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The firstaim of thisnote is todescribe an algebraic structure, more primitive
than lattices and quantales, which corresponds to the intuitionistic flavour of
Linear Logic we prefer. This part of the note is a total trivialisation of ideas
fromcategory theory and we play with a toy-structure a not distant cousin of
a toy-language.
The second goal of the note is to show a generic categorical construction,

which builds models for Linear Logic, similar to categorical models GC of
[de P1, but more general. The ultimate aim is to relate different categorical
models of linear logic.
The first part of thenote consistsof twosections. The first section introduces

lineales; the second adds some structure to lineales, compares our work to
other approaches and show the main result of this part.
The second part of the noteconsists of four sections, whichrun along similar

lines to part I. In section 3 we defineour basic categorical construction, section
4adds the extra structure corresponding to section 2 and shows the main result
of part II. Section 5, adding the modalities ! >> and <? >>, has no corresponding
section in part I, as we have not even tried to find the right notion of << >> in
the restricted set-up of lineales. Section 6 describes some preliminary con-
clusions and further work.

1. Introducing lineales
We start by considering a very familiar structure, a commutative monoid

~n the category of posets. We are thinking of posets as a restriction of the
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general notion of categories. That is the opposite of what people nornially d
in CS when theyexplain the notion of acategory as a generalization of a posel
We call a commutative (or symmetric) monoid in the category Posets
pre-lineale. [In the more general set-up we’re thinking of a monoid object ii
the category of categories.]

t~~(~cf ~o5~5~,à fl~ C~C~‘,~

Definition 1 A p~’e-Iin~~aIeis a poset (L,  ) with a given compatible symmetric nzonoida,
structure (L, o, e). That is, a set L equipped witha binary relation  > satisfying:

• a  a forall a in L (reflexivity)

• a  b and b  c =~a  c (transitivity)

• a bandb a=~a=b(antisymetry)

together with a monoid structure (o, e) consisting of a multiplication ‘ o : L x L —p L
and a distinguishedobject e of L, such that the following hold:

• (a o b) o c = a o (b o c) (associativity)

• aoe=eoa=a(identity)

• aob—boa (symmetry)

The structures are compatible in the sense that, if a  b, we have a o c ~ b o c, forall c in L.

We write a quadruple (L,  ,o, e) for a pre-lineale. Note that, even ifwe want
to think of <o>> as a form of conjunction, we do not havea a a = a (idempotency)
nor a  e for all a in L. Thus the relation between the order structure and the
multiplication is not as tight as in a sup-lattice.

But a pre-lineale is not the toy-structure wewant to play with. Apre-lineale
corresponds, in the more general set-up of categories, to a symmetric monoidal
category and we are interested in symmetric monoidal closed categories. To
trivialise this notion we first define:

Definition 2 Suppose L is a pre-lineale and a, b e L. If there exists a largest x E I.
such that a a x  b then this element is denoted a —a b and it is called the relative
pseudocomplementof a wrt b.

Thus, by definition, if a —a b exists in a pre-lineale L then

• ao(a—ob) b

• if a a y  b for some y, then y  a —o b



Lineales

Definition 3 A lineale isa pre-lineale (L,~ ,o, e) such that a —o b exists for all a
and b in L.
Since we defined a lineale to be a simplification of the notion of a symmetric
monoidal closed category, we have an obvious proposition:

Proposition I A lineale (L,  , o, e, —o) has the following properties:

1. If a  b, for any c in L, c—a a  c —o b and b —o c  a —o

2. a o b  c ~ a  b —o c

The proof is very easy, it only uses the definition of —a and L. Observe that
the item 1 in the proposition says, in the more general set-up of categories, that
—a: L x L —~ L is a << bifunctor >>, contravariant in its first coordinate arid
covariant in the second coordinate, while item 2 says there is an adjunction
between functors 0 o b: L —f L and b —a 0 : L —* L.

Another observation is that as e o a  a for any a E L, we know e  a —o a
anda a—oeforanyaE L.

Note that if we denote by I any element of L and write (a)1 for (a —a I) we
have:

(i)a  b ~ b-’- a1by prop 1.1.

(ii)aa(a—oI) I-~=~a o a1 Iimpliesa a’~—oJ~a°-by prop 1.2.

Properties (i) and (ii) are called by Dunn the Intuitionistic Contraposition.

Definition 4 A }-e~ting~1inealeis a lineale (L,  , o, e, —a) equipped with a given
compatible symmetric monoidal structure (0,1) weakly de Morgan-dual to a x.. That
means that

• the given structure (0, 1) satisfies

— (associativity) a 0 (b 0 c) = (a 0 b) 0 c

— (syminetry)aob=boa

• the structure (0, 1) is compatible with (L, ~, a, e) means that, as before, if a  b
then for anycin L,aoc boc

• the object 1. is the identity for0

aDI=IDa~a
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• we have associative (or absorptive) laws

(a 0 b) a c  a 0 (b a c)

a a (b 0 c)  (a a b) Dc

Note that, if we write (a)1 for (a —a 1), 1 the identity for 0, we ca
show

a-’- 0 b  a —a b

simply using symmetry of < o and the distributive law above, as follows:

ao(a1Db) (aaa-’-)Ob =

(aoa—oJjOb IDb=b -

With definition 4 we are trying to capture the (intuitionistic !) notion tha
conjunction and disjunction are not de Morgan dual — as they are in Classica
Logic, but instead, we have:

• ~

• a10b1 (aob)’

We can prove,

Proposition 2 A Heyting lineale L satisfies

(a) a1 a b1  (a 0 b)-’-,

(b) a1 0 b’  (a o

To show (b), as (a o b)1 = (a a b)—a 1, it is enough to show (a1 0 Li~)o (a o b)  1,

easy as
(a10 b1) a (b o a) = a10 (b’ ob o a)

a-’-D(Ioa) = (a’DI) oa = a1
a a  I

To show (a) a1
o b’  (a 0 b)’ we use the same kind of reasoning, as it is

enough to show (a1
a b1) a (a 0 b)  I.
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Note that as e is the identity for o and I the identity for 0,

a1 oI-~- (a 01)1 = a1
= a-i- a e =~I-’-  e

By proposition 1.2, as e ol  I we have e  1—ol = I’, thus I~= e. But
in the weakly-dual case we cannot guarantee that e-1- = I as we only kno~w
that

a10e1 (a oe)1 =a1= a-1-DI=~e1 e

Note that the condition of compatibility says in the more general set-up of
categories that 0 is a covariant bifunctor.

We would call the symmetric monoidal structure (0, I) de Morgan-dual to
if we had equality in condition (a) and (b). In that case we would call the

neale a strong Heyting lineale.
One may think that names were badly chosen as a lineale already satisfies

~-hat maybe be called a Heyting condition, namely

a 0 b  c ~ a  b—ac

ut lineales have no notion of disjunction whatsoever, while Heyting lineales
an be restricted to Heyting algebras if 0 satisfies a universal property (cf.
elow in def. 5).

• Additive lineales

A (Heyting) lineale is characterized by its << multiplicative>> structure given
y ( , o, —o, e) (perhaps also (0, I)). But we can have another << layer>> of
ructure, called its additive structure.

efinition 5 A semi-additive (Heyting) lineale is a (Heyting) lineale equipped
ith an extra symmetric monoidal structure, notation (x, 1) such that given a and b
L, a x b satisfies

• axb aandaxb b

• If m is such that vi  a and m  b then m  a x b

Note that a x b is defined as a binary greatest lower bound; that having
iary gib’s we can easily define finite rt-ary ones and that 1 is the empty-set
, which means that for all a E L, a  1. In particular e  I (and I ~ 1, if it is

~sent). Also (x, 1) being a symmetric monoidal structure means



112 Martin Hyland and Vi~leriaPi

• (axh)xc=~—ax(hxc)

• axb=bxa

• axl=Ixa=a

A semi-additive lineale corresponds to a symmetric monoktal clo~
category with products in the more general framework.
Definition 6 An additive (Heyting) lineale is a semi-additive (Heytiiig) lin
equipped with an another symmetric monoidal structure, notation (~,0> such t
given a and b in L, a ~ b satisfies:

• a a®bandb ae3b

• ifa nandb nthenaeb n -

Dually, 0  a for anya e L, in particular, 0  I, 0  e and 0  I.
Observe that the conditions in the definition 5 and 6 above are

restrictions to the poset set-up of the conditions on the existence of produ~
and coproducts. They could be described in terms of adjunctions, in. this c~
Galois connections, to a diagonal functor, i~: L —, L x L. Note that they
determine a lattice structure in L.

If the four constants I, e, 0 and I are distinct we have a picture like

~0z
but they may coincide.
Trivial examples of additive Heyting lineales are Heyting algebras (whe

a and x and 0 and + coincide and 0 = I and I = e) and Boolean algebras (
before plus a-~-~-= a).

Proposition 3 In an additive Heyting lineale we have the distributive laws:

• ao(b~c)=(aob)~(aoc)

• aD(bxc) (aob)x(aoc)

Notice that the first law is a direct consequence of the fact that ti
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<~category>> L is a symmetric monoidal closed one, as ~ is a coproduct kind
coproducts are preserved by functors which have right-adjoints. The semi-law
is a consequence of x being a categorical product, as b x c  b and b x c  c
impliesao(bxc) aobandao(ln<c) aoc, so

aD(bxc) (aO(bxc))x(aD(bxc)) (aob)x(aoc)

Comparison with other approaches
It seems reasonable to compare the approach taken here with the one by

Hesselink using Girard monoids. Quite apart from the fact that Girard mono ids
are based on/par the linear connective less amenable to intuitive explanations,
Hesselink’s approach is based on the classical equivalence between A —* B ~nd
-~ A v B. It seems to us that one should strive for the more general set-up — in
this case the intuitionistic one — as that allows us to restrict ourselves to the
classical case, when (and if) wanted.

A strong Heyting lineale can be seen as a Girard monoid wrt 0 and a
Girard monoid restricts to a phase structure, the model for linear logic
provided by Girard himself in [tcs60]. Also a Girard monoid is ageneraliza-
tion of the de Morgan monoids in Dunn, the semantical model for relevance
logic.

The definition of a Heyting additive lineale is also very similar to some
work done by Ginsberg and also Fitting on bilattices. Again the difference is
that the structure on the horizontal direction need not be a lattice. The
conditions forced on us by the (categorical) adjunction are not strong enough
for that, but of course a bilattice is a rather special case of an additive Heyting
lineale.,

Rules and axioms of Linear Logic
Axioms:

A F—A (identity)
I--I IF-

ITF-1,A r,oF-~

Structural Rules:

r ~ (permutation) F I— A, ~ A, F F— ~ (cut)
F,F’F-~’,I

Logical Rules:

(var1) ±_~Lil~L-g?~
F B1 F-~\
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Multiplicatives:

(unit,) r F-A (unit,.) F F— AFF-I,A

F,A,BF-A Ff—A,A F’F—B,A’
(®,) F, A ~ B F-A F, F’ F A ® B, A, A’

~ F, A I— A F’, B F- A ~ F F-A, B, A
r’,r”,AoBF-A,A’ I~F-AoB,A

F F-A,A F’,B F-A’ r,A F-Br, r’, A B F-~, ~ (r) F F A B *

Additives:

I~F-A,A FFB,A r,AF-A F,BI—~
F F-A&B,A F,A&B F-A F,A&B F

F,AF—A F,BF-A ~ FF-A,A FF-B,A
F,A$B F—A F FA~B,A F F-AEDB,

*Observe that in rule (—or) weonly deal with one formula on the right-ha
side of the turustyle, according to our intuitionistic flavour of Linear Logic
Then we have another obvious proposition

Proposition 4 An additive Heyting Lineale (L,  , o, —a, 0, e, I, ±, x, 1, 0) is
algebraic model of Linear Logic, as described above.

Just read atomic propositions in LL as elements of L, F- as leq, ® as 0 ai
the other connectives and constants for their homonimous.
Note that the poset reflection of GC isa lineale, the simplest non-collaps

one (see figure above).

3. A categorical construction

Suppose C is a concrete linear category with products, by that we mean
concrete symmetric monoidal closed category withproducts. And suppose th
L is an object of C endowed with a (Heyting) lineale structure ( , 0, —a,
(perhaps also (0, 1)). To make notation manageablewewrite:

• [U, V] for the internal horn in C,
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• U ® V for the tensor product in C, with identity I;

• U x V for the categorical product in C, with identity I.

Then wecan construct the categoryMLC, which has as objectsmorphisms of
Cof the form U® X—~-*L. One such object is written as (U ~-+-—X)andcalled A.
Given two objects, says A = (U ÷~+—X)and B = (V ÷ ~-1-—Y),the morphisrr*s

of MLC are pairs of morphisms of C, f: U -4 V and F: Y — X such that the
following diagram is satisfied,

1J®F
U®Y ~LI®X

L

where the diagram being satisfied means that given u 0 y in U 0 Y, the
composite morphism cx . (U® F) applied to (u ®y) as an element of L is smaller
than ~. (f® Y) applied to (u 0 y). Simplifying, morphisms are pairs of maps
in C(f,F),f: U—i VandF: Y—>Xsuch that

a(u,Fy) f~(fu,y)

It is easy to verify thatMLC is a category with an abundance of symmetric
monoidal structures.

Proposition 5 The construction above really defines a category MLC.

Clearly identities are pairs of identities of C, composition is composition in
each coordinate and associativity is an immediate consequence of the as-
sociativity in C.

Linear structure of MLC
One of the possible symmetric monoidal structures of MLC is:

Definition 7 Given two objects A = (U ~-f—-X)and B = (V ~-~-~-—Y)in MLC we
define A 0 B their tensor product as follows:

A® B =(U® V~~LJV, X]x[U, Y])

The morphism a ® ~3 intuitively says a ® ~3(a, v, f, g) = a (a, fv) a 1~(v, gu).
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To define the morphism a ® ~ consider the following map, which we call a:

(U® V)®([V,Xjx[U, VI) ~ V®[V,X] ~®~‘> U~X—~-÷L

Similarly we define (U® V) ® ([V. X] x [U, YD—~--~L.Then to get a® ~ we
pair a and ~ and use the multiplication < o >> of L, as follows:

(U®V)®([V,XJxLLI,YJ) <°‘~LxL -2---~L

Proposition 6 The construction above induces a bifunctor, covariant in
both coordinates, with identity IM given by (I ~—~---~--- I), where the morphism
I ® I I —~--~Ljust picks up the object e > from L.

Note that ® is not a categorical product, for instance we have no
projections, even if C is a Cartesian closed category.

Definition 8 Given two objects A = (U ~±--X) and B = (V #~—Y)in McC we dcfinr
[A, B] their internal horn as follows

[A, BI = ([U, VI x IV, XI ~ U ® Y)

The morphism cx —o f~>intuitively says (a ~) (f, F, a, y) = a (u, Fy) --a J3 (fu, y).
The definition of the morphism a —a ~ is similar to the definition of ® above.
First consider maps ~ and ~:

(LU, VI x IV, XI) 0 (U 0 Y) ~ ®~®~>[U,VI 0 U 0 V --~-~ V 0 V

~

Then, to obtain a —o we pair ~ and ~ and compose the result with —a,
considered as a map from L x L to L:

([U,V]x[Y,X])®(U®Y)~~> LxL~ L

Note that if we consider the internal horn [A, A]=([U, UIx[X, Xl ÷~-~--~--- U® X),
there is always a morphism from IM to it,

I I

[U,U]x[X,XJ ~--~-~--—U®X

as C is symmetric monoidal closed with products and e  a (a, x) —a a (a, x).
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Proposition 7 The construction above induces a bifunctor, contravaria~ztin its first
coordinate and covariant in its second coordinate.

Having defined both a tensor product and an internal hom, we want to
prove that they provide us with a symmetric monoidal closed cate~gory.

Proposition 8 The category MLC is a symmetric monoidal closed category.

The proof is simple, one has to verify the natural isomorphisn-i:

Horn (A ® B, C) Horn (A, [B, C])

This can be done by looking at the diagram

U®V ~ [V,XJx[U,YJ U X

f <fz,f2> <f,f2> fi

W ~ z [V,W1x[Z,Y]<~i~ v®z

If the morphism (f, <ft’ 12>) is a Hom (A 0 B, C), then given (u, v) in U 0 V
and z in Z, we know (a 0 ~)(u, v,f1z,f2z)  y (f(u, v), z).

That means, by definition of tensor, that a(u, f1zv) 0 ~Mv,f,zu)  ~y(f (u, v), z).
But as L- is a lineale,

a (a, fiw) 0 ~ (v, f2zu)  y (f (ii, v), z) ~ a (u, fzzu)  ~ (a, f2zv) -o ? (f (u, v), z)

Now to show that kf,f2>, f~)is in Hom (A, [B, C]) we have to show

a (a, fi (v, z))  (f3 —0 y~~‘fu,f2u, v, z)

But (~--a y) (fri. f2u, v, z) = ~3(v, f2uz) —a ‘y (fuv, z) which we know, if
ransposing is allowed.

If we have a Heyting lineale we can also define another bifunctor < D> of
bjects in MLC.

)efinition9 Given two objects A = (U ~-~-i-----X)and B = (V ~-+—Y)in MLC we define

o B their /par operator as follows:

ADB=([X,VJx[Y, LJ]~X®V)
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The morphism a 0 ~3 intuitively says (a 0 ~3)(f, g, x, y) = a (x, gy) ~ f3 (fx, y).
The definition of the morphism cx 0 [~is similar to the definitions of ~ and 1-. -]
above. First consider maps a and ~:

(IX, VI x IV, U]) 0 (X 0 Y) ~ ®~‘)[X, VI 0 X 0 Y) ~‘ ~ V ®~‘—~--, L

([X,V]x[Y,U])®(X®Y) ~øX~Y)[yU]®x®y) Xøeval)U® X—~—~L

Then to obtain cx 0 ~we pair ~and 13 and compose the result with 0, considered
as a map from LxL to L

([U,V]x[Y,X])®(U®Y)<>LxL~9~~~L

Proposition 9The operationADB defines a bifunctor 0 : MLC x MLC -4 )VILC with
identity given by the object IM=(< 111), wherethemapl: 101=1 —4 L
picks up the object I from L. -

4. Additive structure ofMLC
Now we want to define products and coproducts in MLC. To do that we

need at least

• a semi-additive (Heyting) lineale

• (disjoint?) coproducts in C.

Note that it is not necessary to add products and coproducts to M~Cat
the same time.
Suppose C is a linear category with coproducts. Then a form of dis-

tributivity holds, namely:

U®(V± W)=~U® V+ U® W

As C is symmetric monoidal closed, the functor U 0 (-) has a
right-adjoint, [U, -1, hence it preserves colirnits and, in particular, initial
objects and coproducts.

Definition 10 Given two objects A = (U -5-f----X) and B (V ~-i----Y)in M~Cwe
define A & B their categorical product as follows:

A & B = (U x V ~X + Y)
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The morphism a & ~3 intuitively says (a & ~3)(u, v, (~))= a (u~x)~‘< ~3(a, y).

But note that, despite the similarity with previous definitions, the multi-
plication < x is not used, what is used is the structure on C, as an element of
X + V is either (x, 0) or (y, 1) but not both.

Proposition 10 The operation<< & above defines a bifunctor& : MLC xMLC—3 MLC,
with identitygiven by IM (I ~ 0) and A &B is really a categorical produ ct inMLC.

To define the morphism (U x V) 0 (X + Y) & ~ L in C, which corresponds
to the object A & B inMLC, we do:

~t~®1+~t
2
®1 (“)

(UxV)®(X+Y)~(UxV)®X+(UxV)®Y >U®X+V~V m-~
Projections are trivially given by projections in C in the first coordinate and

!anonical injections in the second coordinate.

UxV X+V

1ti

U

Li < I X

ë have a diagonal functor A : MLC —f MmC xMLC

___ I
UxU X+X

~n by the diagonal in C in the first coordinate and the canonical folding
~in the second coordinate.
b show the universal property of products we consider an object C = (W ~—~+---Z)
that thereare maps inMLCof the form

w T z

~ JF gf JG

U ~— X V ~—Y
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Then there is a unique map in MLC from C to A & B,

W ( Z

<f, g> (~)
UxV I X+Y

Dually we can define

Definition 11 Given two objects A = (U +~—~—-X)and B = (V -~-t-—Y)in MLC we
define A 0 B their categorical coproduct as follows:

AE?B=(U+V< aE~f3 XxV)

The morphism a 0 >> intuitively says (a® ~)((~),x, y) = a (x, g-y) 0 ~3(fx, y).

It is another easy proposition to show that A 0 B is abifunctor with identity
= (0 4-~-1—1) and A 0 B is a categorical coproduct. Note that as morphisms

of C °M and 1
M are isomorphic, but not as objects of MLC. Note also that the

additive structure of the lineale L is not used at all.

The category MLC was defined following the pattern of CC, so it is no
surprise that

Proposition 11 The category MLC is a model of Linear Logic as described before.

The last observation in this section is that we can describe another useful
monoidal structure inMLC.

Definition 12 Given two objects A (U ~-i—-X)and B = (V k—~t—--Y)in MLC we

define A 0 B another tensor product as follows:

A a B = (U 0 V ~-~-~-~-- X0 Y)

The mnorphismn << a 0 intuitively says (cx 0 ~3)(u 0 v, x 0 y) = cx (u, x) 0 ~ (a, y).

Its usefulness will become apparent in the next section.

5. Modalities inMLC

Now the intention is to define a comonad inMLC to provide an interpreta-
tion of the modality or exponential ~! >> of Linear Logic.
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We start by recalling the rules for the modality <<1 >‘. These arc~:

_____ rE-B
F, ! A F— B (dereliction) r, I A F-- B (weakening)

F’,!A,!AF—B . !FF—A
F, I A F— B (contraction) IV. F I—! A (!)

But as observed by several people, the four rules for the modality << ! >> fall
neatly into two pairs. The pair (II, III) has to do with putting back into the
logic, in a controlled way, contraction and weakening and thepair (I, IV) make5
<<!>>look like the0 modal operator of S4.
Suppose C is a linear category which has countable coproducts (instead

of finite ones as in the last section). Then using the well-known construction
of MacLane ([CWM] p. 168 theorem 2) we can show that C has free
(commutative?) monoids, as C being symmetric monoidal closed the other
condition in MacLane’s theorem is automatically satisfied. Having free
monoids means that there exists a functorF: C —3Mon C, which is left-ad joint
to the forgetful functor U:Mon C —9 C. In other words, there is an adjunction
<F, U, ~, c> : C -4 Mon C, which wewrite simply as F —1 U.
The adjunction says that every map on C of the form,

X_~~L,U(V, Ily, FLy)

corresponds, by a natural isomorphism, to a monoid homomorphism fof the form

(X, 1lx~,~tx)~(V, i~y,~y)

Wewrite ( )~for the composite functor U • F: C —f C, recall fromMacLane that
X = II je~X’ and denote by (*, 1. FL) the corresponding monad in C.
Note that the unit of the adjunction F —I U, the natural transformation

ii: C —f C takes any object X of C to the carrier of the free monoid X~.Also
the co-unit of the adjunction e : Mon C -4 Mon C takes any free monoid
(Xe, -yr, ~f) arising from an arbitrary monoid (X, ~, Ft) to itself. Thus

e:FU(M,1,~t) = (M,11*,1L*) —~(M,i,ti)

where the morphism e corresponds to <<iteration >> of the original multiplica-
tion Ft.
Now, in this stronger version of the existence ofmonoids, the monad (*, i~,~t)

is easily proved a strong monad, so there are morphisms

st(X,Y)[X,VJc—>[ ,iIc
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and using these we can define the endofunctor below.

Definition 13 The endofunctor S : MLC —* MLC takes an object (U +~-I---—X)ofMLC
to the object (U~-~f-~--XD, where intuitively uSa (x1, X2, ..., xn) means UeLXI and uax2
and ... and UaX~.
The object Sa of MLC isdefined by the sequence of morphisms

U®X -~-~L

U —+ IX, LI -~--* [IC, L~]

U®X—3L -~---*L

So far so good and very similar to what happens in GC. But if we try to
make another definition
Definition 14 The endofunctor T : MLC -9 MLC takes an object (U *~‘-f-—-X)of MLC

to the object (U 4~—[U, K]), where intuitively uTaf means uafu.

But to give themorphism in U® [U,X1-1-~9Lwe would necd to <<duplicate U, sothat

U®[U,X] ~

Also to obtain comonoids in MLC, which would satisfy rules (contriiction) and
(weakening), for instance

1<’ 1
U®U < I [U,X’]x(U,X’J

we need U’s with some kind of structure.
Thus the proposal at the moment is to take C with free comonoids, having

‘ree comonoids means that there exists a functor F1 : C —m’Common C, which
s left-adjoint to the forgetful functor U1 : Common C —* C. In other words,
here is an adjunction <P1. U1, ‘q, c> : C —4 Mon C, which we write simply as
-H U1.
The adjunction says that every map on C of the form,

X-1----->U (V. !y, 6y).

Irresponds by a natural isomorphism, toa comonoid homomorphism7of the form
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(X*, 11x, 6x) ~ (V. i~y,~y)

We write O~for the composite functor U • F: C -9 C, and denote by’ (( ),~,-q, i—il
the corresponding monad in C.

Definition 15 The endofunctor F : MLC —* Mi.C takes an object (U i~—)~) ofMLC to
the object (LL ~~-~--XD,where intuitively uFa (xi, X2, ..., X~)means that u c~mnbe shared
out betweenuj, U2, as many times as necessary so that uiaxi and U2c1x2 and.. . and u~cxx~.

Butthis definitionofF has tobe shown to workand this is work in progress.

6. Further work
Apart from making sure that the definition of the modality << >~ works
properly, which seems to be clear from previous work on Hopf Algebras by
Sweedler and others, it seems that the main work that remains to be done is
to get things at the right level of generality. The oneadopted here seemsclearly
inadequate, as one would like to <<change basis ‘> on doing the ccnstruction
ofMLC, i. e. one would like to have constructionsMLC, with different L’s.
It is worth mentioning that there is some joint work in progress with

Carolyn -Brown from LFCS, Edinburgh connecting the quantales n-iodels for
Linear Logic arising from Petri Nets to the dialectica-like ones proposed in
Brown/Gurr, Lics’90, see [H&dP] for the extension that allows Petri Nets with
multiplicities >2.
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