent

bundle to configuration space Γ = T ?C. Canonical momenta are only defined up

to to symplectomorphism, and privileging a representation in a preferred chart

is inconsistent with mathematical practice regarding their representational roles,

cf. Weatherall (2018); Gryb and Thébault (2016). Moreover, even in an explicit

coordinate representation, the momenta are in fact given by p = ∂L
∂ẋ

and we only

recover the Newtonian momentum given a particular form of the Lagrangian. The

required temporal structure is that of infinitesimal tangent and cotangent vectors,

not a background temporal metric.

Furthermore, as with the case of Born-Oppenheimer, the intuitive justifi-

catory story told for the quantum mechanics example that does feature temporal

notions, is unnecessary. The WKB approximation in quantum theory can be fully

justified in a time independent context since its validity is a property of a spatial

function. This, then, also holds for the case WKB in the context of Wheeler-DeWitt

quantum cosmology. Here we can think of the formal requirements in terms of in

terms needing some notion of functional derivation in the space of Riemannian three

metrics which is not itself a temporal structure.19

Thus, we conclude, there is nothing to the potentially damning complaint

that the derivation of time from no time assumes the existence of an external time.

However, there remains the charge that the derivation is circular in the sense that it

assumes an internal time. In response, we observe that the formal structure of the

Kiefer’s derivation is that of an ansatz, the standard mathematical approach where

a trial form of solution to a differential equation is assumed and then tested for con-

sistency. Separability and adiabaticity are assumed, and the solutions checked to

see that they obey the condition. Indeed, Born and Oppenheimer’s original deriva-

tion used the very same logic. Specifically, they had to assume that in the lowest

order solutions the nuclei were at the minima of their potentials: ‘eine Annahme,

die erst durch den Erfolg gerechtfertigt werden kann’ (‘an assumption only justified

19Thanks to Henrique Gomes for pointing this out to us.
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by its success’) (Born and Oppenheimer 1927, p.465) (trans. Blinder). Similarly, in

Kiefer’s derivation we in fact find an explicit estimation of the regime of validity of

the BO approximation in (12). Moreover, we have seen that the WKB approxima-

tion holds in some regimes, and not in others. There is no uncontrolled circularity

here.

The problem at this point is that there is no formal or physical restriction

that prohibits the existence of solutions to our Wheeler-DeWitt equation (1), which

do not satisfy the conditions, and in which time is thus not emergent. We need to

provide a formal or physical justification for the expectation that the approximation

conditions are satisfied – and also the simple boundary condition, for chronodirected

structure – otherwise what has been achieved is a merely a demonstration of pos-

sibility, not necessity: that some, but not all, solutions admit emergent time.20

A more ambitious temporal emergentist target would be the emergence of

the full classical temporal structure of general relativity from the Wheeler-DeWitt

equation. That is, the application of a WKB-type derivation as a bridge for the

approximate derivation of the Einstein Field Equations from the Wheeler-DeWitt

equation, via the relevant generally relativistic Hamilton-Jacobi equation due to

Peres (1962). We leave analysis of this full story of the putative emergence of time

to future work. Discussion of the relevant derivations in the physics literature can

be found in Gerlach (1969); Komar (1971); Misner et al. (1974); Hartle (1993);

Kiefer (2009); Salisbury (2020).

4.2. Asymmetry from Symmetry? In the previous subsection we considered

potential issues for the emergence of chronordinal and chronometric structure in

the context of their approximate derivation from a Wheeler-DeWitt cosmology, so

without such structures at a basic level. The challenges accuse the derivation of

circularity in some form – somehow assuming the very temporal structure to be

derived. In the context of the derivation of chronodirected structure (with chronor-

dinal structure already given) an analogous challenge was made in the now classic

discussion of (Price 1996, chapters 2-4), in which a ‘temporal double standards’ ar-

gument pattern is repeated across multiple physical contexts from thermal physics

to quantum cosmology. We can rationally reconstruct it as follows:

20A more general and more worrying possibility comes from the fact that in totally constrained
systems, like general relativity, non-integrable dynamics may lead to a quantization that does
not admit a semi-classical limit (Dittrich et al. 2017). The story provided here regarding the
semi-classical emergence of time would be inadmissible in such circumstances.
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(1) Suppose theory T possesses chronordinal structure, with respect to which

the dynamics is time symmetric: the time reverse of any solution is another

solution.

(2) So the time-asymmetry of the world – its chronodirected structure – could

only be explained from T via appeal to a special boundary condition.

(3) But to apply such a boundary condition to only one end of time is to indulge

in a temporal double standard (which may not be obvious until we take the

appropriate ‘view from nowhen’).21

(4) Then, the chronodirectedness of the world has either not been explained at

all or has been put in by hand based upon a temporal double standard.

In this section we will consider how the derivation of chronodirected structure in

quantum cosmology deals with this powerful and important challenge.

To start with, observe a near intersection between our case study of Kiefer

and Zeh in §3.3 with Price’s own discussion of the putative emergence of time in

the famous ‘no-boundary proposal’ of Hartle and Hawking (1983). Following the

argument pattern reconstructed above, Price takes particular issue with Hawking

and coauthors’ proposal that the no-boundary condition be applied to only one

‘end’ of the universe, so that chronodirected structure emerges only in one temporal

orientation (Hawking et al. 1993; Hawking 1994). (This is in contrast to Hawking’s

original position expressed in (Hawking 1985), in which the arrow of time would

‘reverse’ in a re-collapsing universe and the no-boundary proposal would apply at

the limit of both temporal extremities.)

[Hawking] hasn’t shown that asymmetric universes are the natural

product of a symmetric theory [...] on the contrary, he seems to have

simply assumed the required asymmetry, by taking the no boundary

condition to apply to only one end of an arbitrary universe [...] this

amounts to putting the asymmetry in “by hand.” (Price 1996, p.93)

We concur.

To what extent, then, does the emergence of chronodirected structure based

on the simple boundary condition of Kiefer and Zeh also amount to ‘putting the

asymmetry in by hand’? Answering this question carefully will help us obtain a

clearer picture of the arrow of time in the semi-classical closed universe model.

21Of course, supposing that the boundary condition can consistently hold at both ends of time,
as indeed it can in all the relevant cases; for instance, entropy could be low at either end of a
chronordinal structure.
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First, with respect to (1) of Price’s double standards argument, the laws

are not time symmetric; indeed, they are neither (fundamentally) temporal nor

symmetric! The Wheeler-DeWitt equation is atemporal, but with an asymmetry

with respect to α in the form of the potential. Second, therefore the simple boundary

condition (14) is not postulated as an initial condition, but a boundary condition

that applies for α → −∞: that the initial state is separable, in the regime in

which the matter and gravitational subsystems are non-interacting. Third, in the

semi-classical closed universe model α → −∞ at both ‘ends’, so in the sense of

emergent time, the condition (14) is applied symmetrically, as Price insists against

Hawking et al. Of course, given the identification of a future-past arrow with

the direction of increasing (von Neumann) entropy, this double imposition of the

boundary condition, entails that the arrow of time points towards increasing α in

both branches coming from α→ −∞.

Although he does not discuss Kiefer and Zeh’s work22, Price (1996, pp.99-

111) defends the possibility of a ‘Gold universe’ – i.e., one with low entropy at the

start and end of time, and hence two, opposite arrows of time, one before and one

after a ‘turn-around’, just as in our case. He further argues that in such a universe

one could now observe traces of events in the post-turn-around future: after all, with

respect to the oppositely oriented temporal arrow at such an event, the event is in

our past! However, Price’s reasoning assumes a classical spacetime background, and

so does not apply to the Kiefer-Zeh model, since at the turn-around, where the two

branches meet, the system becomes fully quantum (Kiefer and Zeh 1995, p.4150)

and, as Wheeler said earlier, ‘there is no spacetime’.

That is, the model provides a mechanism for the chronodirected structure to

disappear as well as emerge. Since there is no classical connection between different

‘legs’ across the turning point between expansion and collapse, rather we find, at

large a, a region which cannot be interpreted in classical terms at all. Relative

to an observer located in a semi-classical portion of the universe, the full story of

temporal structure is then one of emergence, disappearance, re-emergence, and then

at a final big crunch, disappearance again.

However, because the emergent arrow of time reverses in the model, observers

on either side of the turn-around give the same description, even though it happens

in opposite relative temporal directions! Thus it is more perspicuous to take Price’s

‘view from nowhen’ again. Consider: (a) the simple condition sets the entropy at a

minimum when the universe is small, and (b) we identify the future as the direction

22Their paper contains many of the same criticisms of Hawking.
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Figure 3. The view from ‘nowhen’ of the double-universe. Where
the temporal arrows meet, spacetime breaks down.

in which entropy increases, which it will (c) as the interaction between bulk degrees

of freedom and inhomogeneities grows producing entanglement, (d) which it does

as α grows – i.e., as the universe expands. That is, the simple condition, the

identification, the Wheeler-DeWitt dynamics, and the form of the Wheeler-DeWitt

potential entail that the universe can only expand, and never contract. We might

thus, more consistently atemporally, say that the arrow of time does not reverse,

and the universe does not recollapse in the model. Rather the model describes a

‘transition’ between two semi-classical universes, each with an emergent arrow of

time orientated away from the low volume regime. The arrow in question, when

it is well defined, always points away from the α → −∞ regime and towards the

α → +∞ regime, and it is thus, by definition, aligned with the expansion of the

universe. However, their temporal structure dissolves as they merge into a large

volume deep quantum regime (see Figure 4.2. Whilst one could hardly wish for a

more symmetric treatment, the physical interpretation of the breakdown of classical

physics at large scales is surely more than a little counter-intuitive.

Let us finally turn to the question of physically justifying the three assump-

tions needed for the Kiefer-Zeh derivation of chronordinal structure in quantum

cosmology – and so justify the claim that temporal structure is not merely derived,

but emergent, according to the definition we gave. The first was the simple bound-

ary condition together with the relevant form of the potential. It was assumed that

the quantum state of the universe, including bulk degrees of freedom and inhomo-

geneities, at some boundary (initial and final) value of the internal time parameter,

can be written approximately as a product state, i.e., such that the bulk variables

and inhomogeneities have vanishingly small entanglement. Here it is surely fair to

conclude that the story provided by Kiefer and Zeh is ultimately not a satisfactory

one. In particular, there is no clear physical justification for the simple boundary
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condition or the asymmetry of the potential in α. However, in this regard, the sit-

uation is not notably worse than that of the famous ‘past hypothesis’ – and indeed

the special boundary condition (14) is a form of low entropy initial state that can be

related to a quantum version of Penrose’s Weyl curvature hypothesis (Kiefer 2022).

In this context, one might, then simply reject the demands for further justifi-

cation, or indeed explanation, on the grounds that we do not typically expect initial

conditions to be explained (Callender 2004). However, following Price (2004) once

more, one might question whether universal boundary conditions are relevantly sim-

ilar to local boundary conditions; if not, Callender’s analogy fails. Then again, if

‘initial’ conditions like the Kiefer-Zeh simple boundary condition should be thought

of as ‘law-like’ rather than ‘fact-like’, once again the demand for explanation ar-

guably vanishes. There are clearly philosophical issues to be addressed, which are

outside the scope of this work, but the obvious conclusion is that the physical origin

of such conditions is an important and incomplete explanatory project, which we

would do well to pursue further.

The next crucial assumption was relevant coarse-graining. It was assumed

that the degrees of freedom representing inhomogeneities can be divided into rele-

vant and irrelevant subsets and that we can represent the state of the universe by

a reduced density matrix where the irrelevant subset has been traced out. In this

context, it is possible to draw upon parallel discussions in the context of statistical

mechanics. In particular, consider the insightful analysis of Robertson (2020)23:

according to Robertson, the crucial feature of an objective coarse-graining, i.e. one

that is not illusory or problematic anthropocentric, is that it allows us to abstract

to a higher-level autonomous description. Autonomy here is understood in the

dynamical systems sense of having independently well-posed evolution equations.

Similarly, one could argue that the coarse-grained asymmetry derived by

Kiefer and Zeh provides an objective basis for the emergence of chronodirected

structure. To do so would involve showing that the irrelevant inhomogeneous de-

grees of freedom are such that the dynamics of the rest of the universe is suitably

autonomous. Such a project is attempted, with some but not complete success, in

Kiefer (1987), following Halliwell and Hawking (1985).

The third and final assumption is the entropic-arrow assumption which

amounts to the idea that chronodirected structure can be defined the von Neu-

mann entropy of the reduced density matrix. In this context, one can note that the

23See Wallace (2011) and Zeh (1989) for related ideas. For work on coarse-graining in classical
cosmology see Te Vrugt et al. (2021). For a quantum cosmological model studied in the inflationary
context see Hollowood and McDonald (2017).
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monotonic (or secular) increase of a entropy function does not in fact require or en-

force chronodirected structure but can instead be perfectly compatible with a theory

of time in which only chronordinal structure obtains (Farr 2016, 2020). Moreover, if

the aim in providing approximate derivation of chronodirected structure was to pro-

vide an explanation for the full gamut of temporally directed phenomena required

by our functionalism, it is not clear that models such as that of Kiefer and Zeh are

capable of addressing such an ambitious explanatory project, cf. Ryder (2022). In

particular, no resources have been provided to connect the derived global entropic

arrow with local temporally directed processes, such as equilibration of thermal

systems or memory formation. In this sense, the model, although remarkable, still

falls short of explaining the arrow of time, until and unless such connections are

provided.

5. Conclusion

In this paper we have conducted a case study analysis of a proposal for

the emergence of time based upon the approximate derivation of three grades of

temporal structure within an explicit quantum cosmological model which obeys

a Wheeler-DeWitt type equation without an extrinsic time parameter. Our con-

clusion is that the model provides a self-consistent account of the emergence of

chronordinal, chronometric and chronodirected structure.

Our analysis has demonstrated that the Born-Oppenheimer and WKB ap-

proximations can be justified without presupposing the chronordinal and chrono-

metric structures that one is aiming to derive. Further, regarding emergent

chronodirected structure, we have shown that the Kiefer-Zeh model avoids Price’s

temporal double standards argument due to its temporal symmetry. In particu-

lar, since the model includes two symmetrically situated emergent arrows of time,

it allows us to avoid asymmetry by not having an end the universe, but rather

two beginnings. There is evidently an exciting explanatory project with regard

to the emergence of chronodirected structure that should be actively pursued in

the context of more realistic cosmological models. Moreover, the even more diffi-

cult challenge remains of interpreting the model in the context of the cosmological

measurement problem.
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Appendix

In this Appendix we sketch proofs of formal claims made in the discussion

of the BO approximation in §3.1.

[1] Given |λm − λn| � T1 for m > n, a superposition of ψn cannot be

an eigenvector of total energy, so (5) holds. Suppose, for reductio, that

(for instance) θmψm + θnψn is an eigenstate, so that it is parallel with

(T̂1 + T̂2 + Ŵ
)
(θmψm + θnψn) = T̂1(θmψm + θnψn) + λmθmψm + λnθnψn.

Since the ψn are orthonormal, such parallelism could only hold if the first term is

comparable to the difference between the second two: that the kinetic energy of

the heavy subsystem is comparable to the difference between the λn, contrary to

the separation of energy levels.

[2] The adiabatic approximation, (7): θnψn is an eigenstate of T̂2 +Ŵ from (3), and

(approximately) of T̂1 + T̂2 + Ŵ from (5), hence it is also an eigenstate of T̂1. So by

the orthogonality of the ψn, 〈θmψm|T̂1|θnψn〉 ∝ δm,n. In the xi basis T̂1 ∼ ∂2/∂x21,

so we have (using the chain rule):
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∫
dx1dx2 θ

∗
mψ
∗
m

(∂2θn
∂x21

ψn + 2
∂θn
∂x1

∂ψn
∂x1

+ θn
∂2ψn
∂x21

)
∝ δm,n.

The orthogonality of the ψn means that (the integral of) the first term is pro-

portional to δm,n, while the second and third terms are generally not. Hence the

(approximate) proportionality requires that those terms – specifically the ψn deriva-

tives that they contain – (approximately) vanish. Hence (7).
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