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The redundancy optimization problem is formulated for an uncertain parallel-series system with warm standby elements. The
lifetimes and costs of elements are considered uncertain variables, and the weights and volumes of elements are random
variables. The uncertain measure optimization model (UMOM), the uncertain optimistic value optimization model (UOVOM),
and the uncertain cost optimization model (UCOM) are developed through reliability maximization, lifetime maximization, and
cost minimization, respectively. An efficient simulation optimization algorithm is provided to calculate the objective values and
optimal solutions of the UMOM, UOVOM, and UCOM. A numerical example is presented to illustrate the rationality of the
models and the feasibility of the optimization algorithm.

1. Introduction

The primary goal of reliability design is to improve the
reliability of a system. To maintain the reliability to a higher
level, the redundancy allocation is an effective method in the
system design phase. While improving system reliability by
a redundancy method, the cost, weight, and volume also
increase. Thus, it is an important topic for system decision-
makers to determine the optimal number of redundant ele-
ments under certain system constraints.

In the traditional redundancy optimization problem,
various kinds of optimization models have been proposed
under the assumption that the lifetimes of the elements
are random variables. Due to imprecision of data for ele-
ment lifetimes in certain situations, fuzzy redundancy
optimization models [1–4] are then developed based on
fuzzy set theory [5, 6]. Furthermore, Zhao and Liu [7]
proposed three redundancy optimization models under
the assumption that the lifetimes of the elements are pre-
sented as fuzzy variables. Wang and Watada [8] developed
two fuzzy random redundancy allocation models for a
parallel-series system when the lifetimes of the elements
are treated as fuzzy random variables. Recently, some
researchers have addressed reliability optimization designs

of some systems by considering interval-valued component
reliability in an uncertain environment. Roy et al. [9]
applied the symmetrical form of interval numbers by
interval-valued parametric functional form to evaluate the
optimum system reliability and system cost of the redun-
dancy allocation problem. Zhang and Chen [10] investi-
gated an interval multiobjective optimization problem for
reliability redundancy allocation of a series-parallel system.
Moreover, some researchers concentrated on some hybrid
uncertainty optimization problems for system reliability
[11, 12].

The probability, interval, and fuzzy theories have been
widely used to handle the high level of uncertainty in var-
ious real-world applications. With the development of the
research on the uncertainty phenomena, the mathematical
model based on the probability, interval, and fuzzy theories is
not enough to solve all problems, especially when we have
no available samples but belief degree from the experts.
Belief degree function is a type of distribution function for
indeterminate quantity. Since it usually deviates far from
the frequency, using probability theory may lead to counter-
intuitive results. In this case, we should use uncertainty the-
ory. The uncertainty theory provides a useful tool to study
reliability modeling and optimization problem of systems
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with human uncertainty phenomena. The basic uncertainty
theory was founded by Liu [13] in 2007. It was refined
by Liu [14] in 2010 based on normality axiom, duality
axiom, subadditivity axiom, and product axiom. Nowadays,
uncertainty theory has become a branch of mathematics
for modeling human uncertainty. Many theories and appli-
cations have been done based on uncertainty theory, for
example, uncertain statistics [15, 16], uncertain program-
ming [17, 18], uncertain logic [19–21], uncertain inference
[22–24], uncertain process [25–27], uncertain differential
equations [28, 29], and uncertain graph [30].

The system reliability via uncertainty measure was first
studied by Liu [31]. Afterwards, Liu [32] investigated reliabil-
ity of redundant systems with cold and warm redundant ele-
ments based on uncertainty theory. Liu et al. [33] studied the
reliability and MTTF of unrepairable systems with uncertain
lifetimes. Wen and Kang [34] analyzed an uncertain random
system based on chance theory which is a generalization of
both probability theory and uncertainty theory. Gao et al.
[35] studied the reliability of k-out-of-n systems with uncer-
tain random lifetimes. Gao et al. [36] studied the reliability
of the k-out-of-n system with uncertain weights. Zeng et al.
[37] defined belief reliability as an uncertain measure due
to the explicit representation of epistemic uncertainty and
investigated the belief reliability for coherent systems based
on minimal cut sets.

Making use of an uncertain variable as a tool to charac-
terize the lifetimes and costs of elements, we will discuss the
redundancy optimization problems for a parallel-series sys-
tem with warm standby elements in this paper. In this work,
three uncertain optimization models are developed, and an
efficient simulation optimization algorithm is given to solve
these models. In Section 2, some basic concepts and theorems
concerning uncertainty theory are presented. The problem
formulation of an uncertain parallel-series system is consid-
ered in Section 3. Section 4 shows the three uncertain optimi-
zation models and gives a solution approach to these models.
A numerical example is provided in Section 5, and Section 6
presents a general conclusion.

2. Preliminaries

Definition 1 (see [13, 38]). Let Γ be a σ-algebra on a non-
empty set Γ. A set functionM L → 0, 1 is called an uncer-
tain measure if it satisfies the following axioms:

Axiom 1 (normality axiom).M Γ = 1 for the universal set Γ.

Axiom 2 (duality axiom). M Λ +M Λc = 1 for any
event Λ.

Axiom 3 (subadditivity axiom). For any countable sequence
of events Λ1,Λ2,… , we have

ℳ ⋃
∞

i=1
Λi ≤ 〠

∞

i=1
ℳ Λi , 1

the triple Γ,L ,M is called an uncertainty space.

Axiom 4 (product axiom). Let Γk,Lk,Mk be the uncer-
tainty space for k = 1, 2,… . Then, the product uncertain
measure M is an uncertain measure satisfying

ℳ
∞

k=1
Λk = ⋀

∞

k=1
ℳk Λk , 2

where Λk are arbitrarily chosen events from L for k = 1, 2,
… , respectively.

Definition 2 (see [13]). An uncertain variable is a measure
function ξ from an uncertainty space Γ,L ,M to the set
R of real numbers; that is, for any Borel set B of real num-
bers, the set

ξ ∈ B = γ ∈ Γ ξ γ ∈ B 3

is an event.

Definition 3 (see [13]). The uncertainty distribution Φ x of
an uncertain variable ξ is defined as

Φ x =ℳ ξ ≤ x , 4

for any real number x.

Definition 4 (see [13]). An uncertainty distribution Φ x is
said to be regular if it is a continuous and strictly increasing
function with respect to x at which 0 <Φ x < 1, and

lim
x→−∞

Φ x = 0,

lim
x→+∞

Φ x = 1
5

In addition, the inverse function Φ−1 α is called the inverse
uncertainty distribution of ξ.

Definition 5 (see [17]). A variable ξsup α is said to be an
α-optimistic value if ξ is an uncertain variable and

ξsup α = sup r ℳ ξ ≥ r ≥ α , 6

where α ∈ 0, 1 .

Definition 6 (see [13]). An uncertain variable ξ is said to be
linear if it has a linear uncertainty distribution.

Φ x =

0, if x ≤ α,
x − α

b − α
, if α < x ≤ b,

1, if x > b,

7

which is denoted by L a, b . Apparently, the linear uncer-
tain variable ξ is regular and has an inverse uncertainty distri-
bution Φ−1 α = 1 − α a + αb.
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Definition 7 (see [13]). An uncertain variable ξ is said to be
lognormal if ln ξ has a normal uncertainty distribution.

Φ x = 1 + exp π e − ln x

3σ

−1
, x ∈ℛ, 8

denoted by LOGN e, σ , where e and σ are real numbers
with σ > 0. The uncertain variable is regular, and its inverse
uncertainty distribution is

Φ−1 α = exp e
α

1 − α

σ 3/π 9

Theorem 1 (see [13]). Assume that ξ1, ξ2,… , ξn are inde-
pendent uncertain variables with regular uncertainty distri-
butions Φ1,Φ2,… ,Φn, respectively. If the function f x1,
x2,… , xn is strictly increasing with respect to x1, x2,… , xn,
then ξ = f ξ1, ξ2,… , ξn has an inverse uncertainty distribu-
tion Ψ−1 α = f Φ−1

1 α ,Φ−1
2 α ,… ,Φ−1

n α .

Theorem 2 (see [13]). Let ξ be an uncertain variable with a
regular uncertainty distribution Φ. Then, E ξ = 1

0Φ
−1 α dα.

Theorem 3 (see [13]). Let ξ and η be independent uncertain
variables with finite expected values. Then, for any real num-
bers a and b, we have

E αξ + bη = αE ξ + bE η 10

Theorem 4 (see [13]). Assume that ξ1, ξ2,… , ξn are inde-
pendent uncertain variables with uncertainty distributions
Φ1,Φ2,… ,Φn, respectively. Then, ξ1 + ξ2 +⋯ + ξn, ξ1∧ξ2∧

⋯∧ξn, and ξ1∨ξ2∨⋯∨ξn have uncertainty distributions
sup

x1+x2+⋯+xn=x
min
1≤i≤n

Φi xi , Φ1 x ∨Φ2 x ∨⋯∨Φn x , and Φ1

x ∧Φ2 x ∧⋯∧Φn x , respectively.

3. Problem Formulation of an Uncertain
Parallel-Series System

Consider a warm standby redundant parallel-series system
composed of m subsystems A1, A2,… , Am, and subsystem
Ai consists of ni components connected in series, as shown
in Figure 1. The component j in subsystem Ai contains one
original element and xij − 1 warm standby redundant ele-
ments, i = 1, 2,… ,m and j = 1, 2,… , ni.

Throughout the paper, we assume the following for the
warm standby redundant parallel-series system under
consideration.

(1) The system, components, and elements are only in
one of two states (up state or down state) at any time.

(2) All the elements are independent.

(3) The system starts to work at time 0.

(4) For each component, there is one element available.

(5) The system or element is nonrepairable.

(6) The standby redundant elements may deteriorate in
the standby period.

(7) The lifetime of each element is an uncertain variable,
and the standby deterioration rates of all the elements
in the standby period are the same constant.
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Figure 1: A warm standby redundant parallel-series system.
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(8) Conversion switches of the standby system are abso-
lutely reliable, and the conversion is instantaneous.

(9) The costs of all the elements are independent uncer-
tain variables, and the weights and volumes of all
the elements are independent random variables.

3.1. Component Lifetime. According to the assumptions, the
lifetime of the component j in the subsystem Ai can be
expressed as

Tij x, ξ = ξ
ij1

+ ξij2 +⋯ + ξijxi j , 11

where

x = x11, x12,… , x1n1 ,… , xm1, xm2,… , xmnm
,

ξ = ξ111, ξ112,… , ξ11x11 ,… , ξij1, ξij2,… ,

ξijxi j ,… , ξmnm1, ξmnm2,… , ξmnmxmnm
,

12

where xij represents the number of the elements in the com-

ponent j for the subsystem Ai and ξijxi j represents the work-

ing lifetime of the xijth element in the component j for the
subsystem Ai, i = 1, 2,… ,m and j = 1, 2,… , ni.

For simplicity, it is assumed that the deterioration rates of
all the warm standby elements are the same constant,
denoted by λ (very small number). According to [32], the
working lifetime of the xijth element in the component j for
the subsystem Ai is expressed as

ξ ijxi j
= ξijxi j − λ ξij1 + ξij2 +⋯ + ξij xi j−1 , 13

where ξijxi j represents the uncertain lifetime of the xijth ele-

ment in the component j for the subsystem Ai from time 0

and ξi1 = ξi1 (i.e., the first element starts to work at time 0).
Thus, the working lifetime of all elements in the component
j for the subsystem Ai can be expressed as follows:

ξij1 = ξij1,

ξij2 = ξij2 − λξij1,

ξij3 = ξij3 − λ ξij1 + ξij2 ,

⋮

ξijxij = ξijxi j − λ ξij1 + ξij2 +⋯ + ξij xi j−1

14

By (11) and (14), the lifetime of component j in the sub-
system Ai can be expressed as

Tij x, ξ = 1 − λ xij−1ξij1 + 1 − λ xij−2ξij2 +⋯ + ξijxi j

15

3.2. System Lifetime. The lifetime of subsystem Ai can be
obtained by

TAi
x, ξ = ∧

j=1,2,…,ni
Tij x, ξ

= ∧
j=1,2,…,ni

〠
1≤k≤xij

ξijk

= ∧
j=1,2,…,ni

〠
1≤k≤xij

1 − λ xij−kξijk

16

The lifetime of the system can be determined as

T x, ξ =max

∧
j=1,2,…,n1

〠
1≤k≤x1 j

1 − λ x1 j−kξ1jk

∧
j=1,2,…,n2

〠
1≤k≤x2 j

1 − λ x2 j−kξ2jk

⋮

∧
j=1,2,…,nm

〠
1≤k≤xmj

1 − λ xmj−kξmjk

17

Using (15), (16), and (17), T x, ξ can be written as

T x, ξ = max
1≤i≤m

∧
j=1,2,…,ni

〠
1≤k≤xij

1 − λ xij−kξijk 18

4. The System Optimization Model

The purpose of redundancy optimization is to find the opti-
mal solution x = x11, x12,… , x1n1 ,… , xm1, xm2,… , xmnm
(the numbers of elements in each component for each
subsystem) for improving the system performances under
certain constraints. In this section, three different standby
redundancy optimization models are considered for differ-
ent management purposes. In these models, the costs of all
the elements are presented as uncertain variables and the
weights and volumes of all the elements are presented as
random variables.

4.1. The Uncertain Measure Optimization Model. The
uncertain measure is used to define the system reliability,
and the optimization objective is to maximize the uncertainty
measure M T x, ξ > t0 that the system lifetime is greater
than or equal to the given time t0 under the expected cost,
expected weight, and expected volume constraints. In this
way, the general form of the uncertain measure optimization
model (UMOM) is as follows:

max
x

 ℳ T x, ξ > t0

s t  E 〠
1≤i≤m

〠
1≤j≤ni

xijcij ≤ c0

  E 〠
1≤i≤m

〠
1≤j≤ni

xijwij ≤w0
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  E 〠
1≤i≤m

〠
1≤j≤ni

xijvij ≤ v0

 xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni,
19

where cij, wij, and vij represent the uncertain cost, random
weight, and random volume of each element in the compo-
nent j for the subsystem Ai, respectively.

Assume that the uncertain lifetimes ξij1, ξij2,… , ξijxi j
i = 1, 2,… ,m, j = 1, 2,… , ni have the same uncertainty
distribution Φij t . According to Theorem 4 and [32], the
uncertain lifetime distribution functions of the subsystems
A1, A2,… , Am, denoted by ψA1

x, t , ψA2
x, t ,… , ψAm

x, t ,
respectively, can be obtained as

ψA1
x, t =ℳ TA1

x, ξ ≤ t

= ∨
j=1,2,…,n1

Φ1j x, t

= ∨
j=1,2,…,n1

Φ1j
λt

1 − 1 − λ x1 j
,

ψA2
x, t =ℳ TA2

x, ξ ≤ t

= ∨
j=1,2,…,n2

Φ2j x, t

= ∨
j=1,2,…,n2

Φ2j
λt

1 − 1 − λ x2 j
,

⋮

ψAm
x, t =ℳ TAm

x, ξ ≤ t

= ∨
j=1,2,…,nm

Φmj x, t

= ∨
j=1,2,…,nm

Φmj
λt

1 − 1 − λ xmj
,

20

where Φij x, t is the uncertain lifetime distribution function
of the component j in subsystem Ai. The lifetime of the sys-
tem has an uncertainty distribution function.

Φ x, t = min
1≤i≤m

ψAi
x, t

= min
1≤i≤m

∨
j=1,2,…,ni

Φij
λt

1 − 1 − λ xij

21

According to the system reliability definition and duality
of uncertain measure, we have

M T x, ξ > t = 1 −Φ x, t

= 1 − min
1≤i≤m

∨
j=1,2,…,ni

Φij
λt

1 − 1 − λ xij

22

According to Theorem 3 and the linear operation of the
expected value of the random variable, we have

E 〠
1≤i≤m

〠
1≤j≤ni

xijcij = 〠
1≤i≤m

〠
1≤j≤ni

xijE cij ,

E 〠
1≤i≤m

〠
1≤j≤ni

xijwij = 〠
1≤i≤m

〠
1≤j≤ni

xijE wij ,

E 〠
1≤i≤m

〠
1≤j≤ni

xijvij = 〠
1≤i≤m

〠
1≤j≤ni

xijE vij

23

Therefore, the UMOM (19) is equivalent to

max
x

  1 − min
1≤i≤m

∨
j=1,2,…,ni

Φij
λt0

1 − 1 − λ xij

s t   〠
1≤i≤m

〠
1≤j≤ni

xijE cij ≤ c0

  〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0

  〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0

 xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni

24

4.2. The Uncertain Optimistic Value Optimization Model.
If we use the system lifetime to measure the system perfor-
mance, then the optimization objective is to maximize the
α-optimistic value of the system lifetime T x, ξ when α is
equal to the given value α0 under the same constraints as
model (19). In this way, the form of the uncertain optimistic
value optimization model (UOVOM) can be expressed as

max
x

 tx

s t  ℳ T x, ξ > tx ≥ α0

 E 〠
1≤i≤m

〠
1≤j≤ni

xijcij ≤ c0

 E 〠
1≤i≤m

〠
1≤j≤ni

xijwij ≤w0

 E 〠
1≤i≤m

〠
1≤j≤ni

xijvij ≤ v0

 xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni,

25

where tx represents the time related to decision vector x.
By Theorem 1, the inverse uncertainty distribution of the
system lifetime T x, ξ is

Φ−1 α = max
1≤i≤m

∧
j=1,2,…,ni

1 − 1 − λ xij

λ
Φ−1

ij α , 26
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where Φ−1
ij α is the inverse uncertainty distribution of the

lifetime of the component j in the subsystem Ai. By using
the duality of uncertain measure, M T x, ξ > tx ≥ α can
be replaced by Φ x, tx ≤ 1 − α which is equivalent to tx
≤Φ−1 1 − α . According to the monotonicity of Φ x, tx ,
tx can reach its maximum when tx =Φ−1 1 − α . There-
fore, the UOVOM (25) is equivalent to

max
x

 Φ−1 1 − α0

s t   〠
1≤i≤m

〠
1≤j≤ni

xijE cij ≤ c0

  〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0

  〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0

 xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni

27

4.3. The Uncertain Cost Optimization Model. In the fol-
lowing, we give an uncertain cost optimization model with
system reliability, expected weight, and expected volume
constraints. Since the cost of the system is an uncertain vari-
able, it cannot be directly minimized. Based on the expected
value of the system cost, we may minimize its expected
value. Then, we have the uncertain cost optimization model
(UCOM) as follows:

min
x

 E 〠
1≤i≤m

〠
1≤j≤ni

xijcij

s t   ℳ T x, ξ > t0 ≥ α0

 E 〠
1≤i≤m

〠
1≤j≤ni

xijwij ≤w0

 E 〠
1≤i≤m

〠
1≤j≤ni

xijvij ≤ v0

 xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni

28

The UCOM (28) is equivalent to

min
x

  〠
1≤i≤m

〠
1≤j≤ni

xijE cij

s t   Φ−1 1 − α0 ≥ t0

  〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0

  〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0

xij ≥ 1, xij ∈N+, i = 1, 2,… ,m, j = 1, 2,… , ni

29

4.4. Solution Approach for the Optimization Model. It is easy
to see that the models (24), (27), and (29) which are equiva-
lent to the UMOM, UOVOM, and UCOM, respectively, are

crisp nonlinear integer programming models. An efficient
simulation optimization algorithm is provided to calculate
the objective values and optimal solutions of the UMOM,
UOVOM, and UCOM. The main steps of the proposed algo-
rithm are as follows:

Step 1. Set the range of the integer decision variable xij to be
l, u , i = 1, 2,… ,m, j = 1, 2,… , ni.

Step 2. Randomly generate r integer vectors xk = xk11, xk12,
… , xk1n1 ,… , xkm1, xkm2,… , xkmnm

k = 1, 2,… , r from the
interval l, u , and construct a matrix with r rows and n1 +
n2 +⋯ + nm columns.

X =

x111 x112 ⋯ x11n1 ⋯ x1m1 x1m2 ⋯ x1mnm

x211 x212 ⋯ x21n1 ⋯ x2m1 x2m2 ⋯ x2mnm

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

xr11 xr12 ⋯ xr1n1 ⋯ xrm1 xrm2 ⋯ xrmnm

,

30

where the row vector xk = xk11, xk12,… , xk1n1 ,… , xkm1,
xkm2,… , xkmnm

is the possible solution vector.

Step 3. Substitute each row of the matrix X into

〠
1≤i≤m

〠
1≤j≤ni

xijE cij ≤ c0,

〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0,

〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0,

31

M T x, ξ > tx ≥ α0,

〠
1≤i≤m

〠
1≤j≤ni

xijE cij ≤ c0,

〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0,

〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0,

32

and

M T x, ξ > t0,

〠
1≤i≤m

〠
1≤j≤ni

xijE wij ≤w0,

〠
1≤i≤m

〠
1≤j≤ni

xijE vij ≤ v0

33

for the UMOM, UOVOM, and UCOM, respectively. We can
obtain the feasible solutions and can also construct feasible
solution matrixes for the three different models.
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Step 4. Calculate min
1≤i≤m

∨
j=1,2,…,ni

Φij λt/ 1 − 1 − λ xij , −Φ−1

1 − α0 , and ∑1≤i≤m∑1≤j≤nixijE cij based on the row vectors
of the feasible solution matrixes in Step 3 for the three
different models, respectively. The feasible solutions that
make min

1≤i≤m
∨

j=1,2,…,ni
Φij λt/ 1 − 1 − λ xij , −Φ−1 1 − α0 , and

∑1≤i≤m∑1≤j≤nixijE cij the minimum are the best solutions
for the three different models, respectively.

Step 5. Change r in Step 2, repeat Step 2 to Step 4, observe
the changes of the objective function values obtained
under different simulation times, and determine the most
appropriate number of simulation r.

Step 6. Return the best solutions obtained under the value r in
Step 5 as the final optimal solutions for the three different
models.

5. Numerical Example

In this section, we give an illustration of the optimization
models and their solutions for a warm standby redundant
parallel-series system shown in Figure 2. The detailed data
used in this example are those given in Table 1.

In the UMOM, we take λ = 0 01, t0 = 100, c0 = 350, w0 =
300, and v0 = 250. The lower and upper bounds of the num-
ber of the redundant elements are l = 1 and u = 10, respec-
tively. Then, the model can be expressed as

max
x

  1 −min
1≤i≤2

∨
1≤j≤ni

Φij
0 01 × 100

1 − 1 − 0 01 xij

s t  12 97x11 + 3 09x12 + 9 00x21 + 11 00x22 + 5 10x23 ≤ 350
 8 50x11 + 8 50x12 + 5 00x21 + 3 00x22 + 9 50x23 ≤ 300,
 8 75x11 + 5 25x12 + 9 50x21 + 9 00x22 + 3 00x23 ≤ 250

 x11, x12, x21, x22, x23 ∈N+, n1 = 2, n2 = 3
34

By using an enumeration algorithm in MATLAB, the
exact solution of the model (34) is (4,7,8,10,3) and the
corresponding objective function value is 0.9173. That is,
the components 11, 12, 21, 22, and 23 have 3, 6, 7, 9,
and 2 redundant elements, respectively. They are solved
in about 100 s. It is very difficult to use the enumeration algo-
rithm to solve the optimization problem when the decision
variables are very large. However, the proposed simulation
optimization algorithm in Section 4.4 is very efficient. The
effectiveness of the algorithm is illustrated below. Firstly,
the simulation times are increased by a step size of 100.
Table 2 shows the change of reliability, optimal solution, run-
ning time, and error with different simulation times, where
the error represents the absolute value of the difference
between the real value and the optimal value obtained by
our algorithm. We can see from Table 2 that the fluctuation
of the error is very obvious and the running time increases
as the simulation times increase. Secondly, the simulation
times are increased by a step size of 1000, and the data
obtained are shown in Table 3. It can be seen from Table 3
that the system reliability is stable at 0.9173 and the error
fluctuation is zero. In addition, we can see that completing

Component 23

Component 12

Component 22

Component 11

Component 21

A1

A2

Figure 2: A warm standby redundant parallel-series system with two subsystems.

Table 1: The data of the example.

Component 11 12 21 22 23

Element lifetime ℒOGN 5, 1 ℒ 12, 16 ℒ 11, 15 ℒOGN 5, 2 ℒOGN 4, 1 5
Element cost ℒOGN 2, 1 ℒOGN 1, 0 5 ℒ 8, 10 ℒ 10, 12 ℒOGN 1 5, 0 5
Element weight U 7, 10 U 8, 9 U 4, 6 U 2, 4 U 9, 10
Element volume U 8,9 5 U 4 5,6 U 9, 10 U 8, 10 U 2, 4

Table 2: Simulation results with a step size of 100 in the UMOM.

Simulation
times

Reliability Error
Optimal
solution

Running
time (s)

100 0.8905 0.0268 (3,8,8,7,7) 0.001629

200 0.8770 0.0403 (2,7,7,7,4) 0.001390

300 0.8581 0.0592 (8,8,8,5,2) 0.001055

400 0.9101 0.0027 (3,7,7,9,1) 0.001457

500 0.9173 0 (4,7,8,10,3) 0.002060

600 0.9101 0.0027 (4,7,7,9,1) 0.002060

700 0.9101 0.0027 (5,7,8,9,1) 0.002025

800 0.9173 0 (5,8,7,10,1) 0.002624

900 0.9101 0.0027 (3,8,9,9,4) 0.002737

1000 0.9173 0 (4,7,8,10,2) 0.002670
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the computation takes very little time by using the simulation
optimization algorithm. Figure 3 illustrates the objective
function value (system reliability) versus simulation times.
The optimal solutions for different deterioration rates are
given in Table 4.

In the UOVOM, we take λ = 0 01, α0 = 0 9, c0 = 350,
w0 = 300, and v0 = 250. The lower and upper bounds of the
number of the redundant elements are l = 1 and u = 20,
respectively. Then, the model can be expressed as

max
x

  max
1≤i≤2

∧
1≤j≤ni

1 − 1 − 0 01 xij

0 01 Φ−1
ij 1 − 0 9

s t  12 97x11 + 3 09x12 + 9 00x21 + 11 00x22 + 5 10x23 ≤ 350
 8 50x11 + 8 50x12 + 5 00x21 + 3 00x22 + 9 50x23 ≤ 300
 8 75x11 + 5 25x12 + 9 50x21 + 9 00x22 + 3 00x23 ≤ 250

 x11, x12, x21, x22, x23 ∈N+, n1 = 2, n2 = 3
35

The relationship between the simulation times and the
α0-optimistic value of system lifetime is illustrated in
Figure 4 when the step size of simulation times is 5000.

It can be seen that the α0-optimistic value of system life-
time has a common upper bound, whose value is the optimal

value, and the corresponding solution is the optimal solution.
The optimal solution is (6,2,1,19,1), and the maximum life-
time of the system is 228.7692. That is, the components 11,
12, 21, 22, and 23 have 5, 1, 0, 18, and 0 redundant elements,
respectively. The optimal solutions and the maximum α0
-optimistic value of system lifetime at different degradation
rates are obtained in Table 5.

In the UCOM, we take λ = 0 01, α0 = 0 9, t0 = 100, w0 =
300, v0 = 250, l = 1, and u = 10, then the model can be
expressed as

min   12 97x11 + 3 09x12 + 9 00x21 + 11 00x22 + 5 10x23

s t   max
1≤i≤2

∧
1≤j≤ni

1 − 1 − 0 01 xij

0 01 Φ−1
ij 1 − 0 9 ≥ 100

 8 50x11 + 8 50x12 + 5 00x21 + 3 00x22 + 9 50x23 ≤ 300
 8 75x11 + 5 25x12 + 9 50x21 + 9 00x22 + 3 00x23 ≤ 250

 x11, x12, x21, x22, x23 ∈N+, n1 = 2, n2 = 3
36

Table 3: Simulation results with a step size of 1000 in the UMOM.

Simulation
times

Reliability Error
Optimal
solution

Running
time (s)

1000 0.9173 0 (4,7,8,10,2) 0.002670

2000 0.9173 0 (3,7,7,10) 0.004696

3000 0.9173 0 (4,7,7,10,4) 0.006890

4000 0.9173 0 (4,7,7,10,2) 0.009491

5000 0.9173 0 (3,8,8,10,1) 0.007648

6000 0.9173 0 (3,8,8,10,3) 0.009877

7000 0.9173 0 (5,7,7,10,1) 0.013472

8000 0.9173 0 (3,8,9,10,2) 0.013417

9000 0.9173 0 (3,8,7,10,7) 0.014569

10000 0.9173 0 (4,7,8,10,3) 0.015909
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Figure 3: Reliability versus simulation times in the UMOM.

Table 4: Optimal solutions for different deterioration rates in the
UMOM.

Deterioration rate Reliability Optimal solution

0.01 0.9173 (4,7,8,10,2)

0.02 0.9141 (5,8,7,10,1)

0.03 0.9110 (4,7,8,10,2)

0.04 0.9077 (4,8,7,10,4)

0.05 0.9044 (4,8,7,10,5)

Simulation times

170

180

190

200

210

220

230

Sy
ste

m
 li

fe
tim

e
0 1 2 3 4 5

× 105

Figure 4: System lifetime versus simulation times in the UOVOM.

Table 5: Optimal solutions for different deterioration rates in the
UOVOM.

Deterioration rate System lifetime Optimal solution

0.01 228.7692 (6,2,1,19,1)

0.02 212.3099 (5,2,1,20,2)

0.03 200.1285 (5,1,1,20,3)

0.04 183.5869 (5,1,1,20,2)

0.05 168.8518 (5,2,1,20,2)
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The relationship between the simulation times and sys-
tem expected cost is illustrated in Figure 5 when the step
size of simulation times is 1000. From Figure 5, we can
see that the system expected cost under different simulation
times has common lower bound, whose value is the mini-
mum expected cost of the system. The optimal solution is
(3,1,1,8,1), and the corresponding minimum expected cost
is 144.1000. That is, the components 11 and 22 have 2 and
7 redundant elements, respectively. The components 12, 21,
and 23 have no redundant elements. The optimal solutions
and the minimum expected costs at different degradation
rates are given in Table 6.

6. Conclusion

In this paper, an uncertain parallel-series system with warm
standby elements was investigated. Under the assumption
that the element lifetime and cost are uncertain variables
and the weight and volume of an element are random vari-
ables, the optimization model of warm standby redundancy
for the uncertain parallel-series system was proposed. We
formulated three different optimization models—UMOM,
UOVOM, and UCOM—based on reliability maximization,
lifetime maximization, and cost minimization, respectively.
An efficient simulation optimization algorithm was designed
to calculate the objective values and optimal solutions of the
UMOM, UOVOM, and UCOM. The numerical example
showed the rationality of the proposed models and the
effectiveness of the simulation optimization algorithm. In
the future, the redundancy optimization model with priority
will be constructed according to the preference of the
decision-maker. Also, the uncertain parallel-series system

considered in this paper is a binary system; how to model
the uncertain multistate parallel-series system is another
future research direction.

Data Availability

In this paper, the authors present a numerical example (the
data of the elements are assumed to be uncertain or random
variables in the numerical example).
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