
An empirical analysis of modal theorem proversUllrich Hustadt�Department of Computing and Mathematics,Manchester Metropolitan University,Manchester M1 5GD, United KingdomRenate A. SchmidtyDepartment of Computing and Mathematics,Manchester Metropolitan University,Manchester M1 5GD, United KingdomABSTRACT. This paper reports on an empirical performance analysis of four modaltheorem provers on benchmark suites of randomly generated formulae. The theoremprovers tested are the Davis-Putnam-based procedure Ksat, the tableaux-based sys-tem KRIS, the sequent-based Logics Workbench, and a translation approach com-bined with the �rst-order theorem prover SPASS.Our benchmark suites are sets of multi-modal formulae in a certain normal formrandomly generated according to the scheme of Giunchiglia and Sebastiani [GS 96a,GS 96b]. We investigate the quality of the random modal formulae and show thatthe scheme has some shortcomings, which may lead to mistaken conclusions. We pro-pose improvements to the evaluation method and show that the translation approachprovides a viable alternative to the other approaches.KEYWORDS: Modal logic, automated theorem proving, performance analysis.IntroductionThere are a variety of automated reasoning approaches for the basic propo-sitional multi-modal logic K(m) and its syntactical variant, the knowledgerepresentation formalism ALC [SSS 91]. Some approaches utilize standard�rst-order theorem proving techniques in combination with translations frompropositional modal logic to �rst-order logic [Ohl 91, Ohl 93, OS 97]. Oth-ers use Gentzen systems [Gob 74, HJSS 96]. Still others use tableaux proofmethods [Fit 83, Rau 83, BH 91].Usually, the literature on theorem provers for modal logic con�nes itself toa description of the underlying calculus and methodology accompanied with a�Partially supported by the DFG grant Ga 261/8-1.ySupported by the TraLos-Project funded by the DFG.

consideration of the worst-case complexity of the resulting algorithm. Some-times a small collection of benchmarks is given as in [Cat 91]. There have notbeen any exhaustive empirical evaluations or comparisons of the computationalbehaviour of theorem provers based on di�erent methodologies.Giunchiglia and Sebastiani [GS 96a, GS 96b] changed that. They reporton an empirical analysis of the tableaux system KRIS [BH 91] and a newtheorem prover, called Ksat. Ksat is an adaptation for the basic multi-modallogicK(m) of a SAT-procedure for checking satis�ability in propositional logic.The benchmark suite is a set of randomly generated multi-modal formulae ina certain normal form.We extend the empirical analysis of decision procedures for basic modallogic based on di�erent methodologies by incorporating the Logics Workbench,a system based on a Gentzen-style calculus for modal logic [HJSS 96] and thefunctional translation approach of Ohlbach [Ohl 91]. The latter approach ma-nipulates �rst-order translations of modal formulae, whereas the other threesystems manipulate modal formulae directly. The four systems cover four dif-ferent calculi and as far as we know, they are the only automated reasoners formodal logic that are publicly available.Our investigations show benchmarking needs to be done with great care.The evaluation of Giunchiglia and Sebastiani has some shortcomings which weaddress. The random generator used to set up a benchmark suite producesformulae containing a substantial amount of tautologous and contradictorysubformulae. It favours the SAT-procedureKsat which utilizes a preprocessingroutine that eliminates trivial tautologies and contradictions from the formulae.This property of the random formulae distorts the analysis and comparisonof Ksat and KRIS . The random generator does not produce challengingunsatis�able modal formulae. So as to obtain harder problems we developguidelines for the random generation of modal formulae. We present a set ofsamples of modal formulae generated according to these guidelines and verifythat they provide challenging problems for Ksat and the translation approach.The paper is structured as follows. Sections 1, 2, 3 and 4 brie
y describe theinference mechanisms of Ksat, KRIS , the Logics Workbench and the trans-lation approach. Section 5 de�nes random modal formulae and describes thetest method of Giunchiglia and Sebastiani, which Section 6 evaluates. Section 7presents percentile graphs for the four systems that are more informative thangraphs presenting the median CPU time consumption. Finally, Section 8 pro-poses improvements to the random generator so as to produce more challengingrandom samples on which the methods are tested. This paper is an extensionof [HS 97].1 The SAT-based procedure KsatThe language of the multi-modal logic K(m) is that of propositional logic plusm additional modal operators2i. By de�nition, a formula ofK(m) is a booleancombination of propositional and modal atoms. A modal atom is an expression

of the form 2i , where i is such that 1�i�m and is a formula of K(m). 3i is an abbreviation for :2i: . The semantics of K(m) is given by the usualKripke semantics.Ksat tests the satis�ability of a given formula � of K(m). Its basic algo-rithm, called Ksat0, is based on the following two procedures:KDP: Given a modal formula �, this procedure generates a partial truth assign-ment � for the propositional and modal atoms in � which renders � truepropositionally. This is done using a decision procedure for propositionallogic.KM: Given a modal formula � and an assignment � computed by KDP, let2i ij denote any modal atom in � which is assigned false by �, thatis, �(2i ij) = ? and 2i�ik any modal atom that is assigned true by �,that is, �(2i�ik) = >. The procedure checks for each index i, 1�i�m,and each j whether the formula'ij = Vk �ik ^ : ijis satis�able. This is done with KDP. If at least one of the formulae 'ijis not satis�able, then KM fails on �, otherwise it succeeds.Ksat0 starts by generating a truth assignment � for � using KDP. If KMsucceeds on �, then � is K(m)-satis�able. If KM fails on �, we have to generatea new truth assignment for � using KDP. If no further truth assignment is found,then � is K(m)-unsatis�able.The decision procedure KDP for propositional logic can be described by aset of transition rules on ordered pairs P . S where P is a sequence of pairsh�; �i of a modal formula � and a partial truth assignment �, and S is a setof satisfying truth assignments.dp sol: h>; �i jP . SP . S [f�gdp clash: h?; �i jP . SP . Sdp unit: h�[c]; �i jP . Sh�0; � [fc = >gi jP . Sif c is a unit clause in � and �0 is the result of replacing alloccurrences of c and c by > and ?, respectively, followedby boolean simpli�cation.dp split: h�[m]; �i jP . Sh�[m] ^ p; �i j h�[m] ^ :p; �i jP . Sif dp unit cannot be applied to h�[m]; �i, m is a proposi-tional or modal atom.

The symbol j denotes concatenation of sequences.Starting with h�; ;i . ;, exhaustively applying the inference rules will resultin ; . S where S is a complete set of partial truth assignments making � true.Note that the transition rules form a variant of the Davis-Putnam proce-dure for propositional formulae not in conjunctive normal form. The crucialnondeterminism of the procedure is the selection of the splitting `variable' m inthe transition rule dp split. Ksat employs the heuristic that selects an atomwith a maximal number of occurrences in �.At any point of time the computation in KDP can be interrupted and KMcan be called with the partial truth assignment � constructed so far. If KMfails on �, then is not necessary to continue the completion of � by KDP. Ksat0calls KM before every application of the dp split rule.Giunchiglia and Sebastiani [GS 96a, pp. 583-584] suggest thatKsat0 can bebased on any decision procedure for propositional logic. However, completenessof Ksat0 can easily be lost, even if the underlying propositional theorem proveris complete. Suppose that we add the pure literal rule to the Davis-Putnamprocedure described above. That is, whenever an atomm occurs only positively(respectively negatively) in �, we can add fm = >g (respectively fm = ?g)to the truth assignment and replace all occurrences of m by > (respectively?). The application of the pure literal rule preserves satis�ability and can beapplied eagerly to �. Now consider the formula�1 = (p _ q _ :21(p _ :p)) ^ (:p _ :q _ :21(p _ :p)):There is one pure literal in �1, namely 21(p_:p), which occurs only negativelyin �1. So we assign ? to 21(p _ :p) and replace all occurrences of 21(p _ :p)by ?. After simplifying the resulting formula we get the formula >. We havearrived at a truth assignment rendering � true. Due to the eager application ofthe pure literal rule, this is the only truth assignment our procedure computes.In a second step we have to check using KM that :(p_:p) is satis�able. This isobviously not the case. Since KDP with the pure literal rule does not produceany additional truth assignments for �, Ksat concludes that � is unsatis�able.However, � is satis�able with the truth assignment fp = >; q = ?g. So,legitimate optimizations of the decision procedure for propositional logic canrender Ksat0 incomplete. That is, not every technique developed for suchdecision procedure carries over to modal logic.We will illustrate the four satis�ability testing approaches under considera-tion by way of one satis�able formula, namely = :21(p _ r) ^ (21p _ 21q):Example 1Figure 1 depicts the derivation tree of Ksat for the formula . In the �rst stepthe procedure KDP applies the dp unit rule to the unit clause :21(p_ r). Alloccurrences of :21(p_r) are replaced by > while all occurrences of 21(p_r) arereplaced by ?. The resulting formula >^(21p_21q) is simpli�ed to 21p_21q

:21(p _ r) ^ (21p _ 21q)21p _ 21q21p ^ (21p _21q) :21p ^ (21p _ 21q)> 21q�1 = f21(p _ r) = ?;21p = >g >:(p _ r) ^ p �2 = f21(p _ r) = ?;21p = ?; 21q = >g? :(p _ r) ^ q :p ^ q> >

KDP: dp unitKDP: dp splitKDP: dp unit KDP: dp unitKDP: dp sol KDP: dp unitKM KDP: dp solKDP: dp unit KM
Figure 1: Sample derivation of Ksat

to which only the dp split rule of KDP is applicable. Before any applicationof the dp split rule, Ksat calls the procedure KM with the current truthassignment. Here, KM is used to prove that �0 = f21(p _ r) = ?g is K(m)-satis�able. To this end, KM shows that :(p _ r) is satis�able. This is doneby KDP with two applications of the dp unit rule to :(p _ r). Only now, thedp split rule is actually applied to 21p_21q. We assume that 21p is the splitvariable. So, we have to show that either 21p^(21p_21q) or :21p^(21p_21q)is satis�able. KDP will �rst consider the formula 21p^(21p_21q). Obviously,we can apply the dp unit rule to propagate the unit clause 21p. This stepimmediately reveals that the formula is satis�able. That is, one satisfyingtruth assignment is �1 = f21(p _ r) = ?;21p = >g. Ksat proceeds with KMto show that :21(p_r)^21p is K(m)-satis�able. This is done by showing that:(p_r)^p is satis�able. But KDP will reveal with an application of the dp unitrule to the unit clause p in :(p_ r)^ p that the formula is unsatis�able. Thus,:21(p _ r) ^ 21p is not K(m)-satis�able. Consequently, KDP will continuewith the second formula :21p ^ (21p _ 21q) generated by the dp split rule.Here two applications of the dp unit rule to the unit clauses :21p and 21qyield a second truth assignment �2 = f21(p _ r) = ?;21p = ?;21q = >g.Again Ksat continues with KM. Note that �2 assigns ? to two modal atoms,namely 21(p _ r) and 21p. Therefore, KM checks the satis�ability of twopropositional formulae, that is, :(p_r)^q and :p^q. For both formulae KDPimmediately veri�es their satis�ability. So, KM succeeds on �2 which completesthe computation by Ksat. We conclude that :21(p _ r) ^ (21p _ 21q) issatis�able.2 The tableaux-based system KRISWhile Ksat abstracts from the modal part of formulae to employ decisionprocedures for propositional logic, KRIS manipulates modal formulae directly.More precisely, the inference rules of KRIS are relations on sequences of setsof labelled modal formulae of the form w: where w is a label chosen froma countably in�nite set of labels � and is modal formula. For improvedreadability we write w: ;C instead of fw: g [C.?-elim: w:?; C j SS>-elim: w:>; C j SC j S^-clash: w:�;w:�;C j SS^-elim: w:� ^ ;C j Sw:�;w: ;C j S

_-elim: w:� _ ;C j Sw:�;C j w: ;C j Sif w:�_ ;C has been simpli�ed by _-simp0 and _-simp13i-elim: w:3i�;D;C j Sv:� ^ 1 ^ : : : ^ n; D;C j Sif D = w:2i 1; : : : ; w:2i n, C does not contain anyw:2i , none of the other rules can be applied to C, and vis a new label from �.� denotes the complementary formula of �, for example :p = p and 2ip =3i:p. Given a modal formula �, the input sequence for KRIS is the singletonset w0:�0, where w0 is a label chosen from a countably in�nite set of labels �and �0 is the modal negation normal form of �. If KRIS arrives at a sequenceC j S such that no transformation rule can be applied to C, then the originalformula � is satis�able. Otherwise the transformation rules will eventuallyreduce w0:�0 to the empty sequence and � is unsatis�able. The rules ?-elim,>-elim, ^-clash, ^-elim are applied exhaustively before any application ofone of the elimination rules for _ and 3i. The >-elim rule is not necessaryfor the completeness of the set of rules.In addition to the inference rules, KRIS has two simpli�cation rules, namelyw:� _ ;w:�;C ! w:�;C_-simp0: w:� _ ;w:�;C ! w: ;w:�;C_-simp1:These are applied only immediately before an application of the _-elim ruleand then they are applied only to the labelled formula w:� _ to which wewant to apply the _-elim rule.As far as the application of the _-elim rule is concerned, KRIS actuallyconsiders the sets of labelled formulae as sequences and chooses the �rst dis-junction in this sequence. To give a simple example, consider the formula �2given by (p ^ :p) _ >. Since �2 is in negation normal form, we start with theinitial sequence w0:(p ^ :p) _ >:The only rule applicable is _-elim which generates the structurew0:(p ^ :p) j w0:>:For the reason that sequences are always processed from left to right, w0:(p^:p)will be considered �rst. Only ^-elim is applicable transforming the sequenceto w0:p; w0::p j w0:>:Now we can apply the ^-clash rule to eliminate the �rst set of labelled for-mulae and get w0:>:

A �nal application of the >-elim rule reveals the sequence containing theempty set. No further rule can be applied. Since we have not arrived at theempty sequence, � is satis�able.As the formula (p^:p)_> is logically equivalent to >, its satis�ability canbe shown by a single application of the >-elimination rule. However, KRIShas no simpli�cation rules beside _-simp0 and _-simp1. In particular, KRISdoes not simplify boolean expressions using the simpli�cation rules of the pre-processing procedure that Giunchiglia and Sebastiani use in conjunction withKsat which we discuss later (see Table 1 on page 18).The condition that the 3i-elim rule can be applied only if none of theother rules can be applied to the set of labelled formulae under considerationis necessary for the completeness of the system. To illustrate the problem,consider the formula �3 = :q ^31:p ^ (21p _ q). Starting withw0::q ^31:p ^ (21p _ q)a sequence of applications of the ^-elimination rule will derivew0::q; w0:31:p; w0:21p _ q:Suppose we apply the 31-elimination rule before eliminating the occurrence ofthe _-operator in w0:21p _ q. The resulting system isw0::q; w1::p; w0:21p _ q:The application of _-elimination rule is still possible and we getw0::q; w1::p; w0:21p j w0::q; w1::p; w0:q:Now, no further application of any inference rule is possible. Since, we havenot derived the empty sequence, we would conclude that �3 is satis�able. But,it is not. If we apply the _-elimination rule tow0::q; w0:31:p; w0:21p _ qthe resulting sequence contains two sets of labelled formulaew0::q; w0:31:p; w0:21p j w0::q; w0:31:p; w0:q:The only rule applicable to the �rst system is the 31-elimination rule. The rulewill replace the occurrence of w0:31:p with w1::p ^ p. We have now derivedthe sequence w0::q; w1::p ^ p; w0:21p j w0::q; w0:31:p; w0:q:After an application of the ^-elimination rule we arrive atw0::q; w1::p; w1:p; w0:21p j w0::q; w0:31:p; w0:q:

It is straightforward to see that we can apply the ^-clash rule to both sets oflabelled formulae. We end up with the empty sequence. Thus, �3 is unsatis�-able.However, delaying the application of 31-elimination to the end can also bea disadvantage. Consider, the structurew0:31:p; w0:21p; w0:p _ 21q:Adding w1::p ^ p to the set of labelled formulae followed by an applicationof the ^-elimination and ^-clash rule allows the derivation of the empty se-quence although we have not eliminated the disjunction in p _ 21q �rst. Thistest makes a di�erence computationally if the set of labelled formulae containsa large number of disjunctive formulae which are irrelevant with regards itssatis�ability. It is possible to add the following 3i-test inference rule to thesystem without loosing completeness.3i-test: w:3i�;D;C j Sv:� ^ 1 ^ : : : ^ n; w:3i�;D;C j Sif D = w:2i 1; : : : ; w:2i n, and v is a new label chosenfrom �.Furthermore, if we ensure that the rule is applied only �nitely many timesbefore we eventually eliminate w:3i� by the 3i-elimination rule, the inferencesystem remains terminating. Note that the application of the 3i-test ruleclosely resembles the intermediate calls of the KM procedure during a compu-tation of KDP by Ksat.We end our description of the system KRIS with a sample derivation.Example 2Again, we consider the satis�able formula = :21(p _ r) ^ (21p _ 21q).First, it transforms the formula to its negation normal form 0 which is 0 = 31(:p ^ :r) ^ (21p _ 21q). Figure 2 shows how KRIS proceeds toprove the satis�ability of 0. First, KRIS eliminates the occurrence of the^-operator in 0. Then it uses the _-elim rule to split the disjunctive formula(21p _ 21q). Now we have to deal with two sets of labelled formulae. KRIScontinues with the left set w0:31(:p^:r); w0:21p. The only rule applicable tothis set is31-elim. The application of the31-elim rule eliminates the labelledformula w0:31(:p ^ :r) from our set and adds w1::p ^ :r ^ p. Applying the^-elim rule to this labelled formula reveals that our set of labelled formulaecontains both w1::p and w1:p. This is a contradiction and the ^-clash ruleeliminates this set of labelled formula from the sequence. The remaining set oflabelled formulae, namely w0:31(:p^:r); w0:21q, is the second set generatedby the _-elim rule. Again, the only applicable rule is 31-elim. This adds theformula w1::p ^:r ^ q to the set while removing w0:31(:p ^:r). A sequenceof applications of the ^-elim rule results in a set of labelled formulae to whichno further rule applies. Thus, KRIS has shown that 0 and are satis�able.

w0:31(:p ^ :r) ^ (21p _21q)ww�^-elimw0:31(:p ^ :r); w0:21p _ 21qww�_-elimw0:31(:p ^ :r); w0:21p j w0:31(:p ^ :r); w0:21qww�3-elimw1:(:p ^ :r) ^ p; w0:21p j w0:31(:p ^ :r); w0:21qww�^-elimw1::p; w1::r; w1:p; w0:21p j w0:31(:p ^ :r); w0:21qww�^-clashw0:31(:p ^ :r); w0:21qww�3-elimw1:(:p ^ :r) ^ q; w0:21qww�^-elimw1::p; w1::r; w1:q; w0:21qFigure 2: Sample derivation of KRIS

Axioms: �;�) �;� �) >;� ?;�) �Rules: �; ;�) �� ^ ;�) � (l^) �) �;� �) ;��) � ^ ;� (r^)�;�) � ;�) �� _ ;�) � (l_) �) �; ;��) � _ ;� (r_)�) �;�:�;�) � (l:) �;�) ��) :�;� (r:)�;�) �3i�;2i�;�) 3i�;� (l3i) �) �;�2i�;�) 2i�;3i�;� (r2i)Figure 3: Axioms and rules of the Logics Workbench3 The Logics WorkbenchThe Logics Workbench (LWB) is an interactive system providing inferencemechanisms for a variety of logical formalisms including basic modal logic. Thedecision procedure for basic modal logic is based on the sequent calculus pre-sented in Figure 3 [HJSS 96] (of which some axioms and rules are eliminable).A modal formula � is derivable using the axioms and rules of the sequent cal-culus if and only if � is true in all Kripke models. Since we are interested insatis�ability not provability, we exploit that a given formula � is unsatis�ableif and only if :� is provable using the calculus of the Logics Workbench.Unlike KRIS , the Logics Workbench has no simpli�cation rules. For ex-ample, a sequent proof of the satis�ability of the formula :p ^ (p _ q) is:p) p Failureq) p(p _ q)) p (l_):p; (p _ q)) (l:):p ^ (p _ q)) (l^)) :(:p ^ (p _ q)) (r:)Starting with the sequent) :(:p ^ (p _ q)), the Logics Workbench conductsa backwards proof search. That is, the inference rules presented in Figure 3are applied bottom up. The (r:)-rule moves the formula :p ^ (p _ q) to theleft side of the sequent. Then we eliminate the occurrence of the conjunctiveoperator using the (l^)-rule. The left hand side of the sequent now consist oftwo formulae, namely :p and (p _ q). It uses the (l:)-rule to move :p to the

p) p; rp) p _ r (r_)21p) 21(p _ r) (r21) Failureq) p; rq) p _ r (r_)21q) 21(p _ r) (r21)21p _21q) 21(p _ r) (l_):21(p _ r);21p _ 21q) (l:):21(p _ r) ^ (21p _21q)) (l^)) :(:21(p _ r) ^ (21p _ 21q)) (r:)Figure 4: Sample derivation of the Logics Workbenchright-hand side of the sequent. Now the (l_)-rule is the only rule applicableto the sequent (p _ q)) p we have arrived at. We get two sequents, namelyp) p and q) p. Only the �rst one is an axiom. The sequent q) p is neitheran axiom nor can we apply any further rules of the calculus. We have failed toconstruct a proof of) :(:p ^ (p _ q)). Therefore :p ^ (p _ q) is satis�able.There are two points worth noting. An application of the (l_)-rule createstwo branches into our backwards proof search. If one of the branches fails, thewhole proof attempt fails. We could directly derive the sequent :p; q) from:p; (p_q)) using the equivalent of the _-simp1 rule for sequents. This wouldeliminate the need to apply the (l_)-rule in the example. But, as mentionedbefore, the Logics Workbench has no equivalents of the _-simpli�cation rules.However, the Logics Workbench uses the following form of branch pruning.Provided in a backwards application of the (l_)-rule the formula � is not usedin the proof of �;�) �, that is, �) � holds, then it is not necessary toconsider the branch ;�) �. Similarly, branch pruning is applied to the(r^)-rule.The Logics Workbench applies the (l^)-rule, (l:)-rule, (r:)-rule and (r:)-rule exhaustively before any application of the remaining rules. The selectionof the disjunctive and conjunctive formulae for applications of the (l_)-ruleand (r^)-rule, respectively, is determined by the order of formulae in the left-hand side and right-hand side of the sequent, respectively. The (l3i)-rule and(r2i)-rule are applied only after no application of the other rules is possible.Example 3Figure 4 gives the derivation produced by the Logics Workbench of the satis�-ability of = :21(p_r)^ (21p_21q). Starting from) :(:21(p_r)^ (21p_21q)) the backwards applications of the (r_)-rule, (l^)-rule and (l:)-rule leadto the sequent 21p _ 21q) 21(p _ r). The backwards application of the(l_)-rule generates two sequents 21p) 21(p _ r) and 21q) 21(p _ r). TheLogics Workbench �rst considers the sequent 21p) 21(p _ r). Here we haveto apply the (r21)-rule, for which we have to select a formula of the form 2�

on the right-hand side of the sequent. Since in the sequent under considerationonly one 2-formula occurs on the right-hand side of the sequent, the choice isdeterministic. The application of the (r21)-rule yields the sequent p) p _ r.With a �nal application of the (r_)-rule we arrive at the axiom p) p; r. Nowthe Logics Workbench turns to the second alternative 21q) 21(p _ r). Herethe application of the (r21)-rule produces q) p _ r. An application of the(r_)-rule renders q) p; r. Since no more rules apply and q) p; r is not anaxiom, our attempt to construct a proof fails. No other proof attempts arepossible. So is satis�able.Observe the near correspondence between the proof search of KRIS and thatof the Logics Workbench. We can directly translate the deduction steps in thetableaux-calculus of KRIS into the sequent calculus of the Logics Workbench.The di�erences are the absence of simpli�cation rules in the Logics Workbench,the presence of branch pruning in the Logics Workbench, and the conversionto negation normal form by KRIS .4 The translation approachThe translation approach (TA) is based on the idea that modal inference canbe done by translating modal formulae into �rst-order logic and conventional�rst-order theorem proving. The translation approach we use is the optimizedfunctional translation approach described in Ohlbach and Schmidt [OS 97]. Ithas the property that ordinary resolution without any re�nement strategies is adecision procedure for K(m) [Sch 98b, Sch 98a]. The translation maps modalformulae into a logic, called basic path logic, which is a monadic fragment ofsorted �rst-order logic with one binary function symbol � that de�nes accessi-bility. A formula of path logic is further restricted in that its clausal form mayonly contain Skolem terms that are constants.The optimized functional translation does a sequence of transformations.The �rst transformation �f maps a modal formula � to its so-called functionaltranslation de�ned by �f (�) = 8x �f (�; x). For K(m), �f is de�ned by�f (p; s) = P (s)�f (2i�; s) = defi(s)! 8�i �f (�; s � �i):p is a propositional variable and P is a unary predicate uniquely associatedwith p. The symbol defi is a special unary predicate with sort i that speci�esde�nability (or not dead end), replacing :dei in the de�nition of Ohlbach andSchmidt. �i denotes a variable of sort i. For the propositional connectives �fis a homomorphism. The second transformation applies the so-called quanti�erexchange operator � which moves existential quanti�ers inwards over universalquanti�ers using the rule `9�8� becomes 8�9� '. The transformation �preserves satis�ability, more speci�cally, � is a theorem in K(m) if and onlyif :��f (�) is unsatis�able [OS 97] (the quanti�er exchange operator rests onthe generated model property and the fact that generated models are trees).

Our aim is to test the satis�ability of a given modal formula �. This canbe achieved by testing the satis�ability of the set of clauses S = c(:��f (:�)),where c() denotes the clausal form of a �rst-order formula . S is a set ofclauses in the basic path logic.For K(m) additional transformations of the clause set S are possible. First,we replace all occurrences of literals P (s) where s is a path of the form x�u1i1 �u2i2 �� � ��unin with length n+1 by Pn+1(x; u1i1 ; : : : ; unin) where Pn+1 is an (n+1)-ary predicate symbol uniquely associated with P and n. This can be donesince � is not associative and admissible substitutions either rename variablesor do instantiation with constants. Second, the sort information associatedwith the variables and constants occurring in the literals in the clause setcan be encoded in the predicate symbols of the literals. So, we can replaceall occurrences of literals Pn+1(x; u1i1 ; : : : ; unin) by Pi1:::in(x; u1; : : : ; un) wherePi1:::in is a predicate symbol uniquely associated with the predicate symbolPn+1 and the sorts i1, : : : , in. The variables and constants u1, : : : , un nolonger carry any sort information. Finally, we observe that all literals in thetransformed clause set share the �rst argument x, which we can eliminate safely.This sequence of three transformations can be combined into one:P (x � u1i1 � u2i2 � � � � � unin) becomes Pi1:::in(u1; : : : ; un):Example 4We consider our example formula given by :21(p _ r) ^ (21p _ 21q). Theresult of c(:��f (:)) is a set of four clauses, namelydef1(1) :P1(a)(2) :R1(a)(3) :def1 _ :def1 _ P1(x) _Q1(y)(4)Two resolution steps are possible: Resolving clauses (1) and (4) yields P1(x)_Q1(y). The derived clause subsumes the clause (4). Resolving P1(x) _ Q1(y)with clause (2) yields the unit clause Q1(y), that subsumes the clause P1(x) _Q1(y). Subsumption leaves the following clause set on which no further infer-ence steps are possible. def1:P1(a):R1(a)Q1(y)Since the �nal clause set does not contain the empty clause, the original clauseset, and consequently, the modal formula � is satis�able.For theorem proving we use FLOTTER and SPASS Version 0.55 [Wei 97].FLOTTER is a system that computes the clausal normal form of a given �rst-order formula. It performs the following steps.

1. Rename subformulae of the input formula in order to obtain a clause setcontaining a minimal number of clauses. Here an improved variant of thetechnique developed by Boy de la Tour [BdlT 92] is used.2. Remove implications and equivalences using the appropriate transforma-tion rules.3. Compute the negation normal form.4. Eliminate existential quanti�ers by Skolemization.5. Compute the clausal normal form.6. Test the resulting clause set for redundancy by subsumption, tautologyremoval and condensing.The theorem prover SPASS is based on the superposition calculus of Bach-mair and Ganzinger [BG 90] extended with the sort techniques of Weiden-bach [Wei 96].We opted to use SPASS and not other well-known theorem provers (likeOTTER) for the following reasons:1. SPASS uses ordered resolution and ordered factoring based on an ex-tended Knuth-Bendix ordering [Pet 83].2. It supports splitting and branch condensing. Splitting amounts to caseanalysis while branch condensing resembles branch pruning in the LogicsWorkbench.3. It has an elaborated set of reduction rules including tautology deletion,subsumption, and condensing.Ordered inference rules and splitting are of particular importance when treatingsatis�able formulae. Also, SPASS supports dynamic sort theories by additionalinference rules including sort generation and sort resolution and additionalreduction rules like sort simpli�cation and clause deletion. It considers everyunary predicate symbol as a sort (not to be confused with the sorts of thetranslation morphism). The translation of random 3CNF formulae will resultin �rst-order formulae which contain a great number of such symbols.5 The evaluation methodThe evaluation method adopted by Giunchiglia and Sebastiani follows the ap-proach of Mitchell, Selman, and Levesque [MSL 92]. To set up a benchmarksuite for Davis-Putnam-based theorem provers Mitchell et al. [MSL 92] gen-erate propositional formulae using the �xed clause-length model. Giunchigliaand Sebastiani modify this approach for the modal logic K(m).There are �ve parameters: the number of propositional variables N , thenumber of modalitiesM , the number of modal subformulae per disjunction K,

the number of modal subformulae per conjunction L, the modal degree D, andthe probability P . Based on a given choice of parameters random modalKCNFformulae are de�ned inductively as follows. A random (modal) atom of degree0 is a variable randomly chosen from the set of N propositional variables. Arandom modal atom of degree D, D>0, is with probability P a random modalatom of degree 0 or an expression of the form 2i�, otherwise, where 2i is amodality randomly chosen from the set of M modalities and � is a randommodal KCNF clause of modal degree D� 1 (de�ned below). A random modalliteral (of degree D) is with probability 0:5 a random modal atom (of degreeD) or its negation, otherwise. A random modal KCNF clause (of degree D) isa disjunction of K random modal literals (of degree D). Now, a random modalKCNF formula (of degree D) is a conjunction of L random modal KCNFclauses (of degree D).For the comparison of the performance of Ksat and KRIS , Giunchiglia andSebastiani proceed as follows. All parameters are �xed except L, the numberof clauses in a formula. For example, N=3, M=1, K=3, D=5, and P=0:5 arechosen. The parameter L ranges from N to 40N . For each value of the ratioL=N a set of 100 random modal KCNF formulae of degree D is generated. Wewill see that for small L the generated formulae are most likely to be satis�ableand for larger L the generated formulae are most likely to be unsatis�able. Foreach generated formula �, the time needed by one of the decision proceduresto determine the satis�ability of � is measured. This includes also the timeconsumed by preprocessing steps like simpli�cation and translation of the inputformulae. There is an upper limit for the CPU time consumed, more precisely,the amount of time during which computational e�ort has been expended onbehalf of the executing procedure. As soon as the upper limit is reached, thecomputation for � is stopped. Now, the median CPU runtime over the ratioL=N is presented. For example, the graphs of Figure 5 show the performanceof KRIS and Ksat on the parameter settings PS0 (N=5, M=1, K=3, D=2,P=0:5) and PS1 (N=3, M=1, K=3, D=5, P=0:5). The gaps in the graphs(for example for KRIS above L=N = 5) indicate that the computations onmore than 50 out of 100 formulae of given ratio L=N had to be abandoned.Our tests were run on a Sun Ultra 1/170E with 196MB main memory run-ning SunOS 5.5.1 using a time-limit of 1000 CPU seconds. For Ksat andKRIS which are both written in Common Lisp we have used versions of therecommended compilers: for Ksat AKCL (Austin Kyoto Common Lisp) version1.625, and for KRIS CLISP version 1996-03-15. For the Logics Workbenchwhich is written in C++ we have used a pre-compiled executable of version 1.0obtained from http://lwbwww.unibe.ch:8080/. We used SPASS and FLOT-TER version 0.55, written in ANSI C and compiled using the GNU C compilerversion 2.7.1.Giunchiglia and Sebastiani [GS 96b] present graphs for the following pa-

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KRIS (N = 3, M = 1, K =3, D = 5)
KRIS (N = 5, M = 1, K =3, D = 2)
KSAT (N = 3, M = 1, K =3, D = 5)
KSAT (N = 5, M = 1, K =3, D = 2)

Figure 5: The performance of KRIS and Ksat for PS0 and PS1rameter settings: N M K D P N M K D PPS0 5 1 3 2 0:5 PS5 4 1 3 2 0:5PS1 3 1 3 5 0:5 PS6 4 2 3 2 0:5PS2 3 1 3 4 0:5 PS7 4 5 3 2 0:5PS3 3 1 3 3 0:5 PS8 4 10 3 2 0:5PS4 3 1 3 2 0:5 PS9 4 20 3 2 0:5Based on their graphs they come to the following conclusions [GS 96b, p. 313]:(1) Ksat outperforms by orders of magnitude the previous state-of-the artdecision procedures.(2) All SAT-based modal decision procedures are intrinsically bound to bemore e�cient than tableaux-based decision procedures.(3) There is partial evidence of an easy-hard-easy pattern on randomly gener-ated modal logic formulae independent of all the parameters of evaluationconsidered.The graphs for the parameter settings PS0 and PS1 of Figure 5 support theseclaims most visibly. We show that the situation is more complex and does notjustify such strong claims. We focus on the parameter settings PS0 and PS1which su�ce for our analysis of the evaluation method in the next section. Theremaining parameter settings will be considered in Section 8.

6 Analysis of the evaluation methodSelecting good test instances is crucial when evaluating and comparing theperformances of algorithms empirically. This means we have to determine thecharacteristics of the test instances before starting a performance comparison.This is particularly important when we set up a completely new collectionof test instances. We address the question which characteristics the formu-lae produced by the random generator and the parameter settings chosen byGiunchiglia and Sebastiani have and how they in
uence the theorem proversunder consideration with respect to claims (1) to (3).It is important to note that for D=0 and K=3 random modal KCNF for-mulae do not coincide with random 3SAT formulae. Generating a clause of arandom 3SAT formula means randomly generating a set of three propositionalvariables and then negating each member of the set with probability 0:5. Incontrast, generating a random modal 3CNF clause of degree 0 means randomlygenerating a multiset of three propositional variables and negating each mem-ber of the multiset with probability 0:5. For example, p_q_:r is a 3SAT clauseand also a modal 3CNF clause of degree 0. The clauses p_:p_ p and p_ p_ qare not random 3SAT clauses, but both are random modal 3CNF clauses ofdegree 0. In random modal 3CNF formulae of higher degree, such clauses occurwithin the scope of a modal operator. For example, contradictory expressionslike :21(p_:p_ p) may occur. Thus, random modal KCNF formulae containtautological and contradictory subformulae. It is easy to remove these subfor-mulae without a�ecting satis�ability. We now consider to what extent the sizeof the random modal 3CNF formulae can be reduced by such a simpli�cation.The graphs of Figure 6 re
ect the average ratio of the size of the simpli�edrandom modal 3CNF formulae over the size of the original formulae. For therandom modal 3CNF formulae generated using three propositional variables,on average, the size of a simpli�ed formula is only 1/4 of the size of the originalformula. For the second parameter setting we observe a reduction to 1/2 of theoriginal size. In other words, one half to three quarters of the random modal3CNF formulae is \logical garbage" that can be eliminated at little cost.Ksat utilizes a form of preprocessing that removes duplicate and contra-dictory subformulae of an input formula, by applying the simpli�cation rulespresented in Table 1. The rules simplify p_q_p to p_q and 21(p_q)^:21(p_q)to ?, but they will not simplify 21(p_q)^:21(q_p) to >, since 21(p_q) is not:� _ �! > � _ > ! > � _ ? ! � � _ �! �:� ^ �! ? � ^ > ! � � ^ ? ! ? � ^ �! �:? ! > :> ! ? 2i>! >Table 1: The simpli�cation rules of Ksat

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5 10 15 20 25 30 35 40

A
ve

ra
ge

 s
iz

e
of

 s
im

pl
ifi

ed
 m

od
al

 fo
rm

ul
ae

Ratio of conjunctions over prop. variables

N = 3, M = 1, K = 3, D = 5
N = 5, M = 1, K = 3, D = 2

Figure 6: The e�ect of simplifying modal 3CNF formulaesyntactically equal to 21(q_p). Ksat also sorts disjunctions lexicographically,e.g. 21(q _ p) will be replaced by 21(p _ q). This allows for additional appli-cations of the simpli�cation rules. However, in all our experiments we havechosen to disable the reordering inside Ksat. For the median CPU runtimeconsiderations of this section, reordering has no signi�cant e�ect as Figure 7shows. Likewise the other approaches take no advantage of reordering as per-formed in Ksat. But we think reordering is an important notion that deservesfurther investigation, for all procedures. In particular, generalizing the notionof reordering as implemented inside Ksat to a notion of reordering of con-junctions of clauses, will have a positive e�ect on the Logics Workbench andKRIS .Ksat performs exactly the simpli�cation whose e�ect is illustrated in Fig-ure 6. KRIS , on the other hand, does not. As no theorem prover except forKsat is designed especially for formulae with characteristics similar to those ofthe random modal formulae, we think it is fair that either no theorem provershould use preprocessing or all should. Simpli�cation of the generated modalformulae is reasonable, so we have added the preprocessing function of Ksatalso to the other theorem provers that we consider. The modi�ed versions ofKRIS , the Logics Workbench and the translation approach with preprocessingwill be denoted by KRIS*, LWB* and TA*, respectively. The graphs in Fig-ure 8 show the performances of Ksat and KRIS*. Although the performanceof Ksat is still better than that of KRIS*, the picture is completely di�erentthan that of Figure 5.The superior performance of Ksat diminishes if we turn to values of the

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT with sorting (N = 2, M = 1, K = 3, D = 2)
KSAT w/o sorting (N = 2, M = 1, K = 3, D = 2)
KSAT with sorting (N = 5, M = 1, K = 3, D = 2)
KSAT w/o sorting (N = 5, M = 1, K = 3, D = 2)

Figure 7: The performance of Ksat with/without reorderingparameter N greater than 5. Figure 9 shows the performance of Ksat andKRIS* on the parameter setting PS10 (N=8, M=1, K=3, D=2, P=0:5),while Figure 10 shows the performance on the parameter setting PS11 (N=10,M=1, K=3, D=2, P=0:5). We see that the performance of KRIS* for a ratioL=N between 4 and 11 on PS10 and for a ratio L=N between 3 and 9 onPS11 is better than the performance of Ksat. So, it is not true that Ksatoutperforms KRIS* in general, which relativizes claim (1). For increasednumbers of propositional variables, the dp unit rule and exhaustive booleansimpli�cation of Ksat is of no particular importance for modal formulae whichare likely satis�able. And, the intermediate calls to KM before each applicationof the dp split have a deteriorating e�ect on the performance.KRIS* applies the _-elimination rule to every disjunction in the modalformula and continues on the �rst branch. As the number of propositionalvariables and modal atoms is large, the ^-clash rule is less likely to close abranch and the second branch need not be treated. After all occurrences ofthe _-operator are eliminated, KRIS* performs all possible applications of the3i-elim rule. Each application is likely to succeed.By contrast, Ksat uses dp split to generate two possible extensions of thecurrent truth assignment. Like KRIS*, it rarely has to consider the secondextension at all. However, before every application of the dp split rule theprocedure KM is called. This has the following e�ect: The dp split rule needsto be applied more often before reaching a satisfying truth assignment, sincethe number of di�erent propositional variables and modal atoms has becomelarger. This also holds for the recursive calls of KDP by KM. There is an

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KRIS* (N = 3, M = 1, K = 3, D = 5)
KRIS* (N = 5, M = 1, K = 3, D = 2)
KSAT (N = 3, M = 1, K = 3, D = 5)
KSAT (N = 5, M = 1, K = 3, D = 2)

Figure 8: The performance of Ksat and KRIS* for PS0 and PS1

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KRIS* (N = 8, M = 1, K = 3, D = 5)
KSAT (N = 8, M = 1, K = 3, D = 2)

Figure 9: The performance of Ksat and KRIS* for N=8

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KRIS* (N = 10, M = 1, K = 3, D = 5)
KSAT (N = 10, M = 1, K = 3, D = 2)

Figure 10: The performance of Ksat and KRIS* for N=10increased number of intermediate calls to the procedure KM and each callis more expensive than for simpler formulae. The e�ect is strengthened bythe following ine�ciency of the intermediate calls to KM. Suppose we havejust checked the K(m)-satis�ability of the truth assignment �1 = f21 1 =?;21�11 = >; : : : ;21�1n = >g and extend �1 by f21 2 = ?g. By the nextcall to KM, Ksat will not only test whether : 2 ^�11 ^ : : :^�1n is satis�able,but it will repeat the test whether : 1 ^ �11 ^ : : : ^ �1n is satis�able. So,Ksat performs the same tests over and over again without need. This couldbe avoided by memorizing which tests have been done or not.We now address claim (2) that, intrinsically, SAT-based modal decision pro-cedures are bound to be more e�cient than tableaux-based decision procedures.Giunchiglia and Sebastiani base their claim on a result by D'Agostino [D'A 92],who shows that in the worst case, algorithms using the _-elim rule cannotsimulate truth tables in polynomial time. Instead one has to use the followingmodi�ed form of _-elim:_-elim': w:� _ ;C j Sw:�;C j w: ;w:�;C j SThis rule ensures that the two subproblems w:�;C and w: ;w:�;C generatedby the elimination of the disjunction � _ are mutually exclusive.We have just seen that a major cause of the di�erence in computationalbehaviour of the two algorithms is the absence of the preprocessing step inKRIS . To explain the remaining di�erence we study the quality of the ran-dom modal 3CNF formulae. Suppose that we want to test a random modal

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variables

Satisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variables

Trivially satisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variables

Unsatisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variables

Trivially unsatisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variables

Unsatisfiable samples by KRIS*

0

20

40

60

80

100

120

140

5 10 15 20 25 30 35 40
Ratio of conjunctions over prop. variablesFigure 11: The quality of the test set for PS03CNF formula � with N propositional variables for satis�ability in a Kripkemodel with only one world. We have to test at most 2N truth assignmentsto the propositional variables. Since N � 5 for the modal formulae underconsideration, this is a trivial task, even by the truth table method. We saya random modal 3CNF formula � is trivially satis�able if � is satis�able in aKripke model with only one world. We also say a random modal 3CNF formula� is trivially unsatis�able if the conjunction of the purely propositional clausesof � is unsatis�able. Again, testing whether � is trivially unsatis�able requiresonly the consideration of 2N truth assignments.The graphs of Figure 11 show the percentage of satis�able, trivially sat-is�able, unsatis�able, trivially unsatis�able, and unsatis�able formulae in thesamples detected by KRIS* of the set of test formulae generated for PS0.We see that almost all unsatis�able test formulae are trivially unsatis�able.This holds also for all the other parameter settings used by Giunchiglia andSebastiani. This indicates, none of the parameter settings is suited to generatechallenging unsatis�able modal formulae.If we consider Figure 8 and 11 together, for ratios L=N between 19 and21 and N=5 we observe the graph of KRIS* (in Figure 8) deviates a lot (bya factor of more than 100) from the graph of Ksat. This is the area nearthe crossover point where the percentage of trivially unsatis�able formulaerises above 50%, however, the percentage of unsatis�able formulae detected byKRIS* is still below 50% in this area. KRIS* does not detect all triviallyunsatis�able formulae within the time-limit which explains the deviation inperformance from Ksat. The reason for KRIS* not detecting all trivially

unsatis�able formulae within the time limit, can be illustrated by the followingexample.Example 5Let �4 be a simpli�ed modal 3CNF formulap ^ q ^ (m11 _m12 _m13): : :^ (mk1 _mk2 _mk3) ^ (:p _ :q)where the mij , with 1�i�k, 1�j�3, are modal literals di�erent from p, q, :p,and :q. Evidently, �4 is trivially unsatis�able. Ksat does the following: Sincep and q are unit clauses in �4, it applies the rule dp unit twice to �. The rulereplaces the occurrences of p and q by >, it replaces the occurrences of :p and:q by?, and it simpli�es the formula. The resulting formula is ?. At this pointonly the rule dp clash is applicable and Ksat detects that �4 is unsatis�able.In contrast, KRIS* proceeds as follows. First it applies the ^-elim rulek+2 times, eliminating all occurrences of the ^ operator. Then it applies the_-elim rule to all disjunctions, starting with m11_m12_m13 and ending withmk1 _mk2 _mk3. This generates 3k subproblems. Each of these subproblemscontains the literals p and q and the disjunction :p _ :q. The simpli�cationrule _-simp1 eliminates the disjunction :p _ :q and a �nal application of the^-clash rule exhibits the unsatis�ability of each subproblem. Obviously, fork large enough, KRIS* will not be able to �nish this computation within thetime-limit.In the Logics Workbench branch pruning avoids this kind of computation.Starting from the sequent) :�4 it �rst applies the (r:)-rule followed by ap-plications of the (l^)-rule until all outer conjunction operators are eliminated.A sequence of k+1 applications of the (l_)-rule follows generating 2k+1 (po-tential) branches. On the �rst and second branch the sequentsp; q;m11; : : : ;mk1;:p)and p; q;m11; : : : ;mk1;:q)are considered which are both provable. As neither proof requires the use ofone of the literals m11, : : : ,mk1, the Logics Workbench prunes all remainingbranches and detects the unsatis�ability of �4.Note, it makes no di�erence whether KRIS* eliminates disjunctions by the_-elim rule or the _-elim' rule in this example. The reason for KRIS* not�nishing within the time-limit is that it does not apply the simpli�cation rules_-simp1 and _-simp2 and the ^-clash rule exhaustively before any applica-tion of the _-elim rule. So, there is no intrinsic reason that a tableaux-basedsystem cannot outperform Ksat (which is claim (2)). Although the di�erencebetween the rules _-elim and _-elim' is fundamental from a theoretical point

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 4, M = 1, K = 3, D = 2)
KSAT (N = 5, M = 1, K = 3, D = 2)

TA* (N = 4, M = 1, K = 3, D = 2)
TA* (N = 5, M = 1, K = 3, D = 2)

Figure 12: The performance of Ksat and TA*of view, it is irrelevant on the randomly generated modal formulae under con-sideration. The reason for KRIS* having worse performance thanKsat is thatit has a limited set of simpli�cation rules which are not applied exhaustivelybefore any applications of the branching rule _-elim.Finally, we consider claim (3) conjecturing an easy-hard-easy pattern, inde-pendent of all the parameters of evaluation, in randomly generated modal logicformulae. We have seen in Figure 5 that the median CPU time consumptionof Ksat decreases drastically at the ratio L=N = 17:5 for the second sample.This is almost the point, where 50% of the sample formulae are satis�able.This decline seems to resemble the behaviour of propositional SAT decisionprocedures on randomly generated 3SAT problems. Figure 12 compares theperformance of Ksat with the performance of the translation approach on twoparameter settings, where the easy-hard-easy pattern is most visible for Ksat.The translation approach does not show the peaking behaviour of Ksat. Themedian CPU time grows monotonically with the size of modal formulae. Thus,the phase transition visible in Figure 5 is an arti�cial phenomenon of Ksat(and KRIS), and not an intrinsic property of the generated modal formulae,which refutes conjecture (3).Observe that the peaking behaviour occurs in the area where the numberof trivially satis�able sample formulae approaches zero. The following exampletries to explain this.

Example 6Let �5 be a simpli�ed modal 3CNF formula of the form:21s ^21(p _ r) ^ (21:r _ 21q) ^ (:21p _ 21r) ^ (m11 _m12 _m13): : :^ (mn1 _mn2 _mn3)where themij , with 1�i�n, 1�j�3, are modal literals di�erent from the modalliterals in the �rst four conjunctions of �5. Let us assume that �5 is satis�able.Observe:1. 21:r is false in any model of �5, since 21:r and :21s ^ (:21p _ 21r)imply :21p, and 21(p _ r) ^ 21:r ^ :21p is not K(m)-satis�able.2. As a consequence, any truth assignment � such that �(21:r) = > is notK(m)-satis�able.3. A unit propagation step by KDP, replacing 21:r by >, does not a�ectthe literal 21r.Ksat starts by assigning> to :21s and 21(p_r). Then it will apply a sequenceof applications of the dp split and dp unit rules to �5. Let us assume thatthe �rst split variable is 21:r, followed by k modal literals m1, : : : , mk chosenfrom m11, : : : , mn3, and �nally :21p. Before any further applications of thedp split rule, Ksat calls the procedure KM to test the K(m)-satis�ability ofthe current truth assignment �. Since � assigns > to 21:r, KM will fail. How-ever, Ksat has no means to detect the primary cause of the failure. Ksat con-tinues by considering all other cases generated by the application of dp splitto :21p, mk, mk�1, : : : , m1. It will fail to generate a satisfying truth as-signment in all these cases. Finally, it considers the case that 21:r is false.Eventually, Ksat �nds a satisfying truth assignment to �5. However, Ksathas considered at least 2k+1 cases unnecessarily without �nding a satisfyingtruth assignment. This explains the bad behaviour of Ksat on those sampleformulae where satis�ability tests in the non-propositional context are essen-tial. KRIS* behaves even worse since it delays the application of the 3i-elimuntil no other rule can be applied.By contrast, the Logics Workbench takes advantage of its branch pruning.Starting from the sequent) :�5 it �rst applies the (r:)-rule followed by appli-cations of the (l^)-rule until all outer conjunction operators are eliminated. Asequence of applications of the (l_)-rule follows. Let us assume the disjunctionsare considered in this order: (21:r _ 21q), (m11 _ m12 _ m13), : : : , (mn1 _mn2_mn3), and �nally (:21p_21r). Like for Ksat and KRIS this generates2n+2 (potential) branches. On the �rst branch the sequent �121(p _ r);21:r;m11; : : : ;mn1) 21p;21sis considered. This sequent is provable. So, the Logics Workbench considers thesecond branch generated by the application of the (l_)-rule to (:21p _ 21r).

Again, the sequent �221(p _ r);21:r;m11; : : : ;mn1;21r) 21sis provable. As neither the proof of �1 nor of �2 makes use of any of theliterals m11, : : : , mn1, the Logics Workbench does branch pruning. It willjump back directly to the point where the (l_)-rule is applied to (21:r _21q)and considers the branch in which 21q is added to the left-hand side of thesequent. Thus, the search space is reduced considerably.The translation approach proceeds as follows. It generates a clause set for�5 containing the �ve clausesdef1:S(a):def1 _ P1(x) _ R1(x);:def1 _ :R1(x) _ :def1 _Q1(y);:P1(b) _ :def1 _ R1(x)where a and b denote Skolem constants associated with the two occurrences of:21 and x and y are variables. Unit propagation of the �rst clause followedby subsumption replaces the original clause set by the following one:def1:S1(a)P1(x) _ R1(x);:R1(x) _Q1(y);:P1(b) _ R1(x)Three resolvents can be derived from these clauses: P1(x) _ Q1(y), :P1(b) _Q1(y), and R1(b)_R1(x). Factoring on the last resolvent yields the unit clauseR(b). At this point, the translation approach has detected that 21:r is notsatis�able in any model of �5. An additional inference step computes the unitclause Q1(y). No further inference is possible on this subset.Using the splitting inference rule of SPASS it is also possible to constructa derivation which resembles closely the one of the Logics Workbench. Insteadof computing the three resolvents we can start by splitting the clause :R1(x)_Q1(y) into its variable-disjoint subclauses, :R1(x) and Q1(y). Let us �rstconsider the branch on which we add the clause :R1(x) to the clause set. Thiscorresponds to assigning true to 21:r. Let us assume that the translationof the disjunctions (m11 _ m12 _ m13) to (mn1 _ mn2 _ mn3) (indicated bya � below) generates clauses to which we can apply the splitting rule as well.Finally, apply the splitting rule to :P1(b) _ R1(x). On the �rst branch we

consider the clause set S1def1:S1(a)P1(x) _ R1(x);:R1(x);m�11;� � � ;m�n1;:P1(b):The clauses :P1(b), P1(x) _ R1(x), and :R1(x) yield a contradiction. Sincethe clause introduced by the last application of the splitting rule is involved inthe derivation of the empty clause, we have to consider the clause set S2def1:S1(a)P1(x) _ R1(x);:R1(x);m�11;� � � ;m�n1;R1(x):Here, :R1(x) and R1(x) produce a contradiction. Since none of the clausesm�11, : : : ,m�n1 have been used in the refutation of S1 and S2, branch condensingwill prevent the consideration of any of the alternative branches that exist forthese clauses. SPASS proceeds directly by considering the branch where theclause Q1(y) belongs to the set of clauses.Examples 5 and 6 illustrated how the branch pruning technique of the LogicsWorkbench can avoid two pitfalls in which KRIS* and Ksat can be caught.Figure 13 shows however that brunch pruning alone does not lead to an im-proved median CPU time consumption for all formulae. The following exampleillustrates what happens.Example 7Consider the formula �6 p _21q^ :21(p _ r _ q) _ p^21(p _ q) _ 21(q _ p)^21p _ 21q _ p:KRIS* will easily detect the satis�ability of �6. After exhaustive applicationof the conjunction elimination rule, it applies _-elim to the �rst disjunctionp _ 21q, _-simp0 to the second disjunction, _-elim to the third disjunction

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 5, M = 1, K = 3, D = 2)
KRIS* (N = 5, M = 1, K = 3, D = 2)
LWB* (N = 5, M = 1, K = 3, D = 2)

Figure 13: The performance of the Logics Workbenchand _-simp0 to the fourth disjunction. KRIS* obtains the set of labelledformulae fw0:p; w0:21(p _ q)g to which no further rules can be applied.The Logics Workbench has no equivalent to _-simp0 and deals with thesecond and fourth disjunction by means of the (l_)-rule. Furthermore, it willconsider the left branch introduced by an (backwards) application of the (l_)-rule, �rst. So, it considers the sequent �1p;:21(p _ r _ q);21(p _ q) _ 21(q _ p);21p _ 21q _ p)before �2 p; p;21(p _ q) _21(q _ p);21p _21q _ p)which are both obtained from) :�6, by applications of the (r:)-, (l^)�, and(l_)-rules. After further applications of the (l_)- and (r2i)-rule, the LogicsWorkbench discovers that �1 is provable and turns to �2. Only then it detectsthat �6 is satis�able.So, the Logics Workbench spends a serious amount of computational e�ortconsidering obviously useless branches introduced by the (l_)-rule. Figure 13seems to indicate that this overwhelms the gain of branch pruning. It is worthnoting that the behaviour of the Logics Workbench on KCNF formulae can beimproved either by adding simpli�cation rules or by employing better criteriafor selecting the branches introduced by the (l_)-rule.Example 7 also illustrates that is important to �rst assign a truth value tothe propositional variables in a random formula since this allows to reduce thenumber of further assignments.

7 Broadening the evaluationThe graphs of the previous sections and of the papers of Giunchiglia and Sebas-tiani are 50% percentile graphs as each point presents the median CPU timeconsumption for 100 formulae with ratio L=N . This means that the graphsmerely re
ect the performance for the easier half of the formulae set. Moreinformative are the collections of 50%, 60%, : : : , 100% percentile graphs wepresent in Figures 14(a), 14(b), 14(c) and 14(d). Formally, the Q%-percentileof a set of data is the value V such that Q% of the data is smaller or equal toV and (100�Q)% of the data is greater than V . The median of a set coincidedwith its 50%-percentile.The Figures 14(a), 14(b), 14(c) and 14(d) respectively show the percentilegraphs for Ksat, KRIS*, LWB* and the translation approach on the param-eter setting PS0 (N=5, M=1, K=3, D=2). The di�erence in shape for Ksat,KRIS*, and the Logics Workbench as opposed to that for the translationapproach is striking.For the translation approach the di�erence between the 50%-percentile andthe 90%-percentile of the CPU time consumption is marginal. We see thesame monotonic increase of the CPU time consumption with increasing ratioL=N for all percentiles. Only the 100%-percentile reaches the time-limit of1000 CPU seconds at some points. This means, there are some hard random3CNF formulae in the collection, but for each ratio L=N their number does notexceed 10. This again supports our view that the problems generated using theparameter settings PS0 are easier than the computational behaviour of Ksatand the other methods except the translation approach indicates.The contrast to KRIS and the Logics Workbench is most extreme. Whilethe Logics Workbench shows a good uniform behaviour where the ratio L=N issmaller than 10, we see a dramatic breakdown for ratios L=N greater than 10.As the percentage of trivially satis�able samples reaches zero, the Logics Work-bench can hardly complete 60% of the sample formulae within the time-limit.Even at ratios L=N above 30 where the percentage of trivially unsatis�ableformulae is greater than 90%, the Logics Workbench fails on 10% of the for-mulae. Similarly, for KRIS . The absence of simpli�cation rules in the LogicsWorkbench explains the less prominent `valley' for ratios L=N above 30.The percentage of sample formulae on which a decision procedure fails tocomplete its computation within a given time-limit (of reasonable size) may beregarded as a kind of risk for the user of that decision procedure. We call thisthe failure risk. The failure risk for each procedure is re
ected in Figures 14(a)to 14(d) by the size of the plateau at the time-limit of 1000 CPU seconds. Therisk of failure for the parameter setting under examination is highest for theLogics Workbench and KRIS*, and lowest for the translation approach.We call the percentage of sample formulae on which a decision procedureterminates its computation within a given time-limit the success chance of adecision procedure. The notions of success chance and failure risk are comple-mentary. The success chance will be regarded as an additional measure of the

5 10 15 20 25 30 35 40

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(a) Ksat 5 10 15 20 25 30 35 40

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(b) KRIS*
5 10 15 20 25 30 35 40

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(c) The Logics Workbench 5 10 15 20 25 30 35 40

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(d) The translation approachFigure 14: Percentile graphs for PS0

quality of a decision procedure. The weighting of the two quality measures, thesuccess chance and median CPU time consumption, depends on the preferencesof the user.The percentile graphs are more informative and provide a better frameworkfor comparison than the median curves. We can say Ksat performs betterthan KRIS* and has a higher chance of success on the entire range of ratiosL=N for the parameter setting PS0. The Logics Workbench is unbeatable forratios L=N below 7. We believe the graphs indicate a qualitative di�erencein the performance of the translation approach as opposed to the other threetheorem provers.8 Where the hard problems areThis section considers the question of how the parameter settings and ran-dom formula generator can be modi�ed to provide better (more di�cult) testsamples.The parameter setting PS0 provides the most challenging collection of ran-dom 3CNF formulae among all the parameter settings used by Giunchiglia andSebastiani. The Figures 15 and 16 show the in
uence of the parameter N , thatis, the number of propositional variables, on the median CPU time consumptionof Ksat and the translation approach. We see an increasing median CPUtime consumption over the range of the ratio L=N with increasing value N .Thus increasing the number of propositional variables involved in the randomgeneration of modal 3CNF formula provides more challenging test samples.

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 3, M = 1, K = 3, D = 2)
KSAT (N = 4, M = 1, K = 3, D = 2)
KSAT (N = 5, M = 1, K = 3, D = 2)
KSAT (N = 8, M = 1, K = 3, D = 2)

Figure 15: Varying the parameter N for Ksat

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

TA* (N = 3, M = 1, K = 3, D = 2)
TA* (N = 4, M = 1, K = 3, D = 2)
TA* (N = 5, M = 1, K = 3, D = 2)
TA* (N = 8, M = 1, K = 3, D = 2)

Figure 16: Varying the parameter N for the translation approach

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 4, M = 1, K = 3, D = 2)
KSAT (N = 4, M = 20, K = 3, D = 2)

Figure 17: Varying the parameter M for KsatThe Figures 17 and 18 provide an indication of the in
uence of the parame-terM , that is, the number of modalities, on the median CPU time consumptionof Ksat and the translation approach. The in
uence on the translation ap-proach can be considered as being insigni�cant. Likewise we see that for a ratio

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

TA* (N = 4, M = 1, K = 3, D = 2)
TA* (N = 4, M = 20, K = 3, D = 2)

Figure 18: Varying the parameter M for the translation approachL=N greater than 20, the median CPU time consumption of Ksat on the twoparameter settings are identical. This can be explained by our observation thatalmost all unsatis�able formulae are trivially unsatis�able. The modal subfor-mulae in trivially unsatis�able formulae are irrelevant. Therefore, increasingthe number of modalities is also irrelevant for unsatis�able formulae. Below aratio L=N of 20, the modal formulae generated using only one modality seem tobe slightly more challenging than the modal formulae generated using twentydi�erent modalities. This is due to the fact that the procedure KM is less likelyto fail for twenty modalities than for just one modality [GS 96b]. The smalldivergence in the behaviour of Ksat on PS5 (N=4, M=1, D=2, P=0:5) andPS9 (N=4,M=20, D=2, P=0:5) is due to a smaller number of contradictionsbetween modal literals for PS9. We illustrate this observation by the followingexample.Example 8The formula �7 given by(21(p _ q) _ 21(r _ q)) ^ :21(q _ p _ s)is satis�able. Ksat will �rst apply the dp unit rule replacing 21(q_p_s) by ?.The �rst conjunct of �7 is left unchanged and Ksat has to apply the dp splitrule. Suppose it chooses 21(p_ q) as split `variable'. Replacing 21(p_ q) by >renders �7 true propositionally, but checking the satis�ability of :(q _ p_ s)^(p _ q) reveals that this truth assignment is not K(m)-satis�able. So we haveto continue with 21(r _ q), the second case generated by the dp split rule.

Replacing the last remaining modal atom by > again renders the formula truepropositionally. Finally, we have to check the satis�ability of :(q_p_s)^(r_q)which succeeds.In contrast consider the formula �8 given by(22(p _ q) _ 21(r _ q)) ^ :21(q _ p _ s);which is like �7 except the �rst occurrence of a 21 is replaced by 22. Ksatproceeds in the same way as for �7. It replaces 21(q _ p_ s) by ? and chooses22(p _ q) as split `variable'. Replacing 22(p _ q) by > renders � true proposi-tionally. But now instead of checking the satis�ability of :(q _ p _ s) ^ (p _ q)we just have to check that :(q_ p_ s) is satis�able, because p_ q occurs belowa di�erent modality. Since this check succeeds �8 is satis�able. Evidently, thecomputation for �8 is easier than for �7.Now we vary the parameter D, the modal depth of the randomly generatedmodal 3CNF formulae. The situation for the parameter D is slightly morecomplicated than for the parameters N and M . By the de�nition of modal3CNF formulae, increasing the modal depth increases the size of the formulae.The size, however, is an important factor in
uencing the performances of theprocedures under consideration. Although the graphs in Figures 20 and 19seem to indicate that increasing the modal depth of the sample formulae alsoincreases the median CPU time consumption of the decision procedures, theincrease parallels the increase of the median size of the modal formulae shownin Figure 21. A closer look at the graphs reveals that increasing the modaldepth of the randomly generated modal 3CNF formulae actually makes thesatis�ability problem easier. While the median formula size increases by afactor of �ve between modal depth 2 and modal depth 5, the median CPUtime consumption of Ksat only increases by a factor of three.Based on these observations we identify three guidelines for generating morechallenging problems.1. Parameters that have no signi�cant in
uence on the \di�culty" of therandomly generated formulae should be set to the smallest possible value.This applies to the parameters M and D. That is, we restrict our at-tention to random modal 3CNF formulae of degree one using only onemodality.2. We have to avoid generating trivially unsatis�able modal formulae. Astraightforward solution is to require that all literals of a 3CNF clauseof modal degree 1 are expressions of the form 21� or :21� where � is arandom modal 3CNF clause of propositional variables. This amounts tosetting the parameter P to zero.3. For all occurrences of 21� in a random modal 3CNF formula of degree1, � has to be a non-tautologous clause containing exactly three di�eringliterals.

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

KSAT (N = 3, M = 1, K = 3, D = 2)
KSAT (N = 3, M = 1, K = 3, D = 3)
KSAT (N = 3, M = 1, K = 3, D = 4)
KSAT (N = 3, M = 1, K = 3, D = 5)

Figure 19: Varying the parameter D for Ksat

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

C
P

U
 ti

m
e

(in
 s

ec
s)

Ratio of conjunctions over prop. variables

TA* (N = 3, M = 1, K = 3, D = 2)
TA* (N = 3, M = 1, K = 3, D = 5)

Figure 20: Varying the parameter D for the translation approach

0.1

1

10

100

1000

5 10 15 20 25 30 35 40

m
ed

ia
n

fo
rm

ul
a

si
ze

 (
in

 K
B

)

Ratio of conjunctions over prop. variables

N = 3, M = 1, K = 3, D = 2
N = 3, M = 1, K = 3, D = 3
N = 3, M = 1, K = 3, D = 4
N = 3, M = 1, K = 3, D = 5

Figure 21: The in
uence of the parameter D on the formula sizeIn line with the second guideline one may consider excluding also triviallysatis�able modal formulae. However, this amounts to doing preliminary satis-�ability checks of the generated modal formulae in order to identify and rejectthe trivially satis�able ones. For the moment, we do not perform these checks.The restriction to random modal 3CNF formulae of degree one is some-what surprising if one takes into account that if we bound D then the worst-case complexity of the satis�ability problem in basic modal logic is no longerPSPACE-complete, but NP-complete. This is a point that deserves furtherinvestigation. How can di�cult modal formulae with increased modal degreebe generated automatically? Some di�cult examples of higher degree whichhave been constructed by hand can be found in the benchmark collection ofthe Logics Workbench [HS 96].The parameters not �xed by the three guidelines are the numberN of propo-sitional variables and the number K of literals in any clause. We choose to �xK=3 in two parameter settings PS12 (N=4, M=1, K=3, D=1, P=0) andPS13 (N=6, M=1, K=3, D=1, P=0). Figure 22 re
ects the quality of theparameter setting PS12 by the percentage of satis�able, unsatis�able, triviallysatis�able, and trivially unsatis�able modal formulae in the sample sets wegenerated. Compared to Figure 11 (page 23) for the parameter setting PS0,the percentage of trivially satis�able formulae has decreased signi�cantly. Asexpected, the percentage of trivially unsatis�able formulae is zero. Further-more, the percentage of satis�able formulae decreases faster. Already for theratio L=N of 25 there are almost no satis�able formulae. For this reason, theexperiments consider only the sample sets with ratio L=N between 1 and 30.

0

20

40

60

80

100

120

140

5 10 15 20 25 30

P
er

ce
nt

ag
e

Ratio of conjunctions over prop. variables

Satisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30

P
er

ce
nt

ag
e

Ratio of conjunctions over prop. variables

Trivially satisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30

P
er

ce
nt

ag
e

Ratio of conjunctions over prop. variables

Unsatisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30

P
er

ce
nt

ag
e

Ratio of conjunctions over prop. variables

Trivially unsatisfiable samples

0

20

40

60

80

100

120

140

5 10 15 20 25 30

P
er

ce
nt

ag
e

Ratio of conjunctions over prop. variablesFigure 22: The quality of the test set for PS12The percentile graphs of Ksat, KRIS*, LWB* and the translation ap-proach on the settings PS12 are given in Figures 23(a) to 23(d). Again, weobserve that Ksat outperforms KRIS* and the Logics Workbench, while thetranslation approach does best. More important, the formulae generated by thenew parameter settings and the modi�ed random generator are much harderthan any of the formula samples generated for the settings PS0 to PS9 bythe original generator. Figures 24(a) to 24(d) show the percentile graphs onPS13. We see that even the translation approach fails to decide within thegiven time-limit the satis�ability of half of the input formulae for ratios L=Ngreater than 13. The failure rates of Ksat, KRIS*, and the Logics Workbenchare even higher.ConclusionWe have pointed out a number of problems with evaluating the performanceof di�erent algorithms for modal reasoning. A crucial factor is the qualityof the randomly generated formulae. Even for propositional theorem provingde�ning adequate random formula generators for performance evaluation ishard [CI 95]. We have shown that the random generator and parameter settingsused in [GS 96a, GS 96b] produce formulae with particular characteristics (likeredundant subformulae, almost no non-trivially unsatis�able formulae withinthe test sets) which have to be carefully taken into account in an empiricalstudy. We give some guidelines for modifying the generator.The basic algorithm of Ksat is very similar to the algorithms of KRIS and

5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(a) Ksat 5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(b) KRIS*
5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(c) The Logics Workbench 5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(d) The translation approachFigure 23: Percentile graphs for PS12

5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(a) Ksat 5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(b) KRIS*
5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(c) The Logics Workbench 5 10 15 20 25 30

Ratio L/N50
60

70
80

90
100

0.01

0.1

1

10

100

1000

CPU time (in secs)

(d) The translation approachFigure 24: Percentile graphs for PS13

the Logics Workbench. The essential di�erences between Ksat, KRIS , andthe Logics Workbench are:1. Ksat utilizes an elaborated set of simpli�cation rules for boolean andmodal formulae. These are the dp unit inference rule of the procedureKDP and the rules in Table 1. These rules are applied whenever possiblethroughout the computation. By contrast, KRIS has only a very lim-ited set of simpli�cation rules, namely _-simp0 and _-simp1, which areapplied occasionally. The Logics Workbench uses no simpli�cation rulesat all.2. Ksat utilizes a heuristic for selecting the particular disjunction for theapplication of disjunction elimination (namely, applying dp split to amodal atom with a maximal number of occurrences). By contrast, KRISand the Logics Workbench process disjunctions in a �xed order deter-mined by the ordering of the disjunctions in the input formula.3. Ksat performs intermediate checks of K(m)-satis�ability of the currenttruth assignment before every application of the dp split rule. Thiscorresponds to an application of our proposed 3i-test inference rule fortableaux-based systems. KRIS has no equivalent of the 3i-test rule.The Logics Workbench has a similar strategy as KRIS . It delays theapplication of the (l3i)- and the (r2i)-rules until no further applicationsof the other rules are possible.4. The Logics Workbench utilizes branch pruning which the other systemsdo not.Based on our performance evaluation and the insights we have gained by in-specting the code of the various systems under examination, our assessment ofthe relevance of these di�erences between the theorem provers concerning theirperformance is the following:1. The presence of simpli�cation rules and their exhaustive application isvital for any theorem prover, particularly for the class of formulae wehave been considering. It is surprising that there are theorem provers likeKRIS and the Logics Workbench making very little use of simpli�cation.2. Further investigations will have to answer whether elaborated heuristicsfor the selection of split `variables' in the application of the dp splitrule or disjunctions in the application of the _-elimination rule lead toimproved performance of Ksat for the entire range of generated samplesets.3. The introduction of intermediate calls to the KM procedure to check theK(m)-satis�ability of the current truth assignment is valuable. It makesa di�erence to the performance of Ksat. However, in its present form

Ksat cannot make optimal use of the information provided by a failureof an intermediate call to KM (Example 6).We envisage that more redundancy can be eliminated by delaying the ap-plication of rules dealing with modal operators and using branch pruningto backtrack to an appropriate state of the search space, like the LogicsWorkbench does.Further improvements of the SAT-based procedure Ksat are possible and fur-ther investigations are needed to evaluate the usefulness of the various tech-niques. All the techniques can be transferred to tableaux-based systems likeKRIS and sequent calculus-based systems like the Logics Workbench. Like-wise the techniques employed in KRIS and the Logics Workbench can betransferred to Ksat.Our experiments show that the translation approach in combination withthe theorem prover SPASS has better computational behaviour than Ksat,KRIS , and the Logics Workbench on all samples of randomly generated modal3CNF formulae we have considered, except for the samples of very small or eas-ily solvable formulae. This is due to the initial overhead of the transformationto clausal form. It is open which resolution inference rules and search strate-gies perform best for basic modal logic and its extensions. We emphasize thepositive results of this paper obtained for the combination of the translationapproach and SPASS can most probably not be obtained with less sophisticatedtheorem provers (without splitting and branch condensing). The question nowis whether, with the proposed optimisation and simpli�cation techniques, thespecial purpose theorem provers can achieve similar performance as the trans-lation approach, or possibly do better.AcknowledgementsWe thank the developers of Ksat, KRIS , and the Logics Workbench for mak-ing available the code of their systems. The critical comments of ChristophWeidenbach, Andreas Nonnengart and the anonymous referees helped improvethe paper considerably. This work was conducted while the authors were em-ployed at the Max-Planck-Institut f�ur Informatik in Saarbr�ucken, Germany.References[BdlT 92] T. Boy de la Tour. An optimality result for clause form translation.Journal of Symbolic Computation, 14:283{301, 1992.[BG 90] L. Bachmair and H. Ganzinger. On restrictions of ordered paramod-ulation with simpli�cation. In M. E. Stickel, editor, Proceedings ofthe 10th International Conference on Automated Deduction (CADE-10), LNAI 499, pages 427{441, Springer, 1990.

[BH 91] F. Baader and B. Hollunder. A terminological knowledge represen-tation system with complete inference algorithms. In H. Boley andM. M. Richter, editors, Proceedings of the International Workshopon Processing Declarative Knowledge (PDK '91), LNAI 567, pages67{86, Springer, 1991.[Cat 91] L. Catach. TABLEAUX: A general theorem prover for modal logics.Journal of Automated Reasoning, 7(4):489{510, 1991.[CI 95] B. Cha and K. Iwama. Performance test of local search algorithmsusing new types of random CNF formulas. In C. S. Mellish, editor,Proceedings of the 14th International Joint Conference on Arti�cialIntelligence (IJCAI-95), pages 304{311, Morgan Kaufmann, 1995.[D'A 92] M. D'Agostino. Are tableaux an improvement on truth-tables?Journal of Logic, Language, and Information, 1:235{252, 1992.[Fit 83] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. D.Reidel Publishing Company, 1983.[Gob 74] L. F. Goble. Gentzen systems for modal logic. Notre Dame Journalof Formal Logic, 15:455{461, 1974.[GS 96a] F. Giunchiglia and R. Sebastiani. Building decision procedures formodal logics from propositional decision procedures: Case study ofmodal K. In M. A. McRobbie and J. K. Slaney, editors, Proceed-ings of the 13th International Conference on Automated Deduction(CADE-13), LNAI 1104, pages 583{597, Springer, 1996.[GS 96b] F. Giunchiglia and R. Sebastiani. A SAT-based decision procedurefor ALC. In L. C. Aiello, J. Doyle, and S. Shapiro, editors, Proceed-ings of the 5th International Conference on Principles of Knowl-edge Representation and Reasoning (KR'96), pages 304{314, Mor-gan Kaufmann, 1996.[HJSS 96] A. Heuerding, G. J�ager, S. Schwendimann, and M. Seyfried. TheLogics Workbench LWB: A snapshot. Euromath Bulletin, 2(1):177{186, 1996.[HS 96] A. Heuerding and S. Schwendimann. A benchmark method for thepropositional modal logics K, KT, S4. Technical Report IAM-96-015, University of Bern, Switzerland, 1996.[HS 97] U. Hustadt and R. A. Schmidt. On evaluating decision proceduresfor modal logics. In M. E. Pollack, editor, Proceedings of the Fif-teenth International Joint Conference on Arti�cial Intelligence (IJ-CAI'97), pages 202{207, Morgan Kaufmann, 1997.

[MSL 92] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distri-butions of SAT problems. In W. Swartout, editor, Proceedings ofthe 10th National Conference on Arti�cial Intelligence (AAAI-92),pages 459{465, MIT Press, 1992.[Ohl 91] H. J. Ohlbach. Semantics based translation methods for modal log-ics. Journal of Logic and Computation, 1(5):691{746, 1991.[Ohl 93] H. J. Ohlbach. Translation methods for non-classical logics: Anoverview. Bulletin of the IGPL (Interest Group in Propositionaland Predicate Logics), 1(1):69{90, 1993.[OS 97] H. J. Ohlbach and R. A. Schmidt. Functional translation andsecond-order frame properties of modal logics. Journal of Logic andComputation, 7(5):581{603, October 1997.[Pet 83] G. E. Peterson. A technique for establishing completeness resultsin theorem proving with equaility. SIAM Journal of Computation,12(1):82{100, February 1983.[Rau 83] W. Rautenberg. Modal tableau calculi and interpolation. Journalof Philosophical Logic, 12:403{423, 1983.[Sch 98a] R. A. Schmidt. Decidability by resolution for propositional modallogics. To appear in Journal of Automated Reasoning, 1998.[Sch 98b] R. A. Schmidt. Resolution is a decision procedure for many propo-sitional modal logics. In M. Kracht, M. de Rijke, H. Wansing, andM. Zakharyaschev, editors, Advances in Modal Logic, Volume 1, vol-ume 87 of Lecture Notes, pages 189{208. CSLI Publications, 1998.[SSS 91] M. Schmidt-Schau� and G. Smolka. Attributive concept descriptionwith complements. Arti�cal Intelligence, 48:1{26, 1991.[Wei 96] C. Weidenbach. Computational Aspects of a First-Order Logic withSorts. PhD thesis, Universit�at des Saarlandes, Saarbr�ucken, Ger-many, 1996.[Wei 97] C. Weidenbach. SPASS Version 0.49. Journal of AutomatedReasoning, 18(2):247{252, 1997. For a more recent version seehttp://www.mpi-sb.mpg.de/guide/software/spass.html.

