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ABSTRACT. This paper reports on an empirical performance analysis of four modal
theorem provers on benchmark suites of randomly generated formulae. The theorem
provers tested are the Davis-Putnam-based procedure KSAT, the tableaux-based sys-
tem KKRZS, the sequent-based Logics Workbench, and a translation approach com-
bined with the first-order theorem prover SPASS.

Our benchmark suites are sets of multi-modal formulae in a certain normal form
randomly generated according to the scheme of Giunchiglia and Sebastiani [GS 96a,
GS 96b]. We investigate the quality of the random modal formulae and show that
the scheme has some shortcomings, which may lead to mistaken conclusions. We pro-
pose improvements to the evaluation method and show that the translation approach
provides a viable alternative to the other approaches.

KEYWORDS: Modal logic, automated theorem proving, performance analysis.

Introduction

There are a variety of automated reasoning approaches for the basic propo-
sitional multi-modal logic K (m) and its syntactical variant, the knowledge
representation formalism ALC [SSS 91]. Some approaches utilize standard
first-order theorem proving techniques in combination with translations from
propositional modal logic to first-order logic [Ohl 91, Ohl 93, OS 97]. Oth-
ers use Gentzen systems [Gob 74, HJSS 96]. Still others use tableaux proof
methods [Fit 83, Rau 83, BH 91].

Usually, the literature on theorem provers for modal logic confines itself to
a description of the underlying calculus and methodology accompanied with a
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consideration of the worst-case complexity of the resulting algorithm. Some-
times a small collection of benchmarks is given as in [Cat 91]. There have not
been any exhaustive empirical evaluations or comparisons of the computational
behaviour of theorem provers based on different methodologies.

Giunchiglia and Sebastiani [GS 96a, GS 96b] changed that. They report
on an empirical analysis of the tableaux system XRZS [BH 91] and a new
theorem prover, called KSAT. IKKSAT is an adaptation for the basic multi-modal
logic K (m) of a SAT-procedure for checking satisfiability in propositional logic.
The benchmark suite is a set of randomly generated multi-modal formulae in
a certain normal form.

We extend the empirical analysis of decision procedures for basic modal
logic based on different methodologies by incorporating the Logics Workbench,
a system based on a Gentzen-style calculus for modal logic [HJSS 96] and the
functional translation approach of Ohlbach [Ohl 91]. The latter approach ma-
nipulates first-order translations of modal formulae, whereas the other three
systems manipulate modal formulae directly. The four systems cover four dif-
ferent calculi and as far as we know, they are the only automated reasoners for
modal logic that are publicly available.

Our investigations show benchmarking needs to be done with great care.
The evaluation of Giunchiglia and Sebastiani has some shortcomings which we
address. The random generator used to set up a benchmark suite produces
formulae containing a substantial amount of tautologous and contradictory
subformulae. It favours the SAT-procedure KSAT which utilizes a preprocessing
routine that eliminates trivial tautologies and contradictions from the formulae.
This property of the random formulae distorts the analysis and comparison
of KsAT and K'RZS. The random generator does not produce challenging
unsatisfiable modal formulae. So as to obtain harder problems we develop
guidelines for the random generation of modal formulae. We present a set of
samples of modal formulae generated according to these guidelines and verify
that they provide challenging problems for KSAT and the translation approach.

The paper is structured as follows. Sections 1, 2, 3 and 4 briefly describe the
inference mechanisms of KsaT, KRZS, the Logics Workbench and the trans-
lation approach. Section 5 defines random modal formulae and describes the
test method of Giunchiglia and Sebastiani, which Section 6 evaluates. Section 7
presents percentile graphs for the four systems that are more informative than
graphs presenting the median CPU time consumption. Finally, Section 8 pro-
poses improvements to the random generator so as to produce more challenging
random samples on which the methods are tested. This paper is an extension
of [HS 97].

1 The SAT-based procedure Ksat

The language of the multi-modal logic K (m) is that of propositional logic plus
m additional modal operators O;. By definition, a formula of K (m) is a boolean
combination of propositional and modal atoms. A modal atom is an expression



of the form O;¢, where i is such that 1<i<m and ¢ is a formula of K (m). ;¢
is an abbreviation for —0;—t. The semantics of K (m) is given by the usual
Kripke semantics.

KsAT tests the satisfiability of a given formula ¢ of K (m). Its basic algo-
rithm, called KsATO, is based on the following two procedures:

KDP: Given a modal formula ¢, this procedure generates a partial truth assign-
ment y for the propositional and modal atoms in ¢ which renders ¢ true
propositionally. This is done using a decision procedure for propositional
logic.

KM: Given a modal formula ¢ and an assignment p computed by KDP, let
O;%;; denote any modal atom in ¢ which is assigned false by p, that
is, p(Os¢5;) = L and O;¢;, any modal atom that is assigned true by p,
that is, u(0;¢;r) = T. The procedure checks for each index i, 1<i<m,
and each j whether the formula
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is satisfiable. This is done with KDP. If at least one of the formulae ¢;;
is not satisfiable, then KM fails on u, otherwise it succeeds.

KsATO starts by generating a truth assignment p for ¢ using KDP. If KM
succeeds on u, then ¢ is K (m)-satisfiable. If KM fails on u, we have to generate
anew truth assignment for ¢ using KDP. If no further truth assignment is found,
then ¢ is K (m)-unsatisfiable.

The decision procedure KDP for propositional logic can be described by a
set of transition rules on ordered pairs P > S where P is a sequence of pairs
(¢, p) of a modal formula ¢ and a partial truth assignment u, and S is a set
of satisfying truth assignments.

(T, )P > S
dp_sol: ———m——
P> Su{u}
1, P>S
dp_clash: L
PrS
b (@A mIPes
p-unit: 7
(@, nu{c=THIP > S
if ¢ is a unit clause in ¢ and ¢’ is the result of replacing all
occurrences of ¢ and € by T and L, respectively, followed
by boolean simplification.
, P>S
dp_split: (¢[m], ) |

(@[m] Ap, ) [(@lm] A =p, ) | P > S

if dp_unit cannot be applied to (¢[m], ), m is a proposi-
tional or modal atom.



The symbol | denotes concatenation of sequences.

Starting with (¢, 0) > (), exhaustively applying the inference rules will result
in ) > S where S is a complete set of partial truth assignments making ¢ true.

Note that the transition rules form a variant of the Davis-Putnam proce-
dure for propositional formulae not in conjunctive normal form. The crucial
nondeterminism of the procedure is the selection of the splitting ‘variable’ m in
the transition rule dp_split. KSAT employs the heuristic that selects an atom
with a maximal number of occurrences in ¢.

At any point of time the computation in KDP can be interrupted and KM
can be called with the partial truth assignment p constructed so far. If KM
fails on p, then is not necessary to continue the completion of y by KDP. KSATO
calls KM before every application of the dp_split rule.

Giunchiglia and Sebastiani [GS 96a, pp. 583-584] suggest that IKSATO can be
based on any decision procedure for propositional logic. However, completeness
of KsATO can easily be lost, even if the underlying propositional theorem prover
is complete. Suppose that we add the pure literal rule to the Davis-Putnam
procedure described above. That is, whenever an atom m occurs only positively
(respectively negatively) in ¢, we can add {m = T} (respectively {m = L})
to the truth assignment and replace all occurrences of m by T (respectively
1). The application of the pure literal rule preserves satisfiability and can be
applied eagerly to ¢. Now consider the formula

1= (pVqV-O(pV-p)A(=pV-gV-Oi(pV-p)).

There is one pure literal in ¢, namely O; (pV —p), which occurs only negatively
in ¢1. So we assign L to O;(p V —p) and replace all occurrences of Oy (p V —p)
by L. After simplifying the resulting formula we get the formula T. We have
arrived at a truth assignment rendering ¢ true. Due to the eager application of
the pure literal rule, this is the only truth assignment our procedure computes.
In a second step we have to check using KM that —(pV —p) is satisfiable. This is
obviously not the case. Since KDP with the pure literal rule does not produce
any additional truth assignments for ¢, KSAT concludes that ¢ is unsatisfiable.
However, ¢ is satisfiable with the truth assignment {p = T,q = L}. So,
legitimate optimizations of the decision procedure for propositional logic can
render KSATO incomplete. That is, not every technique developed for such
decision procedure carries over to modal logic.

We will illustrate the four satisfiability testing approaches under considera-
tion by way of one satisfiable formula, namely

Y =-=01(pVr)A(OipVOg).

Example 1

Figure 1 depicts the derivation tree of KSAT for the formula . In the first step
the procedure KDP applies the dp_unit rule to the unit clause =0y (p Vv r). All
occurrences of =0; (pVr) are replaced by T while all occurrences of O, (pVr) are
replaced by L. The resulting formula T A (O;pV O, q) is simplified to Oy pV Oy ¢



—O(pVr)A(OipV Oig)

KDP: dp_unit\“/

Uip Vg
/(DP: dp_spﬂx
Oip A (O1pV Oiq) —O1p A (O1p Vv Oiq)
KDP: dp_unit\ﬂ/ KDP: dp_unit
N
T Uig
KDP: dp-sol\ﬂ( KDP: dp_unit
N
p={0:i(pVvr) =1, T
Dlp = T}
KDP: dp_sol
kmJ N
—~(pVr)Ap p2 =A{C1(pVr) =1,
Oip=1, Oig=T}
KDP: dp_unit / \
KM
1 (pVr)Ag Y

i

Figure 1: Sample derivation of KSAT



to which only the dp_split rule of KDP is applicable. Before any application
of the dp_split rule, KSAT calls the procedure KM with the current truth
assignment. Here, KM is used to prove that up = {O;(pV r) = L} is K(m)-
satisfiable. To this end, KM shows that —(p V r) is satisfiable. This is done
by KDP with two applications of the dp_unit rule to —(p V r). Only now, the
dp_split ruleis actually applied to O;pV O;q. We assume that O;p is the split
variable. So, we have to show that either O, pA(O;pVvd; q) or =03 pA(d;pVO;q)
is satisfiable. KDP will first consider the formula O;pA (O;pVd;q). Obviously,
we can apply the dp_unit rule to propagate the unit clause O;p. This step
immediately reveals that the formula is satisfiable. That is, one satisfying
truth assignment is pu; = {O;(pV r) = L,0;p = T}. KSAT proceeds with KM
to show that =0, (pVr)AD; pis K (m)-satisfiable. This is done by showing that
—(pVr)Ap is satisfiable. But KDP will reveal with an application of the dp_unit
rule to the unit clause p in =(p V r) A p that the formula is unsatisfiable. Thus,
=0y (p V r) A Oyp is not K (m)-satisfiable. Consequently, KDP will continue
with the second formula —=O;p A (O;p V Oy q) generated by the dp_split rule.
Here two applications of the dp_unit rule to the unit clauses =O;p and O;q
yield a second truth assignment ps = {O;(pVr) = L,0;p = L, 0,9 = T}.
Again KSAT continues with KM. Note that ps assigns L to two modal atoms,
namely O¢(p V r) and Oyp. Therefore, KM checks the satisfiability of two
propositional formulae, that is, =(pVr) Aq and =pA¢q. For both formulae KDP
immediately verifies their satisfiability. So, KM succeeds on p2 which completes
the computation by KsaT. We conclude that —=O;(p V ) A (Oyp V O;q) is
satisfiable.

2 The tableaux-based system KRZS

While KsAT abstracts from the modal part of formulae to employ decision
procedures for propositional logic, LRZS manipulates modal formulae directly.
More precisely, the inference rules of X'RZS are relations on sequences of sets
of labelled modal formulae of the form w:y) where w is a label chosen from
a countably infinite set of labels I' and ¢ is modal formula. For improved
readability we write w:¢), C' instead of {w:} U C.

i w:L,C | S
1l-elim: ————
S

) w:T,C|S
T-elim: ———
cls

Acclash: DowAC|S
S

NP, C|S

A-elim: WAy, |

w:p,w:h, C' | S



w:pV,C | S

V-elim:
w:¢, C | wp,C | S
if w:¢ VY, C has been simplified by V-simpy and V-simp;
) w:0;0,D,C | S
&i;—elim:
VOAYL AL Ay, D, C | S
if D = w:0y,...,w:0;,, C does not contain any

w:0;2), none of the other rules can be applied to C, and v
is a new label from T.

¢ denotes the complementary formula of ¢, for example =p = p and O;p =
<&;=p. Given a modal formula ¢, the input sequence for RZS is the singleton
set wp:¢', where wy is a label chosen from a countably infinite set of labels T'
and ¢' is the modal negation normal form of ¢. If KRZS arrives at a sequence
C'| S such that no transformation rule can be applied to C, then the original
formula ¢ is satisfiable. Otherwise the transformation rules will eventually
reduce wo:¢' to the empty sequence and ¢ is unsatisfiable. The rules 1 -elim,
T-elim, A-clash, A-elim are applied exhaustively before any application of
one of the elimination rules for V and <;. The T-elim rule is not necessary
for the completeness of the set of rules.

In addition to the inference rules, RZS has two simplification rules, namely

V-simpg: w:p VY, w:p,C = w:p,C
V-simp;: w:p VY, w:p, C — wah, w:p, C

These are applied only immediately before an application of the V-elim rule
and then they are applied only to the labelled formula w:¢ V ¥ to which we
want to apply the V-elim rule.

As far as the application of the V-elim rule is concerned, KRZS actually
considers the sets of labelled formulae as sequences and chooses the first dis-
junction in this sequence. To give a simple example, consider the formula ¢-
given by (p A —p) V T. Since ¢s is in negation normal form, we start with the
initial sequence

wo:(p A—p) VvV T.

The only rule applicable is V-elim which generates the structure
wo:(p A —p) | we:T.

For the reason that sequences are always processed from left to right, wo:(pA-p)
will be considered first. Only A-elim is applicable transforming the sequence
to

Wo:p, Wo:—p | wo:T.

Now we can apply the A-clash rule to eliminate the first set of labelled for-
mulae and get
wO:T.



A final application of the T-elim rule reveals the sequence containing the
empty set. No further rule can be applied. Since we have not arrived at the
empty sequence, ¢ is satisfiable.

As the formula (p A —p) V T is logically equivalent to T, its satisfiability can
be shown by a single application of the T-elimination rule. However, KRZS
has no simplification rules beside V-simpg and V-simp;. In particular, KRZS
does not simplify boolean expressions using the simplification rules of the pre-
processing procedure that Giunchiglia and Sebastiani use in conjunction with
KsaT which we discuss later (see Table 1 on page 18).

The condition that the ¢;-elim rule can be applied only if none of the
other rules can be applied to the set of labelled formulae under consideration
is necessary for the completeness of the system. To illustrate the problem,
consider the formula ¢35 = =g A O1—p A (O1pV q). Starting with

wo:mg A C1p A (Oip V q)
a sequence of applications of the A-elimination rule will derive
wo =g, wo:O1mp, we:di1p V gq.

Suppose we apply the &p-elimination rule before eliminating the occurrence of
the V-operator in wg:01p V q. The resulting system is

Wo:g, wimp, wo:tip Vg
The application of V-elimination rule is still possible and we get
wo:=q, w1:=p, wo:O1p | wo:mg, wii=p, wo:q.

Now, no further application of any inference rule is possible. Since, we have
not derived the empty sequence, we would conclude that ¢3 is satisfiable. But,
it is not. If we apply the V-elimination rule to

Wop:7q, ’LU():Ql—lp7 wo:01p V q
the resulting sequence contains two sets of labelled formulae
Wo: g, wo: 1P, wo:t1p | woimg, wo: 1P, Woig.

The only rule applicable to the first system is the <;-elimination rule. The rule
will replace the occurrence of wy:<$1—p with wy:=p A p. We have now derived
the sequence

wo:g, w1:mp A p, wo:Bhp | woimg, wo:O1mp, woig.
After an application of the A-elimination rule we arrive at

Wo g, wi:p, wip, wo:Oip | woimq, wo: 1, wog.



It is straightforward to see that we can apply the A-clash rule to both sets of
labelled formulae. We end up with the empty sequence. Thus, ¢3 is unsatisfi-
able.

However, delaying the application of $;-elimination to the end can also be
a disadvantage. Consider, the structure

wo:O17p, wo:O1p, wo:p V Oy q.

Adding wi:—p A p to the set of labelled formulae followed by an application
of the A-elimination and A-clash rule allows the derivation of the empty se-
quence although we have not eliminated the disjunction in p V O;q first. This
test makes a difference computationally if the set of labelled formulae contains
a large number of disjunctive formulae which are irrelevant with regards its
satisfiability. It is possible to add the following <&;-test inference rule to the
system without loosing completeness.

w:0;0,D,C | S
Oi-test:
VOAYL AL AN, w0, D,C | S
if D =w:0;9q,...,w:0;,, and v is a new label chosen

from T'.

Furthermore, if we ensure that the rule is applied only finitely many times
before we eventually eliminate w:<{;¢ by the ¢;-elimination rule, the inference
system remains terminating. Note that the application of the <;-test rule
closely resembles the intermediate calls of the KM procedure during a compu-
tation of KDP by KSAT.

We end our description of the system KRZS with a sample derivation.

Example 2

Again, we consider the satisfiable formula ¥ = =0;(p V r) A (O1p V Oyq).
First, it transforms the formula 1 to its negation normal form 1’ which is
' = O1(mp A —r) A (Opp V Oyq). Figure 2 shows how KRZS proceeds to
prove the satisfiability of ¢’. First, XRZS eliminates the occurrence of the
A-operator in ¢’. Then it uses the V-elim rule to split the disjunctive formula
(O1pV O1q). Now we have to deal with two sets of labelled formulae. XRZS
continues with the left set wg:O1(—p A =), we:01p. The only rule applicable to
this set is &1-elim. The application of the &1 -elimrule eliminates the labelled
formula wg:O1(=p A —r) from our set and adds wq:—p A =r A p. Applying the
A-elim rule to this labelled formula reveals that our set of labelled formulae
contains both w;:—p and w;:p. This is a contradiction and the A-clash rule
eliminates this set of labelled formula from the sequence. The remaining set of
labelled formulae, namely wg:<1(—p A =), wo:01 ¢, is the second set generated
by the V-elim rule. Again, the only applicable rule is ¢1-elim. This adds the
formula wy:=p A =r A g to the set while removing wy:$1(—p A —r). A sequence
of applications of the A-elim rule results in a set of labelled formulae to which
no further rule applies. Thus, RZS has shown that ¢" and 1 are satisfiable.



wo:O1(—p A=) A (OipV Opq)
ﬂ/\—elim
wo:1(mp A =), we:O1p V Oy g
ﬂ\/—elim
wo:C1(mp A ), wo:01p | we:C1(—p A 1), we:0; ¢
ﬂ@—elim
wy:(mp A =) A p,wo:0rp | we:Cr(—p A —r), we:Op g
ﬂ/\—elim
wy:mp, wy i, wyip, wo:0pp | we:Cr(—p A 1), we:0; ¢
ﬂ/\—clash
wo:<1(—p A =), we:0i ¢
ﬂ()—elim
wi:(=p A =r) A g, wo:0igq
ﬂ/\—elim

wy:TP, w1, w1iq, wo:q

Figure 2: Sample derivation of KRZS



Axioms:
$,T'=¢,A T'=>T,A L1LT'=A

Rules:

) 7F$A I'= ,A I'= 7A
ST =2A ’ 22 )
SN, T = A I's oAy, A

L=A ,JI=A I'=¢,9,A
’ S22 ) A
oV, I'= A F=o¢Vy A

= ¢, A o, I'=A
o ) e ()
-0, = A = -9, A

,JI=A =9¢A
¢ (1©4) ¢ (rd;)

<>i¢7 Dirv Y= <>iA7H Dirvz = Di¢7 OiAvﬂ

Figure 3: Axioms and rules of the Logics Workbench

3 The Logics Workbench

The Logics Workbench (LWB) is an interactive system providing inference
mechanisms for a variety of logical formalisms including basic modal logic. The
decision procedure for basic modal logic is based on the sequent calculus pre-
sented in Figure 3 [HJSS 96] (of which some axioms and rules are eliminable).
A modal formula ¢ is derivable using the axioms and rules of the sequent cal-
culus if and only if ¢ is true in all Kripke models. Since we are interested in
satisfiability not provability, we exploit that a given formula ¢ is unsatisfiable
if and only if —¢ is provable using the calculus of the Logics Workbench.
Unlike RZS, the Logics Workbench has no simplification rules. For ex-
ample, a sequent proof of the satisfiability of the formula —p A (pV ¢) is:

Failure
p=p q=p

(pvag) =p
-p,(pVaq) =
“pA(PVq) =
= =(=pA(pV)

(V)
(=)
(IA)
(r=)

Starting with the sequent = —(=p A (p V q)), the Logics Workbench conducts
a backwards proof search. That is, the inference rules presented in Figure 3
are applied bottom up. The (r—)-rule moves the formula —p A (p V ¢) to the
left side of the sequent. Then we eliminate the occurrence of the conjunctive
operator using the (IA)-rule. The left hand side of the sequent now consist of
two formulae, namely —p and (pV ¢). It uses the (I=)-rule to move —p to the



Failure
ppj pp\j/rr (rv) qu pp\j/rr
Oip=DOi(pVr) o Oig = Oi(pVr)
OipVOig=Oi(pVr)
~0i(pVr),BipVDig =
Oy (pVr)A(OpVOg) =
= ~(=01(pVr) A (OipV Oig))

(rv)

(ro)

V)

(=)
(IA)
(r=)

Figure 4: Sample derivation of the Logics Workbench

right-hand side of the sequent. Now the (IV)-rule is the only rule applicable
to the sequent (pV ¢) = p we have arrived at. We get two sequents, namely
p = p and ¢ = p. Only the first one is an axiom. The sequent ¢ = p is neither
an axiom nor can we apply any further rules of the calculus. We have failed to
construct a proof of = =(=p A (pV q)). Therefore =p A (p V q) is satisfiable.

There are two points worth noting. An application of the (IV)-rule creates
two branches into our backwards proof search. If one of the branches fails, the
whole proof attempt fails. We could directly derive the sequent —p,q = from
=, (pV ¢q) = using the equivalent of the V-simp; rule for sequents. This would
eliminate the need to apply the (IV)-rule in the example. But, as mentioned
before, the Logics Workbench has no equivalents of the V-simplification rules.

However, the Logics Workbench uses the following form of branch pruning.
Provided in a backwards application of the (IV)-rule the formula ¢ is not used
in the proof of ¢,I' = A, that is, ' = A holds, then it is not necessary to
consider the branch ¢,I" = A. Similarly, branch pruning is applied to the
(rA)-rule.

The Logics Workbench applies the (IA)-rule, (I-)-rule, (r—)-rule and (r—)-
rule exhaustively before any application of the remaining rules. The selection
of the disjunctive and conjunctive formulae for applications of the (IV)-rule
and (rA)-rule, respectively, is determined by the order of formulae in the left-
hand side and right-hand side of the sequent, respectively. The (I<;)-rule and
(rO;)-rule are applied only after no application of the other rules is possible.

Example 3

Figure 4 gives the derivation produced by the Logics Workbench of the satisfi-
ability of v = =0 (pVr) A (OypV O;1q). Starting from = —(=0;(pVr)A(H1pV
O;¢)) the backwards applications of the (rV)-rule, (IA)-rule and (I=)-rule lead
to the sequent Oyp V O;¢ = Oy(p V 7). The backwards application of the
(IV)-rule generates two sequents Oyp = Oy (p V r) and Oyq¢ = O;(p V7). The
Logics Workbench first considers the sequent O;p = O;(p V r). Here we have
to apply the (rO;)-rule, for which we have to select a formula of the form O¢



on the right-hand side of the sequent. Since in the sequent under consideration
only one O-formula occurs on the right-hand side of the sequent, the choice is
deterministic. The application of the (rO;)-rule yields the sequent p = p V r.
With a final application of the (rV)-rule we arrive at the axiom p = p,r. Now
the Logics Workbench turns to the second alternative O;q = O;(p V r). Here
the application of the (rO)-rule produces ¢ = p V r. An application of the
(rV)-rule renders ¢ = p,r. Since no more rules apply and ¢ = p,r is not an
axiom, our attempt to construct a proof fails. No other proof attempts are
possible. So % is satisfiable.

Observe the near correspondence between the proof search of RZS and that
of the Logics Workbench. We can directly translate the deduction steps in the
tableaux-calculus of LRZS into the sequent calculus of the Logics Workbench.
The differences are the absence of simplification rules in the Logics Workbench,
the presence of branch pruning in the Logics Workbench, and the conversion
to negation normal form by KRZS.

4 The translation approach

The translation approach (TA) is based on the idea that modal inference can
be done by translating modal formulae into first-order logic and conventional
first-order theorem proving. The translation approach we use is the optimized
functional translation approach described in Ohlbach and Schmidt [OS 97]. It
has the property that ordinary resolution without any refinement strategies is a
decision procedure for K (m) [Sch 98b, Sch 98a]. The translation maps modal
formulae into a logic, called basic path logic, which is a monadic fragment of
sorted first-order logic with one binary function symbol o that defines accessi-
bility. A formula of path logic is further restricted in that its clausal form may
only contain Skolem terms that are constants.

The optimized functional translation does a sequence of transformations.
The first transformation II; maps a modal formula ¢ to its so-called functional
translation defined by II¢(¢) = Va 7s(¢,x). For K(m), 7y is defined by

mr(p,s) = P(s)
7 (0;0,s) = defi(s) = Ya; mp(9, 50 ;).

p is a propositional variable and P is a unary predicate uniquely associated
with p. The symbol def; is a special unary predicate with sort 7 that specifies
definability (or not dead end), replacing —de; in the definition of Ohlbach and
Schmidt. a; denotes a variable of sort ¢. For the propositional connectives
is a homomorphism. The second transformation applies the so-called quantifier
exchange operator Y which moves existential quantifiers inwards over universal
quantifiers using the rule ‘JaVF Y becomes VF3davy’. The transformation YT
preserves satisfiability, more specifically, ¢ is a theorem in K (m) if and only
if =TIl (¢) is unsatisfiable [OS 97] (the quantifier exchange operator rests on
the generated model property and the fact that generated models are trees).



Our aim is to test the satisfiability of a given modal formula ¢. This can
be achieved by testing the satisfiability of the set of clauses S = ¢(=YII¢(—¢)),
where ¢(1) denotes the clausal form of a first-order formula ¢. S is a set of
clauses in the basic path logic.

For K (m) additional transformations of the clause set S are possible. First,
we replace all occurrences of literals P(s) where s is a path of the form x o uzl1 o
uf o---ouj with length n+1by P,y (z,uj ,...,uf ) where P,y is an (n+1)-
ary predicate symbol uniquely associated with P and n. This can be done
since o is not associative and admissible substitutions either rename variables
or do instantiation with constants. Second, the sort information associated
with the variables and constants occurring in the literals in the clause set

can be encoded in the predicate symbols of the literals. So, we can replace

all occurrences of literals Pnyi(z,uf ... ,ul’ ) by Py 4, (z,u',... u™) where
P;, i, is a predicate symbol uniquely associated with the predicate symbol
P41 and the sorts iy, ..., i,. The variables and constants u!, ..., u™ no

longer carry any sort information. Finally, we observe that all literals in the
transformed clause set share the first argument x, which we can eliminate safely.
This sequence of three transformations can be combined into one:

P(zouj ouj o---oul’) becomes P ; (u',... u").
Example 4

We consider our example formula ¢ given by =0;(p V r) A (Oyp V O;1q). The
result of ¢(=YII¢(—e))) is a set of four clauses, namely

(1) defy

(2) —Py(a)

(3) —Ri(a)

(4) —defy V —defy V Py(x) V Q1(y)

Two resolution steps are possible: Resolving clauses (1) and (4) yields P (z) V
Q1(y). The derived clause subsumes the clause (4). Resolving P (z) V Q1(y)
with clause (2) yields the unit clause @Q1(y), that subsumes the clause P (z) V
Q@1(y). Subsumption leaves the following clause set on which no further infer-
ence steps are possible.

defi
-P (Q)
— i (a)

Q1(y)

Since the final clause set does not contain the empty clause, the original clause
set, and consequently, the modal formula ¢ is satisfiable.

For theorem proving we use FLOTTER and SPASS Version 0.55 [Wei 97].
FLOTTER is a system that computes the clausal normal form of a given first-
order formula. It performs the following steps.



1. Rename subformulae of the input formula in order to obtain a clause set
containing a minimal number of clauses. Here an improved variant of the
technique developed by Boy de la Tour [BdAIT 92] is used.

2. Remove implications and equivalences using the appropriate transforma-
tion rules.

Compute the negation normal form.

- w

Eliminate existential quantifiers by Skolemization.

ot

Compute the clausal normal form.

6. Test the resulting clause set for redundancy by subsumption, tautology
removal and condensing.

The theorem prover SPASS is based on the superposition calculus of Bach-
mair and Ganzinger [BG 90] extended with the sort techniques of Weiden-
bach [Wei 96].

We opted to use SPASS and not other well-known theorem provers (like
OTTER) for the following reasons:

1. SPASS uses ordered resolution and ordered factoring based on an ex-
tended Knuth-Bendix ordering [Pet 83].

2. It supports splitting and branch condensing. Splitting amounts to case
analysis while branch condensing resembles branch pruning in the Logics
Workbench.

3. It has an elaborated set of reduction rules including tautology deletion,
subsumption, and condensing.

Ordered inference rules and splitting are of particular importance when treating
satisfiable formulae. Also, SPASS supports dynamic sort theories by additional
inference rules including sort generation and sort resolution and additional
reduction rules like sort simplification and clause deletion. It considers every
unary predicate symbol as a sort (not to be confused with the sorts of the
translation morphism). The translation of random 3CNF formulae will result
in first-order formulae which contain a great number of such symbols.

5 The evaluation method

The evaluation method adopted by Giunchiglia and Sebastiani follows the ap-
proach of Mitchell, Selman, and Levesque [MSL 92]. To set up a benchmark
suite for Davis-Putnam-based theorem provers Mitchell et al. [MSL 92] gen-
erate propositional formulae using the fixed clause-length model. Giunchiglia
and Sebastiani modify this approach for the modal logic K (m).

There are five parameters: the number of propositional variables N, the
number of modalities M, the number of modal subformulae per disjunction K,



the number of modal subformulae per conjunction L, the modal degree D, and
the probability P. Based on a given choice of parameters random modal K CNF
formulae are defined inductively as follows. A random (modal) atom of degree
0 is a variable randomly chosen from the set of N propositional variables. A
random modal atom of degree D, D>0, is with probability P a random modal
atom of degree 0 or an expression of the form O;¢, otherwise, where O; is a
modality randomly chosen from the set of M modalities and ¢ is a random
modal K CNF clause of modal degree D — 1 (defined below). A random modal
literal (of degree D) is with probability 0.5 a random modal atom (of degree
D) or its negation, otherwise. A random modal K CNF clause (of degree D) is
a disjunction of K random modal literals (of degree D). Now, a random modal
K CNF formula (of degree D) is a conjunction of L random modal KCNF
clauses (of degree D).

For the comparison of the performance of KsAT and KRZS, Giunchiglia and
Sebastiani proceed as follows. All parameters are fixed except L, the number
of clauses in a formula. For example, N=3, M =1, K=3, D=5, and P=0.5 are
chosen. The parameter L ranges from N to 40N. For each value of the ratio
L/N a set of 100 random modal K CNF formulae of degree D is generated. We
will see that for small L the generated formulae are most likely to be satisfiable
and for larger L the generated formulae are most likely to be unsatisfiable. For
each generated formula ¢, the time needed by one of the decision procedures
to determine the satisfiability of ¢ is measured. This includes also the time
consumed by preprocessing steps like simplification and translation of the input
formulae. There is an upper limit for the CPU time consumed, more precisely,
the amount of time during which computational effort has been expended on
behalf of the executing procedure. As soon as the upper limit is reached, the
computation for ¢ is stopped. Now, the median CPU runtime over the ratio
L/N is presented. For example, the graphs of Figure 5 show the performance
of KRZS and KSAT on the parameter settings PS0 (N=5, M =1, K=3, D=2,
P=0.5) and PS1 (N=3, M=1, K=3, D=5, P=0.5). The gaps in the graphs
(for example for KRZS above L/N = 5) indicate that the computations on
more than 50 out of 100 formulae of given ratio L/N had to be abandoned.

Our tests were run on a Sun Ultra 1/170E with 196MB main memory run-
ning SunOS 5.5.1 using a time-limit of 1000 CPU seconds. For KSAT and
KRZS which are both written in Common Lisp we have used versions of the
recommended compilers: for KSAT AKCL (Austin Kyoto Common Lisp) version
1.625, and for LRZS CLISP version 1996-03-15. For the Logics Workbench
which is written in C++ we have used a pre-compiled executable of version 1.0
obtained from http://lwbwww.unibe.ch:8080/. We used SPASS and FLOT-
TER version 0.55, written in ANSI C and compiled using the GNU C compiler
version 2.7.1.

Giunchiglia and Sebastiani [GS 96b] present graphs for the following pa-
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Figure 5: The performance of KRZS and KsAT for PS0 and PS1

rameter settings:

N M KD P N M KD P
PSO 5 1 3 2 05|PS5 4 1 3 2 05
PS1 3 1 3 5 05/PS6 4 2 3 2 05
Ps2 3 1 3 4 05|PS7T 4 5 3 2 05
PS3 3 1 3 3 05/PS8 4 10 3 2 0.5
PS4 3 1 3 2 05|PS9 4 20 3 2 0.5

Based on their graphs they come to the following conclusions [GS 96b, p. 313]:

(1) Ksar outperforms by orders of magnitude the previous state-of-the art
decision procedures.

(2) All SAT-based modal decision procedures are intrinsically bound to be
more efficient than tableaux-based decision procedures.

(3) There is partial evidence of an easy-hard-easy pattern on randomly gener-
ated modal logic formulae independent of all the parameters of evaluation
considered.

The graphs for the parameter settings PS0 and PS1 of Figure 5 support these
claims most visibly. We show that the situation is more complex and does not
justify such strong claims. We focus on the parameter settings PS0 and PS1
which suffice for our analysis of the evaluation method in the next section. The
remaining parameter settings will be considered in Section 8.



6 Analysis of the evaluation method

Selecting good test instances is crucial when evaluating and comparing the
performances of algorithms empirically. This means we have to determine the
characteristics of the test instances before starting a performance comparison.
This is particularly important when we set up a completely new collection
of test instances. We address the question which characteristics the formu-
lae produced by the random generator and the parameter settings chosen by
Giunchiglia and Sebastiani have and how they influence the theorem provers
under consideration with respect to claims (1) to (3).

It is important to note that for D=0 and K =3 random modal KCNF for-
mulae do not coincide with random 3SAT formulae. Generating a clause of a
random 3SAT formula means randomly generating a set of three propositional
variables and then negating each member of the set with probability 0.5. In
contrast, generating a random modal 3CNF clause of degree 0 means randomly
generating a multiset of three propositional variables and negating each mem-
ber of the multiset with probability 0.5. For example, pVqV—r is a 3SAT clause
and also a modal 3CNF clause of degree 0. The clauses pV—-pVpand pVpVq
are not random 3SAT clauses, but both are random modal 3CNF clauses of
degree 0. In random modal 3CNF formulae of higher degree, such clauses occur
within the scope of a modal operator. For example, contradictory expressions
like =04 (pV =pV p) may occur. Thus, random modal K CNF formulae contain
tautological and contradictory subformulae. It is easy to remove these subfor-
mulae without affecting satisfiability. We now consider to what extent the size
of the random modal 3CNF formulae can be reduced by such a simplification.
The graphs of Figure 6 reflect the average ratio of the size of the simplified
random modal 3CNF formulae over the size of the original formulae. For the
random modal 3CNF formulae generated using three propositional variables,
on average, the size of a simplified formula is only 1/4 of the size of the original
formula. For the second parameter setting we observe a reduction to 1/2 of the
original size. In other words, one half to three quarters of the random modal
3CNF formulae is “logical garbage” that can be eliminated at little cost.

KsAT utilizes a form of preprocessing that removes duplicate and contra-
dictory subformulae of an input formula, by applying the simplification rules
presented in Table 1. The rules simplify pVqVp to pVq and O, (pVg)A—0; (pVq)
to L, but they will not simplify O, (pV ¢) A—0O;(¢Vp) to T, since Oy (pVq) is not

—oVo—T OVT =T oV 1L —o OV O — @
SN — L ONT = ¢ oNL — L OND— @
L =T -T— L 0;T =T

Table 1: The simplification rules of KSAT
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Figure 6: The effect of simplifying modal 3CNF formulae

syntactically equal to Oy (¢ V p). KSAT also sorts disjunctions lexicographically,
e.g. O1(q V p) will be replaced by O;(p V ¢). This allows for additional appli-
cations of the simplification rules. However, in all our experiments we have
chosen to disable the reordering inside KKSAT. For the median CPU runtime
considerations of this section, reordering has no significant effect as Figure 7
shows. Likewise the other approaches take no advantage of reordering as per-
formed in KsaT. But we think reordering is an important notion that deserves
further investigation, for all procedures. In particular, generalizing the notion
of reordering as implemented inside KSAT to a notion of reordering of con-
junctions of clauses, will have a positive effect on the Logics Workbench and
KRZS.

KsAT performs exactly the simplification whose effect is illustrated in Fig-
ure 6. RZS, on the other hand, does not. As no theorem prover except for
KsAT is designed especially for formulae with characteristics similar to those of
the random modal formulae, we think it is fair that either no theorem prover
should use preprocessing or all should. Simplification of the generated modal
formulae is reasonable, so we have added the preprocessing function of KSAT
also to the other theorem provers that we consider. The modified versions of
KRIZS, the Logics Workbench and the translation approach with preprocessing
will be denoted by KRZS*, LWB* and TA*, respectively. The graphs in Fig-
ure 8 show the performances of KsSAT and XRZS*. Although the performance
of KsAT is still better than that of KRZS*, the picture is completely different
than that of Figure 5.

The superior performance of KKSAT diminishes if we turn to values of the
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Figure 7: The performance of KSAT with/without reordering

parameter N greater than 5. Figure 9 shows the performance of KSAT and
KRZIS* on the parameter setting PS10 (N=8, M =1, K=3, D=2, P=0.5),
while Figure 10 shows the performance on the parameter setting PS11 (N=10,
M=1, K=3, D=2, P=0.5). We see that the performance of CRZS* for a ratio
L/N between 4 and 11 on PS10 and for a ratio L/N between 3 and 9 on
PS11 is better than the performance of KSAT. So, it is not true that KsaT
outperforms XRZS* in general, which relativizes claim (1). For increased
numbers of propositional variables, the dp_unit rule and exhaustive boolean
simplification of KSAT is of no particular importance for modal formulae which
are likely satisfiable. And, the intermediate calls to KM before each application
of the dp_split have a deteriorating effect on the performance.

KRIS* applies the V-elimination rule to every disjunction in the modal
formula and continues on the first branch. As the number of propositional
variables and modal atoms is large, the A-clash rule is less likely to close a
branch and the second branch need not be treated. After all occurrences of
the V-operator are eliminated, X RZS* performs all possible applications of the
&;—elim rule. Each application is likely to succeed.

By contrast, KSAT uses dp_split to generate two possible extensions of the
current truth assignment. Like KRZS*, it rarely has to consider the second
extension at all. However, before every application of the dp_split rule the
procedure KM is called. This has the following effect: The dp_split rule needs
to be applied more often before reaching a satisfying truth assignment, since
the number of different propositional variables and modal atoms has become
larger. This also holds for the recursive calls of KDP by KM. There is an
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Figure 10: The performance of KSAT and KRZS* for N=10

increased number of intermediate calls to the procedure KM and each call
is more expensive than for simpler formulae. The effect is strengthened by
the following inefficiency of the intermediate calls to KM. Suppose we have
just checked the K (m)-satisfiability of the truth assignment p; = {O;¢; =
1,017 =T,...,0101, = T} and extend uy by {O;¢» = L}. By the next
call to KM, KSAT will not only test whether =15 A 11 A ... A @14, is satisfiable,
but it will repeat the test whether =iy A @11 A ... A @1, is satisfiable. So,
KsAT performs the same tests over and over again without need. This could
be avoided by memorizing which tests have been done or not.

We now address claim (2) that, intrinsically, SAT-based modal decision pro-
cedures are bound to be more efficient than tableaux-based decision procedures.
Giunchiglia and Sebastiani base their claim on a result by D’Agostino [D’A 92],
who shows that in the worst case, algorithms using the V-elim rule cannot
simulate truth tables in polynomial time. Instead one has to use the following
modified form of V-elim:

w:pV,C | S
w:p, C | wap, w:p,C | S

V-elim’:

This rule ensures that the two subproblems w:¢, C' and w:1), w:¢, C' generated
by the elimination of the disjunction ¢ V ¢ are mutually exclusive.

We have just seen that a major cause of the difference in computational
behaviour of the two algorithms is the absence of the preprocessing step in
KRZS. To explain the remaining difference we study the quality of the ran-
dom modal 3CNF formulae. Suppose that we want to test a random modal
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Figure 11: The quality of the test set for PS0

3CNF formula ¢ with N propositional variables for satisfiability in a Kripke
model with only one world. We have to test at most 2"V truth assignments
to the propositional variables. Since N < 5 for the modal formulae under
consideration, this is a trivial task, even by the truth table method. We say
a random modal 3CNF formula ¢ is trivially satisfiable if ¢ is satisfiable in a
Kripke model with only one world. We also say a random modal 3CNF formula
¢ is trivially unsatisfiable if the conjunction of the purely propositional clauses
of ¢ is unsatisfiable. Again, testing whether ¢ is trivially unsatisfiable requires
only the consideration of 2V truth assignments.

The graphs of Figure 11 show the percentage of satisfiable, trivially sat-
isfiable, unsatisfiable, trivially unsatisfiable, and unsatisfiable formulae in the
samples detected by KRZS* of the set of test formulae generated for PSO.
We see that almost all unsatisfiable test formulae are trivially unsatisfiable.
This holds also for all the other parameter settings used by Giunchiglia and
Sebastiani. This indicates, none of the parameter settings is suited to generate
challenging unsatisfiable modal formulae.

If we consider Figure 8 and 11 together, for ratios L/N between 19 and
21 and N=5 we observe the graph of CRZS* (in Figure 8) deviates a lot (by
a factor of more than 100) from the graph of Ksar. This is the area near
the crossover point where the percentage of trivially unsatisfiable formulae
rises above 50%, however, the percentage of unsatisfiable formulae detected by
KRZIS* is still below 50% in this area. KRZS* does not detect all trivially
unsatisfiable formulae within the time-limit which explains the deviation in
performance from KsaT. The reason for XRZS* not detecting all trivially



unsatisfiable formulae within the time limit, can be illustrated by the following
example.

Example 5
Let ¢4 be a simplified modal 3CNF formula

PAGA (M1 Vmia Vimgs)

A (Mg Vmga V mgz) A (2p V —q)

where the m;;, with 1<i<k, 1<j<3, are modal literals different from p, ¢, =p,
and —q. Evidently, ¢4 is trivially unsatisfiable. KsAT does the following: Since
p and ¢ are unit clauses in ¢4, it applies the rule dp_unit twice to ¢. The rule
replaces the occurrences of p and ¢ by T, it replaces the occurrences of —p and
—q by L, and it simplifies the formula. The resulting formula is L. At this point
only the rule dp_clash is applicable and KsAT detects that ¢, is unsatisfiable.
In contrast, KRZS* proceeds as follows. First it applies the A-elim rule
k+2 times, eliminating all occurrences of the A operator. Then it applies the
V-elim rule to all disjunctions, starting with mj; Vmi2 Vmi3 and ending with
mr1 V my2 V mygs. This generates 3% subproblems. Each of these subproblems
contains the literals p and ¢ and the disjunction —p V —g. The simplification
rule V-simp; eliminates the disjunction —p V —¢ and a final application of the
A-clash rule exhibits the unsatisfiability of each subproblem. Obviously, for
k large enough, XRZS* will not be able to finish this computation within the
time-limit.

In the Logics Workbench branch pruning avoids this kind of computation.
Starting from the sequent = —¢, it first applies the (r—)-rule followed by ap-
plications of the (IA)-rule until all outer conjunction operators are eliminated.
A sequence of k+1 applications of the (IV)-rule follows generating 2¥*! (po-
tential) branches. On the first and second branch the sequents

p,g,mit, ... ,ME1, 7P =

and
p,q,mi1, ... M1, ¢ =

are considered which are both provable. As neither proof requires the use of
one of the literals mi1, ... ,mg1