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Adaptationism maintains that natural selection is the principal factor caus-

ing evolutionary change. This statement is in need of qualification. Indeed,

Peter Godfrey-Smith finds several possible usages of the term adaptationism.1

Steven Orzack and Elliott Sober argue that for adaptationism to be an inter-

esting research program it has to be given in a reasonably strong form.2 Such

a reasonably strong version describes adaptationism as committed to the claim

that any factor other than natural selection can nearly always be ignored in the

explanation of why a certain trait is found in a population. Thus, adaptation-

ism allows one to ignore the role of non-selective factors such as mutation, drift,

recombination, or epigenetic processes.

Evolutionary game theory as set forth by John Maynard Smith is often asso-

ciated with adaptationism.3 Evolutionary games are considered as nothing but

∗I am grateful to Brian Skyrms, Rory Smead, Elliott Sober, and Kevin Zollman for helpful
comments.
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optimality models that take frequency-dependence into account. As a general-

ization of optimality models, evolutionary change in strategic settings is exclu-

sively explained by the workings of natural selection. In contrast to this view, I

shall put forward the claim that this conception rests on an impoverished view

of what constitutes a game. When properly conceived, processes such as drift or

mutation play a significant role in determining evolutionary outcomes in games,

more specifically, in games with a non-trivial extensive form. Thus, evolutionary

games provide a case for including non-selective factors into explanations of the

evolution of behavioral traits. I start by briefly characterizing adaptationism

and how some standard games conform well with models focusing on natural

selection. After introducing extensive form games, which model sequences of

moves, I will argue that games will typically have properties that make it nec-

essary to include non-selective factors into evolutionary explanations. Finally, I

describe the roles of mutation and drift in dynamic models of evolution in more

detail, and I discuss possible criticisms as well as some implications this result

has for different forms of adaptationism.

1 Adaptationism

Adaptationism remains a controversial topic to this day.4 As a research pro-

gram it is characterized by a strong focus on explaining the evolution of traits

by natural selection. If most individuals in a population possess a certain mor-

phological or behavioral trait, then it is exceedingly likely that past selection

caused the predominance of the trait. Orzack and Sober propose three ways

natural selection can be incorporated in a model of the evolution of a certain

trait: natural selection could have some causal influence, an important causal

influence, or natural selection could be the only important cause in the evolution

of that trait.5
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It is reasonable to assume that a statement like the third one should count

as adaptationist; i.e., non-selective factors such as mutation, drift, epigenetic

processes, or constraints can be ignored in a model that provides an adapta-

tionist explanation. To capture this idea, Orzack and Sober introduce the notion

of sufficient explanation. Natural selection is sufficient to explain a trait if a

model which disregards the influence of non-selective factors—a so-called cen-

sored model—explains the evolution of the trait as well as any more complex

model which includes other factors. There are a number of subtle issues in-

volved in this.6 But for the specific case of evolutionary games I think one can

give a fairly appropriate characterization of this idea. In particular, I will focus

my arguments on the role of natural selection and ignore the question in what

sense possible outcomes of selection processes may be regarded as optimal. I

believe this is justified, since adaptationists appear to accept at least the strong

emphasis on natural selection in evolutionary explanations regardless of their

take on the optimality of evolutionary outcomes.7

This specification of an adaptationist model makes it possible to define adap-

tationism. A reasonable formulation is offered by Orzack and Sober; according

to them, the adaptationist thesis reads as follows: “Natural selection is a suffi-

cient explanation for most nonmolecular traits.”8 In other words, adaptationism

claims that it is almost always enough to consider censored models in order to

explain or predict the prevalence of a phenotypic trait. As the most basic exam-

ple of such a model consider first a one-locus two-allele population genetic model

where the fitness of the A allele is 1 and the fitness of the a allele is 1− s, s > 0.

If both alleles are present in the population, then selection will carry the A allele

to fixation.9 We can switch from this model to a phenotypic model where we

are not talking about two alleles but about two phenotypic traits. It should

be emphasized that adaptationism is concerned with nonmolecular, i.e., pheno-
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typic traits. Adaptationists often admit that processes like drift may play an

important role in molecular evolution; however, they deny that non-selective

factors are important for phenotypic evolution.10

Models where one phenotype is superior to another in all circumstances are

admittedly very simple. Their range of application is quite restricted and they

should thus only serve as illustrations. One way to generalize them is given

by game theory, where fitnesses, or payoffs, depend essentially on the pheno-

types of other organisms. Game theory features prominently in adaptationist

explanations of animal behavior. In the most simple game theoretic settings the

adaptationist program appears to work perfectly fine. But, as we shall see, look-

ing at slightly more complex (but still biologically meaningful) games changes

this assessment considerably.

2 Evolutionary games

One of the paradigmatic games in evolutionary game theory is the Hawk-Dove

game.11 In this game, an individual can act as a hawk or as a dove regarding

a resource when meeting another of its kind. If both act hawkishly, then the

probability of serious injury is very high for both of them. If one of them acts

as a hawk and the other as a dove, then the hawk wins the resource. Finally, if

both act dovishly, then they do not fight and the resource is shared. The two

individuals can be regarded as players in a two-strategy game, where the first

strategy is choosing Hawk, H , and the second choosing Dove, D. The payoff

table of the Hawk-Dove game looks like this:

H D

H 0, 0 3, 1

D 1, 3 2, 2
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The most fundamental concept in game theory is the concept of a Nash

equilibrium. Players are at a Nash equilibrium when each of them chooses a

strategy that is optimal given the other players’ choices; i.e., as long as the

other players stay with their strategy choices, then no player has an incentive to

switch strategies. In the Hawk-Dove game there are three Nash equilibria. At

one the row player chooses H and the column player chooses D. At another these

roles are reversed. And there is a third Nash equilibrium in mixed strategies

where both players choose H with probability 1/2 and D with probability 1/2.

The game theoretic concept of a Nash equilibrium does by itself not tell us

much about what might be an evolutionary outcome in a game. John Maynard

Smith introduced the concept of an evolutionarily stable strategy for such con-

siderations.12 A strategy in a game is evolutionarily stable if a population who

adopts this strategy cannot be invaded by a sufficiently small fraction of individ-

uals playing a different strategy. This characterization of evolutionarily stable

strategies can be stated in a mathematically precise way. The interpretation

of evolutionarily stable strategies poses some interesting problems.13 However,

for our purposes this rather informal characterization of evolutionary stability

is enough. Evolutionarily stable strategies and Nash equilibria are precisely re-

lated. Every evolutionarily stable strategy is a Nash equilibrium. The converse

of this implication does not hold, however. Thus evolutionary stability is a

refinement of the Nash equilibrium concept.

The two pure-strategy Nash equilibria in the Hawk-Dove game are not evo-

lutionarily stable. In a population of Hawks, Doves do better, while Hawks

outperform Doves when the population consists almost entirely of Doves. On

the other hand, the mixed-strategy Nash equilibrium is evolutionarily stable.

This means that if the population is at a state where 1/2 of the population

play H and 1/2 play D, then small perturbations away from this state—which
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correspond to D mutants and H mutants, respectively—will lead back to it.

Alternatively, if all individuals in the population adopt the mixed strategy of

1/2 H and 1/2 D, then no mutant strategy employing a different mix can do

better. The reason for the evolutionary stability of the mixed equilibrium is that

each slight over-representation of H leaves D better off, while in a population

with a D share of more than a half, H yields a higher payoff.

Games can be a little more complex than this. Another well studied game in

evolutionary game theory is the Rock-Scissors-Paper game, where the strategies

are denoted by R, S and P . In this game there is a cycle of best responses: R

beats S, S beats P , and P beats R. There are two players, each of them choosing

a strategy simultaneously. Moreover, there is only one Nash equilibrium where

both players choose each strategy with probability 1/3. This Nash equilibrium is

not evolutionarily stable, however. The payoff table of the Rock-Scissors-Paper

game looks as follows:

R P S

R 0, 0 1,−1 −1, 1

P −1, 1 0, 0 1,−1

S 1,−1 −1, 1 0, 0

The difference between a game like Hawk-Dove and Rock-Scissors-Paper is

best brought out when taking into account evolutionary dynamics. This will

also serve to illustrate a point that will be of some significance below. It is

important to bear in mind that the concept of evolutionary stability is static, in

the sense that it does not by itself answer the question if a population evolves to

an evolutionarily stable strategy or state. Evolutionary stability only answers

the question why a population stays at a certain state and not how it got there.

The causal role of natural selection in the evolution of a trait is therefore insuffi-
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ciently modeled by evolutionary stability alone. Considering some evolutionary

dynamics explicitly is inevitable if one wants to get a thorough understanding

of the role of natural selection.

The basic equations describing selection dynamics are given by the replicator

dynamics.14 Suppose we have a game like Hawk-Dove. In a population of Hawks

and Doves, let x be the frequency of H and y = 1−x the frequency of D. Then

the replicator dynamics of the Hawk-Dove game above can be given by one

equation:

ẋ = xy(3 − 4x − 2y) = x(1 − x)(1 − 2x)

This follows from the general replicator dynamics. If there are types (strategies)

1, . . . , n in the population and if xi denotes the relative frequency of type i, then

the replicator dynamics is given by

ẋi = xi(u(i, x) − u(x, x)),

where x = (x1, . . . , xn) is the state of the population, u(i, x) is the fitness of

type i when the state of the population is x, and u(x, x) is the average fitness of

the population. The population is assumed to be (infinitely) large, so the fitness

values can be identified with the expected payoffs coming from the payoff matrix

of the underlying two-player game.15

In the Hawk-Dove game every population state except x = 0 or x = 1 evolves

to the evolutionarily stable strategy under the replicator dynamics. The poly-

morphism of H and D is not only asymptotically stable—all nearby states stay

close and converge to it; it is also globally stable—the set of states not converg-

ing to it is negligible. Thus, if one would like to explain a mixture of hawkish

and dovish behavior in a population, then one could try to argue that natural

selection explains the evolution of the mixture sufficiently well. The replicator
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dynamics is a general model of selection where types with above average fitness

increase in frequency and types with below average fitness decrease in frequency.

Moreover, one just has to assume implicitly that there is some kind of mutation

that pushes the population away from the pure states x = 0 and x = 1. The

precise nature of the mutation does not matter, however. Other non-selective

processes can be ignored. Thus, the Hawk-Dove game is an excellent example

for an adaptationist explanation.16

The Rock-Scissors-Paper game provides more of a challenge. With the pay-

offs as given above, the unique Nash equilibrium is not asymptotically stable.

But it is stable in a weaker sense. All evolutionary trajectories are cycling

around the unique Nash equilibrium. This implies that trajectories close to it

remain close, although they do not converge to the Nash equilibrium. The ex-

ample of the Rock-Scissors-Paper game shows that natural selection alone does

not necessarily lead to an equilibrium. More complicated dynamical behavior

is also possible.17 We may find natural phenomena other than convergence

to an equilibrium where natural selection alone could nevertheless explain the

phenomenon sufficiently well.

Adaptationist explanations work well for games like Hawk-Dove. They might

also work well for more subtle games like Rock-Scissors-Paper. They work well

in the sense that the replicator dynamics is an exemplary censored model in the

sense of Orzack and Sober. Selection is the only factor causing change in the

vector field that is generated by the replicator equations. But the question arises

if we should expect the same nice fit between evolutionary games and adapta-

tionist explanations in general. In order to answer this question we will have

to look at the general structure of games that are important for evolutionary

biology.
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3 Normal form and extensive form

John von Neumann and Oskar Morgenstern started their development of the

theory of games by considering games in extensive form.18 A game in extensive

form models the sequence of moves of players which determines the outcome of

the game. This can be done by using the notion of a game tree. A game tree

is a finite collection of ordered nodes where the ordering expresses a precedence

relation. The precedence relation is assumed to be such that the game tree is

connected, has one root, no cycles, and each node except the root is assumed to

have exactly one predecessor. At each node, one of the players chooses between

several actions, the number of which coincides with the number of nodes that are

its successors. At each stage of the game nodes may be part of an information

set. This means that the player does not know at which node in the information

set she is. Random events are incorporated into extensive-form games by adding

Nature as an additional player. At the nodes where Nature chooses, successor

nodes are reached according to a fixed probability distribution.

Another standard assumption imposed on many extensive-form games is

that they be games of perfect recall. This means that no player forgets any

information she once had. In fact, the game considered throughout most of the

rest of this paper will meet an even stronger requirement. In games of perfect

information a player is never uncertain about the node she currently occupies.

That is to say, all information sets are singletons. An important example of

an extensive-form game of perfect information is provided by Reinhard Selten’s

Chain-Store game.19 In this game, player I can decide to enter a market ,E,

that is dominated by a chain store. If she does not enter, D, the market share

of the chain store remains unchanged. If she decides to enter, player II (the

chain store) can choose between fighting (dumping prices), F , and acquiescing,

A. If she chooses to fight, both loose, but player I more heavily. If she decides
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to acquiesce, I gets half of her share of the market. This decision situation is

depicted in the following game tree:

ED

0,2

I

A

1,1

F

-2,-1

II

Notice the similarities between the Chain-Store game and the Hawk-Dove

game. A biological interpretation of the Chain-Store game may describe the

conflict between an owner and an intruder. In both games players have to make

a decision between fighting and not fighting. The important difference between

the two games is in the sequence of moves. In the Chain-Store, game player

I chooses first, while in Hawk-Dove both players decide simultaneously. An

extensive-form representation of the Hawk-Dove game would look differently.

Player II does not know whether I is a hawk or a dove. Therefore, her informa-

tion set includes two nodes:

DH

I

D

3,1

H

0,0

D

2,2

H

1,3

II

As we have already seen in the previous section, games need not be given

in extensive form. The representation used there was termed normal form by

von Neumann and Morgenstern, and it is now often called the strategic form

of a game. A game in strategic form consists of a set of players, a set of pure

strategies for each player, and a utility function for each player which associates

a real number—the player’s payoff—with each strategy profile. A strategy profile
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is a possible combination of the player’s pure strategies. Two-player strategic-

form games can be presented as payoff tables as in the case of Hawk-Dove and

Rock-Scissors-Paper.

Analogously to the Hawk-Dove game, every game in strategic form can be

represented by a game in extensive form. Von Neumann and Morgenstern have

shown that the converse also holds. Every extensive-form game can be given

as a game in strategic form. A pure strategy of a player simply determines the

decisions of that player at each of her information sets. The set of all these

strategies is the player’s strategy set. Her utility function carries over from the

extensive form game as well (where possible random moves can be taken into

account by taking expected values).20 The strategic-form of the Chain Store

game looks therefore like this:

F A

N 0, 2 0, 2

E −2,−1 1, 1

It is important to notice that, from a game theoretic point of view, the trans-

formation of extensive-form games into strategic-form games is more important

than the converse transformation. The most basic game theoretic solution con-

cepts, such as Nash equilibrium or the elimination of dominated strategies, are

defined for the strategic form of a game. Moreover, the above considerations

suggest that extensive-form games can always be given as strategic-form games

without loosing any relevant information—in fact, this is what von Neumann

and Morgenstern thought. This view has not gone unchallenged, though.21 One

reason for this will be given in the next section. As it turns out, considering

certain properties of extensive-form games has also important consequences for

adaptationism.
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4 Payoff genericity and structural stability

We may ask ourselves what would happen if we changed the payoffs of a

strategic-form game like Hawk-Dove slightly. After all, we never know the util-

ity functions or fitness values with complete accuracy, so it is important to take

arbitrarily small changes of the numbers that represent fitnesses and utilities

into account. In doing this, we see that in the Hawk-Dove game the structure

of Nash equilibria is invariant with respect to sufficiently small perturbations

of the players’ payoff entries. We still have two pure-strategy Nash equilibria

where one player chooses H and the other chooses D. And we also still have

a mixed Nash equilibrium that lies close to the mixed Nash equilibrium of the

original game.

These facts do not just hold for the Hawk-Dove game but for strategic-form

games in general. This follows from an important theorem in game theory.22

Given the number of players and their sets of pure strategies, one may think of

a game as completely specified by the players’ payoffs. This means that we can

parametrize games in terms of payoff entries. For instance, if we are looking at

two-player games where each player has two strategies, then one specification of

the payoffs will result in the Hawk-Dove game, while another specification will

result in a different game such as, e.g., the Prisoner’s Dilemma. This allows one

to view a game as a subset of some finite-dimensional real space. A property

is said to hold for almost all games if the set of payoff values for which the

property does not hold has measure zero. Thus, the payoff values for which the

property does not hold are confined to a subspace of the space of all games. To

view games as points in a finite dimensional real space also allows one to talk

about how close two games are. This can be done by introducing a metric on

the real space of games. The exact definition of the metric is not so important,

since all metrics induce the same topology on a finite-dimensional real space. A
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Nash equilibrium is called essential if there exists a nearby Nash equilibrium for

all nearby games. Nearby here means sufficiently close with respect to a metric.

A game is called essential if all its Nash equilibria are essential. The theorem of

Wu and Jiang states that almost all finite strategic-form games are essential.

An analogous result does not hold for extensive-form games, however. To see

this, consider the extensive form of the Chain-Store game. If player I chooses

N , then, no matter what strategy player II chooses, they always end up with

the same payoffs of 0 and 2. Perturbing these payoffs will still result in a

situation where the decision of player II has no influence on the outcome of the

game whenever 1 chooses N . This results in a strategic-form game that is not

essential. If I chooses N and it is sufficiently probable that II chooses F , then

the players choose according to a Nash equilibrium of the Chain-Store game.

To be more specific, if II chooses F with probability p and A with probability

1 − p, then I is better off with playing N as long as

−2p + (1 − p) < 0,

i.e., as long as p > 1/3. Hence there is a continuum of Nash equilibria where

player I chooses N with probability 1 and II chooses F with probability p >

1/3. This result continues to hold if the payoffs in the game tree are slightly

perturbed. However, a continuum of Nash equilibria always contains a Nash

equilibrium which is not essential: for some sufficiently close strategic-form

game there is no nearby Nash equilibrium. This can, e.g., be seen by perturbing

the payoff entries of the strategic-form representation of the Chain-Store game

slightly. Therefore, for many game trees the payoffs are often constrained to

be elements of a subspace of the space of corresponding strategic-form payoffs.

Continua of Nash equilibria may always emerge when there are decision nodes

of information sets that are unreached in a Nash equilibrium.23
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Considering payoff perturbations is one way to assess the robustness of the

properties of a game theoretic model.24 When we move from a static analysis of

games to a dynamic analysis, another type of robustness becomes very impor-

tant. In the literature on dynamical systems this type of robustness is known

as structural stability.25 Consider the replicator dynamics of the Hawk-Dove

game. We may ask the question what happens to the evolutionary trajectories

when we perturb the replicator equations just slightly. To do this, we have to

consider the replicator dynamics of the Hawk-Dove game as a point in a metric

function space. The elements of this space are functions and the metric mea-

sures similarity according to whether the functions and its partial derivatives

are close to each other.

Once we are able to consider dynamical systems close to the replicator equa-

tions, we can investigate the problem whether there is a qualitative change

in the evolutionary trajectories of the replicator dynamics when we consider

an arbitrarily close dynamics. If the evolutionary trajectories of the replicator

dynamics and all sufficiently close dynamics are topologically equivalent, then

the replicator dynamics is structurally stable. Topological equivalence means

that there is a homeomorphism—a continuous, one-to-one transformation with

continuous inverse—between the evolutionary trajectories of the replicator dy-

namics and another dynamics. To put it informally, the trajectories of topolog-

ically equivalent systems look the same up to various distortion operations such

as stretching. From a qualitative perspective, topologically equivalent systems

can be regarded as being the same. Topological equivalence defines equiva-

lence classes of dynamical systems. Structural stability of a dynamical system

states that a neighborhood of this system in function space is contained in its

equivalence class. As an example of structural instability you may think of an

asymptotically stable rest point of the dynamics becoming unstable for arbitrar-
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ily small perturbations. A particularly exciting example is provided by a Hopf

bifurcation, where an asymptotically stable rest point not only becomes unsta-

ble, but is also located within a periodic attractor which suddenly appears after

the bifurcation. It should be emphasized that these transitions are not continu-

ous; a new qualitative behavior appears suddenly due to continuous changes in

the parameters.

Considering structural stability of the replicator equations (and of other

dynamical systems as well) is important since we can never be sure whether the

description of processes provided by the equations is completely accurate. If a

plausible perturbation of the replicator dynamics leads to a different qualitative

behavior of the system, then this calls the original results into question. It

also indicates that a deeper theoretical and empirical analysis of the game is

necessary.

The replicator dynamics of the Hawk-Dove game is structurally stable. This

follows from Peixoto’s theorem.26 The replicator dynamics of the Rock-Scissors-

Paper game is not structurally stable. This follows from the fact that the

unique interior rest point of the dynamics (which coincides with the unique Nash

equilibrium) is a center; i.e., all eigenvalues of the Jacobian matrix evaluated

at this rest point are purely imaginary. This implies that arbitrarily small

perturbations may change the zero real parts of the eigenvalues, yielding a

different qualitative behavior of the evolutionary trajectories. A perturbation

of the payoffs already indicates the same. Some payoff perturbations of the

Rock-Scissors-Paper game turn the unique Nash equilibrium into a sink and

some into a source.27 It should be noted that the Rock-Scissors-Paper game

is essential. This implies that we will always find a Nash equilibrium close

to the original one after a perturbation of the payoffs. Qualitative changes

of the replicator dynamics close to the Nash equilibrium will therefore change

15



its stability properties. This should not be too surprising, after all, since the

replicator dynamics of Rock-Scissors-Paper with perturbed payoffs constitutes

a possible perturbation of the replicator dynamics.

5 The roles of drift and mutation

What is the relation between essential Nash equilibria and structural stability

on the one hand, and adaptationism on the other? This will become clear once

we study the robustness properties of extensive-form games like the Chain-Store

game. We have seen in the previous section that continua of Nash equilibria

are unavoidable in the Chain-Store game; payoff perturbations of the extensive-

form game will not destroy them. When we consider the replicator dynamics of

the strategic-form game, there will thus exist a continuum of rest points since

every Nash equilibrium is a rest point of the replicator dynamics. The figure

below represents these rest points as black dots in the upper left part of the

phase portrait:

bb

bb bb bb bb bb bb bb bb bb bcbc bcbc bcbc bcbc

bcbcbcbc

bcbc

The evolutionary dynamics here does not arise from the replicator dynam-

ics as described previously, but from the two-population replicator dynamics

where we have one population for the role of player I and another population

for the role of player II. In an evolutionary context one may think of inter-
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actions between males and females, or of inter-species interactions. Moreover,

the two-population replicator dynamics can be imbedded in a one-population

replicator dynamics where each individual can be in both roles of the game.28

For illustrative purposes the two-population model is much better suited. The

two-population replicator dynamics is given by

ẋi = xi(u(i, y) − u(x, y))

ẏj = xj(u(j, x) − u(y, x)),

where xi and yj are the relative frequencies of types in the first and the second

population, respectively; x = (x1, . . . , xn) and y = (y1, . . . , ym) describe the

states of the two populations; and u(i, y) and u(j, x) are the payoffs to strategies

i and j, while u(x, y) and u(y, x) are the population-specific average payoffs.

As in the one-population replicator dynamics, the expressions in parentheses

evaluate a type’s payoff when interacting with the other population relative to

the average payoff in its own population.

The figure above expresses several basic facts about the selection dynamics

of the Chain-Store game. In the lower left corner there is an asymptotically

stable rest point which corresponds to the subgame perfect Nash equilibrium of

the game. An open set of evolutionary trajectories converges to the component

of rest points, however. This means that this component cannot be ignored in

an analysis of the game. Along the component there is no selective pressure

since there are no payoff differences. Thus, once it is reached by the replicator

dynamics, forces that remain unmodeled in the replicator dynamics will deter-

mine the further evolution of the system. This implies that drift has a strong

influence on the evolutionary outcome as long as we consider the replicator dy-

namics as the right evolutionary model. The replicator dynamics is a censored

model in the sense of Orzack and Sober, however. Thus, even if we start with a
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model that takes only natural selection into account, we end up in a situation

where non-selective factors play a significant role in dtermining evolutionary

outcomes.

Along the component of Nash equilibria, the population may be pushed to

the left and end up in the state (x, y) = (0, 1) due to stochastic events. Or it

may be pushed to the right and eventually leave the component of rest points

again when p < 1/3. In this case the population enters the basin of attraction

of the subgame perfect equilibrium and selection takes over. If the population

is very large the effects of drift will not be very pronounced. The population

may drift along the component for a very long time. Whatever happens, we

need to include processes other than natural selection in order to explain the

evolutionary outcome. Selection alone does therefore not provide a sufficient

explanation for the evolutionary outcomes of the model.

In a strategic-form game such reasoning could be countered by appealing

to payoff robustness. As we have seen, continua of Nash equilibria are not

essential. Moreover, almost all strategic-form games have a finite number of

Nash equilibria.29 Hence, for strategic-form games the argument given above has

no teeth. It would depend on a degenerate specification of the payoff parameters.

This counter-argument does not hold for games in extensive form, however.

As we have seen, the continuum of Nash equilibria is robust regarding payoff

perturbations of the extensive form. Thus, drift remains an important factor

regardless of particular payoff choices.

There is another way to reach a similar conclusion which is based on struc-

tural stability. Like the Rock-Scissors-Paper game, Chain-Store-like games are

not structurally stable. This follows from the existence of a continuum of rest

points (which implies eigenvalues of the Jacobian matrix at those rest points

with zero real part). Such a continuum will not persist under perturbations of
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the dynamics. But unlike the Rock-Scissors-Paper game, the fact of structural

instability persists under payoff perturbations in the Chain-Store game.

These results are important when we study a specific perturbation of the

replicator dynamics, the selection-mutation dynamics.30 Recall that the repli-

cator dynamics does not model mutation explicitly. Rather, one uses implicit

arguments to the effect that mutation provides enough variation such that every

type will be present in the initial population. The selection-mutation dynamics

includes mutation terms explicitly. For the two-population version it can be

given by

ẋi = xi(u(i, y) − u(x, y)) + ε(1 − nxi)

ẏj = xj(u(j, x) − u(y, x)) + δ(1 − myj),

where ε and δ are uniform mutation rates within each population, and n, m are

the numbers of strategies in each population, respectively. The last term of each

equation states that at each point in time the same share of each type mutates

into any other type with equal probability. This is a simplification that allows

one to derive analytical results in certain cases. (In the next section, I will

remark on what happens when mutation rates are not assumed to be uniform.)

Notice that we do not assume ε and δ to be equal. We will assume, however,

that ε and δ are of the same order of magnitude as they go to zero.31

We are now in the position to derive the selection-mutation dynamics of the

Chain-Store game, where ā = 2xEyF − xE(1 − yF ):

ẋE = xE(1 − 3yF − ā) + ε(1 − 2xE)

ẏF = 2yF xE(yF − 1) + δ(1 − 2yF )

Since xN = 1−xE and yA = 1− yF , the two-population selection-mutation dy-
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namics of the Chain-Store game is completely specified by these two differential

equations. We are interested in what happens to the component of Nash equilib-

ria under the perturbation. Will it disappear, or will there be rest points close

to the component? To answer these questions, notice we look at the selection-

mutation dynamics close to xE = 0. A Taylor expansion in terms of ε based on

the rest point condition

ẋE = xE(1 − 3yF − ā) + ε(1 − 2xE) = 0

yields

xE =
ε

3yF − 1
+ higher order terms in ε.

Hence, up to higher order terms in ε,

ẏF = 2yF

ε

3yF − 1
(yF − 1) + δ(1 − 2yF ) = 0

or

ε

δ
=

(2yF − 1)(3yF − 1)

2yF (yF − 1)
.

Differentiating the right-hand side of this equation with respect to yF shows

that it has a unique maximum for yF ∈ [0, 1] at yF = −1 +
√

2. The maximum

value is 3/2 −
√

2. Thus if

ε

δ
<

3

2
−
√

2,

then there exists a rest point close to xE = 0, yF > 1/3. When we reverse the

inequality sign, there exists no such rest point. Depending on the ratio ε/δ, all

trajectories will either converge to the subgame perfect equilibrium, or there

will be another rest point. In the latter case, index theory32 establishes that

there exists at least one further rest point. One of them is asymptotically stable

and the other one is a saddle. This is illustrated in the following phase portrait:
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Thus, in this case there exists an asymptotically stable rest point which

corresponds to a Nash equilibrium where player II is prepared to fight and player

I does not enter. The following phase portrait depicts the situation where the

subgame perfect equilibrium is globally stable (if ε/δ is sufficiently high):

bb

To summarize, for the replicator dynamics drift plays an essential role. Drift

will play an equally essential role for all evolutionary dynamics that respect the

equilibrium structure of the game, i.e. for which all Nash equilibria are rest

points. In the selection-mutation dynamics, mutation plays an essential part in

determining the range of evolutionary outcomes. Other biologically plausible

perturbations will also have to include non-selective factors. This follows from

the fact that selection results from payoff differences, which are absent along

non-singleton Nash sets.

It should be noted that the Chain-Store game is by no means an exception.33
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Non-singleton Nash sets may appear whenever decision nodes or information sets

are unreached in a Nash equilibrium. Therefore, when considering games in ex-

tensive form, evolutionary game theory ceases to fit into a strictly adaptationist

framework. In general, natural selection alone does not explain evolutionary

outcomes in game theoretic models.

6 Discussion

I argued in the previous section that if we consider the replicator dynamics as

the appropriate evolutionary dynamics, then drift enters as an inevitable fac-

tor for many extensive-form games such as the Chain-Store game. One could

object to that conclusion with an argument that is based on the logic of sub-

game perfectness.34 Reinhard Selten developed a trembling-hand approach to

evolutionary stability.35 The logic behind this reasoning is quite simple. Con-

sider the line of Nash equilibria in the Chain-Store game. In all these equilibria

player II does not reach her decision node. But what if player I ”trembles”,

i.e. makes a mistake and chooses E? Then player II would have to play F

with positive probability, which gives her a suboptimal payoff once she is at the

subgame which starts at her decision node. Hence, any Nash equilibrium other

than (E, A) is not subgame perfect.

This is a potential criticism to what I have stated above. A trembling-hand

approach would force us to consider a game without a non-singleton Nash set

instead of our original game. The original game would be a degenerate limiting

case when we let the probability of trembling go to zero. But, as Ken Binmore

has convincingly argued with respect to the rational choice concept of subgame

perfectness, trembling-hand considerations are not the only or the most rea-

sonable way to deal with unreached information sets.36 The trembling-hand

paradigm effectively assumes that the mistakes of players are probabilistically
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independent noise. But without considering equilibrating processes, this as-

sumption is quite arbitrary. A similar reasoning applies to the trembling-hand

approach for evolutionary stability in extensive-form games. Without consider-

ing what happens to the evolutionary dynamics close to a component of Nash

equilibria when players tremble, not much can be said about the evolutionary

significance of the component. If player II were called upon to choose at her

decision node in the Chain-Store game, then choosing A is better than choos-

ing F . But how often is her decision node reached compared to when it is not

reached? How does player I act and in what way are her actions stochastic? In

order to analyze these problems, one has to take account of the dynamics close

to Nash components.

Studying the selection-mutation dynamics close to a component reveals some

of this information. One should bear in mind, however, that the selection-

mutation equations as given above have an extremely simple structure. The

relationships of mutation between the strategies are very symmetric and ideal-

ized. This need not be the case. Such relations may be highly non-linear and

asymmetric. In this case, many different scenarios would obtain close to the

component of Nash equilibria, e.g. any number of equilibria with all kinds of

stability properties.37 The significance of the result above derives from the fact

that even in this most benign case there is a non-trivial qualitative change in

the evolutionary dynamics which depends essentially on the mutation rates.

Ken Binmore and Larry Samuelson studied learning dynamics close to Nash

components quite generally.38 Their learning dynamics does have a very general

functional form and can straightforwardly be considered as a perturbed selection

dynamics. The effects of the selection part of the dynamics become very small

when populations come close to a component of Nash equilibria, because the

payoff differences go to zero. Thus, close to Nash components factors Binmore
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and Samuelson collectively call ”drift” will play a crucial role in determining the

properties of the dynamical system. They prove under quite general conditions

that drift—i.e. originally unmodeled factors—can stabilize any Nash component

such as the one that we have encountered in the Chain-Store game. Hofbauer

and Huttegger provide similar results to the one given in the previous section

for signaling games, which are another biologically relevant example.39 Games

of indirect and direct reciprocity provide further examples where continua of

Nash equilibria are relevant.40

Another possible criticism may be based on the following reasoning. In the

selection-mutation dynamics the ratio of mutation rates does indeed influence

the evolutionary outcome. But may selection not also adjust the mutation rates

such that a population will reach one specific evolutionary outcome? In other

words, would natural selection not favor individuals which have the ”right”

mutation rate given the mutation rate in the other population?

To answer this question, notice first that for the Chain-Store game we have

to assume that the subgame perfect Nash equilibrium is in some way better

than the other Nash equilibria, since it is a rest point of the selection-mutation

dynamics for any sufficiently small ε, δ. This is not an innocuous statement,

since the concept of subgame perfectness is not vindicated from an evolutionary

point of view.41 But let us grant it for the moment. In this case, drift enters

the picture again. ε and δ may change continuously, but the only relation that

matters regarding which evolutionary outcomes are possible is whether the ratio

ε/δ is big enough. Thus, small changes to a mutation rate will result in the same

possible evolutionary outcomes. The phenotype of having a certain mutation

rate thus can have only two consequences. I would like to emphasize, though,

that the fitness consequences of having a certain mutation rate are far from

clear in the case of the Chain-Store game.
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The ubiquity of non-singleton Nash sets similar to the one of the Chain-

Store game has profound consequences for adaptationism. Godfrey-Smith dis-

tinguishes between three kinds of adaptationism: empirical, explanatory and

methodological adaptationism.42 Empirical adaptationism claims that natural

selection is in fact the only important causal force in determining evolutionary

trajectories. This form of adaptationism is prone to well known criticisms from

population genetics. This appears not to be the case for explanatory adapta-

tionism, which holds that though other processes may be important at, e.g., the

molecular level (such as genetic drift or details of mechanisms underlying mu-

tation), natural selection is the only important factor in explaining phenotypic

adaptations of organisms (i.e. their apparent design). Methodological adapta-

tionism, finally, states that looking for evolutionary explanations in terms of

natural selection is a good methodological maxim.43

Concerning empirical adaptationism, the conclusions to be drawn from my

arguments are not conclusive in themselves, since arguments solely based on

theoretical models cannot decide empirical issues. But the explanatory non-

sufficiency of selection in extensive-form games indicates that we should not

expect empirical adaptationism to be adequate in general. Interactions that

involve sequences of moves of several players are presumably abundant between

all kinds of organisms. In games modeling these interactions, non-singleton Nash

sets where selection ceases to work are inevitable. From a theoretical viewpoint

it seems thus to be likely that in order to explain certain behaviors one must

also include non-selective factors in an essential way.

Explanatory adaptationism seems to be quite suspect given the arguments

from extensive-form games. Consider again the Chain-Store game. Both the

subgame perfect equilibrium and the equilibria in the other Nash set are evo-

lutionarily optimal in the minimal sense that selection stops to work once one
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of these states is reached. Hence both kinds of equilibria describe a possible

behavioral adaptation in a very basic sense. Even if we grant the point that the

apparent adaptations of organisms constitute the most important problem of

biology (which is not an obvious point), explaining which behavioral adaptation

evolves in the Chain-Store game requires something more than just appealing

to selection.

Finally, the prospects of methodological adaptationism also do not appear

to be enhanced by what we know from extensive-form games. As long as one is

working with games which have a trivial extensive-form structure (i.e. simulta-

neous move games), one need not worry too much about non-selective factors.

This does not hold for games with a non-trivial extensive-form structure. In this

case one should not proceed as if selection were the only important causal factor

in the evolution of a trait. Once possible obstacles like the Nash component in

the Chain-Store game are identified, a more careful analysis has to be under-

taken, which includes formal analysis as demonstrated here for the Chain-Store

game. Understanding the results from different kinds of perturbations may then

allow one to make predictions (such as the ratio of mutation rates) which can

in principle be tested.44

7 Conclusion

We have seen that for games in extensive form, the adaptationist program is not

feasible from the point of view of evolutionary game theory. Information sets

that are unreached in a Nash equilibrium play an important role in determining

evolutionary outcomes. They allow non-selective processes to become significant

causal factors for influencing evolutionary trajectories. This conclusion is about

behavioral traits that arise from frequency-dependent interactions. Perhaps

a similar argument regarding morphological traits can be put forward. An
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analysis in terms of other evolutionary formalisms, such as the Price equation or

other descriptions of evolution by natural selection would also be desirable.45 It

remains to be seen whether my argument will carry over to these other contexts.
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