
Foundations of  Physics, Vol. 20, No. 4, 1990 

The Curious Quantum Mechanics of 
Pre- and Post-Selected Ensembles 

Wayne Hu 1 

Received July 28, 1989 

Despite claims to the contrary, the curious statistical properties of  pre- and post- 
selected ensembles are neither #npossible nor surprising. The properties o f  weak 
measurements on such ensembles are examined and shown to be in complete 
accord with ordinary quantum mechanics. 

1. I N T R O D U C T I O N  TO PRE- A N D  POST-SELECTED E N S E M B L E S  

In a provocative paper, (~) Albert, Aharonov, and D'Amato proposed an 
analysis of pre- and post-selected ensembles in quantum mechanics (PPS 
ensembles) which seemed to show that in the interval between pre- and 
post-selection, certain noncommuting observables all have determinate 
values. Moreover, these values are context dependent: The value assumed 
by a degenerate observable (e.g., an observable represented by a one- 
dimensional projection operator) depends on what other observables are 
selected in a measurement of a complete commuting set with P (i.e., the 
value of the one-dimensional projection operator, 1 or 0, depends on the 
choice of a complete commuting set of basis vectors spanning the Hilbert 
space). 

The fallacy in this argument was pointed out by Bub and Brown. (2) 
They showed that the identity of a PPS ensemble depends on the 
measurement(s) made on the system in the ensemble in the interval 
between the pre- and post-selection. For  the example proposed by Albert, 
Aharonov, and D'Amato, Bub and Brown demonstrated that the PPS 
ensembles are manifestly different. They went on to construct an example 
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in which the PPS ensembles are not manifestly different and exhibit a 
peculiar contextuality as well as nonlocality for the values assumed by 
certain noncommuting observables in the interval between pre- and post- 
selection. 

However, although the ensembles are not manifestly different, there is 
no reason to believe that the ensembles are identical, as Bub and Brown 
argued. Indeed, we have every reason to believe otherwise, on the basis 
that any precise measurement of an observable P will disturb other 
observables that do not commute with P. For an individual quantum 
system in a PPS ensemble (pre-selected for a particular value of an 
observable B), it is not the case in general that the system would have been 
post-selected after an intervening measurement of an observable Q if the 
system was in fact post-selected after an intervening measurement of an 
observable P not commuting with Q. 

Vaidman, Aharonov, and Albert ~3) exploit the case considered by Bub 
and Brown to show that for certain PPS ensembles one can infer the results 
of an intervening measurement on any one of the three spin components 
ax, ay, az. It is not apparent why this result should have any more intrinsic 
interest than the Bub and Brown example. Again, the inference from the 
statistics of the PPS ensemble to precise values for ax, o-y, and az is 
allowed in standard quantum theory since the identity of the PPS ensemble 
depends on whether ax, ay, or az was in fact measured in the interval 
between the pre- and post-selection. 

Aharonov, Albert, et al. apparently accept this fundamental criticism 
of PPS ensembles: the ensemble is not uniquely defined by the pre- and 
post-selection states. The identity of the PPS ensemble depends upon the 
measurement taken in the intervening period. One can neither infer 
retrodictively the determinateness of noncommuting observables nor show 
that probability assignments for measurements depend on context. The 
problem is that any such intervening measurement will fundamentally dis- 
turb the system measured and so alter the PPS ensemble. Perhaps these 
criticisms drove the authors to examine the possibility of nondisruptive 
intervening measurements more closely. In a series of papers beginning in 
1987, Aharonov, Albert, et aL (4'5~ analyze the results of taking such weak or 
imprecise measurements on PPS ensembles. They conclude that one 
obtains surprising results, some of which seem classical as opposed to 
quantum mechanical, some of which seem altogether impossible. They 
believe that they have discovered a new quantum variable, the so-called 
weak value that governs the PPS ensemble. They claim that such ensembles 
in which an imprecise measurement has taken place generate "curious" and 
"paradoxical" results. The purpose of this paper is to examine the validity 
of these claims for weak measurements. 
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2. WEAK Q U A N T U M  MEASUREMENTS ON PPS ENSEMBLES 

2.1, Realistic Measurements:  The Standard Prescription 

The authors ask us to consider the standard method of obtaining 
a precise measurement on a system. Say we wish to measure the X 
observable of a system. We have furthermore at our disposal a measuring 
device containing the canonical variable Q. The measurement Hamiltonian 
is given by a normalized function g(t) which couples the observable and 
the measurement variable: 

H= -g(t) QX 

If, as in this case, the Hamiltonian commutes with its time derivative, we 
may write the unitary time translation operator as 

U(t)=expl-i f H(t) j 
Now consider the realistic case in which the initial state of the measuring 
device is a Gaussian centered around zero: 

1 
O, w/-~ (2r@/4 exp(--q2/4A 2) 

or in terms of the canonical momentum 7r where [-q, 7c] = i 

1 
Oi ~ - -  e x p ( -  7z:/4(A~z)2), A~r = t/2A 

(2/r) TM 

Let the initial state of the system be the superposition: 

In order to find the state of the measuring device after the interaction ~b(t), 
we operate on the composite system with the unitary time translation 
operator: 

¢(t) Z(t) = U(t) ¢,Z, 

In a representation where the Hamiltonian is diagonal, the operation yields 

I I 1 ~b(t) Z ( t )=exp  - i  f Hdt ~ f Oiexp(-ircq)dq ~ ~,, Ix,,) 
n 
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Thus, 
1 

¢(t) •(t) oc ~ 0~, e x p [ - ( z ~ -  x,)Z/4(d~z) 2] [x,> 
n 

The measuring device is left in a state which is a superposition of 
Gaussians, shifted by the eigenvalues of X, with the weights of the original 
X distribution. This macroscopic state of the measuring device can then be 
observed, collapsing the superposition onto a sharp value for the canonical 
variable re. If A~z < Axe, i.e., the width of each Gaussian is sufficiently small, 
one can determine an unambiguous value for X since there is little overlap 
to confuse the measurement. This is, for example, how a Stern-Gerlach 
magnet works. Consider a spin-t/2 particle traveling in the y direction with 
momentum P0. At Yl, position a magnetic field gradient in the z direction. 
As in the standard prescription, the spin of the particle interacts with the 
canonical position variable during its passage through the Stern Gerlach 
magnet: 

H =  --g(y -- y~) #(~?BJ~z) ~7~z 

= - g [ p o / m ( t -  tl)] Ziql 

The result is a change in the momentum in the z direction which causes an 
easily detectable position separation. Note that such a measurement does 
not collapse the wavepacket; the result remains a pure state rather than a 
mixture. With the proper field gradient, we may reverse the separation to 
obtain the original wavefunction. This fact will become important as we 
investigate the interference properties of such a system. 

Aharonov, Albert, et al. ask us to consider the opposite limit: an 
imprecise measurement where Arc >> Axn. Here we are "measuring" the dif- 
ference in shifts of the Gaussian curve which are much smaller than the 
width of the original Gaussian. They note that though a single measure- 
ment cannot yield any information due to the large uncertainty in the 
measuring device, measurements on a large ensemble of N particles 
similarly prepared can reduce the statistical error by N-1/2. A sufficiently 
large ensemble will produce an arbitrarily accurate determination of the 
average <X> for the ensemble. They proceed to analyze the expected 
results of such measurements of PPS ensembles. 

2.2. The Curious Statistics of Weak Measurements of PPS Ensembles 

The authors show that such measurements yield results that seem 
impossible and defy quantum mechanical common sense. They refer to 
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such results as "impossible" and "something of a miracle. ''(4) Consider a 
pre-selection process that places the system to be measured in an initial 
state )~i. The composite system, as before, is given by 

where H(t) is the time-dependent Hamiltonian of the intermediate weak 
measurement. Now post-select for Xj by taking the projection of the time- 
dependent Z(t) onto Zs 

[Zf ) (z f l  exp ( - - i  f H dt) [Z~) (Di 

For weak coupling Aharonov, Albert, et aL derive 

(zf lexp - i  Hdt  l X i ) = ~ - - ~ !  (Xil tXi) 
n 

m (ZflZ~) (1 + iq(z f lXlz~)~ 
\ (zslz,) / 

[iq(xfi X tZi)'~ 
~: (Z f[Zi )  exp ' .... - -  

which tells us that the skiff in momentum is given by 

Xw (z /J r  Iz,) 
(zitz,) 

which they call the weak quantum value for the measured observable. Under 
the traditional prescription for precise measurements, this value would 
represent the result of a measurement of the X observable. However, note 
that we have obtained something rather disturbing. The quantity Xw is not 
bounded by the possible eigenvalues of X. The inner product of the initial 
and final states in the denominator can become vanishingly small. For 
example, if the process represented a Stern-Gerlach measurement of spin 
for a spin-l/2 system, Aharonov et al/5~ noted that we might get a result 
of 100. What is happening here? It would seem that the mathematical 
derivation of Aharonov, Albert, et al. obscures the actual physics of the 
process. Let us reconsider the experiment from the perspective of ordinary 
quantum mechanics. For definiteness, let us employ a Stern-Gerlach 
measurement on a spin-l/2 particle as in the case considered by the 
authors. Pre-select a beam of spin-l/2 particles moving in the y-direction 
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for spin up in the ~ direction lying in the plane spanned by x-z and 
separated by an angle c~ from x. Let the weak measurement be on a,  and 
the post-selection be for ax up. For convenience, let us define an additional 
angle fl = e -  n/2 as that which separates the ~ and z axes (see Fig. 1). The 
initial spin state in the z-representation is 

Zi=cos  fi/2 Iz + ) + sin fl/2 Iz ) 

As above, after the measurement the overall system of measuring device 
and particle spin is left in the following superposition of states: 

~w)~w oc (cos ill2 z+ )) exp[ - (7~ - 6~z)2/4(A~z) ;]  

+ (sin fl/2 Iz_ )) exp[ - (~z + 6n)2/4(A~) 2 ] 

6~ = ~(~Bz/OZ ) 

If we now post-select only for ax up, we obtain the final state 

~bf)~f = ix+ ) ( - c o s  fl/2 e x p [ -  (~ -6n)2/4(A~) 2 ] 

+ sin fl/2 e x p [ -  (n + 6rc)2/4(A~)2]) 

via the identity 

1 
E- Ix+)  + Ix )3 [ - Ix+)+lx_)]  

Our weak measurement of az separated the initial state spatial wave packet 
into a superposition of two slightly shifted Gaussian distributions corre- 
sponding to the different spin states. It is important to note that our inter- 
mediate state is a superposition rather than a mixture. The weak measure- 
ment in effect created a ~/2 phase shift for the post-selected ax up wave 
functions. The final state is therefore a superposition of two slightly dis- 

initial state a x ~ ~ .  

z "weak" axis 

=-y 
........... propagation direction 

,.N ~,o "°''" 

x final state axis 

Fig. 1. Weak Stern-Gerlach measurement. 
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placed Gaussian wavepackets re/2 out of phase. It is no surprise that we 
obtain destructive interference resulting in a measured state with a large 
component of momentum in the z direction. Since the value for the shift in 
momentum is taken as the measurement of spin, one is tempted to state 
that an unexpectedly large value for spin has been measured. Such an 
inference is not warranted. The cause of the effect lies in the measurement 
prescription rather than the spin of the particle. 

Aharonov, Albert, et at. give the dependence of this counterintuitively 
large shift as a function of separation angle ~ (or fl). We can easily derive 
the result from the general prescription for the weak quantum value given 
above: 

(x+la~t~+) 
@~ = ~(O~zl~z) 

(x+l~+) 

(x+l ~zt~.+ > = ( ~  { - (z+I+ (z_l}) 

(5 xa~ { [cos c~/2 + sin c~/2] [z+)  

+ [sin a/2 - c o s  ~/2] }z_ ) } )  

sin c~/2 
6p = ~(OBzl~z) - -  

cos ~/2 

6p = #(~Bz/~?z ) tan e/2 

Thus the weak value for spin is given by aw= tan c(2. Let us see how our 
derivation compares with this result. First note that the general form is 
correct: 

¢fXr oc exp[ - (~ - c ~ g ) 2 / 4 ( A T c )  2 ] - -  tan •/2 exp[ - (re + &z)Zl4(ATc) 2 ] 

Take the extreme case where/3 = )z/2. As £z ~ 0 we have complete cancella- 
tion. For  a/3 < ~/2 and finite 6~, we have near cancellation in the central 
region with only a fringe distribution at ~ >> 6~. This corresponds to the 
shift to infinity at c~ = ~. Now let us take a careful look at where the peak 
of our superposition lies: 

c~bi~'s/&z ~ (z - 6~) exp[ - (z - 6rc)2/4(Az) 2 ] 

-- (~ + 6~) tan fl/2 exp[  - (~ + 6z)2/4(A~z) 2 ] 
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We expect that the shift in the Gaussians will be relatively unimportant in 
comparison to 6~: 

(71"ma x - -  ~7C) = (7['ma x + ~7C) tan fl/2 

1 + tan/~/2 
7~ma x ~ 

1 - tan/~/2 

~max = tan(/3/2 + ~/4) 6~ 

~max = tan ~/2 6~ 

~max = # dB/dz  tan ~/2 

So we obtain the same result as the authors using a standard quantum 
mechanical argument. Indeed, our puzzlement has vanished. The 
anomalously large shift arises from a completely logical and predictable 
destructive interferenCe effect. The prose and terse mathematical derivation 
of the authors obscures this fact. This effect is no more disturbing than a 
double-slit interference pattern. 

2.3. The Physical and Foundational Significance of  Weak Measurements 

Aside from exclamations of wonderment, the authors are rather vague 
as to the significance of their result. In their 1987 paper, (4) they make 
several general claims which they leave undeveloped. They state that weak 
measurements have a commutative and classical nature. It does not seem 
surprising that by sacrificing precision in employing a "fuzzy" or classical 
type measurement that we re-obtain some degree of "commutivity." 
However, if we view measurement disturbance as the fundamental problem 
with the originally presented interpretation of PPS ensemble statistics, we 
might understand the possible importance of this recovery for the inter- 
pretation of PPS ensembles. 

Recall that we have shown that the PPS ensemble is not uniquely 
specified by the pre- and post-selection states. The very identity of the sub- 
ensemble depends on what measurements were taken in the intervening 
period. The disturbance caused by the measurements of noncommuting 
variables forbids us to interpret PPS inferences as possessing reality in the 
EPR sense. It is not the case that we are presented with a system in which 
we may measure one of either noncommuting variable and obtain a certain 
result with probability unity. Our choice of measurements changes the 
system under consideration. Even if the overall statistics for the sub- 
ensemble are the same, it does not follow that we can extend the argument 
to include specific systems. A particular system which is pre- and post- 
selected under one intervening measurement may not necessarily be under 
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another. All these caveats arise because the intervening measurement 
disturbs the other observables of the system in question. If, however, the 
measurements are significantly weakened to the point at which they cause 
no fundamental disturbance, we might be tempted to assert that the iden- 
tity of the PPS ensemble is independent of any weak measurements taken 
in the intervening period. Aharonov, Albert, et. a/. (4) ask us to reconsider 
the experiment in which we pre-select for ax up.and post-select for ay up. 
Recall that any precise measurement of er x in the intervening period will 
yield spin up with probability unity; any precise measurement of ay will 
also yield spin up with probability unity. However, it does not follow that 
both values are simultaneously definite. We can easily see this by the fact 
that if in the intervening period we measured both % and ax in that order 
we can no longer predict either to probability unity. The disturbance of one 
upon the other opens up other possible paths to the post-selected state. 

The authors claim that one may avoid this problem by sufficiently 
weakening the measurement. They seem to be making the following 
argument: A weak measurement on Gy disturbs each individual system 
insignificantly so that the final state selection remains unchanged for the 
case in which it is made and in which it is not. The authors have in mind 
a weak measurement in the sense of a Stern Gerlach separation of the 
initial wave packet into a superposition of spatially displaced components. 
We can "verify" the result of an intermediate measurement by observing 
where the peak in the final state Gaussian lies. We expect that the location 
is shifted by a small amount corresponding to the result of the weak 
measurement as spin up. By observing a large number of similarly prepared 
systems we can measure the expectation value of the weak measurement as 
up, to arbitrary accuracy. Of course, if we now replace the weak measure- 
ment of % by one of o- x we have also changed nothing since the initial state 
is an eigenstate of 0x. The same logic follows for a measurement of ax 
followed by ay. If such an argument for a weak measurement ~ry followed 
by one of a~ holds true, as the authors claim, we might be justified in asser- 
ting that both weak variables are simultaneously definite during the inter- 
vening period between selection measurements. We need, however, to 
analyze this assertion more closely. 

Let us consider the measurements involved: ~r z followed by ax. The 
initial state is spin up in the x direction: 

IziS=lx+) 

A weak measurement of % splits the wavefunction into a superposition: 

t 
x /~ [1Y, )(6y)+ i Y - 5 ( - @ ) ]  
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where 6y represents an infinitesimal shift in the py Gaussian distribution. 
The authors assert that if at this time we collapsed the wave packet for 
those systems which would have been destined to contribute to the PPS 
ensemble, only the up component would be found. Let us, however, follow 
the measurement through. A weak measurement of cr~ further splits the 
wave packet into: 

½1-Fx+ )(6y)(6x)- Ix_ )(6y)(-6x) 

+ I x + ) ( - @ ) ( 6 x ) +  [x ) ( - 6 y ) ( - 6 x ) ]  

The post selection for ay up projects out the spatial wave function: 

½[ (Ay + 6y)(6x) + (Ay + 6y) ( -6x)  + (Ay - 6y)(6x) - (Ay - @) ( -6x ) ]  

(~y) 

where the Ay's represent an unambiguously shifted Gaussian created by the 
precise measurement. 

In what way can we say the weak measurements commute? We see 
that after the weak ax measurement we obtain a state where the down 
components very nearly cancel due to the extremely small difference 
between cSx and - 6 x .  Despite the intervening ay measurement, we obtain 
essentially spin up in the x direction. The quantity ax effectively does not 
"see" ay. However, let us examine what happens to the down component 
"result" of the weak measurement ay. This component follows through all 
the way to the final state. It is not the case that for all systems which yield 
ay up in the final state, ay was up during the weak measurement (in the 
above sense). We can see this in the fact that if we now collapse the final 
state Gaussian, the expectation value would by at Ay rather than Ay + 6y 
as the authors assert. It remains that the ensemble is fundamentally distur- 
bed by the extra intervening measurement of weak ax which, like the 
precise measurement, opened up other possible paths to the final state. 
On the level of individual particles, the resulting PPS ensembles are 
different. Arguments for even simultaneous weak values of noncommuting 
observables for the intervening period between pre- and post-selection as 
well as contextuality are still blocked. 

The authors further believe that the supposed commutivity and the 
curious statistics of the weak measurements indicate that the elements in 
the system "conspire together to point to an internally consistent picture of 
a classical rather than a quantum-mechanical system. ''(4) In particular, they 
have in mind that values for angular momentum components add vec- 
torially to assign values to spin in all directions. Under the hypothesis that 
cr~ and a), have determinate weak values in the intervening period, which 
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as we have seen is misguided, they propose a thought experiment. Imagine 
that we reduced the time between the two to zero. Essentially then, we are 
measuring spin in a new direction which is a linear combination of a~ and 
o-y. The authors defend this picture by showing that for the case of a 
measurement of spin at a ~/4 angle from x and y, the statistics generated 
by the weak measuring prescription are exactly those of a classical addition 
of two unit spin vectors: one in the x and one in the y. 

Let us show a stronger version of this argument that would lead one 
to believe that this type of classical description is indeed a valid account of 
the process. Consider spin along an axis in the direction e which makes an 
angle 0 with x. Classically, if for the considered ensemble cr x = ay = 1 at the 
time of the weak measurement, we would expect that the magnitude of 
a~ is just given by the projection of these two unit vectors onto the 
direction: 

o-~ = cos 0 + sin 0 

The prescription for weak measurements gives the weak spin as 

( y + l a = I x + )  
c r y =  ( y + l x + )  

a~ tx + ) = cos 0/2 t e + ) - sin 0/2 ]c~ _ ) 

- 1  
[y+ ) = ~---~ [cos 0/2 + sin 0/2] [7+ ) +-__2__w/~ [cos 0 / 2 -  

aw~ = cos 2 0/2 - sin 2 0/2 + 2 cos 0/2 sin 0/2 

= cos 0 + sin 0 

sin 0/2] Ia-  > 

It would seem then that the classical description is correct: the o- x and G, 
angular momentum vectors are simply added vectorially. Could it be that 
we have discovered one way in which realistically weak measurements yield 
classical results? No. We can easily see that this case is just a matter of 
coincidence by returning to the case considered above in which the initial 
and final spin-up vectors were separated by an angle greater than re/2. Here 
we obtained from the weak prescription G~ = tan ~/2. Semiclassically, this 
value for spin in the z direction should be az = sin c~, by the same argument 
given above. Indeed the authors themselves seem to have realized this by 
the time of their 1988 article. (5) A semiclassical analysis could never yield 
an arbitrarily large value for weak spin. Moreover, no further mention is 
made of a classical interpretation of weak measurements. 

Finally, what is the validity of their claim that aw indeed represents a 
new quantum variable called the weak variable? We have already seen that 
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the interference effect it describes can adequately be derived from the 
standard variables of quantum mechanics in the ordinary manner. How 
can the authors propose that they have found a new variable for the 
measured system when such a value depends on a weakness condition for 
the measuring device? Perhaps, they are persuaded into assigning reality to 
this displacement as an actual measuring result because it apparently does 
not depend explicitly on the measuring coordinate ~. Only the pre- and 
post-selected state and the observable to be weakly measured factor into 
the prescription for the weak value. However, we see that a stringent condi- 
tion of weakness is placed on the measuring device implicitly. It is only due 
to a relative insignificance of the originally displaced Gaussians after the 
weak measurement that we have obtained the supposed independence. This 
is tantamount  to saying that sin(x) are the same function just because of 
the similarity in their first-order expansion. 

We conclude that though it is convenient to label this shift due to 
interference as a weak quantum number, it is fundamentally misleading, 
because the measured system does not possess this property in any 
meaningful way. 
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