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Abstract 

We investigate generic models for cortical microcircuits, i.e. recurrent circuits of 

integrate-and fire neurons with dynamic synapses. These complex dynamic systems 

subserve the amazing information processing capabilities of the cortex, but are at the 

present time very little understood. We analyze the transient dynamics of models for 

neural microcircuits from the point of view of one or two readout neurons that collapse 
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the high dimensional transient dynamics of a neural circuit into a 1- or 2--dimensional 

output stream. This stream may for example represent the information that is projected 

from such circuit to some particular other brain area or actuators. It is shown that simple 

local learning rules enable a readout neuron to extract from the high dimensional 

transient dynamics of a recurrent neural circuit quite different low-dimensional 

projections, that even may contain "virtual attractors" which are not apparent in the high 

dimensional dynamics of the circuit itself. Furthermore it is demonstrated that the 

information extraction capabilities of linear readout neurons are boosted by the 

computational opertions of a sufficiently large preceding neural microcircuit. Hence a 

generic neural microcircuit may play a similar role for information processing as a kernel 

for support vector machines in machine learning. We demonstrate that the projection of 

time-varying inputs into a large recurrent neural circuit enables a linear readout neuron to 

classify the time-varying circuit inputs with the same power as a complex nonlinear 

classifiers, such as for example a pool of perceptrons trained by the p-delta-rule, or a 

feedforward sigmoidal neural net trained by backprop, provided that the size of the 

recurrent circuit is sufficiently large. At the same time such readout neuron can exploit 

the stability and speed of learning rules for linear classifiers, thereby overcoming the 

problems caused by local minima in the error function of nonlinear classifiers. In addition 

it is demonstrated that pairs of readout neurons can transform the complex trajectory of 

transient states of a large neural circuit into a simple and clearly structured 2-dimensional 

trajectory. This 2-dimensional projection of the high-dimensional trajectory can even 

exhibit convergence to virtual attractors which are not apparent in the high dimensional 

trajectory. 

 

 

 

1.Introduction 

 

Computation in biological neural circuits is often modeled by attractor neural networks 

with low dimensional internal state spaces, and analyzed from the point of view of a 

human observer with focus on easily discernible features such as convergence to an 
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attractor. However, the dynamics of real neural microcircuits, consisting of a few 

thousand neurons, represents a trajectory in a very high dimensional dynamical system. 

Due to its high dimensionality, new phenomena emerge which cannot be observed in the 

commonly studied 2- or 3-dimensional dynamical systems. Functionally most important 

are features of the dynamics of neural circuits that can be extracted by readout neurons, 

i.e. by neurons that receive inputs from hundreds or thousands of neurons in this circuit 

and transmit low dimensional projections of their transient dynamics to other brain areas, 

or to actuators. This article explores the possible relationship between the high 

dimensional dynamics of neural circuits and their neural readouts through computer 

simulations of generic cortical microcircuits. 

 

Recently Maass, Markram & Natschlaeger proposed a general theoretical model, called 

liquid state machine [Maass et al., 2002], which represents a convenient framework for 

neural computations in real time for rapidly time varying continuous input functions. It 

does not require convergence to stable internal states or attractors, since information 

about past inputs is captured in the perturbations of a high dimensional dynamical 

system, i.e. in the continuous trajectory of transient internal states. First the input stream 

is projected into a sufficiently large neural circuit. In general different input streams will 

cause different trajectories of internal states of the system, i.e., the input streams are 

separated by the circuit. Secondly a memory-less readout learns to extract salient 

information from the high dimensional transient states of the circuit. In particular each 

readout can learn to define its own classes of equivalence of dynamical states within the 

neural microcircuit, and can then perform its task on novel inputs. Due to this principle of 

“readout assigned equivalent states of a dynamical system” an invariant readout can be 

possible despite the fact that the neural microcircuit may never re-visit the same state. 

Furthermore multiple readouts can be trained to perform different tasks on the same state 

trajectories of a recurrent neural circuit, thereby enabling parallel real-time computing. 

Good separation capability of the high dimensional dynamical system for different 

preceding inputs, in combination with an adequate readout, allows essentially any real-

time computation on continuous and bounded time-varying inputs with fading memory to 

an arbitrary degree of  precision. It is shown in [Maass et al., 2002] that a generic neural 
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microcircuit model tends to have fairly good separation property, due to the biologically 

realistic diversity of its components and its sparse but recurrent connectivity (“loops 

within loops”). Adaptivity within the microcircuit itself is not necessary in this context, 

although it may facilitate the task of the readout for a family of related tasks. This 

situation is analogous to that of choosing kernels for support vector machines, where 

there exist general purpose kernels that provide good performance for a lare variety of 

tasks. 

 

Whereas in [Maass et al., 2002] the potential readout capabilities of pools of neurons 

were explored, we investigate in this article the readout capability of single integrate-and-

fire (I&F) neurons and of pairs of such neurons. It is shown that for a sufficiently large 

recurrent neural circuit a single neuron as readout achieves the same classification power 

for a binary classification task (as specified in section 3.2) as sophisticated multi-unit 

classifiers, such as pools of perceptrons with the p-delta-rule, see [Auer et al., 2002], 

voted perceptrons, see [Warmuth et al., 2002; Freund et al., 1999], feedforward sigmoidal 

neural nets trained by backprop. Hence one may argue that a generic neural microcircuit 

plays a similar role for neural computing as a high dimensional kernel for support vector 

machines in machine learning. In addition it is demonstrated that pairs of readout neurons 

can transform the complex trajectory of transient states of a large neural circuit into a 

simple and clearly structured 2-dimensional trajectory. This 2-dimensional projection of 

the high-dimensional trajectory can even exhibit convergence to virtual attractors which 

are not apparent in the high dimensional trajectory. 

 

 

2.Methods 

 

We carried out computer simulations with a generic recurrent network of I&F neurons as 

described in [Maass et al., 2002]. The input to the network consisted of spike trains, 

which diverged to inject current into 30 % randomly chosen excitatory neurons. The 

amplitudes of the input synapses were chosen from a Gaussian distribution, so that each 

neuron in the recurrent microcircuit received a slightly different input. The input spike 
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trains were generated from randomly generated Poisson spike templates with a frequency 

of 20 Hz, where each spike in the template was moved by a Gaussian distribution with 

mean 0 and an SD of 4 ms.  

 

We used randomly connected circuits consisting of I&F neurons, 20 % of which were 

randomly chosen to be inhibitory (see [Tsodyks et al., 2000]). Unless stated otherwise in 

the figure legend the circuit size was chosen to be 135 neurons. Parameters of neurons 

and synapses were chosen in accordance with biological data: membrane time constant 

30ms, absolute refractory period 3ms (excitatory neurons), 2ms (inhibitory neurons), 

threshold 15mV (for a resting membrane potential assumed to be 0), reset voltage 13.5 

mV, constant background current at 13.5 nA, input resistance 1MΩ . 

 

Connectivity structure: The distribution of connection lengths was chosen to be 

biologically realistic, with primary local connections and a few longer connections. More 

precisely the probability of a synaptic connection from neuron a  to neuron b  (as well as 

that of a synaptic connection from neuron b  to neuron a ) was defined as 
2)/),(( λbaDeC −⋅ , 

where λ  is a parameter which controls both the average number of connections and the 

average distance between neurons that are synaptically connected (its value was fixed at 

1.5 for all simulations reported in this article, independent of the size of the network). For  

the circuits consisting of 135 neurons we assumed that the neurons were located on the 

integer points of a 15×3×3 column in space, where ),( baD  is the Euclidean distance 

between neurons a  and b . The neurons of the circuits used for the simulations for figure 

2 and 3 were arranged in 2x2x3, 3x3x6, 5x5x4, 5x5x8, 7x7x8, 7x7x12 and 7x7x16 

columns, whereas the columns of the networks for figure 6 had the size 3x3x9, 3x3x11, 

3x3x13, 3x3x15, 3x3x18 and 3x3x21. Depending on whether a  and b  were excitatory 

( E ) or inhibitory ( I ), the value of C was 0.3 (EE), 0.2 (EI), 0.4 (IE), 0.1 (II). 

 

In the case of a synaptic connection from a  to b  the synaptic dynamics were modeled 

according to the model proposed in [Markram et al., 1998], with the synaptic parameters 

U  (use), D  (time constant for depression), F  (time constant for facilitation) randomly 
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chosen from Gaussian distributions that were based on biological data reported in [Gupta 

et al., 2000] and [Markram et al., 1998]. Depending on whether ba,  were excitatory ( E ) 

or inhibitory ( I ), the mean values of these three parameters (with FD,  expressed in 

second, s) were chosen to be .5, 1.1, .05 (EE), .05, .125, 1.2 (EI), .25, .7, .02 (IE), .32, 

.144, .06 (II). The scaling parameter A (in nA) was chosen to be 75  (EE), 150 (EI), -47 

(IE), -47 (II). In the case of input synapses, the parameter A had a value of 18 nA. The 

SD of each parameter was chosen to be 50 % of its mean (with negative values replaced 

by values chosen from an appropriate uniform distribution). The time course of 

postsynaptic currents was modeled by an exponential decay exp(-t/ sτ ) with sτ =3 ms 

( sτ =6 ms) for excitatory (inhibitory) synapses. The transmission delays between liquid 

neurons were chosen uniformly to be 1.5 ms (EE), and 0.8 for the other connections. For 

each trial the initial conditions of the circuit were randomly chosen (for each neuron in 

the circuit the membrane voltage was set at a value drawn from the uniform distribution 

over the interval [13.5 mV, 15 mV].  

 

We assumed that each readout neuron receives synaptic input from all neurons in the 

recurrent circuit. We defined the current liquid state of the circuit (using the terminology 

[Maass et al., 2002]) as the n -dimensional vector of contributions of the n  neurons in 

the circuit to the membrane potential of a generic readout neuron at time t (assuming unit 

size weights and static synapses for this generic readout neuron). Technically these 

individual contributions to the membrane potential of a generic readout neuron are the 

outputs of a low pass filter with a kernel that decays exponentially with a time constant of 

30 ms (reflecting the assumed 30 ms membrane time constant of the readout neuron), 

applied to the spike trains of the n neurons in the recurrent circuit. After training, the 

weights of a readout neuron have no longer uniform size, and hence each readout neuron 

defines a different projection of the high dimensional liqid states into one dimension.  

Therefore strictly speaking a readout neuron does not have full access to the real intrinsic 

state space of the recurrent network, which consists of the membrane potential of each 

I&F neuron and the fraction of available synaptic efficacy “R” and the running value of 

the utilization of synaptic efficacy “u” (for terminology see [Markram et al., 1998] ) of 
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each dynamical synapse. The trajectory of the recurrent neural circuit was modeled as a 

sequence of consecutive liquid states sampled every 20 ms. Each readout neuron defines 

in general a different projection of this trajectory of liquid states into a 1-dimensional 

trajectory, and correspondingly each pair of readout neurons defines a different projection 

of the high dimensional dynamics into 2 dimensions.   

 

 

3.Results 

 

3.1.Projecting the Input into a Larger Neural Circuit Increases the Classification 

Power of a Readout Neuron 

 

When a time-varying input, such as for example a Poisson spike train, is injected as input 

into a large recurrent circuit of n  I&F neurons, it becomes difficult for a human observer 

to extract information about this input from the resulting dynamics of the circuit. Our 

computer simulations show that in contrast to that, the dynamics of neural circuits 

becomes easier to classify for a readout neuron when n  is large. This effect is less 

surprising if one notes that the decision surface which is relevant for the decision whether 

an I&F neuron fires at some specific time t , can be approximated by a hyperplane in the 

state space of the dynamical system that models the recurrent circuit of I&F neurons. The 

number of degrees of freedom of this hyperplane grows with n. Furthermore an 

empirically well-supported result from statistical learning theory (see for example 

[Vapnik, 1998]) implies that the discrimination power of a perceptron (or hyperplane) 

increases when the inputs that need to be classified are first projected nonlinearly into a 

sufficiently high-dimensional space. This effect has been demonstrated by [Jaeger, 2001] 

in the context of artificial neural networks. We would like to argue that it may also play 

an important role in biological neural computation, and may contribute to the large and 

seemingly universal computational power of recurrent neural microcircuits. It may have 

received little attention so far in the analysis of neural computation, because it is not 

observable in small circuits. It also can usually not be observed in larger models for 

neural circuits if their architecture has been engineered by the modeler for a particular 
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task, since that often entails that the dynamics of that circuit is restricted to a lower 

dimensional subspace of its state space. For this reason we focus on the dynamics of 

generic models for recurrent neural microcircuits that reflect biological data in their 

connection statistics, and which have not been engineered for a particular purpose. 

 

As a benchmark test for memory retrieval and pattern classification by neural circuits we 

considered the task illustrated in Figure 1. Four Poisson spike trains were randomly 

generated and fixed as spike pattern templates. More precisely, two such patterns, 

templates 1 and 2, were fixed for the time interval from 0 to 250 ms, and two other ones, 

templates 3 and 4, for the second interval from 250 to 500 ms. Input spike trains over 500 

ms were randomly composed of noise variations (Gaussian distribution with mean 0, SD 

4 ms) of one of the templates 1, 2 in their first half followed by noisy variations of one of 

the templates 3, 4 in their second half. We defined that an input spike train belongs to 

class 1(2) if its first half was generated from the template spike train 1 (2), no matter 

whether its second half had been generated from. A readout neuron was required to carry 

out a classification at time t = 500 ms, after a noisy variation of one of the 2 spike pattern 

templates 3 or 4 had been sent into the circuit and had "overwritten" the transient 

dynamics caused by the first pattern templates. One can therefore view the earlier pattern 

as one that sets the "context" for the second one, and it may be important from the 

functional point of view to recover this "context" at a later point in time. This 

classification task is relatively difficult, since it requires the integration of information 

over a time interval (and from a temporal distance) of 250 ms, which is fairly large 

compared to the membrane time constant of a single neuron (30 ms in our simulations). 

For this discrimination task only the weights of the synapses of the readout neuron were 

adapted, thus leaving the dynamics of the recurrent neural circuits unspecialized, 

potentially providing unbiased input to myriads of other readout neurons that are 

specialized to extract other information about the input to the circuit (see Fig. 8 in [Maass 

et al., 2002]). Several standard algorithms for single-unit and multi-unit neural classifiers 

were applied: pools of perceptrons with the p-delta-rule, see [Auer et al., 2002], voted 

perceptrons, see [Warmuth et al., 2002; Freund et al., 1999], and backprop for 

feedforward sigmoidal neural nets.  
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Panels a, b, and c of Fig. 2 show that each type of readout achieves a better performance 

when  spike trains generated from input distributions as described above are injected into 

a larger recurrent circuit. Furthermore it can be seen that even for single neuron readouts 

(panels a, b) the classification error approaches 0 when the size of the recurrent circuit 

grows1.  This effect is reminiscent of a frequently exploited effect in machine learning 

(more precisely in support vector machines and other kernel based methods). There one 

projects the given data first nonlinearly into a very high dimensional space. Within this 

high dimensional space the projections of the original data from different classes usually 

become linearly (or nearly linearly) separable, see [Vapnik, 1998]. But an essential 

difference to kernel-based methods in machine learning is that there the projection into a 

high dimensional space is not carried out explicitly,  whereas in our neural model the 

nonlinear projection of the input stream into the high dimensional state set of the circuit 

may be viewed as the essential computational operation of the generic neural microcircuit 

model. 

 

For a human observer the liquid states at time t = 500 ms that result from input spike 

trains from the classes 1 and 2 look indistinguishable, like two sets of state vectors that 

are drawn from the uniform distribution over the state set. However readout neurons can 

be trained to recognize their inherent structural similarities, and are therefore able to 

classify also novel examples drawn from these classes. In order to demonstrate that their 

performance, which improves for larger sizes of the recurrent circuit, is due to this hidden 

structural similarity, and not to other scaling effects, the experiment were repeated with 

the same number of states drawn from a uniform distribution over the state set of the 

corresponding recurrent circuits (with a random assignment of class labels). Panel d of 

Fig. 2 shows that the readout can still be trained to classify states in the training set with 

an error of less than 50% (but much larger than for the previously considered classes). 

Furthermore this error on the training set decreases with the circuit size. But in the case 

                                                      
1 Further work is needed to explore when exactly this occurs. It appears to depend both on values 
of parameters of the circuit (e.g. λ ) and on the type of inputs and the number of training 
examples. 
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of such randomly labeled state sets there is no generalization possible, hence the 

performance on test data from the same distribution yields an error of 50%.  

 

The test that was applied here provides a generally applicable method for quantifying the 

characteristic inherent similarity of states within each of two classes A, B of liquid states, 

even in cases where this inherent similarity of states can not be detected by a human 

observer. This method proposes to compare the classification performance of readouts 

that were trained to classify states from these two classes with that of the same type of 

readouts (using the same training algorithm) trained to classify states from two classes C, 

D of the same size, whose elements were drawn from the uniform distribution over the 

state space (with randomly assigned class labels). The classification performance on these 

two other classes will in general also be better than random guessing, since the readout 

can store information about these particular two sets C and D in its weights. Hence its 

classification performance will improve with the number of weights in the readout, and 

hence with the size of the circuit. However if there is some structural similarity among 

states within one of the two classes A, B, a trained readout neuron achieves a much higher 

performance for classification of states from these two classes. The difference in error 

rates achieved for the classification of states from the two original classes A, B and the 

two classes C, D quantifies how much common structure the readout can extract from 

each of the two original classes A, B of liquid states. 

 

In order to test the robustness of the classification capabilities of a readout neuron with 

regard to additional noise in the circuit we added Gaussian noise with mean 0 and 

standard deviation 0.5 nA and 1 nA respectively to the input currents of each neuron in 

the circuit at each simulation time step. This corresponds to Gaussian noise on the 

membrane potentials with a std of 1/52  (1/26) of the voltage difference between the 

threshold and the membrane potential for a constant background current of 13.5 nA (reset 

voltage). As illustrated in figure 3 the classification error increased for the higher noise 

level, whereas the results for the lower noise level were comparable to those without this 

extra noise. 
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3.2.Finding Structure in Complex High Dimensional Trajectories of Circuit 

Dynamics 

 

If one tracks the n -dimensional trajectory defined by the states of a recurrent circuit of n  

I&F neurons as a function of time, this trajectory is likely to resemble Brownian motion. 

However, from the point of view of readout neurons the same trajectory may have a 

simple and clear structure, and even converge to a "virtual attractor". The input to the 

recurrent circuit consists in the following always of 8 spike trains that are simultaneously 

injected into the circuit. 

 

We focus on the information that pairs of readout neurons can extract from the high 

dimensional trajectory of liquid states of a recurrent neural circuit. The time course of the 

synaptic input to such readout neurons2 is plotted as a curve in the plane, such as 

illustrated in Fig. 4 a. The approximate structure of this 2-dimensional curve is captured 

by the resulting spike trains of these 2 readout neurons (see Fig. 4 b, c), and can therefore 

be transmitted to other neural circuits. 

 

In Figure 5 the input to two readout neurons is plotted in this way for three different time 

varying inputs to a recurrent circuit consisting of 135 I&F neurons. Depending on the 

choice of synaptic weights for these readout neurons, these 2-dimensional trajectories 

may look like Brownian motion (Fig. 5 a), trajectories that move fast into different 

attractor basins (Fig. 5 b), smooth trajectories with a characteristic dynamical structure 

(Fig. 5 c), or trajectories that are smooth and move into different attractor basins (Fig. 

5 d). The first output (Fig. 5 a) is the typical result if the weights of the two readout 

neurons are randomly chosen. If one chooses the weights of these two readout neurons 

according to the Fisher discriminant [Duda et al., 2001], the resulting curves move for 

these three time-varying inputs to three different "virtual attractor basins". With a slight 

                                                      
2 More precisely: the total contribution of the neurons in the recurrent circuit to the membrane potential of 

these two readout neurons, with an assumed membrane time constant of 30 ms. 
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variation of the Fisher discriminant (apply it to the sets of 2nd order derivatives with 

regard to time for points on these three trajectories, not to the sets of points on these 

trajectories) one gets the outputs of the two readout neurons that define the curves shown 

in Figure 5 c. These curves are quite smooth and exhibit a clear temporal evolution. By 

applying the Fisher discriminant to the union of points on the trajectories and their second 

derivatives with regard to time, one gets responses of the two readout neurons that 

combine the effects of Fig. 5 b and c: they move on smooth curves to different attractor 

basin (shown in Fig. 5 a). Although the Fisher discriminant is usually only viewed as a 

global optimization procedure, the resulting setting of the weights of the two readout 

neurons can also be approximated by an incremental learning algorithm: the MSE-

algorithm, see section 5.8.2. in [Duda et al., 2001], which is local and unsupervised, and 

therefore not unrealistic from the biological point of view. For the simulations reported in 

this article we used the exact implementation of the Fisher discriminant. The results of 

Fig. 5 show that the low dimensional trajectory extracted by 2 readout neurons from a 

fairly large neural circuit may have little visible structural similarity with the high 

dimensional trajectory of transient states of that circuit, and my even move to "virtual 

attractors" that are not apparent from the high dimensional trajectory. 

 

Analogously as with the classification task considered for Fig. 2, there exists an 

interesting scaling law, which prevents the observation of these effects in 2- or 3-

dimensional dynamical systems, or in small models for neural circuits. The capability of 

pairs of readout neurons to extract smooth 2-dimensional trajectories from the very 

complex trajectory of firing activity in a recurrent circuit of I&F neurons increases with 

the number of neurons in this circuit (Fig. 6). The same input spike train was injected into 

recurrent neural circuits of varying size, and for each recurrent circuit a pair of readout 

neurons was optimized (as for Fig. 5 c) to generate a smooth 2-dimensional trajectory of 

their synaptic input. In order to show that the increased smoothness of the projections 

depends on the size of the network and is not due to a slow down of its dynamic the spike 

rasters with the responses of 10 randomly chosen neurons of each recurrent circuit to 

input as used for the simulations for figure 6 are illustrated in figure 7.  
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Figure 8 shows that the smooth large scale structure that pairs of trained readout neurons 

can extract from a complex dynamics of high dimensional circuits, may generalize to 

input where one of the eight simultaneously injected spike trains was replaced by a 

random Poisson spike train at each trial. This additional input may represent independent 

spatio-temporal information about the environment received from other areas in the 

neocortex. Two readout neurons were trained to respond with smooth trajectories of 

similar shape to the quite diverse high dimensional dynamics caused by this random 

spike train. In other words the readout was trained to assign equivalence classes in the 

internal state space, which contained all possible internal states at time point t that could 

result from different previously injected random spike trains. After training the readout 

neurons transformed the trajectories of liquid states that resulted from input composed of 

the same seven fixed spike trains but a previously not seen random spike train into 

closely related 2-dimensional projections (panels b-e). However their response is still 

highly selective and the trajectory of liquid states caused by entirely different input to the 

recurrent circuit (with the same firing rate) induces a completely different temporal 

evolution of membrane potentials in the readout (panel f). 

 

 

3.3Different Readouts may Create Diverse Virtual Attractor 

Landscapes  

 

We showed that different readout neurons can be trained to extract a diverse set of 

features from the same high dimensional neural activity of a sufficiently large recurrent 

circuit of I&F neurons. Hence for a specific information processing task it may not be 

necessary to manipulate this high dimensional trajectory itself. Instead, the number of 

degrees of freedom for readout neurons are chosen so large, that they can be trained to 

extract individualized smooth paths on virtual attractor landscapes from the same high 

dimensional circuit dynamics.  

 

We call these attractors “virtual”, because they are not real attractors of the underlying 

dynamics but just look like attractors from the perspectives of certain low dimensional 
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projections. Furthermore these attractors are transient, i.e. they represent temporary 

attractors formed within the transient behaviour of the system. In other words: they are 

sets of states that attract certain trajectories during a certain time segment, but not 

permanently. Nevertheless, they may represent the result of a computation for a low 

dimensional readout. Hence the presence of virtual attractors makes it in principle 

possible to carry out particular computations needed by specific readouts without 

changing the dynamics of the recurrent circuit itself (thereby leaving it ready to serve as 

analog memory for other readouts with completely different tasks). The remarkable 

flexibility that remains when just the low-dimensional readouts are adapted for specific 

computational tasks is demonstrated in Figure 9 for 3 different pairs of readout neurons. 

For all three panels of Fig. 9 the inputs to the recurrent circuit (and the resulting circuit 

dynamics) are identical. However the temporal evolution of the readout responses has a 

different large-scale structure for each of the three pairs of readout neurons. Inputs to the 

recurrent circuit were three different spike trains A, B, C. The first pair of readout 

neurons was just trained to separate the trajectories resulting from these 3 inputs by 

smooth responses (panel a). The second pair was trained in addition to create a virtual 

common attractor for patterns A and B, but not for C (panel b). The third pair of readout 

neurons was trained to move the responses for patterns A and C to a common attractor, 

while keeping the trajectory for pattern B away from this attractor. Altogether Fig. 9 

suggests an alternative to modeling neural dynamics by low-dimensional attractor neural 

networks: While the internal dynamics of a generic high-dimensional neural microcircuit 

may be extremely complex, different pools of readout neurons may use this high 

dimensional dynamics as a universal source of online information, and can be trained to 

extract low dimensional trajectories that move on virtual attractor landscapes. Since these 

virtual attractor landscapes may differ from readout to readout, one arrives in this way at 

a possible scheme for parallel real-time processing with the help of high dimensional 

dynamical systems. 

 

 

4.Summary 
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Many tools and concepts that have been developed for the investigation of dynamical 

systems are very useful for analyzing low dimensional autonomous dynamical systems. 

However new effects have to be taken into account when one analyzes high dimensional 

dynamical systems such as those implemented by cortical microcircuits. Typically these 

systems are constantly bombarded with inputs from sensory neurons and other neural 

circuits, hence they are non-autonomous. Furthermore these systems have to compute in 

real-time, and therefore need to retrieve information for their computational tasks from 

trajectories of transient states of the circuit. Since the high dimensionality of the neural 

dynamics increases the capability of a readout neuron to select and represent specific 

components of the information, the high dimensional trajectory need not be engineered 

for a specific task. Rather, different readout neurons can extract completely different 

aspects for their specific task. In fact, from their point of view the high dimensional 

dynamics may even appear to move towards well-defined attractor basins, but this virtual 

attractor landscape may be a completely different one for each readout neuron. 

 

Another beneficial aspect of the high dimensionality of the dynamics of neural 

microcircuits is the resulting boosting of the classification power of single readout 

neurons, which has been demonstrated in this article. This implies that very simple and 

robust learning algorithms, which cannot get stuck in local minima, can be used to train 

these readouts. The effects exhibited in this article may help to provide challenges and 

ideas for the development of a new theory of dynamical systems that is adequate for high 

dimensional non-autonomous systems with diverse components, and can therefore be 

used to analyze real-time computing in neural microcircuits. 
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Legends 

 

Figure 1: Input distribution for the classification task. For each experiment four Poisson 

spike trains were randomly generated and fixed as spike pattern templates 1-4. Input 

spike trains over 500 ms were randomly composed of noise variations (Gaussian 

distribution with mean 0, SD 4 ms) of one of the templates 1, 2 in their first half followed 

by noisy variations of one of the templates 3, 4 in their second half. An input spike train 

was defined to belong to class 1(2) if its first half was generated from the template spike 

train 1 (2), no matter whether its second half had been generated from. Three typical 

noisy variations of class 1 are shown in the lower part of the figure.  
 

Figure 2: Demonstration that a larger recurrent neural circuit increases the classification 

power of a readout neuron. a: The readout was to trained to carry out a classification of 

the previously injected input time series as described in Fig. 1 by means of the internal 

state of the recurrent network at time t = 500 ms (after the complete spike train had been 

injected into recurrent circuit). The solid and dashed lines show for training and test 

inputs the error rates of a hyperplane (= perceptron) in the n -dimensional state space of 

the recurrent circuit, trained with the well-known delta learning rule (see [Hertz et al., 

1991]), as a function of the size n  of the recurrent circuit of I&F neurons. For each value 

of n 100 randomly drawn recurrent circuits were generated. For each circuit a new input 

distribution was fixed and 800 input spike trains from this distribution were chosen for 

training, whereas 80 novel examples were used for testing. The error rates represent the 

averages over the performance of different circuits (error bars indicate SEM). b: 

Corresponding results for the classification task applying the Fisher-discriminant 

algorithm (see [Duda et al., 2001]) instead of the delta learning rule to optimize the 

weights of a perceptron. The error rates were almost the same for this algorithm (whereas 

its computing time was much shorter). c: Corresponding results for the classification task 

applying multi-unit readouts instead of perceptrons: p-delta learning rule (using an array 

of 10 perceptrons, see [Auer et al., 2002]), backpropagation (applied to 10 feedforward 

sigmoidal neurons), and voted perceptrons (using an array of 10 perceptrons) 

implemented as outlined in [Warmuth et al., 2002]. The error rates were almost the same 
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as for perceptrons. d: Results of a control experiment. In order to show that a better 

readout performance for larger recurrent circuits can only be achieved if the complexity 

of the input stays constant (or grows at a lower rate than the circuit size), the same 

algorithms as in panel b were applied to compute an optimal separating hyperplane for 

randomly chosen internal states of the recurrent circuit. The training set consisted of 800 

randomly drawn state vectors, drawn from the uniform distribution over all state vectors 

(with randomly assigned class labels) instead of 800 liquid states at time 500=t ms that 

resulted from injecting input spike trains from a fixed distribution into these circuits. The 

performance on these training sets decreased with the circuit size. But in the case of such 

randomly labeled state sets there was no generalization possible, hence the performance 

on test data from the same distribution (uniform distribution over all state vectors) 

yielded an error of 50%. 

 

Figure 3: Results for the classification task of figure 2a with two levels of  noise added to 

the input currents independently for all neurons in the circuit. For each simulation time 

step Gaussian noise with mean 0 and standard deviation 0.5 nA and 1 nA respectively 

was injected into the neurons. The classification error increased for the higher noise level, 

whereas the results showed little effect for the lower noise level . 

 

Figure 4: a: A Typical 2-dimensional projection of the high dimensional trajectory of 

liquid states in a recurrent neural circuit, represented by the combined synaptic inputs 

from the neurons in this circuit to 2 readout neurons. The beginning of the trajectory is 

marked by a circle, with crosses on the curve at every 50 ms interval. b, c: Resulting 

spike trains of these 2 readout neurons.  

 

Figure 5: Three trajectories of the synaptic input to 2 readout neurons (indicated by solid, 

dashed, and dotted lines) caused by three different input Poisson spike trains to the 

recurrent circuit during a time interval of 1 s. For randomly assigned synaptic weights 

these trajectories resemble Brownian motion as shown in panel a. For other values of the 

weights the same trajectories may appear well separated in space as illustrated in panel b, 

or smooth as displayed in panel c. For the calculations of the weights in both cases the 
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well-known Fisher discriminant algorithm was applied for panel b directly to the points 

of the trajectories and for panel c to their second time derivatives. A combination of both 

perspectives, enabling both classifications through clear spatial separation and smooth 

tracking of the trajectory (see panel d), can be achieved by applying the Fisher 

discriminant to the union of the two point sets used for panels b and c. 

 

Figure 6: Dependence of the capability of 2 readout neurons to transform a trajectory of 

a recurrent circuit of n I&F neurons into a smooth low dimensional projection on the 

number n of neurons in the circuit. The input consisted of eight parallel injected random 

Poisson spike trains over a time interval of 2 s. In each case the same optimization 

method as for Fig. 5 c was applied to the weights of the 2 readout neurons. 
 

Figure 7: Spike rasters with the responses of 10 randomly chosen neurons from the 

recurrent circuits of n I&F neurons, for a circuit input as used for the simulation for 

figure 6. The level of activity of the these neurons does not diminish with circuit size. 

This shows that the increased smoothness of the low dimensional projections of the 

circuit trajectories shown in figure 6 is not the result of diminishing firing activity in the 

larger circuits. 

 

Figure 8: a) The smooth large scale structure that pairs of trained readout neurons can 

extract from a complex dynamics of high dimensional circuits can generalize to novel 

input. One of eight fixed random input spike trains of length 0.5 s that were 

simultaneously injected into a recurrent circuit of 135 I&F neurons was replaced by a 

novel random Poisson spike train at each trial. The weights of the two readout neurons 

were chosen (similarly as in Fig. 5 c) in such a way that the trajectories have about the 

same shape from the point of view of these readout neurons. This generalized to 

previously not shown variations of the random input spike train (b − e). The trajectory 

caused by entirely different input to the recurrent circuit (with the same firing rate) 

induced a completely different temporal evolution of membrane potentials in the readout 

(f), what shows that the response of the two readout neurons was still highly selective. 
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Figure 9: Different pairs of readout neurons may create different virtual attractor 

landscapes. a: Two readout neurons were trained to respond to the 3 trajectories of liquid 

states caused by the injection of 3 different input spike trains during a time interval of 1 s 

to a recurrent circuit of 375 I&F neurons (in a 5x5x15 column) with smooth well-

separated responses, like in Fig. 5c (beginnings of the 2 dimensional response-trajectories 

marked by circles). b, c: Responses of 2 other pairs of readout neurons to the same 3 

trajectories of liquid states as in panel a. For panel b a pair of readout neurons were 

trained to move only for inputs A and B to a common attractor. For panel c another pair 

of readout neurons was trained to move only for inputs A and C a common attractor. 
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