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To cope with the challenges due to increasing peak load, an optimal day-ahead scheduling problem for social welfare maximization
is proposed, in which not only the comfort level of consumers and costs of power suppliers but also the power losses in transmission
and operation costs of transmission owners are taken into account.Then this optimal day-ahead scheduling problem is reformulated
and solved via the alternating direction method of multipliers (ADMM), by which fast convergence is guaranteed and the privacy
of participants is ensured, in a distributed manner. Specifically, in the proposed distributed optimal day-ahead scheduling, the
hourly prices for consumers are divided into hourly supply prices and hourly delivery prices, which will be updated by the
independent system operator based on the hourly demand-supply situations and hourly demand-delivery situations, respectively.
And the consumers, power suppliers, and transmission owners make their individual optimal day-ahead scheduling based on their
individual hourly prices, hourly supply prices, and hourly delivery prices, respectively, until the hourly demand-supply balances and
hourly demand-delivery balances are achieved. Effectiveness of the proposed distributed optimal day-ahead scheduling is verified
by the cases studied.

1. Introduction

Recently, increasing peak load due to economic development
and replacing fossil fuels with electricity power has resulted
in serious challenges to the power grid, such as increasing the
operation costs and decreasing the reliability of power grid
[1, 2]. To cope with these challenges, day-ahead scheduling,
which is widely recognized as an indirectly and effective
approach for costs reducing and peak load shaving, has been
intensively discussed [3–6].

So far, there is plenty of literature about the day-ahead
scheduling, minimizing costs of power suppliers [7, 8],
minimizing energy costs of consumers [9], minimizing costs
of utility company and payments of consumers [10], or min-
imizing the day-ahead operation costs of integrated urban
energy system [11]. From the social perspective, it is desired
to maximize the sum of comfort level of consumers and
meanwhile minimize the costs of utility companies. This is

also called the social welfare maximization and has attracted
much attention [12–16]. Besides, distributed coordination
approaches [17, 18], which are widely applied in many other
fields, have been introduced into the day-ahead scheduling in
a smart grid recently.

As well known, power system consists of not only power
generation and consumption but also power transmission,
and the costs of transmission owners, which includes power
losses in transmission and operation costs, play important
part in the social welfare. Besides, since improper day-
ahead scheduling might challenge the operation of power
transmission and cause congestions, the capacity limits of
tie lines should be considered in the day-ahead scheduling,
which makes the day-ahead scheduling more complex but
more reasonable.

While most of the mentioned literature [10, 12, 16]
assumes that all the consumers and generators are connected
to the same bus, few literatures [13] have considered the
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capacity limits of tie lines, but the costs of transmission
owners are ignored.

Besides, although many distributed theories [19, 20] and
decomposition based approaches have been proposed to
solve the day-ahead scheduling in distributed manners, the
convergence rates of some approaches, such as subgradient
projection method, are not fast enough, and they are highly
dependent on the choice of step size [16]. Moreover, for most
decomposition based approaches, in certain cases, their con-
vergence criteria may not hold and modified decomposition
method is required [21].

Nowadays, low cost communications technologies enable
more cost-reflective price for electricity services, which
can finally animate the day-ahead scheduling and facilitate
the optimization of social welfare. Then, in this paper, a
distributed optimal day-ahead scheduling for social welfare
maximization is proposed, in which not only the comfort
level of consumers and costs of power suppliers but also the
costs of transmission owners are considered.

In the proposed distributed optimal day-ahead schedul-
ing, the participants are consumers, power suppliers, and
transmission owners. The day-ahead hourly prices for con-
sumers are divided into hourly supply prices and hourly
delivery prices, and each consumer has signed contracts
with a power supplier and several transmission owners who
govern the tie lines connecting himself to the power supplier
chosen by him. Since each power supplier has his individual
hourly supply prices which indicate his individual hourly
demand-supply situations and each transmission owner has
his individual hourly delivery prices which indicate his
individual hourly demand-delivery situations, then each
consumer has his individual hourly prices.

In the beginning, consumers, power suppliers, and trans-
mission owners submit their individual initial day-ahead
schedules to the independent system operator (ISO). Most
of the time, there are hourly demand-supply differences for
each power supplier and hourly demand-delivery differences
for each transmission owner. Then based on experience
and their individual hourly differences, ISO proposes hourly
supply prices for each power supplier and hourly delivery
prices for each transmission owner and broadcasts the hourly
demand-supply differences, hourly demand-delivery differ-
ences, hourly prices, hourly supply prices, and hourly delivery
prices to the corresponding participants.

First, based on the related hourly demand-supply differ-
ences, hourly demand-delivery differences, and his individual
hourly prices, each consumer makes his optimal day-ahead
hourly demands and submits them to the ISO. With the
updated day-ahead hourly demands of consumers, the hourly
demand-supply differences and hourly demand-delivery dif-
ferences are half updated by the ISO and broadcast to the
corresponding power suppliers and transmission owners,
respectively.

Next, each power supplier makes optimal day-ahead
hourly supplies based on his individual hourly supply prices
and half updated hourly demand-supply differences and
submits them to the ISO as well. Similarly, each transmission
owner makes optimal day-ahead hourly deliveries based
on his individual hourly delivery prices and half updated

hourly demand-delivery differences and submits them to the
ISO. Then with the updated day-ahead schedules of all the
participants, all of the hourly demand-supply differences and
hourly demand-delivery differences are fully updated, and
all of the hourly supply prices and hourly delivery prices are
updated by the ISO.

The newest hourly demand-supply differences, hourly
demand-delivery differences, hourly prices, hourly supply
prices, and hourly delivery prices will be broadcast to the
corresponding participants, and this process will be ended
until all the hourly demand-supply balances and hourly
demand-delivery balances are achieved.

The contributions of this paper are summarized in the
following. First, quite different from the existing literature
[10, 12, 13, 16], in which only the comfort level of consumers
and fuel costs of power suppliers are considered, in this
paper, the power losses in transmission and operation costs of
transmission owners are considered as well. Accordingly, for
each transmission owner, the hourly delivery prices, which
indicate his individual hourly demand-delivery situations, are
introduced.

Second, the costs of power suppliers associated with
hourly supplies variability, which play an important role in
hourly supply prices [22], have been taken into account.That
makes the proposed social welfare more comprehensive.

Third, with the aid of the ISO, the proposed distributed
optimal day-ahead scheduling can be properly matched with
the framework of alternating direction method of multipliers
(ADMM), by which a global and fast convergence is guaran-
teed and the privacy of participants is ensured.

This paper is organized as follows. The proposed dis-
tributed optimal day-ahead scheduling problem is formu-
lated in Section 2. The design of the proposed day-ahead
scheduling and the corresponding algorithms are presented
in Section 3.The cases studied are illustrated in Section 4, and
the last section is the conclusion.

2. Problem Formulation

In this section, topology of the smart grid is illustrated in
Figure 1, and a highly coupled day-ahead scheduling problem
for social welfare maximization is proposed, in which not
only the comfort level of consumers and costs of power
suppliers but also the power losses in transmission and
operation costs of transmission owners are considered.

2.1. Cost Function of Transmission Owner. In this paper,
assume that the voltage in the power grid is constant; denote
the set of tie lines by𝐿; as well known, for each tie line 𝑙, power
losses in transmission can be written as

𝑃loss,𝑙 = 𝑃2𝑙 + 𝑄2𝑙
𝑈2𝑛

𝑅𝑙, ∀𝑙 ∈ 𝐿, (1)

where 𝑃𝑙 is the active power, 𝑄𝑙 is the reactive power, 𝑈𝑛 is
the nominal voltage, 𝑅𝑙 is the equivalent resistance of tie line𝑙. Denoting the line power factor of tie line 𝑙 by cos𝜑, we have

cos2𝜑 = 𝑃2𝑙
𝑃2
𝑙
+ 𝑄2
𝑙

, ∀𝑙 ∈ 𝐿. (2)
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Figure 1: Topology of the smart grid. Note that 𝑈𝑛 is the 𝑛th consumers aggregations.

Then from (1), define 𝑎𝑙 = 2𝑅𝑙/(𝑈𝑛 cos𝜑)2 and denote the
set of time slots by 𝑇, we formulate the cost function of tie
line 𝑙 in time slot 𝑗 as

𝑓𝑙,𝑗 (𝑃𝑙,𝑗) = 𝑎𝑙
2 𝑃
2
𝑙,𝑗 + 𝑏𝑙𝑃𝑙,𝑗 + 𝑐𝑙, ∀𝑙 ∈ 𝐿, ∀𝑗 ∈ 𝑇, (3)

where 𝑃𝑙,𝑗 is the active power delivered by tie line 𝑙 in time
slot 𝑗, 𝑏𝑙 and 𝑐𝑙 are the parameters related to operation costs
of transmission owner 𝑙.

DefineL𝑙 = (𝑃𝑙,1, . . . , 𝑃𝑙,𝑡)𝑇; 𝑡 is the number of time slots;
then the cost function of tie line 𝑙 can be formulated as

𝐹𝑙 (L𝑙) = ∑
𝑗∈𝑇

𝑓𝑙,𝑗 (𝑃𝑙,𝑗) , ∀𝑙 ∈ 𝐿. (4)

2.2. Cost Function of Power Supplier. For the fuel costs
of power suppliers, we choose the most commonly used
quadratic function. Denote the set of suppliers by 𝐺, G𝑔 =
(𝑃𝑔,1, . . . , 𝑃𝑔,𝑡)𝑇; then, for supplier 𝑔, his fuel costs in the next
day 𝑓𝑔1 can be formulated as

𝑓𝑔1 (G𝑔) = ∑
𝑗∈𝑇

(𝑎𝑔2 𝑃
2
𝑔,𝑗 + 𝑏𝑔𝑃𝑔,𝑗 + 𝑐𝑔) , ∀𝑔 ∈ 𝐺, (5)

where 𝑃𝑔,𝑗 is the active power generated by power supplier 𝑔
in time slot 𝑗; 𝑎𝑔, 𝑏𝑔, and 𝑐𝑔 are positive parameters.

Besides, for supplier 𝑔, the costs associated with hourly
supplies variability are formulated as the following quadratic
function:

𝑓𝑔2 (G𝑔) =
𝜂𝑔
2
𝑡−1

∑
𝑗=1

(𝑃𝑔,𝑗 − 𝑃𝑔,𝑗+1)2 , ∀𝑔 ∈ 𝐺. (6)

Hence the costs function of power suppliers 𝑔 can be
formulated as

𝐹𝑔 (G𝑔) = 𝑓𝑔1 (G𝑔) + 𝑓𝑔2 (G𝑔) , ∀𝑔 ∈ 𝐺. (7)

2.3. Utility Function. Denote the set of consumers by 𝑈, for
each consumer 𝑖 in each time slot 𝑗, the utility function 𝑢𝑖𝑗,
which values his comfort level, can be formulated as follows
[12]:

𝑢𝑖,𝑗 (𝑥𝑖,𝑗, 𝜔𝑖,𝑗) =
{{{{
{{{{
{

𝜔𝑖,𝑗𝑥𝑖,𝑗 − 𝛼
2𝑥
2
𝑖,𝑗, 0 ≤ 𝑥𝑖,𝑗 ≤

𝜔𝑖,𝑗
𝛼 ,

𝜔2𝑖,𝑗
2𝛼 , 𝑥𝑖,𝑗 ≥

𝜔𝑖,𝑗
𝛼 ,

(8)

where 𝑥𝑖,𝑗 is the aggregate demand of consumer 𝑖 in time slot
𝑗, 𝜔𝑖,𝑗 is the parameter related to comfort level of consumer 𝑖
in time slot 𝑗, a higher 𝜔𝑖,𝑗 implies a higher utility value, and
𝛼 is a predefined parameter related to the electricity costs of
consumer.

In essence, with the assumption that power suppliers
have quadratic costs functions, for consumer 𝑖 and the power
supplier 𝑔 chosen by consumer 𝑖, 𝛼 is dependent on the active
power 𝑃𝑔,𝑗 generated by power supplier 𝑔 in time slot 𝑗.
Generally, consumer 𝑖 has a small 𝛼 for off-peak time slots
and a large 𝛼 for on-peak time slots, 𝑖 ∈ 𝑈, 𝑔 ∈ 𝐺, 𝑗 ∈ 𝑇.
In this paper, we can assign different 𝛼 to different time slots
for each consumer 𝑖 based on general daily demand curve of
consumers, such as 0.02, 0.3, and 0.5 for off-peak, mid-peak,
and on-peak time slots, respectively [12]. But for simplicity,
we assign a middle 𝛼 for all the consumers in all the time
slots, and this has no substantial impact on the proposed
distributed day-ahead scheduling.

Define X𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑡)𝑇; then the utility function of
consumer 𝑖 can be formulated as

𝐹𝑖 (X𝑖) = ∑
𝑗∈𝑇

𝑢𝑖,𝑗 (𝑥𝑖,𝑗) , ∀𝑖 ∈ 𝑈. (9)

2.4. Proposed Optimal Day-Ahead Scheduling Problem.
Define x = (X1𝑇, . . . ,X𝑛𝑇)𝑇, 𝑛 is the number of consumers,
Z1 = (G1𝑇, . . . ,G𝑚𝑇)𝑇, 𝑚 is the number of power suppliers,
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Z2 = (L1𝑇, . . . ,LV
𝑇)𝑇, and V is the number of tie lines.

Then the objective function for social welfare maximization
is formulated as

𝑊(x,Z1,Z2) = ∑
𝑖∈𝑈

𝐹𝑖 (X𝑖) − ∑
𝑔∈𝐺

𝐹𝑔 (G𝑔)

−∑
𝑙∈𝐿

𝐹𝑙 (L𝑙) .
(10)

For day-ahead scheduling in this paper, we assign load
curtailment to real-timemarket [23] and concentrate on load
shifting.That means the total demand for each consumer 𝑖 in
the next day is a constant in this scheduling and we have

∑
𝑗∈𝑇

𝑥𝑖𝑗 = 𝐷𝑖, ∀𝑖 ∈ 𝑈, (11)

where 𝐷𝑖 is the total demand for consumer 𝑖 in the next day.
And for each 𝑥𝑖,𝑗, 𝑖 ∈ 𝑈, 𝑗 ∈ 𝑇, we have

𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑗, ∀𝑖 ∈ 𝑈, ∀𝑗 ∈ 𝑇, (12)

where 𝑥𝑖,𝑗 and 𝑥𝑖,𝑗 are the lower and upper bounds for
demand of consumer 𝑖 in time slot 𝑗, respectively.

For each power supplier 𝑔 in time slot 𝑗, its output 𝑃𝑔,𝑗
should equal the sumof demands of consumerswhopurchase
power from him. In this paper, we assume that the consumers
in the same aggregation choose the same power supplier and
denote the set of consumers who purchase power from power
supplier 𝑔 by 𝑈𝑔; then we have

∑
𝑖∈𝑈𝑔

𝑥𝑖𝑗 = 𝑃𝑔,𝑗, ∀𝑔 ∈ 𝐺, ∀𝑗 ∈ 𝑇, (13)

and we have

𝑃𝑔,𝑗 ≤ 𝑃𝑔,𝑗 ≤ 𝑃𝑔,𝑗, ∀𝑔 ∈ 𝐺, ∀𝑗 ∈ 𝑇, (14)

where 𝑃𝑔,𝑗 and 𝑃𝑔,𝑗 are the lower and upper bounds for 𝑃𝑔,𝑗,
respectively.

Besides, for each transmission owner 𝑙, his active power
delivery should equal the sum of demands of consumers
who have signed a transmission contract with him. Similarly,
we assume that the consumers in the same aggregation
choose the same transmission owners and denote the set of
consumers who have signed a transmission contract with
transmission owner 𝑙 by 𝑈𝑙; then we have

∑
𝑖∈𝑈𝑙

𝑥𝑖𝑗 = 𝑃𝑙,𝑗, ∀𝑙 ∈ 𝐿, ∀𝑗 ∈ 𝑇, (15)

and we have

𝑃𝑙,𝑗 ≤ 𝑃𝑙,𝑗 ≤ 𝑃𝑙,𝑗, ∀𝑙 ∈ 𝐿, ∀𝑗 ∈ 𝑇, (16)

where 𝑃𝑙,𝑗 and 𝑃𝑙,𝑗 are the lower and upper bounds for 𝑃𝑙,𝑗,
respectively.

Therefore, the objective function for social welfare maxi-
mization can be formulated as follows:

min 𝐹 (x,Z1,Z2)
= ∑
𝑔∈𝐺

𝐹𝑔 (G𝑔) +∑
𝑙∈𝐿

𝐹𝑙 (L𝑙) − ∑
𝑖∈𝑈

𝐹𝑖 (X𝑖) ,

s.t. (11) , (12) , (13) , (14) , (15) , (16) .

(17)

where𝐷𝑖 are the inputs variables, 𝑖 ∈ 𝑈, and x, Z1, Z2 are the
decision variables. According to (6), (11), (13), and (15), it can
be seen that the proposed day-ahead scheduling problem (17)
is highly coupled.

3. Distributed Optimal Day-Ahead Scheduling

To achieve a distributed and fast optimal day-ahead schedul-
ing in this paper, the proposed optimal day-ahead scheduling
problem is reformulated at first; then it is solved via the
ADMM in a distributed manner.

3.1. AnOverview onADMM. Aswell known, a standard form
of ADMM, the details of which can be found in [24], solves
the following problem:

min 𝐺1 (x) + 𝐺2 (z) ,
w.r.t. x ∈ C1,

z ∈ C2,
s.t. Ax = z.

(18)

Assume z ∈ R𝑚, assign a Lagrange multiplier vector 𝜌 ∈ R𝑚

to the equality constraint Ax = z, and we get the following
augmented Lagrange function:

𝐿 (x, z,𝜌) = 𝐺1 (x) + 𝐺2 (z) + 𝜌𝑇 (Ax − z)
+ 𝑐
2 ‖Ax − z‖22 ,

(19)

where 𝑐 is an arbitrary positive constant.Then the search for a
constraint saddle point of the augmented Lagrange function
is performed with an alternating procedure that starts from
arbitrary initials z(0) and p(0) and iteratively updates entries
as follows:
x (𝑘 + 1)

= argmin
x∈C1

{𝐺1 (x) + 𝜌𝑇Ax + 𝑐
2 ‖Ax − z (𝑘)‖22} ,

z (𝑘 + 1)

= argmin
z∈C2

{𝐺2 (z) − 𝜌𝑇z + 𝑐
2 ‖Ax (𝑘 + 1) − z‖22} ,

𝜌 (𝑘 + 1) = 𝜌 (𝑘) + 𝑐 (Ax (𝑘 + 1) − z (𝑘 + 1)) ,

(20)

When 𝐺1 and 𝐺2 are convex functions, and C1 is a
compact set or else the matrix A𝑇A is invertible, ADMM
converges to a unique stable point, which is assured to be a
constraint saddle point for 𝐿, hence the optimal solution.
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3.2. Design of Distributed Optimal Day-Ahead Scheduling.
First, according to problem (18) solved by ADMM, we refor-
mulate the proposed optimal day-ahead scheduling problem
(17) as follows.

Function 𝐺1(x) of the proposed day-ahead scheduling is
formulated as

𝐺1 (x) = −𝐹1 (X1) − 𝐹2 (X2) − ⋅ ⋅ ⋅ − 𝐹𝑛 (X𝑛) , (21)

which is a strictly convex function.
For each consumer 𝑖, his local constraints are collected in

the following compact set, 𝑖 ∈ 𝑈,

Q𝑖 =
{
{
{
X𝑖 | ∑
𝑗∈𝑇

𝑥𝑖𝑗 = 𝐷𝑖, 𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑗 ≤ 𝑥𝑖,𝑗, ∀𝑗 ∈ 𝑇
}
}
}
, (22)

and then the setC1 can be denoted by the Cartesian product

C1 = Q1 × Q2 × ⋅ ⋅ ⋅ × Q𝑛, (23)

which is a compact set.
Let (Z𝑇1 ,Z𝑇2 )𝑇 = z; then function 𝐺2(z) for the proposed

day-ahead scheduling is formulated as

𝐺2 (z) = ∑
𝑔∈𝐺

𝐹𝑔 (G𝑔) +∑
𝑙∈𝐿

𝐹𝑙 (L𝑙) , (24)

which is a strictly convex function as well.
For each power supplier 𝑔, his local constraints are

collected in the following set, 𝑔 ∈ 𝐺:
S𝑔 = {G𝑔 | 𝑃𝑔,𝑗 ≤ 𝑃𝑔,𝑗 ≤ 𝑃𝑔,𝑗, ∀𝑗 ∈ 𝑇} , (25)

and, for each transmission owner 𝑙, his local constraints are
collected in the following set, 𝑙 ∈ 𝐿:

R𝑙 = {L𝑙 | 𝑃𝑙,𝑗 ≤ 𝑃𝑙,𝑗 ≤ 𝑃𝑙,𝑗, ∀𝑗 ∈ 𝑇} , (26)

and then the setC2 can be denoted by the Cartesian product:

C2 = S1 ×S2 × ⋅ ⋅ ⋅ × S𝑚 ×R1 ×R2 × ⋅ ⋅ ⋅ ×RV. (27)

The equation constraints Ax = z can be deduced
directly from (13) and (15), where A ∈ R(𝑚+V)𝑡×𝑛𝑡. Define
󰜚𝑔 = (𝜌𝑔,1, . . . , 𝜌𝑔,𝑡)𝑇, 𝑔 ∈ 𝐺, 𝜌𝐺 = (󰜚𝑇1 , . . . , 󰜚𝑇𝑚)𝑇, 𝜎𝑙 =
(𝜌𝑙,1, . . . , 𝜌𝑙,𝑡)𝑇, 𝑙 ∈ 𝐿, 𝜌𝐿 = (𝜎𝑇1 , . . . ,𝜎𝑇V )𝑇, then according to
the above, we have (𝜌𝑇𝐺,𝜌𝑇𝐿)𝑇 = 𝜌.

Second, the proposed optimal day-ahead scheduling
problem will be solved via the ADMM in a distributed
manner as illustrated in (19) and (20) as follows.

Define the 𝑘th hourly demand-supply differences and 𝑘th
hourly demand-delivery differences, respectively, as

𝛿𝑔,𝑗 (𝑘) = ∑
𝑖∈𝑈𝑔

𝑥𝑖,𝑗 (𝑘) − 𝑃𝑔,𝑗 (𝑘) 𝑔 ∈ 𝐺, 𝑗 ∈ 𝑇,

𝛿𝑙,𝑗 (𝑘) = ∑
𝑖∈𝑈𝑙

𝑥𝑖,𝑗 (𝑘) − 𝑃𝑙,𝑗 (𝑘) 𝑙 ∈ 𝐿, 𝑗 ∈ 𝑇,
(28)

where 𝑘 is the round number of scheduling, then we define
𝜋𝑔 = (𝛿𝑔,1, . . . , 𝛿𝑔,𝑡)𝑇, 𝑔 ∈ 𝐺, 𝜛𝑙 = (𝛿𝑙,1, . . . , 𝛿𝑙,𝑡)𝑇, 𝑙 ∈ 𝐿.

Assume that consumer 𝑖0 purchases power from power
supplier 𝑔0, and denote the set of transmission owners, with
whom consumer 𝑖0 has signed transmission contracts, as𝑂𝑖0 .
Then based on (17) and (20), the objective function of each
consumer 𝑖0 can be formulated as

min
X𝑖0∈Q𝑖0

{
{
{
−𝐹𝑖0 (X𝑖0) + ∑

𝑗∈𝑇

𝜌𝑔0,𝑗 (𝑘) 𝑥𝑖0 ,𝑗

+ ∑
𝑙0∈𝑂𝑖0

∑
𝑗∈𝑇

𝜌𝑙0,𝑗 (𝑘) 𝑥𝑖0 ,𝑗

+ 𝑐
2∑
𝑗∈𝑇

(𝑥𝑖0 ,𝑗 + 𝛿𝑔0 ,𝑗 (𝑘) − 𝑥𝑖0 ,𝑗 (𝑘))
2

+ 𝑐
2 ∑
𝑙0∈𝑂𝑖0

∑
𝑗∈𝑇

(𝑥𝑖0 ,𝑗 + 𝛿𝑙0 ,𝑗 (𝑘) − 𝑥𝑖0 ,𝑗 (𝑘))
2}
}
}
,

(29)

where 𝐹𝑖0(X𝑖0) is the comfort level of consumer 𝑖0, Lagrange
multipliers 𝜌𝑔0,𝑗(𝑘) and 𝜌𝑙0,𝑗(𝑘) represent the 𝑘th supply
price of power supplier 𝑔0 and the 𝑘th delivery prices of
transmission owner 𝑙0 in time slot 𝑗, respectively, in the
𝑘th round of day-ahead scheduling, and the terms with 𝑐
represent the penalties set by the ISO for achieving demand-
supply and demand-delivery balances.

For the consumer 𝑖0, assume his total demand of the next
day is 𝐷𝑖0 , |𝑂𝑖0 | is the cardinality of the set 𝑂𝑖0 , X𝑖0(𝑘) =
(𝑥𝑖0 ,1(𝑘), . . . , 𝑥𝑖0 ,𝑗(𝑘), . . . , 𝑥𝑖0 ,𝑡(𝑘))𝑇. As hourly supply prices
󰜚𝑔0 , hourly demand-supply differences 𝜋𝑔0 of 𝑔0, hourly
delivery prices 𝜎𝑙0 , and hourly demand-delivery differences
𝜛𝑙0 of 𝑙0, 𝑙0 ∈ 𝑂𝑖0 , have been broadcast to 𝑖0 by the ISO, define

𝑥𝑖0 ,𝑗 (𝑘 + 1) =
𝜆𝑖0 (𝑘) + 𝜔𝑖0 ,𝑗 − 𝜙𝑖0 ,𝑗 (𝑘) − 𝑐𝜓𝑖0 ,𝑗 (𝑘)

𝛼 + 𝑐 (1 + 󵄨󵄨󵄨󵄨󵄨𝑂𝑖0
󵄨󵄨󵄨󵄨󵄨)

, (30)

where

𝜙𝑖0 ,𝑗 (𝑘) = 𝜌𝑔0,𝑗 (𝑘) + ∑
𝑙0∈𝑂𝑖0

𝜌𝑙0,𝑗 (𝑘) ,

𝜓𝑖0 ,𝑗 (𝑘) = 𝛿𝑔0 ,𝑗 (𝑘) − 𝑥𝑖0 ,𝑗 (𝑘)
+ ∑
𝑙0∈𝑂𝑖0

(𝛿𝑙0 ,𝑗 (𝑘) − 𝑥𝑖0 ,𝑗 (𝑘)) ,
(31)

then according to subproblem (29), each consumer 𝑖0 updates
its X𝑖0(𝑘) in parallel as Algorithm 1 shows. The essence of
Algorithm 1 is the equal incremental cost criterion; in other
words, for consumer 𝑖0, one more unit of demand in any time
slot makes the same increase of his comfort level.

When consumers have submitted their updated hourly
demands to the ISO, denote the half updated (𝑘 + 1)th hourly
demand-supply differences and half updated hourly demand-
delivery differences, respectively, as
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Require:𝐷𝑖0 , 󰜚𝑔0 , 𝜋𝑔0 , 𝜎𝑙0 , 𝜛𝑙0 , 𝑙0 ∈ 𝑂𝑖0 , X𝑖0 (𝑘), 𝑐, 𝜏, 𝑡, 𝛽𝑖0 = 0, 𝜆𝑖0 , 𝜆𝑖0 ;
(1) while ‖𝛽𝑖0 − 𝐷𝑖0‖ > 𝜏 do
(2)

𝜆𝑖0 (𝑘) = (𝜆𝑖0 + 𝜆𝑖0)
2 ;

(3) 𝛽𝑖0 = 0;
(4) 𝑗 = 1;
(5) while 𝑗 ≤ 𝑡 do
(6) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑥𝑖0 ,𝑗(𝑘 + 1) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 (30);
(7) 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑥𝑖0 ,𝑗(𝑘 + 1) 𝑡𝑜 𝑖𝑡𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑑𝑜𝑚𝑎𝑖𝑛;
(8) 𝛽𝑖0 = 𝛽𝑖0 + 𝑥𝑖0 ,𝑗(𝑘 + 1);
(9) 𝑗 = 𝑗 + 1;
(10) end while
(11) if 𝛽𝑖0 > 𝐷𝑖0 then
(12) 𝜆𝑖0 = 𝜆𝑖0 (𝑘);
(13) else if 𝛽𝑖0 < 𝐷𝑖0 then
(14) 𝜆𝑖0 = 𝜆𝑖0 (𝑘);
(15) else
(16) 𝜆𝑖0 (𝑘) = 𝜆𝑖0 (𝑘);
(17) end if
(18) end while
(19) ReturnX𝑖0 (𝑘 + 1);

Algorithm 1: Day-ahead scheduling of consumers.

𝛿𝑔,𝑗 (𝑘 + 1) = ∑
𝑖∈𝑈𝑔

𝑥𝑖,𝑗 (𝑘 + 1) − 𝑃𝑔,𝑗 (𝑘)

𝑔 ∈ 𝐺, 𝑗 ∈ 𝑇,
𝛿𝑙,𝑗 (𝑘 + 1) = ∑

𝑖∈𝑈𝑙

𝑥𝑖,𝑗 (𝑘 + 1) − 𝑃𝑙,𝑗 (𝑘) 𝑙 ∈ 𝐿, 𝑗 ∈ 𝑇.
(32)

Denote 𝜋̂𝑔(𝑘+1) = (𝛿𝑔,1(𝑘+1), . . . , 𝛿𝑔,𝑡(𝑘+1))𝑇, 𝑔 ∈ 𝐺,𝜛𝑙(𝑘+
1) = (𝛿𝑙,1(𝑘 + 1), . . . , 𝛿𝑙,𝑡(𝑘 + 1))𝑇, 𝑙 ∈ 𝐿. Then based on the
(17) and (20), the objective function of each power supplier
𝑔0,F𝑔0(G𝑔0), can be formulated as

min
G𝑔0∈S𝑔0

{
{
{
F𝑔0 (G𝑔0) = 𝐹𝑔0 (G𝑔0) − ∑

𝑗∈𝑇

𝜌𝑔0,𝑗 (𝑘) 𝑃𝑔0,𝑗

+ 𝑐
2∑
𝑗∈𝑇

(𝛿𝑔0 ,𝑗 (𝑘 + 1) + 𝑃𝑔0,𝑗 (𝑘) − 𝑃𝑔0,𝑗)
2}
}
}
,

(33)

where the terms with 𝑐 represent the penalties set by the ISO
for achieving demand-supply balance.

G𝑔0(𝑘) = (𝑃𝑔0,1(𝑘), . . . , 𝑃𝑔0,𝑗(𝑘), . . . , 𝑃𝑔0,𝑡(𝑘))𝑇; denote
𝜉𝑔0(𝑘) = (𝜉𝑔0 ,1(𝑘), . . . , 𝜉𝑔0 ,𝑗(𝑘), . . . , 𝜉𝑔0,𝑡(𝑘))𝑇, where

𝜉𝑔0,𝑗 (𝑘) =
𝜕F𝑔0 (G𝑔0)

𝜕𝑃𝑔0,𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑃𝑔0,𝑗(𝑘)

= 𝑎𝑔0𝑃𝑔0,𝑗 (𝑘) + 𝑏𝑔0 − 𝜌𝑔0,𝑗 (𝑘) − 𝑐𝛿𝑔0 ,𝑗 (𝑘 + 1)
+ 𝜂𝑔0 (2𝑃𝑔0 ,𝑗 (𝑘) − 𝑃𝑔0,𝑗−1 (𝑘) − 𝑃𝑔0,𝑗+1 (𝑘)) ,

(34)

where 𝑃𝑔0,0 = 𝑃𝑔0,1 and 𝑃𝑔0,𝑡+1 = 𝑃𝑔0,𝑡, 𝑔0 ∈ 𝐺, 𝑗 ∈ 𝑇. And
define 𝜅𝑔0(𝑘) = (𝜅𝑔0 ,1(𝑘), . . . , 𝜅𝑔0 ,𝑗(𝑘), . . . , 𝜅𝑔0 ,𝑡(𝑘))𝑇, where

𝜅𝑔0 ,𝑗 (𝑘) = 1, 𝑃𝑔0,𝑗 < 𝑃𝑔0,𝑗 (𝑘) < 𝑃𝑔0,𝑗, 𝜉𝑔0 ,𝑗 (𝑘) ̸= 0,
𝜅𝑔0 ,𝑗 (𝑘) = 0, otherwise.

(35)

As hourly supply prices 󰜚𝑔0 and half updated hourly demand-
supply differences 𝜋̂𝑔0(𝑘+1) have been broadcast to 𝑔0 by the
ISO, then according to subproblem (33), each power supplier
𝑔0 reschedules his hourly supplies in a distributed manner
as Algorithm 2 shows. It can be seen that for power supplier
𝑔0 the rescheduling of G𝑔0(𝑘) in the 𝑘th round negotiation
will be continued until each partial derivative of his objective
function with respect to hourly output is equal to zero or that
hourly output has reached its boundary.

Based on (17) and (20), the objective function of each
transmission owner 𝑙0 can be formulated as

min
L𝑙0∈R𝑙0

{
{
{
𝐹𝑙0 (L𝑙0) − ∑

𝑗∈𝑇

𝜌𝑙0,𝑗 (𝑘) 𝑃𝑙0,𝑗

+ 𝑐
2∑
𝑗∈𝑇

(𝛿𝑙0 ,𝑗 (𝑘 + 1) + 𝑃𝑙0,𝑗 (𝑘) − 𝑃𝑙0 ,𝑗)
2}
}
}
,

(36)

where 𝐹𝑙0(L𝑙0) represents the power losses in transmission
and operation costs; the terms with 𝑐 represent the penalties
set by the ISO for achieving demand-delivery balance.
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Require:G𝑔0(𝑘), 𝜋̂𝑔0 (𝑘 + 1), 𝜉𝑔0 (𝑘), 𝜅𝑔0 (𝑘), 𝑐, 𝜃, 𝑡;
(1) while∑𝑗∈𝑇 𝜅𝑔0 ,𝑗(𝑘) > 0 do
(2) 𝑗 = 1;
(3) while 𝑗 ≤ 𝑡 do
(4) 𝑃𝑔0 ,𝑗(𝑘) = 𝑃𝑔0 ,𝑗(𝑘) − 𝜃 ⋅ 𝜉𝑔0 ,𝑗(𝑘);
(5) 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑃𝑔0 ,𝑗(𝑘) 𝑡𝑜 𝑖𝑡𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑑𝑜𝑚𝑎𝑖𝑛;
(6) 𝑗 = 𝑗 + 1;
(7) end while
(8) 𝑗 = 1;
(9) while 𝑗 ≤ 𝑡 do
(10) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝜉𝑔0 ,𝑗(𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 (34);
(11) 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝜅𝑔0 ,𝑗(𝑘) 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 (35);
(12) 𝑗 = 𝑗 + 1;
(13) end while
(14) end while
(15)G𝑔0(𝑘 + 1) = G𝑔0(𝑘);
(16) ReturnG𝑔0 (𝑘 + 1);

Algorithm 2: Day-ahead scheduling of power suppliers.

Define

𝑃̃𝑙0,𝑗 (𝑘 + 1)

= 𝜌𝑙0,𝑗 (𝑘) + 𝑐 (𝛿𝑙0 ,𝑗 (𝑘 + 1) + 𝑃𝑙0,𝑗 (𝑘)) − 𝑏𝑙0
𝑎𝑙0 + 𝑐

,
(37)

as hourly delivery prices𝜎𝑙0 and half updated hourly demand-
delivery differences𝜛𝑙0(𝑘+1) have been broadcast to 𝑙0 by the
ISO; then according to subproblem (36), each transmission
owner 𝑙0 reschedules his hourly deliveries in a distributed
manner as (38) shows, 𝑙0 ∈ 𝐿, 𝑗 ∈ 𝑇.

𝑃𝑙0,𝑗 (𝑘 + 1)

=
{{{{
{{{{
{

𝑃𝑙0,𝑗, 𝑃̃𝑙0,𝑗 (𝑘 + 1) < 𝑃𝑙0 ,𝑗,
𝑃̃𝑙0,𝑗 (𝑘 + 1) , 𝑃𝑙0,𝑗 ≤ 𝑃̃𝑙0,𝑗 (𝑘 + 1) ≤ 𝑃𝑙0,𝑗,
𝑃𝑙0,𝑗, 𝑃̃𝑙0,𝑗 (𝑘 + 1) > 𝑃𝑙0 ,𝑗.

(38)

When each power supplier 𝑔0 and transmission owner 𝑙0
have submitted their updated individual hourly supplies and
hourly deliveries to the ISO, the (𝑘 + 1)th hourly demand-
supply differences and hourly demand-delivery differences
can be formulated, respectively, as

𝛿𝑔,𝑗 (𝑘 + 1) = ∑
𝑖∈𝑈𝑔

𝑥𝑖,𝑗 (𝑘 + 1) − 𝑃𝑔,𝑗 (𝑘 + 1)

𝑔 ∈ 𝐺, 𝑗 ∈ 𝑇,
𝛿𝑙,𝑗 (𝑘 + 1) = ∑

𝑖∈𝑈𝑙

𝑥𝑖,𝑗 (𝑘 + 1) − 𝑃𝑙,𝑗 (𝑘 + 1)

𝑙 ∈ 𝐿, 𝑗 ∈ 𝑇,

(39)

and the hourly supply prices 𝜌𝑔,𝑗 and hourly delivery prices
𝜌𝑙,𝑗 will be updated as (40) shows, 𝑔 ∈ 𝐺, 𝑙 ∈ 𝐿, 𝑗 ∈ 𝑇.

𝜌𝑔,𝑗 (𝑘 + 1) = 𝜌𝑔,𝑗 (𝑘) + 𝑐𝛿𝑔,𝑗 (𝑘 + 1) ,
𝜌𝑙,𝑗 (𝑘 + 1) = 𝜌𝑙,𝑗 (𝑘) + 𝑐𝛿𝑙,𝑗 (𝑘 + 1) .

(40)

That is, ISO adjusts the hourly supply prices based on the
hourly demand-supply differences, if demands exceed sup-
plies, increases the supply charges, and otherwise decreases
the supply charges. And the hourly delivery prices will be
adjusted in the same way based on the hourly demand-
delivery differences. And this scheduling process between
consumers, power suppliers, and transmission owners will
continue until both demand-supply and demand-delivery are
balanced.

The proposed distributed optimal day-ahead scheduling
can be summarized as follows.

Step 1. Consumers, suppliers, and transmission owners sub-
mit their individual initial day-ahead schedules to the ISO,
and then ISO calculates the hourly differences according to
(28) and set the initial hourly prices based on experience.

Step 2. ISO broadcasts the hourly prices and hourly differ-
ences to the corresponding participants.

Step 3. Consumers call Algorithm 1 and submit x(𝑘 + 1).
Step 4. ISO broadcasts 𝛿̂(𝑘+1) calculated according to (32) to
the corresponding power suppliers and transmission owners.

Step 5. Suppliers and transmission owners update their
individual day-ahead schedules in parallel according to
Algorithm 2 and (38), respectively, and submit them to the
ISO.

Step 6. ISO updates the hourly differences and hourly prices
according to (39) and (40), respectively.
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Table 1: Contractual relationship between the consumers aggrega-
tions and power suppliers, transmission, owners.

Consumers aggregation Power supplier Transmission owner
U1 G1 L1, L2
U2 G1 L1, L2, L3
U3 G2 L2, L3, L4
U4 G2 L5, L6
U5 G2 L5, L6, L7

Table 2: Parameters of cost functions (10−3).
G1 G2 L1 L2 L3 L4 L5 L6 L7

a 1 0.5 0.22 0.20 0.26 0.35 0.25 0.20 0.23
b 100 100 20 18 21 23 19 19 22

Step 7. If demand-supply and demand-delivery are balanced,
this process is ended; otherwise turn to Step 2.

4. Case Study

In this section, we assess the convergence performance of
the proposed optimal day-ahead scheduling, and some key
parameters are discussed. In the cases studied, we consider a
smart power grid illustrated in Figure 2, which consists of 100
consumers partitioned into 5 aggregations, 2 power suppliers,
and 7 transmission owners. The contractual relationships for
consumers aggregations are summarized in Table 1.

For the utility functions of consumers, the parameter 𝛼,
which has been discussed in detail in [12], is set to be 0.3, and
𝑐 is chosen as 0.004, the number of time slots is 24, parameters
𝜔𝑖,𝑗 are selected from 1.5 to 3. Besides, the parameters of cost
functions of power suppliers and transmission owners are
presented in Table 2.

4.1. Convergence Performance and Social Welfare. The con-
vergence performance of the proposed optimal day-ahead
scheduling is presented in Figures 3 and 4. Figure 3 is the
trajectories of infinity norm of hourly differences, where 𝛿𝐺1
is the infinity norm of hourly differences of G1, and Figure 4
is the hourly supply prices trajectories of G1.

It can be seen that the infinity norm of hourly differences
of all the participants and hourly supply prices of G1 achieves
convergence in 10 iterations. Specifically, the proposed opti-
mal day-ahead scheduling is carried out on a computer
based on Intel(R) Core(TM) i3-4170CPU @3.70GHz, RAM:
8.00GB, 64-bit Operating System, ×64-based processor;
the total time is 39.76 seconds. That means the proposed
algorithm takes approximate 3.976 seconds per iteration. In
fact, the hourly delivery prices of transmission owners, which
is omitted due to limited textual paragraphs, do the same
convergence performance. Then it can be concluded that the
proposed distributed optimal day-ahead scheduling solved
via ADMM achieves convergence fast.

Figure 5 is the social welfare trajectories of the proposed
distributed day-ahead scheduling. Note that the comfort level
of consumers is measured in money in this paper. In essence

G1

G2

L4

L5 L7L6

L3L2L1

U1 U2

U3

U4 U5

Figure 2: Topology of power grid studied.
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Figure 3: The trajectories of infinity norm of hourly differences.
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Figure 4: The hourly supply prices trajectories of G1.
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Figure 5: The trajectory of social welfare.
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Figure 6: Partial hourly supply prices trajectories of G1.

the proposed social welfare is a trade-off between the comfort
level of consumers and the costs of power suppliers and
transmission owners. It can be seen that the social welfare
is truly increased via the proposed distributed day-ahead
scheduling.

4.2. Demand Shifting. Figure 6 is partial hourly supply prices
trajectories ofG1; Figure 7 is partial hourly delivery prices tra-
jectories of L2; Figure 8 is the demand shifting of day-ahead
scheduling of consumers aggregation U2, where “initial”
and “optimal” correspond to the initial hourly demands and
optimal hourly demands with 𝜂 = 0.002 of U2, respectively.

From Figure 6 and Figure 8, it can be seen that the hourly
supply prices vary with the demands of consumers. With
the same initial value 0.2, the hourly supply prices increase
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Figure 7: Partial hourly delivery prices trajectories of L2.
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Figure 8: The demand shifting of day-ahead scheduling of U2.

from their initial value when the demands of consumers
are high and decrease from their initial value when the
demands of consumers are low. From Figure 7 and Figure 8,
we have the same conclusion for hourly delivery prices of
transmission owners. Then accordingly, consumers will shift
their demands from the hours with high electricity prices
(high supply prices or high delivery prices or both) to the
hours with low electricity prices, which is illustrated in
Figure 8.

4.3. The Effect of 𝜂 on Day-Ahead Scheduling. Note that 𝜂
represents the costs of power suppliers associated with hourly
supplies variability. The effect of 𝜂 on the proposed optimal
day-ahead scheduling is illustrated in Figure 9 by the optimal
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Figure 9: The effect of 𝜂 on optimal hourly demands of U2.

day-ahead hourly demands of U2, and the optimal day-ahead
scheduling of the other consumers aggregations has similar
trends.

From Figure 9, it can be seen that the peak demands of
U2 decrease as 𝜂 increases from 0.000 to 0.006, that means
𝜂 plays an important role, not only in electricity price but
also in reducing the peak demand of consumers. This can
be explained by the response of consumers to the supply
prices. As 𝜂 increases, the costs of power suppliers increase,
especially the hours with dramatic supply variability which
are the hourswith peak demand aswell, then the supply prices
of these hours will be high; correspondingly consumers will
shift demands from the hours with high supply prices to the
others to minimize their individual costs.

5. Conclusion

In this paper, a distributed optimal day-ahead scheduling
for social welfare maximization is proposed, which will be
suitable for a future smart grid. In this day-ahead scheduling,
the day-ahead market consists of a day-ahead supply market
and a day-ahead delivery market. The aggregations of con-
sumers or large consumers purchase generation capacities
from the power suppliers in the day-ahead supply market
and transmission capacities from the transmission owners
in the day-ahead delivery market, respectively. Besides, the
hourly supply prices of each power supplier are regulated
by the ISO based on his individual hourly demand-supply
situations, and the hourly delivery prices of each transmission
owner are regulated by the ISO based on his individual
hourly demand-delivery situations. This interaction among
consumers, power suppliers, and transmission owners will
be continued until all the hourly demand-supply and hourly
demand-delivery are balanced. Besides, the proposed opti-
mal day-ahead scheduling can be properly matched with

a standard ADMM framework, by which a global and fast
convergence is guaranteed and the privacy of participants
is ensured. The effectiveness of the proposed day-ahead
scheduling is verified by the cases studied.
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