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Abstract
We argue that Hamiltonian mechanics is more fundamental than Lagrangian mechanics. Our
argument provides a non-metaphysical strategy for privileging one formulation of a theory over
another: ceteris paribus, a more general formulation is more fundamental. We illustrate this cri-
terion through a novel interpretation of classical mechanics, based on three physical conditions.
Two of these conditions suffice for recovering Hamiltonian mechanics. A third condition is
necessary for Lagrangian mechanics. Hence, Lagrangian systems are a proper subset of Hamil-
tonian systems. Finally, we provide a geometric interpretation of the principle of stationary
action and rebut arguments for privileging Lagrangian mechanics.
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1 Introduction

The intellectual richness of classical mechanics manifests itself in an abundance of formula-

tions, with Newtonian, Hamiltonian, Lagrangian, and Hamilton–Jacobi being among the most

prominent. Butterfield (2004) has aptly referred to these formulations as different schemes for

treating classical systems. Recent work in philosophy of science has focused largely on how

these schemes relate to one another, with the aim of arriving at a deeper understanding of clas-

sical mechanics. By considering the conceptual differences between these formulations, we can

better interpret the physical significance of our representations.
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In the context of comparing Hamiltonian and Lagrangian mechanics, three interpretive

stances have emerged. North (2009) has argued for privileging Hamiltonian mechanics on the

grounds that it requires less mathematical structure to formulate. In contrast, Curiel (2014) rec-

ommends privileging Lagrangian mechanics, arguing that it isolates physically-significant kine-

matical constraints that all classical systems must satisfy. Finally, we can interpret Lagrangian

and Hamiltonian mechanics as theoretically equivalent in a precise mathematical sense. Within

a subclass of systems known as the hyper-regular domain, the two formalisms are categorically

equivalent (Teh and Tsementzis 2017; Barrett 2018). Categorical equivalence provides a natu-

ral interpretive criterion for theoretical equivalence because it yields mutual inter-translatability

between theory formulations. This equivalence motivates the view that there are no physically

significant differences between these two formalisms, at least within the hyper-regular domain.

Here, we will argue that there are indeed physical grounds for privileging Hamiltonian me-

chanics over Lagrangian mechanics, their categorical equivalence notwithstanding.1 Whereas

North’s argument relies on a problematic criterion for comparing structure based on the size of

symmetry groups (Swanson and Halvorson 2012), our argument avoids this pitfall. We show

that a classical system needs to satisfy strictly fewer physical conditions in order to be Hamil-

tonian. To be Lagrangian, systems must satisfy an additional physical condition, making La-

grangian mechanics a proper subset of Hamiltonian mechanics. Hamiltonian mechanics thereby

captures a wider range of systems than Lagrangian mechanics. Unlike Lagrangian mechanics,

Hamiltonian mechanics provides a unique solution to the equations of motion even outside the

hyper-regular domain. Hence, Lagrangian mechanics is restricted to the hyper-regular regime.

The construction at the heart of our argument provides a novel interpretation of classical me-

chanical systems in terms of their invariant phase space density.

Section 2 previews our argument for privileging Hamiltonian mechanics. We introduce

three physical conditions that define classical systems while distinguishing Hamiltonian from

1. Barrett shows that in the hyper-regular domain, Lagrangian and Hamiltonian mechanics are categorically
equivalent provided that we define categories of models over the tangent and cotangent bundle formulations, re-
spectively (2018, 1181–82). However, he also shows that if we consider a more general formulation of Hamiltonian
mechanics on a symplectic manifold (which does not require a cotangent bundle), then the two formulations are
not categorically equivalent (2018, 1182–83). Our construction of Hamiltonian mechanics in Section 4 matches
this more general symplectic manifold formulation and illuminates why it is more general.
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Lagrangian mechanics. Section 3 explains how our position differs from North’s. Specifi-

cally, our argument does not require metaphysical commitments to fundamental structure or

perfectly natural properties. Section 4 describes in detail the derivation of Hamiltonian me-

chanics for systems that satisfy two physical conditions: infinitesimal reducibility and deter-

ministic/reversible evolution. Our derivation shows that even non-hyper-regular Hamiltonian

systems are physically interpretable. We then show that Lagrangian systems must satisfy an

additional physical condition, which we call motion equivalence. This completes our primary

argument for privileging Hamiltonian mechanics. Section 5 considers the status of Lagrangian

mechanics within our framework. We provide a geometric interpretation of the action principle

that applies even outside the hyper-regular domain. We end by rebutting objections that arise

from Curiel’s (2014) privileging of Lagrangian mechanics.

2 Privileging Hamiltonian mechanics

In claiming that Hamiltonian mechanics is more fundamental than Lagrangian mechanics, we

must provide a criterion for assessing whether one framework is more fundamental than another.

Of various notions of relative fundamentality, we focus on an entirely non-mysterious one.

Given two formalisms that capture a class of systems, if one is logically more general, then it

is more fundamental.2 This aspect of fundamentality is familiar from mathematics. A more

fundamental framework encompasses a less fundamental one as a special case. It is in this

sense that the generalized Stokes’ theorem is more fundamental than special cases such as

the fundamental theorem of calculus and Green’s theorem.3 This aspect of fundamentality is

2. Hunt (2022, Ch. 6) provides an expressivist conception of fundamentality, based on an attitude of being
for privileging. In terms of this conception, adopting our specific criterion here expresses an attitude of being for
privileging frameworks that are logically more general. Hunt (2021, 816) considers a separate reason for privi-
leging Hamiltonian mechanics: in systems with an ignorable coordinate, Hamiltonian mechanics makes manifest
conservation of momentum.

3. One might worry that our criterion is subject to elementary counterexamples. For instance, can’t we make
any theory more general by adjoining arbitrary disjunctions? Importantly, we require that the theory remains
wholly about classical mechanics. Hamiltonian mechanics is more general than Lagrangian mechanics while still
being about classical systems, where “aboutness” can be understood using Yablo’s framework (2014). Having an
account of aboutness or subject matter is a general philosophical problem that any account of fundamentality must
address. It is not a special problem facing our criterion.
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distinct from aspects associated with differences in energy scale, such as how the Standard

Model of particle physics is more fundamental than classical mechanics. We do not mean

that Hamiltonian mechanics is more fundamental than Lagrangian mechanics in this sense. As

Gilton notes, “many philosophers of science have moved away from thinking of fundamentality

in science in terms of the very small toward thinking of it in terms of comprehensiveness, or

breadth of applicability” (2021, 637).

To apply our criterion for relative fundamentality, we must show that Lagrangian mechan-

ics is less general than Hamiltonian mechanics. We do this in Section 4 by recovering the

mathematical formalisms of both Hamiltonian and Lagrangian mechanics from three physical

conditions. Our derivation illuminates the relationship between Hamiltonian and Lagrangian

mechanics. As North (2009) argues, there is a sense in which Hamiltonian mechanics is more

general than Lagrangian mechanics. Barrett (2018) makes this sense more precise by showing

that the symplectic manifold formulation of Hamiltonian mechanics is categorically inequiv-

alent to Lagrangian mechanics formulated on a tangent bundle. Still, one might wonder why

it is that Hamiltonian mechanics can be formulated in a more general framework than La-

grangian mechanics. Additionally, one might wonder whether Lagrangian mechanics could be

meaningfully formulated in an analogously general manner. Our derivation helps answer these

questions: the physical principles that undergird the symplectic manifold formulation of Hamil-

tonian mechanics are simply more general than the principles required for Lagrangian mechan-

ics.4 In this section, we describe how our argument works in principle. Section 3 demonstrates

some philosophical advantages of our criterion for relative fundamentality.

Shorn of many details, our argument goes as follows. First, we show that the formalism of

Hamiltonian mechanics applies to systems that are both i) infinitesimally reducible and ii) fol-

low a deterministic and reversible evolution. A system is infinitesimally reducible provided that

specifying the state of the whole system is equivalent to specifying the states of its parts (and

vice versa). Colloquially, we can say that the whole state equals the sum of its parts, where we

take these infinitesimal parts to be classical particles. Infinitesimal reducibility distinguishes

4. We thank a reviewer for suggesting this helpful way of framing the significance of our derivation.
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classical from quantum systems, where the latter are irreducible (i.e. we cannot specify the

whole state by specifying the states of its subsystems).5 We show in Section 4.1 that if one

chooses to model continuous quantities using a manifold, then this manifold must be symplec-

tic. To recover Hamiltonian mechanics, it then suffices to identify when trajectories on phase

space obey Hamiltonian evolution (i.e. evolve according to a symplectomorphism). Section 4.2

shows that this requires the system to follow a deterministic and reversible evolution, i.e. the

present state of the system uniquely determines both its future and past states. We thereby char-

acterize Hamiltonian mechanics as the mathematical framework for infinitesimally reducible

systems with deterministic and reversible evolution. Importantly, our derivation encompasses

Hamiltonian mechanics in the non-hyper-regular regime as well.

Next, we note that some classical systems satisfy a third, further condition, which we call

motion equivalence. Motion equivalence holds when a system’s trajectory in physical space

determines—and is determined by—its evolution in phase space. In other words, knowledge of

the trajectory in physical space (e.g. Euclidean three-space R3) suffices for knowledge of the

trajectory in phase space, and vice versa. Physically, knowledge of the trajectory in physical

space corresponds to knowledge of position and velocity, while knowledge of the trajectory in

phase space requires knowing the system’s momentum. Hence, motion equivalence entails a

correspondence between velocity and momentum, which formally leads to the framework of

Lagrangian mechanics (Section 4.3). Since a system satisfies motion equivalence if and only

if it is hyper-regular, this condition illuminates the physical significance of hyper-regularity.

Moreover, since Lagrangians lack unique solutions to the equations of motion outside the hyper-

regular regime, we take ourselves to have recovered the physically significant Lagrangian sys-

tems.6 As a result, Lagrangian mechanics requires that a further physical condition is satisfied,

and hence it is less general than Hamiltonian mechanics.

To show that motion equivalence is a further condition, it suffices to show that some Hamil-

5. The conditions of infinitesimal (ir)reducibility are similar to various notions of (non-)separability in the
literature on physical holism (Healey 2007, 46, 124). We adopt our preferred terminology to avoid controversies
surrounding how best to characterize separability.

6. See Gelfand and Fomin (1963, 119) for discussion of the fact that Lagrangians yield unique solutions only
in the hyper-regular domain.
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tonian systems violate it. This follows from the fact that knowing a system’s position and

velocity does not always suffice for knowing its momentum. Hence, we cannot always deter-

mine the evolution of a system in phase space from its trajectory in physical space. For instance,

if we consider a photon as a classical particle, then we cannot determine its momentum from

its trajectory through space. Since photons travel at constant speed, we can recover the direc-

tion of momentum—but not the magnitude—from the trajectory. Two photons with different

momenta can follow the same trajectory in physical space. Hence, knowledge of the physical

trajectory of a photon is insufficient for knowledge of its phase space evolution. In general,

different Lagrangians—differing even by more than a constant—can correspond to the same

particle trajectories while not agreeing on the total energy, even up to a constant.7 Hence, the

set of classical systems that satisfy motion equivalence is a proper subset of the classical sys-

tems that satisfy the conditions for Hamiltonian mechanics. For at least this reason, Hamiltonian

mechanics is more fundamental than Lagrangian mechanics.

Of course, different definitions of “Hamiltonian” and “Lagrangian” systems can result in

different interpretive relationships. On our account, Hamiltonian systems are infinitesimally

reducible and follow deterministic and reversible evolution.8 We thereby set aside well-known

cases of non-deterministic classical systems.9 Additionally, we set aside dissipative systems,

i.e. those that fail to conserve energy. Possessing a deterministic and reversible evolution is

equivalent to being non-dissipative. Our derivation of Lagrangian mechanics in Section 4.3

takes place within the context of conservative systems, so we do not consider systems that sat-

isfy inhomogenous Euler–Lagrange equations. Although both the Lagrangian and Hamiltonian

formulations apply to dissipative systems, we exclude these.10 This restricts our claim about

the fundamentality of Hamiltonian mechanics to the non-dissipative regime. Finally, our treat-

7. Barrett (2018, 1185–86) discusses this in the context of the failure of equivalence between the vector field
formulations of Lagrangian and Hamiltonian mechanics. In contrast, the trajectories in phase space (encoded by
the Hamiltonian vector field) uniquely define the Hamiltonian up to a constant.

8. Although not sufficient for a definition, Newtonian systems also satisfy the motion equivalence condition.
Since Lagrangian systems satisfy all three conditions (infinitesimal reducibility, deterministic/reversible evolution,
and motion equivalence), they lie in the intersection of Newtonian and Hamiltonian systems.

9. For non-deterministic classical systems, see Baez (unpublished, 3–4), Earman (1986), and Norton (2008).
10. For details, see Cline (2021, §10.4). Curiel (2014, 311) acknowledges that the Hamiltonian framework can

be extended to treat dissipative systems. For a Lagrangian approach to dissipative systems, see Smith (2008).
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ment is not restricted to n-particle mechanics but applies as well to rigid-body and continuum

mechanics. This supports our claim that the property of infinitesimal reducibility fruitfully

characterizes classical systems. Before presenting the details of our argument in Section 4, we

describe how we avoid problems that arise in North’s privileging of Hamiltonian mechanics.

3 Fundamentality, sans metaphysics

As indicated at the start of Section 2, we are interested in a non-metaphysical aspect of fun-

damentality. At least some differences in fundamentality are differences in generality: other

things equal, a theoretical framework is more fundamental if it requires fewer conditions to

hold. This aspect of fundamentality leads to a correspondingly non-metaphysical notion of

structure. Hamiltonian mechanics employs less structure than Lagrangian mechanics because

the former requires fewer physical conditions. Compared with North’s (2009) account of com-

parative structure, our criterion has two advantages. First, it avoids metaphysical disputes sur-

rounding perfectly natural or joint-carving properties, which scientific anti-realists, pragmatists,

and even some scientific realists view with suspicion. Secondly, it avoids a technical objection

that Swanson and Halvorson (2012) levy against North’s more precise mathematical criterion

for comparing structure.

Despite our different commitments, our approach has methodological parallels to North’s.

We agree with North that it is fruitful to identify both invariants and “the mathematical struc-

ture needed to formulate the theory in an invariant, frame-independent way” (2009, 65). Ad-

ditionally, we agree that it is worthwhile to identify what particular mathematical structure is

required by a formulation (78). Indeed, we undertake precisely this sort of investigation in

Section 4.11 However, North advocates a metaphysical account of structure, about which we

remain agnostic. According to North, “structure comprises the objective, fundamental, intrin-

sic features, the ones that remain the same regardless of arbitrary or conventional choices and

11. Curiel also aims to identify the necessary and sufficient mathematical structures for formulating classical me-
chanics. He sets out to establish the “geometrical structure necessary (and manifestly sufficient) for the formulation
of the Euler–Lagrange equation” relevant for all kinematically-possible solutions (2014, 292). See Section 5.2 for
discussion.
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description” (2009, 66). These notions of fundamentality and intrinsicality correspond to dif-

ferences in joint-carving, where more fundamental or intrinsic features are more joint-carving

(or in Lewis’s (1983) terminology, more natural).

Owing to the epistemic difficulty of accessing these putative joints, we do not endorse these

metaphysical dimensions of structure or fundamentality.12 While Hamiltonian mechanics is sig-

nificant partly because it elucidates invariant densities, this does not entail that additional math-

ematical structure is physically insignificant or surplus. Additional structure may correspond

to an additional physically-significant condition that applies to the system under consideration.

Precisely this scenario occurs in the context of Lagrangian mechanics, which requires the ad-

ditional condition of motion equivalence to hold. Whereas North views Lagrangian mechanics

as containing “excess, superfluous structure” (2009, 75), we take this additional condition to

still be physically significant. Thus, while it is illuminating to identify the minimum mathemat-

ical structures necessary for a formulation, additional structure is not automatically rendered

physically insignificant.

Additionally, whereas North (2009, 76) seeks to determine the “real” fundamental state

space structure of the theory—and correspondingly, of a classical world—we remain neutral

on this underlying metaphysical question.13 Whether Hamiltonian phase space structure is

metaphysically fundamental in a classical world does not matter for the questions we seek to

answer. Regardless of its metaphysical status, Hamiltonian mechanics is conceptually more

fundamental. Indeed, our argument does not privilege any one of the various mathematical

formalizations of Hamiltonian mechanics. These include formulating Hamiltonian mechanics

on a 2n+1-dimensional contact manifold, on an extended phase space, on a Poisson manifold,

and the standard formulation on a symplectic manifold that we recover in Section 4.2.14

12. For a detailed discussion of difficulties facing the notion of metaphysical naturalness, see Dorr and
Hawthorne (2014).

13. Indeed, Swanson and Halvorson (2012) note that many physicists and philosophers would not interpret state-
space structure ontologically, but rather as a formal device for encoding physical information or a calculational
tool. As Wilson illustrates, we can interpret classical mechanics while avoiding—and even rejecting—the search
for what is “fundamental in the bottom-layer sense” (2013, 53).

14. Tulczyjew’s reformulation of Hamiltonian mechanics further supports viewing symplectic geometry—and
hence Hamiltonian mechanics—as conceptually fundamental. According to Teh and Tsementzis, this reformula-
tion shows that “the very concept of a classical mechanical system (and not merely the phase space of that system)
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North also introduces a technical notion of comparative structure, based on the symmetry

group of statespace. According to this criterion, statespace A has more structure than statespace

B if the symmetry group of A is a proper subgroup of B’s symmetry group (87–88).15 Being a

proper subgroup entails that strictly fewer transformations preserve the space’s structure. This

indicates that statespace A has more mathematical structure to be preserved. These symmetry

groups are defined in terms of the coordinate transformations that preserve the space’s geometric

structure, amounting to re-coordinatizations (redescriptions) of that structure. For Lagrangian

systems, North takes the relevant symmetry group to be that of the point transformations, and

for Hamiltonian systems, she assumes that canonical transformations play this role. Since point

transformations are a proper subgroup of canonical transformations, North’s criterion entails

that the statespace of Lagrangian mechanics has more structure than the statespace of Hamilto-

nian mechanics—in virtue of the former having a smaller symmetry group.

However, Swanson and Halvorson (2012) develop a series of problems for North’s argu-

ment. Most compellingly, they argue that we cannot in general assume that point transfor-

mations and canonical transformations are the proper symmetry groups for Lagrangian and

Hamiltonian mechanics, respectively. As they note, Galilean boosts are often symmetry trans-

formations of Lagrangian systems (in the sense of preserving the equations of motion), but they

are not point transformations. Additionally, the two-body problem admits canonical transfor-

mations that map physically distinct solutions to each other (specifically, solutions whose orbits

possess the same energy but different eccentricity).16 Hence, we cannot straightforwardly com-

pare the structure of Lagrangian and Hamiltonian mechanics in terms of the symmetry groups

of their statespaces.

Advantageously, our criterion for comparing Hamiltonian and Lagrangian mechanics avoids

these problems. Hamiltonian mechanics has less structure than Lagrangian mechanics simply in

the sense of logical strength: a system must satisfy strictly fewer physical conditions in order to

should be described in terms of symplectic geometry” (2017, 46).
15. This criterion follows from the most charitable reconstruction of North’s argument, given by Swanson and

Halvorson (2012). North sometimes speaks in terms of comparing the dimensions of symmetry groups, which they
note leads to counterexamples.

16. For more details on the classical two-body problem, see Belot (2013).
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be Hamiltonian. Whereas to be Lagrangian, the system must also satisfy the motion equivalence

condition. Motion equivalence places an additional constraint on the Hamiltonian, a constraint

that need not be satisfied in general.

4 Deriving Hamiltonian and Lagrangian mechanics

Our derivation has three main steps. Section 4.1 shows that if one represents continuous quanti-

ties using a manifold, then this manifold must be symplectic. For systems with deterministic and

reversible evolution, Section 4.2 shows they must evolve according to a symplectomorphism.

Hence, we derive the formalism of Hamiltonian mechanics from the conditions of infinitesimal

reducibility and deterministic/reversible evolution. Section 4.3 shows how systems that satisfy

the further condition of motion equivalence can be treated within the formalism of Lagrangian

mechanics. In fact, when motion equivalence fails, Lagrangian mechanics does not yield unique

solutions to the equations of motion.

These three physical conditions place constraints on both physical systems and, in turn, the

mathematical objects that can be used to represent them. Each condition leads to additional

constraints, introduced gradually within each section. Some of these constraints are regulative

in nature: they provide requirements for the math and therefore cannot be derived from math-

ematics alone. Our goal is to show how these constraints follow logically from the physical

conditions, how they are encoded in the math, and how they recover well-known structures.

Figure 1 summarizes the results of this derivation. The left column lists the three central

physical conditions. Each condition entails physically significant properties, described in the

middle column. Each physical property corresponds to a formal/mathematical structure de-

picted in the right column, including phase space, Hamiltonian mechanics, and Lagrangian

mechanics. In this way, our framework develops a correspondence between physical conditions

and their associated mathematical formalisms. We thereby elucidate the physical significance

of these formalisms.
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Figure 1: Physical conditions and corresponding properties and formalisms

4.1 Infinitesimal reducibility

First, we will show that a classical phase space arises if a system satisfies the following physical

condition:

Infinitesimal reducibility: the state of the system is reducible to the state of its
infinitesimal parts. That is, specifying the state of the whole system is equivalent
to specifying the state of its parts.

This assumption characterizes classical systems as those whose infinitesimal parts completely

specify the state of the system. We define a classical particle as one of these infinitesimal

parts, namely the limit of recursive subdivision.17 Ultimately, this condition entails that we can

describe the state of the whole system as a statistical distribution over the state space of its parts.

If we model the state space of the parts using a manifold, the distribution must be characterized

by a density that depends on the state and not on the coordinates. From this condition, we

17. This definition of a classical particle differs from viewing point-particles as extensionless (Butterfield 2006)
or zero-dimensional (Wilson 2013).
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show that the manifold must be symplectic. Readers satisfied with this overview can proceed to

Section 4.2.

Let C be the state space for the whole system, so that any c ∈ C represents a particular

state of the whole system. Given infinitesimal reducibility, a classical system consists of a

collection of classical particles. Let S be the state space for the particles, so that each point

s ∈ S describes a possible state of a classical particle. Then for each system state c ∈ C , there

exists a unique distribution ρc : S → R that describes the state of c’s parts. That is, the state

of the whole system is a distribution over its infinitesimal parts. This distribution describes the

proportion of classical particles in any particular state from S .18

When the system is characterized by continuous quantities, S can be taken to be a mani-

fold.19 For U ⊆S , we define µ(U) :=
´

U ρc(s)dS to measure the number of particles in region

U . State variables ξ a are any set of quantities that fully identify states, so that ξ : S → Rn is

an invertible function between each state and the numeric values of the variables.20 The map ξ

represents a state s∈S by a set of state variables ξ a ∈Rn, such that ξ (s) = ξ a. To represent the

distribution ρc in terms of state variables, we define a density ρc,ξ : Rn →R by ρc,ξ ≡ (ρc◦ξ−1).

This density plays a crucial role throughout our argument. It allows us to compare and track the

amount of matter in different possible states.

Since ρc: S →R is a function of the particle state s, we assume that its value is independent

of the choice of state variables ξ a (i.e. the choice of state variable map ξ ). If this assumption

did not hold, then we could not model the system in the first place using state variables, and this

would preclude many standard representational tools. Hence, the density ρc,ξ must transform as

a scalar under state variable changes.21 Likewise, we assume that the integral
´

U ρc(s)dS is in-

18. For further details, see Carcassi et al. (2018) and Carcassi and Aidala (2020).
19. Note that the use of manifolds constitutes a choice of how to represent the physics. One could make another

choice, for example, by representing the state variables not as local coordinates but as an algebra of operators that
act on the state. In this case, we conjecture that a similar argument would demonstrate an analogue of a symplectic
structure for this alternative mathematical representation.

20. In the language of manifolds, these ξ a are called “coordinates” and ξ is a coordinate map. To avoid con-
fusion, we will call the coordinates of the state space S “state variables.” As usual with coordinate charts, ξ is
properly defined on some U ⊆ S , and ξ−1 is defined on ξ (U) ⊆ Rn. We will neglect these subtleties in what
follows.

21. For two state variable maps ξ and ξ̂ , we have ρc(s) = (ρc ◦ ξ−1 ◦ ξ )(s) = (ρc ◦ ξ̂−1 ◦ ξ̂ )(s), which entails
that ρc(s) = ρc,ξ (ξ a) = ρc,ξ̂ (ξ̂

b). Here, ξ (s)≡ ξ a and ξ̂ (s)≡ ξ̂ b.
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dependent of the choice of state variables, so that
´

ξ (U)ρc,ξ (ξ a)dξ a =
´

ξ̂ (U)
ρc,ξ̂ (ξ̂

b)dξ̂ b.22 Ap-

plying the change of variables formula, we know that
´

ξ̂ (U)
ρc,ξ̂ (ξ̂

b)dξ̂ b =
´

ξ (U)ρc,ξ̂ (ξ̂
b)
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣dξ a.23

Here,
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣ is the determinant of the Jacobian for this change of state variables. Matching inte-

grands from the preceding two equations, we have ρc,ξ (ξ a) = ρc,ξ̂ (ξ̂
b)
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣. From the scalar

transformation property, ρc,ξ (ξ a) = ρc,ξ̂ (ξ̂
b). Hence, we see that ρc,ξ̂ (ξ̂

b) = ρc,ξ̂ (ξ̂
b)
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣,
entailing that the Jacobian determinant must equal one. By dimensional homogeneity, it must

also be dimensionless.

We will now show that in order for the density ρc,ξ to have these transformation properties,

the particle phase space S must be at least a symplectic manifold. In other words, given that i)

we assume we can model a classical system by a density over its infinitesimal states and ii) these

transformation properties are required for the density to play this role, it follows that the phase

space must have a symplectic manifold structure. Our next assumption involves the relationship

between state variables and measurement units.

4.1.1 The particle state space is even-dimensional

We assume that a proper subset of the state variables suffices to define a unit system for all of

the state variables. Again, this assumption is regulative in the sense that without it, we could not

quantify properties of the system using measured values. Using this assumption, we will show

that the state space S must be even-dimensional and hence a candidate for having symplectic

structure.

We define a unit variable q∈ ξ a as a particular state variable that defines a unit. For instance,

q might be position, defined in units of meters. Two unit variables are independent if one unit

variable can be changed without changing the other. For example, one can measure vertical

22. Here, we assume that ξ and ξ̂ map the background measure on S to the standard Lebesgue measure on Rn.
In order to match integrands below, we also assume that ξ and ξ̂ agree on their orientation. These are regulative
assumptions so that we can model the system using coordinates on Rn. They amount to assuming that the particle
state space S has a volume form.

23. The change of variables transformation from ξ a to ξ̂ b is given by ϕ ≡ ξ̂ ◦ξ−1: Rn → Rn. For convenience,
we denote ρc,ξ̂ (ϕ(ξ

a)) by ρc,ξ̂ (ξ̂
b). Likewise, in the numerator of the Jacobian, we denote ∂ϕ by ∂ ξ̂ b, where ξ̂ b

is here understood as a function of ξ a.
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position in meters while measuring horizontal position in miles. The unit variables qi are a

privileged subset of the state variables that define the unit system. These qi determine the units

not only for themselves, but for all other state variables. A change of units is therefore a map

q̂ j = q̂ j(qi) that defines new unit variables in terms of old unit variables. Since the unit variables

define the units for all state variables, this change must induce a unique change of state variables

ξ̂ b = ξ̂ b(ξ a) for all variables.

Consider first the simplest case: suppose that a single unit variable q suffices to define the

unit system for the particle state space. Then, the state variables are a set ξ a = {q,kα}, where

prima facie the index α could be any non-negative integer. We will show that, in fact, there

must be exactly one kα variable, conjugate to the single q variable.

As a scalar, the units of the density ρc,ξ are invariant under unit changes of the state vari-

ables. Suppose we change units by transforming q to a new unit variable q̂ = q̂(q). Call the new

state variables ξ̂ b = {q̂, k̂β}. As shown above, the Jacobian determinant
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣ must equal one.

Assume for contradiction that there is only one state variable, so that there are no kα variables.

Then we would have
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣= ∣∣∣∂ q̂
∂q

∣∣∣= 1. But this would mean the unit change cannot be arbitrary.

Therefore we must have two or more state variables, requiring at least one kα variable.

Next, we show that in fact there must be exactly one k variable, conjugate to the single q

variable. Using the fact that the Jacobian determinant equals one, we determine how the state

variables kα must change in order to compensate the change from q to q̂. Since q̂ depends only

on q, ∂ q̂
∂kα = 0. Hence, the Jacobian is a lower triangular block matrix:

|J|=

∣∣∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣∣∣=
∣∣∣∣∣∣

∂ q̂
∂q

∂ q̂
∂kα

∂ k̂β

∂q
∂ k̂β

∂kα

∣∣∣∣∣∣=
∣∣∣∣∣∣

∂ q̂
∂q 0

∂ k̂β

∂q
∂ k̂β

∂kα

∣∣∣∣∣∣ (1)

The determinant of a triangular block matrix equals the product of determinants of the block

matrices along the diagonal:
∣∣∣∂ ξ̂ b

∂ξ a

∣∣∣= ∣∣∣∂ q̂
∂q

∣∣∣ ∣∣∣ ∂ k̂β

∂kα

∣∣∣. For the Jacobian determinant to equal one, we

must therefore have
∣∣∣ ∂ k̂β

∂kα

∣∣∣ = ∣∣∣∂ q̂
∂q

∣∣∣−1
. Since q̂ is a function only of q, ∂ q̂

∂q is a total derivative,

so we obtain the inverse by swapping the numerator and denominator. Hence, we see that∣∣∣ ∂ k̂β

∂kα

∣∣∣= ∣∣∣∂q
∂ q̂

∣∣∣.



Hamiltonian Privilege 15

This equation provides only a single constraint, placed on the determinant of the transfor-

mation from kα to k̂β . Hence, if there were three or more ξ a variables, this constraint would

be insufficient to recover the transformation of the kα uniquely. In this case, q̂ would not fully

define the units for all other state variables, contrary to assumption. Consequently, there must

be exactly two state variables: q and a single k. So in the case of a single q variable, defining an

invariant density ρc,ξ requires a two-dimensional manifold.

We extend this construction to the general case with multiple unit variables qi. Recall that

two unit-variables are independent if changing the units for one does not change the units for

the other. Suppose our particle state space S is such that its units are fully defined by n inde-

pendent unit-variables qi. If we change the first unit-variable q1 without changing the others,

then the variable k1 must change as before, so that the density remains invariant. Likewise,

transforming the second unit-variable q2 in the same way (while fixing k1) requires a corre-

sponding k2. Continuing, we find that S is 2n-dimensional, with state variables ξ a = {qi,ki}.

We define an independent degree of freedom as the space charted by a pair of such variables.

Each independent degree of freedom thereby defines a two-dimensional surface in phase space.

These play a crucial role in showing that S must have a non-degenerate, closed two-form ω ,

i.e. a symplectic form.

4.1.2 The particle state space has a symplectic form

We now show that S must have a well-defined two-form ω . Recall that a density is defined in

terms of an amount per unit volume. Representing the system state c in terms of its infinitesimal

parts requires that the density ρc,ξ is defined on infinitesimal volumes dS of the phase space.

Since each independent degree of freedom comprises a pair of state variables, each infinites-

imal volume decomposes into independent infinitesimal areas. To define the density ρc,ξ , we

must be able to measure each of these independent infinitesimal areas. This is precisely the role

performed by a two-form ω , which assigns an infinitesimal area to each infinitesimal surface.

We can then define integrals of the form
´

Σ ρcω(dΣ), for Σ ⊂ S (i.e. the fraction of the system

whose parts are in the region Σ of state space S ). Because the degrees of freedom are indepen-
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dent, the total number of states in a volume is the product of the possible configurations of each

degree of freedom. This means that the volume form is given by ωn.

Since each volume of phase space contains some possible states, the volume form cannot be

degenerate. If the volume form were degenerate, then there would be a “volume” in state space

that did not contain states. But then this region of state space could not be a volume. Since the

volume form ωn is non-degenerate, the two-form ω must also be non-degenerate. Otherwise,

there would be infinitesimal surfaces in phase space assigned zero area, i.e. there would be

states of phase space that ω does not count. But, ω must count all possible states in order for

the density ρc,ξ to be well-defined.

Next, we show that ω must be closed, using the fact that the degrees of freedom are indepen-

dent. If we translate a surface along an independent degree of freedom, this does not change the

area of the surface, meaning that the number of states on that surface is invariant. We can there-

fore construct a parallelepiped P, whose opposite sides have equal areas. Integrating ω over

the closed surface ∂P of this parallelepiped, opposite sides provide equal and opposite contri-

butions. Hence, the integral over this closed surface must equal zero:
´

∂P ω = 0. By Stokes’

theorem, the integral of dω over this volume P must equal zero as well:
´

P dω =
´

∂P ω = 0.

Since, we can approximate any volume V by such parallelepipeds,
´

V dω = 0 for arbitrary V .

Hence, the integrand dω must vanish, entailing that ω is closed. So S must come equipped

with a two-form ω that is closed and not degenerate, and therefore S is a symplectic manifold.

Moreover, we choose the same units for ω as the units we choose to count states over an

independent degree of freedom. This matches common practice in statistical mechanics. When

normalized, the density ρc,ξ is given in terms of the inverse of the units for ω . Following

standard conventions in quantum mechanics and statistical mechanics, the ki are given in terms

of inverse units of the respective qi, such that dqi∧dki is a pure number. We then use h̄ to define

the units for state counting and therefore set ω = h̄dqi ∧dki = dqi ∧d pi where pi = h̄ki.

We can thereby understand canonical coordinates as a set of state variables that express the

density in the correct units. A canonical transformation is one that preserves the unit and the

numerical value of the density. A change of unit is a special type of canonical transformation:
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one where we have an arbitrary change in the unit variables and an induced (covariant) change

in the conjugate variables.

In sum, under the infinitesimal reducibility assumption, a state c of the system is repre-

sented by a coordinate-invariant density over the state space S of its infinitesimal parts. We

have shown that the state space of the particles must be a symplectic manifold. Addition-

ally, any symplectic manifold structure supports the definition of coordinate-invariant densities:

any scalar function can be integrated using the symplectic form in a coordinate-invariant way.

Therefore symplectic structure is exactly the structure needed to define an invariant density.

4.2 Deterministic and reversible evolution

Next, we focus on those classical systems that are deterministic and reversible. This amounts

to satisfying the following joint condition:

Deterministic and reversible evolution: given the present state of the system, all
future (determinism) and past (reversibility) states are uniquely identified.

In our case, this applies to both the state of the whole system and the state of its parts. Under this

assumption, we show that the symplectic structure must be preserved over time, which gives us

Hamiltonian evolution.

First, we will show that deterministic and reversible evolution entails that the density ρc,ξ is

constant in time. We consider a particle state s0 at time t0. Given deterministic and reversible

evolution, there exists a unique evolution λ : R → S such that λ (t0) = s0. Hence, the initial

state s0 at time t0 uniquely identifies the state of this particle at all times. Let ρ(s, t) be the

density associated to a state s at a time t.24 Then ρ(λ (t0), t0) represents the part of the composite

system in particle state s at that time. Likewise, for t1 > t0, ρ(λ (t1), t1) represents the part of

the system associated to the evolved state at this future time. Given deterministic and reversible

evolution, all particles that start in a given initial state must end up in the same final state, and

vice-versa. Hence, ρ(λ (t0), t0) = ρ(λ (t1), t1) for all t0, t1. In other words, the density remains

the same throughout the evolution.

24. For convenience, we sometimes drop the composite state c and coordinate-choice ξ indices from the invariant
density ρc,ξ (ξ a). We reserve the word “distribution” for the coordinate-free distribution ρc(s).
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Second, we show that the two-form ω is invariant under this evolution, and hence that the

system follows Hamiltonian evolution. Consider a surface Σ0 ⊂ S of particle states at some

time t0. If two-dimensional, this surface defines an independent degree of freedom. The integral´
Σ0

ρc(s, t0)ω(dΣ0) represents the fraction of the system in states defined on Σ0. Since each

particle state evolves by λ , Σ0 evolves to a surface Σ1 at time t1. This leads to a corresponding´
Σ1

ρc(s, t1)ω(dΣ1), representing the fraction of the system on this evolved surface. Since the

evolution is deterministic and reversible, all and only the particle states that began on surface Σ0

evolve to Σ1. Consequently, the fraction of the system on these two surfaces at these two times

must be the same:
´

Σ0
ρc(s, t0)ω(dΣ0) =

´
Σ1

ρc(s, t1)ω(dΣ1). Since the density is constant, we

know that ρc(s, t0) = ρc(s, t1). Hence, the two-form ω must remain the same. That is, the areas

in phase space must be mapped to areas of equal size, and independent degrees of freedom

must be mapped to independent degrees of freedom (otherwise, volumes would not be mapped

to equal volumes, violating determinism). The evolution is therefore a symplectomorphism and

hence corresponds to a Hamiltonian evolution.

Intuitively, our argument is the inverse of Liouville’s theorem: instead of positing Hamil-

tonian evolution and finding conservation of areas and volumes, deterministic and reversible

evolution imposes the conservation of areas and volumes (i.e. sets of states are mapped to sets

of states of equal size). This leads to Hamiltonian evolution. In summary, we have shown

that any system that satisfies the conditions of both infinitesimal reducibility and determinis-

tic/reversible evolution is a classical Hamiltonian system. Note in particular that our derivation

is not restricted to only hyper-regular Hamiltonians. As we will see, this is a key difference

between Hamiltonian and Lagrangian mechanics.

4.3 Motion equivalence

Having recovered classical Hamiltonian mechanics, the laws of evolution are further restricted

when the following condition holds:

Motion equivalence: the motion of the system (i.e. trajectories in physical space)
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suffices to recover its dynamics (i.e. evolutions in state space) and vice-versa.25

If we focus on the parts of the system, this means that for every evolution in phase space there

should be one and only one trajectory in physical space. This assumption means that momentum

can be expressed as a function of position and velocity, which mathematically corresponds to the

case in which the Hamiltonian is hyper-regular. In this regime we find Lagrangian mechanics.

Moreover, to be able to express the symplectic form (and therefore the density) over position

and velocity, we find that momentum must be a linear function in velocity, which constrains the

Hamiltonian to be that of a massive particle under scalar and vector potential forces.

Note that each space variable xi is a unit-variable, i.e. a state variable that defines a unit.

In fact, the trajectories can be fully described only by these unit-variables. For, to specify a

trajectory, we need epistemic access to a unit system, where the number of independent units

is determined by the dimensionality of physical space. It follows that (i) xi = qi, (ii) each qi is

paired with a conjugate pi, and (iii) each state {qi, pi} corresponds to one and only one trajectory

in physical space.

At each point xi, then, there must be infinitely many trajectories, one for each possible

combination of {pi}. Since these trajectories are differentiable in xi, we can define a velocity

vi = dtxi. If the equations of motion contained the velocity as a function of only the unit-

variables (i.e. vi = vi(qi)), then motion equivalence would fail. For if both xi and vi were

functions of only qi, this relationship would not be invertible due to dimensional considerations

(a surjection from an n-dimensional manifold to a 2n-dimensional manifold cannot be invert-

ible). Hence, we must have vi = vi(q j, pk), so that knowledge of the state in phase space suffices

for knowledge of the trajectory. If motion equivalence holds, then this relationship must be in-

vertible, meaning that knowledge of the trajectory suffices for knowledge of the phase space

state. For systems that satisfy the motion equivalence condition, the following relationships

25. Abraham and Marsden (1978, 218) show that in the hyper-regular domain, Lagrangian and Hamiltonian me-
chanics describe the same evolution of particle positions over time (Theorem 3.6.2). See Barrett (2018, 1180–
81) for discussion. Motion equivalence can be understood as the converse of this theorem: assuming that La-
grangian and Hamiltonian mechanics agree on particle evolutions, we derive that the Legendre transformation is
well-defined in the hyper-regular domain.



Hunt, Carcassi, and Aidala

thus hold at any given time:

xi = qi

vi = dtxi = vi(q j, pk)
(2)

In this case—which we call weak equivalence—vi(q j, pk) is invertible at every q j. There-

fore, for fixed q, the Jacobian matrix ∂vi

∂ pk
must be invertible. Let H denote the Hamiltonian. By

Hamilton’s equations, vi = dtqi = ∂H
∂ pi

, so the Hessian ∂ 2H
∂ pk∂ pi

= ∂
∂ pk

( ∂H
∂ pi

) equals the Jacobian ∂vi

∂ pk
.

Since the Jacobian is invertible, the Hessian must be non-zero everywhere, and therefore it must

have the same sign everywhere—which we take to be positive. This, by definition, means that

the Hamiltonian is hyper-regular if and only if weak equivalence is satisfied. Weak equivalence

allows us to express particle states in terms of either position/momentum or position/velocity

variables. These are exactly the cases where a Lagrangian can be constructed, and where the

Lagrangian leads to a unique solution (via the stationary action principle). Hence, weak equiv-

alence suffices for the existence of a hyper-regular Lagrangian. As discussed in Section 5.2,

Lagrangian mechanics only yields a unique evolution in the hyper-regular domain.26

Whereas weak equivalence involves motion equivalence at the level of particle states, full

equivalence extends this to the entire distribution, i.e. the composite state of the system.

Full equivalence holds when we can express the distribution—represented by the density—in

terms of position and velocity variables. Formally, this requires that ρ(qi, p j) = |J|ρ(xi,v j) =∣∣∣ ∂vi

∂ p j

∣∣∣ρ(xi,v j) since

|J|=

∣∣∣∣∣∣
∂xi

∂q j
∂xi

∂ p j

∂vi

∂q j
∂vi

∂ p j

∣∣∣∣∣∣=
∣∣∣∣∣∣ δ i

j 0
∂vi

∂q j
∂vi

∂ p j

∣∣∣∣∣∣
=
∣∣δ i

j
∣∣ ∣∣∣∣ ∂vi

∂ p j

∣∣∣∣= ∣∣∣∣ ∂vi

∂ p j

∣∣∣∣ .
(3)

Note that while the value given by ρ(qi, p j) is invariant under unit changes, the value given by

ρ(xi,v j) depends on the choice of units through
∣∣∣ ∂vi

∂ p j

∣∣∣. If xi truly sets the unit system by itself,

then
∣∣∣ ∂vi

∂ p j

∣∣∣ must be a function of position only, since the position variables define the units.

26. Weak equivalence corresponds to a general treatment of Lagrangian mechanics that does not presuppose
Riemannian geometry. As we discuss in Section 5.2, Equation 2 corresponds to the kinematical constraints central
to Curiel’s (2014) argument for privileging Lagrangian mechanics.
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Similar considerations hold for marginal distributions (i.e. distributions on a subset of the unit

variables), entailing that all components of ∂vi

∂ p j
must be a function of position only. We set:

∂vi

∂ p j
=

1
m

gi j

∂ p j

∂vi = mg ji

(4)

where m is the unit conversion constant between velocity and conjugate momentum, while gi j

represents the linear dependency of the velocity on the momentum.

If we integrate, we have:

vi =
1
m

gi j(p j −A j)

p j = mg jivi +A j

(5)

where A j are arbitrary functions. We recognize mg jivi as kinetic momentum. Note that:

vi = dtqi =
∂H
∂ pi

=
1
m

gi j(p j −A j) (6)

We integrate yet again and find:

H =
1

2m
(pi −Ai)gi j(p j −A j)+V (7)

where V is another arbitrary function. We recognize this as the Hamiltonian for massive par-

ticles under potential forces, relevant for classical electrodynamics and Newtonian gravitation.

For example, A can play the role of the magnetic vector potential, with V playing the role of the

electric potential. Whereas Curiel (2014) argues that this Hamiltonian requires the imposition

of ad hoc conditions, we take ourselves to have given an eminently natural construction of it.

We return to this point in Section 5.2, using it to defuse Curiel’s argument for the primacy of

Lagrangian mechanics.

This completes our primary argument for privileging Hamiltonian mechanics over Lagrangian

mechanics. We have seen that Lagrangian systems are a proper subset of Hamiltonian systems,
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specifically those Hamiltonian systems that also satisfy the motion equivalence condition. In

the next section, we provide a geometric interpretation of the principle of stationary action

within Hamiltonian mechanics. Our construction makes manifest the gauge-dependency of the

Lagrangian, providing a further reason to privilege the Hamiltonian. Finally, we respond to

Curiel’s arguments against the fundamentality of Hamiltonian mechanics.

5 Interpreting Lagrangian mechanics

By viewing classical systems through their invariant phase space density, we gain new insights

into Lagrangian mechanics. Section 5.1 uses the invariant phase space density to give a geomet-

ric interpretation the action principle. We show that this principle holds even when the action is

not defined as a function of position and velocity, since it can always be expressed as a function

of position and conjugate momentum. Our construction makes the gauge-dependence of the La-

grangian manifest. Section 5.2 considers Curiel’s (2014) argument for privileging Lagrangian

mechanics, which he alleges encodes the necessary and sufficient structure for capturing the

physically significant kinematical constraints of classical systems. This raises a number of ob-

jections to our own position, which we rebut. In short, we argue that we have given a natural

construction of Hamiltonian mechanics.

5.1 A geometric interpretation of the action principle

Hamilton’s principle of stationary action serves as a foundational principle for Lagrangian me-

chanics. According to this principle, infinitesimal variations of the action A along the system’s

trajectory γ equal zero: δA [γ] = 0. Although central to Lagrangian mechanics, we can actually

derive the stationary action principle using Hamiltonian mechanics. Our derivation simply as-

sumes that the system’s trajectory follows a deterministic and reversible evolution. We present

the derivation for the one-dimensional case—where it is most easily visualized—but it can be

generalized using differential geometry.27

27. For a related argument, see Arnold (1989, 236–37, 243–45).
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The derivation uses the extended phase space (q, p, t), i.e. the standard phase space extended

by a time variable. Knowing that the system is deterministic and reversible, it follows from

Section 4.2 that the density of states is invariant. This means that possible trajectories of the

system in the extended phase space are never pushed toward each other or pulled apart over

time. In other words, the flux of trajectories through any closed surface in the extended phase

space is always zero. Formally, the vector field S⃗ := (dq
dt ,

d p
dt ,

dt
dt ) represents the displacement of

states along the trajectories. This field is divergenceless, ∇ · S⃗ = 0, because for any region U ,

the same number of states will enter the region as exit. Moreover, note that the displacement

vector S⃗ is tangent to the trajectory γ[q, p, t](t) in extended phase space, where the variable t

functions as both a coordinate and the evolution parameter.

Since S⃗ is divergenceless, there exists another vector field −θ⃗ such that S⃗ = curl(−θ⃗).28

As a vector field in the extended phase space, θ⃗ can be written in terms of its components θ⃗ =

(θq,θp,θt). Since the curl of the gradient of a scalar function is always zero, the displacement

vector S⃗ is invariant under the gauge transformation θ⃗ ′ = θ⃗ +grad( f ), where f is an arbitrary

scalar function. Hence, we can choose f such that ∂ f/∂ p = −θp. Without loss of generality,

we can thereby redefine θ⃗ as (θq,0,θt).

Treating time t as both a coordinate and the evolution parameter, the time component of

the displacement St = dt/dt = 1.29 This places another constraint on θ⃗ , since S⃗ = −curl(⃗θ).

In components, this means that St = −( ∂
∂q · θp − ∂

∂ p · θq) = −( ∂
∂q · 0− ∂

∂ p · θq) =
∂θq
∂ p . Hence,

St = 1 entails that ∂θq
∂ p = 1. Integrating this expression, we find that θq = p up to addition by an

arbitrary constant function g(q). Again using the gauge freedom of S⃗, we can set g(q) = 0, so

that θq = p. Thus far, we have shown that θ⃗ = (p,0,θt).

Next, we introduce a function H and let θt ≡−H. Hence, we write −θ⃗ = (−p,0,H) as the

vector potential for the displacement vector S⃗. By matching components of S⃗ and −curl(⃗θ),

we show that H is the Hamiltonian for the system. First, by definition, Sq ≡ dq
dt and Sp ≡

d p
dt . Secondly, since S⃗ = −curl(⃗θ), we calculate that Sq = −∂θt

∂ p = ∂H
∂ p and Sp = ∂θt

∂q = −∂H
∂q .

28. For reasons that will become clear, we choose −θ⃗ rather than θ⃗ .
29. In the expression “dt/dt,” the time variable in the numerator functions as a coordinate, while the time variable

in the denominator functions as a parameter. We could instead use a parameter τ , and the derivation would remain
valid.
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Matching terms, we see that ∂H
∂ p = dq

dt and −∂H
∂q = d p

dt . These simply are Hamilton’s equations,

which justifies interpreting H as the Hamiltonian.

At this point, we return to the action A . If the motion equivalence condition holds, then

A is defined as the integral of the Lagrangian over a trajectory beginning at time t0 and

ending at time t1:
´ t1

t0
L(q, q̇, t)dt. If motion equivalence does not hold, we can define the

action more generally over the function Lp ≡ pq̇ − H(q, p, t), considering paths in the ex-

tended phase space. By deriving the stationary action principle in this more general setting,

we simultaneously derive its usual version within Lagrangian mechanics. We have then that

A [γ] =
´ t1

t0
Lp(q, p, t)dt =

´ t1
t0
[pdq

dt −H(q, p, t)]dt, where γ is an actual trajectory followed by

the system. Multiplying the Hamiltonian by dt/dt = 1 and adding a vanishing 0 · d p
dt , we ob-

tain A [γ] =
´ t1

t0
[pdq

dt + 0 · d p
dt −H(q, p, t)dt

dt ]dt. We notice that the integrand simply equals the

inner product of θ⃗ with S⃗, entailing that Lp = θ⃗ · S⃗. Consequently, the action A [γ] =
´ t1

t0
θ⃗ · S⃗dt.

Note that S⃗dt = (dq
dt dt, d p

dt dt, dt
dt dt) = (dq,d p,dt) = dγ⃗ represents the infinitesimal displacement

along the trajectory. Therefore, the action equals the line integral of θ⃗ along the trajectory γ:

A [γ] =
´

γ θ⃗ · dγ⃗ . To derive Hamilton’s principle of stationary action, it suffices to show that

δA [γ] = δ
´

γ θ⃗ ·dγ⃗ = 0.

By definition, a variation over the integral
´

γ θ⃗ ·dγ⃗ consists in taking the difference between

the integrand and an integral over a nearby trajectory γ ′: δ
´

γ θ⃗ · dγ⃗ =
´

γ θ⃗ · dγ⃗ −
´

γ ′ θ⃗ · dγ⃗ ′ .

Since the trajectories γ and γ ′ have the same endpoints, they define a closed-curve C, enclosing

a region Σ. Hence, by Stokes’ theorem δ
´

γ θ⃗ · dγ⃗ =
¸

C θ⃗ · d⃗C =
˜

Σ curl(⃗θ) · d⃗Σ . Recalling

that i) the curl(⃗θ) equals the negative of the displacement vector S⃗, and ii) S⃗ is tangent to the

trajectory γ , we see that curl(⃗θ) is tangent to the surface Σ.30 Hence, the surface integral must

vanish, showing that δ
´

γ θ⃗ ·dγ⃗ does indeed equal zero. This establishes a more general version

of Hamilton’s principle of stationary action, which we have derived simply by assuming that

the displacement vector is divergenceless. In the special case that motion equivalence holds, the

Legendre transformation is well-defined and Lp = pq̇−H(q, p, t) equals the usual Lagrangian

L(q, q̇, t), thereby recovering the principle of stationary action for Lagrangian mechanics.

30. Since S⃗ is tangent to γ , and γ ′ defines an infinitesimal variation, S⃗ must be tangent to the entire surface Σ.
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As a corollary, this construction shows that the Lagrangian L = θ⃗ · S⃗ is manifestly gauge-

dependent. The vector potential θ⃗ is gauge-dependent because we can transform it by adding

the gradient of an arbitrary scalar function. The displacement vector S⃗ = curl(−θ⃗) is invariant

under this gauge transformation. Hence, L must be gauge-dependent, which complicates the

physical interpretation of any particular Lagrangian. In contrast, the Hamiltonian is defined up

to a constant, endowing it with greater physical significance.

5.2 Curiel’s privileging of Lagrangian mechanics

Curiel argues that Lagrangian mechanics represents classical mechanical systems in a natural

manner whereas Hamiltonian mechanics involves an essentially artificial construction (2014,

270).31 According to Curiel, all physically-meaningful classical systems satisfy a certain set

of kinematic constraints. In the simplest case, these constraints characterize velocity as the

first temporal derivative of position: vi = dtxi = vi(q j, pk) (Equation 2).32 Curiel argues that

Lagrangian mechanics encodes the necessary and sufficient conditions for a system to satisfy

these kinematic constraints, both within and outside the hyper-regular domain (2014, 307–8,

311). In contrast, Hamiltonian mechanics does not automatically encode these constraints.

Since Curiel views these constraints as an essential feature of physically-meaningful classical

systems, he argues that Lagrangian mechanics picks out the proper class of classical systems.

Imposing these kinematic constraints within the Hamiltonian formalism requires focusing

on a proper subset of all possible Hamiltonians. Within this subset, conjugate momentum is a

linear function of velocity: pi = λ j
i q̇ j (2014, 304). This relationship between momentum and

velocity entails that the Hamiltonian takes the following quadratic form—where the functions

U and αmn are arbitrary functions of the generalized position coordinates qi:

H = αmn pm pn +U(q j) (8)

31. Curiel characterizes “natural” in terms of natural coordinate systems, defined using the almost-tangent struc-
ture of the tangent bundle (2014, 290–91). He also uses the almost-tangent structure to give a general characteri-
zation of what he takes to be the fundamental kinematical constraints.

32. Curiel treats this constraint as “kinematical” in the sense that it must hold independently of the interactions
between a system and its environment. He interprets it as a substantive physical condition, rather than an analytic
truth (2014, 282).
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Curiel contends that this form is the “necessary and sufficient condition [a Hamiltonian must

have] for it to model an abstract classical system” (2014, 305). Since many possible Hamiltoni-

ans do not take this form,33 Curiel believes we must artificially restrict Hamiltonian mechanics

to those systems that satisfy Equation 8.

To rebut Curiel’s argument, it suffices to provide a natural interpretation of (8). We have

in fact already provided one in Section 4.3. There, we saw how both the linear relationship

between momentum and velocity and the quadratic form (8) follow from imposing the motion

equivalence condition. In Equation 5, we recovered the linear relationship between conjugate

momentum and velocity, up to the addition of an arbitrary function. Just as Curiel does, we then

used this relationship to derive a quadratic form for the Hamiltonian (Equation 7). Imposing

motion equivalence thereby allows us to interpret this quadratic form as the Hamiltonian for

massive particles under potential forces. It is not an ad hoc condition imposed on Hamiltonian

systems. Instead, it arises in all contexts where motion equivalence holds, i.e. where knowledge

of the trajectory of the system in physical space is necessary and sufficient for knowledge of its

evolution in state space. Thus, we take ourselves to have responded to Curiel’s main criticism

of Hamiltonian mechanics, namely that it must impose ad hoc the condition (8).

Furthermore, Curiel’s definition of “classical systems” leads to interpretive challenges that

our framework avoids. His prohibition against Hamiltonians that violate (8) excludes Hamilto-

nians for non-hyper-regular systems. However, we believe that there are physically-meaningful

non-regular Hamiltonian systems. These include classical models of a massless particle mov-

ing at constant speed, such as a classical photon. In general, Hamiltonian systems outside the

hyper-regular domain correspond to cases where we cannot express the density in terms of posi-

tion and velocity. These are cases where the weak equivalence condition (2) fails. Nevertheless,

we can still define a distribution over the phase space points and consider its evolution. We

thereby view the broader scope of Hamiltonian mechanics as an advantage, rather than a disad-

vantage. Moreover, our interpretation remains compatible with the claim that many—perhaps

even most—non-regular Hamiltonian systems are physically uninteresting.

33. As an example, Curiel considers the Hamiltonian H = 1
2 pi pi +∑ j p j (2014, 305).
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Whereas we can easily interpret non-hyper-regular Hamiltonians, non-hyper-regular La-

grangians pose interpretative challenges. For example, consider the case where the Lagrangian

equals zero. For this “system,” all paths have the same action, so all paths are possible. Given

an initial probability distribution over states, the Lagrangian fails to specify how this distribu-

tion will evolve in time. In contrast, a Hamiltonian still defines a unique solution—a unique

evolution in phase space—even when outside the hyper-regular domain, i.e. when the Hessian

is zero. For instance, a zero Hamiltonian describes a static system (by Hamilton’s equations,

the derivatives of the position and momenta are zero). Indeed, Curiel acknowledges that only

hyper-regular Lagrangians have unique solutions whereas Hamiltonian systems have unique so-

lutions even outside the hyper-regular domain (2014, 291, 308). Although Curiel argues this

favors Lagrangian mechanics, it generates challenges for understanding non-hyper-regular La-

grangians.

Of course, if one insists on defining a “classical system” as Curiel does, one has grounds

for privileging Lagrangian mechanics. Nevertheless, our preferred notion of classical systems—

focusing on systems that are infinitesimally reducible—has substantive advantages over Curiel’s.

The general geometrical understanding of the principle of stationary action illustrates one of

these advantages (Section 5.1). Additionally, our definition accommodates models of classical

massless particles by maintaining the uniqueness of solutions, even outside the hyper-regular

domain. Moving beyond classical mechanics, our framework has the advantage of providing

an elegant relationship with both classical statistical mechanics and quantum mechanics. First,

the interpretation of the symplectic form is exactly the one used by the fundamental postulate

of statistical mechanics, which uses phase space volumes—i.e. the volume form generated by

the symplectic form—to count states. Second, by changing the requirement of infinitesimal re-

ducibility to a corresponding notion of irreducibility, we recover quantum mechanical systems.

Hence, our framework perspicuously distinguishes quantum from classical systems. We take

these considerations to favor our preferred notion of a classical system.34

34. For more details on the quantum and statistical mechanical cases, see Carcassi et al. (2018) and Carcassi and
Aidala (2020). Additionally, one can show that Hamiltonian mechanics provides both the proper setting for the
invariant density and a simple understanding of the gauge-dependency of conjugate momentum.
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6 Conclusion

By focusing on three basic physical conditions, we have derived the mathematical structures that

underpin Hamiltonian and Lagrangian mechanics. These three physical conditions are (i) in-

finitesimal reducibility, (ii) deterministic and reversible evolution, and (iii) motion equivalence.

Each condition gives rise to corresponding mathematical structure, allowing us to interpret this

structure in a physically well-motivated fashion. By building up the formalism in this way, we

have seen that Lagrangian mechanics requires one more condition to hold than Hamiltonian

mechanics, namely motion equivalence.

We have used this additional constraint to argue that Hamiltonian mechanics is more general—

and hence more fundamental—than Lagrangian mechanics. Our argument for privileging Hamil-

tonian mechanics avoids both the technical problems facing North’s (2009) argument and her

more substantive metaphysical commitments. Likewise, our construction provides a principled

response to Curiel’s (2014) criticism that Hamiltonian mechanics requires an ad hoc condi-

tion. Although both frameworks adequately treat hyper-regular systems, there are compelling

reasons to interpret Hamiltonian mechanics as more fundamental than Lagrangian mechanics.

Our formalism emphasizes the invariant phase space density and the role of the symplectic

form in counting states for each degree of freedom. Finally, we have provided a geometrical

interpretation of the action principle that makes the gauge-dependency of the Lagrangian mani-

fest. Overall, our approach provides a better understanding of not just the relationship between

Hamiltonian and Lagrangian mechanics, but of classical systems in general.
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