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Vagueness and Quantification

(postprint version)

Journal of Philosophical Logic first online, 2015

Andrea Iacona

This paper deals with the question of what it is for a quantifier expression to
be vague. First it draws a distinction between two senses in which quantifier
expressions may be said to be vague, and provides an account of the distinc-
tion which rests on independently grounded assumptions. Then it suggests
that, if some further assumptions are granted, the difference between the
two senses considered can be represented at the formal level. Finally, it out-
lines some implications of the account provided which bear on three debated
issues concerning quantification.

1 Preliminary clarifications

Let us start with some terminology. First of all, the term ‘quantifier expres-
sion’ will designate expressions such as ‘all’, ‘some’ or ‘more than half of’,
which occurs in noun phrases as determiners. For example, in ‘all philoso-
phers’, ‘all’ occurs as a determiner of ‘philosophers’, and the same position
can be occupied by ‘some’ or ‘more than half of’. This paper focuses on
simple quantified sentences containing quantifier expressions so understood,
such as the following:

(1) All philosophers are rich

(2) Some philosophers are rich

(3) More than half of philosophers are rich

Although this is a very restricted class of sentences, it is sufficiently repre-
sentative to deserve consideration on its own.

In the second place, the term ‘domain’ will designate the totality of
things over which a quantifier expression is taken to range. Very often,
when a quantifier expression is used, it carries a tacit restriction to a set of
contextually relevant objects. For example, on one occasion (1) may be used
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to assert that all philosophers in a university U are rich, so that ‘all’ ranges
over a set of people working or studying in U , while on another occasion it
may be used to assert that all philosophers in another university U ′ are rich,
so that ‘all’ ranges over a set of people working or studying in U ′. In order
to take into account such contextual restrictions it will be assumed that,
whenever a quantifier expression is used, some domain is associated with its
use, that is, the domain over which the expression is taken to range.

One thing that must be clear about this assumption is that it does not
settle the question of how the restriction is determined in the context. To
appreciate its neutrality, it suffices to think about a debated issue which
divides semantic accounts of domain restriction. According to such accounts,
domains are represented by some sort of variable or parameter in the noun
phrase. But it is controversial where exactly the variable or parameter
is located. For example, Westerst̊ahl suggests thay it is in the determiner,
while Stanley and Szabo suggests that it is in the noun. The picture sketched
in this paper is compatible with both options, as it does not concern the
syntactic structure of quantified sentences1.

Another thing that must be clear about the assumption that quantifier
expressions are used in association with domains is that it does not entail
that, whenever one uses a quantifier expression, one has in mind a definite
set of contextually relevant objects. As a matter of fact, that almost never
happens. Most of the time, the use of a quantifier expression involves either
a very approximate specification of a set, or no specification at all. In the
first case no unique set is specified, in that different sets turn out to be
equally admissible. In the second, no set at all is specified, in that nothing
is excluded as irrelevant.

The third and last term to be introduced is ‘quantifier’. In accordance
with an established practice, this term will be used to refer to functions from
domains to binary relations. The meanings of ‘all’, ‘some’ and ‘more than
half of’ may be defined as quantifiers, that is, as functions all, some and
more than half of which satisfy the following conditions for any domain D:

Definition 1. allD(A,B) if and only if A ⊆ B.

Definition 2. someD(A,B) if and only if A ∩B 6= ∅.

Definition 3. more than half ofD(A,B) if and only if | A ∩B |> 1/2 | A |

Here A and B are sets whose members belong to D, and the left-hand
side is read as ‘the relation denoted by the quantifier expression relative to D
obtains between A and B’. Note that definition 3 differs from definitions 1

1Westerst̊ahl [?], Stanley and Szabo [?]. For simplicity we will not consider pragmatic
accounts of domain restriction, that is, accounts on which the determination of domains
is left to pragmatic factors which determine the communicated content as distinct from
what is literally said, such as that outlined in Bach [?].
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and 2 in that it involves a proportional relation that applies to the cardinality
of A and B. Accordingly, more than half of may be called a proportional
quantifier2.

The domain parameter that occurs in definitions 1-3 accounts for the
fact that the extension of a quantifier expression may vary from occasion
to occasion, even though its meaning does not change: if e is a quantifier
expression which means Q, then QD is the extension of e relative to D. For
example, if D is a set of people working or studying in U and D′ is a set of
people working or studying in U ′, ‘all’ denotes different relations relative to
D and D′. So there is a sense in which ‘all’ means the same thing on both
occasions, yet the relations denoted differ. The same goes for ‘some’ and
‘more than half of’.

If the meaning of quantifier expressions is defined in the way outlined,
and nominal expressions are taken to denote sets, the meaning of quantified
sentences can be obtained by composition. Let A and B be sets denoted by
‘philosophers’ and ‘rich’ relative to D. Given definition 1, allD fixes truth
conditions for (1) relative to D, that is, (1) is true if and only if A ⊆ B. So
the meaning of (1) may be described as a function from domains to truth
conditions, which results from the combination of all with the meanings of
‘philosophers’ and ‘rich’. The case of (2) and (3) is similar. Assuming that
A and B are sets denoted by ‘philosophers’ and ‘rich’ relative to D, the
meaning of (2) or (3) may be described as a function from domains to truth
conditions which results from the combination of some or more than half of
with the meanings of ‘philosophers’ and ‘rich’. More generally, the meaning
of a quantified sentence s that contains a quantifier expression e that means
Q is obtained by combining Q with the meaning of the nominal expressions
in s.

2 Two kinds of indeterminacy

The question of what it is for a quantifier expression to be vague seems to
admit two kinds of answers. It is plausible to say that a quantifier expression
e (as it is used on a given occasion) is vague if it is possible that a quantified
sentence s in which e occurs is neither clearly true nor clearly false - in a way
of being neither clearly true nor clearly false which is distinctive of vagueness
- and that does not entirely depend on the vagueness of other expressions
in s. However, it seems that such unclarity can have two different sources.
Roughly speaking, the semantic role of e in s is to specify a certain amount
of things which belong to the domain over which e is taken to range. So if

2Peters and Westerst̊ahl define quantifiers this way in [?], pp. 62-64. Note that in
definitions 1-3 no index is attached to A and B to show that they depend on D, but such
effect could easily be obtained with some minor adjustment. For example, the notation
adopted in Lappin [?] makes A and B systematically depend on D.
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it is unclear whether s is true or false, and this unclarity does not entirely
depend on other expressions in s, either there is indeterminacy about the
domain over which e is taken to range, or there is indeterminacy about the
amount specified.

To illustrate the first kind of indeterminacy, consider (1)-(3). One may
easily imagine circumstances in which it is unclear whether (1)-(3) are true
or false. Obviously, this is due at least in part to the fact that ‘philosophers’
and ‘rich’ do not have a definite extension. But even if ‘philosophers’ and
‘rich’ did have a definite extension, it could still be unclear whether (1)-(3)
are true or false. One source of unclarity is the fact mentioned in section 1
that the use of a quantifier expression may involve only a very approximate
specification of a set of contextually relevant objects. For if no definite set
is specified, there is a plurality of sets such that it is indeterminate which
of them is the intended set. Consider (1). Even if ‘philosophers’ and ‘rich’
had a definite extension, it might still be unclear whether (1) is true or false,
because it might be unclear what exactly is the domain over which ‘all’ is
taken to range. Suppose that (1) is uttered to assert that all philosophers in
U are rich, but that no unique set of contextually relevant objects is specified.
In particular, suppose that D is a set of people working or studying in U ,
and that D′ is a proper subset of D which differs from D only in that it
does not include a certain person whose affiliation to U is unclear for some
reason. If so, it might happen that (1) is neither clearly true nor clearly
false. Similar examples can be provided with (2) and (3).

One way to see that this kind of indeterminacy is correctly described as
vagueness is to see how it can be distinguished from context sensitivity. If
‘context’ is understood informally as a concrete situation in which a sen-
tence is uttered by a speaker, it is realistic to say that the use of a quantifier
expression in a context may fail to specify a definite domain. For even if
a restricting condition is associated to the quantifier expression - in virtue
of contextual features such as the speaker’s intentions, the conversational
background, and so on - the restricting condition is itself indeterminate.
In the example considered, the restricting condition is expressed by ‘people
working or studying in U ’, but it may be unclear whether a certain person
works or studies in U . Similar examples may be provided with paradigmat-
ically vague expressions: a restricting condition could be expressed by ‘bald
people’, ‘thin people’ or ‘tall people’, in which case it would be evident that
it involves the kind of unclarity that is distinctive of vagueness. Obviously,
one might introduce a finer notion of context by stipulating that a context
is an n-tuple of parameters which includes a set of objects as domain. But
then one would have to grant the intelligibility of the informal understand-
ing of ‘context’, and the point would still remain that the use of a quantifier
expression in a context informally understood may fail to specify a definite
context in the fine sense.

To illustrate the second kind of indeterminacy, consider the following
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sentences:

(4) Most philosophers are rich

(5) Few philosophers are rich

(6) Many philosophers are rich

It is easy to see that (4)-(6), just like (1)-(3), may be used without specifying
a definite set of contextually relevant objects. But in the case of (4)-(6) there
is another possible source of unclarity, namely, the fact that a quantifier
expression may fail to specify a definite amount of things that belong to a
given domain. Consider (4). Even if ‘philosophers’ and ‘rich’ had a definite
extension, it might still be unclear whether (4) is true, because it might be
unclear whether ‘most’ is to be read, say, as ‘more than 1/2’ or as ‘more
than 2/3’. Similar considerations hold for (5) and (6), as ‘few’ and ‘many’
admit multiple readings in the same sense. By contrast, ‘all’, ‘some’ and
‘more than half of’ do not admit multiple readings in that sense. This
suggests that ‘most’, ‘few’ and ‘many’ are indeterminate in a way in which
‘all’, ‘some’ and ‘more than half of’ are not. While ‘all’, ‘some’ and ‘more
than half’ provide a definite specification of a certain portion of the domain,
‘most’, ‘few’ and ‘many’ do not, as they can be understood in more than
one way.

Again, one way to see that this kind of indeterminacy is correctly de-
scribed as vagueness is to see how it can be distinguished from context sen-
sitivity. For it is realistic to say that the use of a quantifier expression in a
context may fail to determine a definite reading in the sense just illustrated.
More generally, there are two ways in which the use of a quantified sentence
in a context may fail to fix definite truth conditions. In the first case, the
sentence has no definite truth conditions because no definite domain is fixed.
This may be called domain indeterminacy. In the second case, the sentence
has no definite truth conditions because, given an intended domain, no def-
inite binary relation is fixed on that domain. This may be called quantifier
indeterminacy.

Both domain indeterminacy and quantifier indeterminacy are plausibly
described as linguistic phenomena, that is, as forms of indeterminacy that
affect linguistic expressions. For neither of them seems easily reducible to
non-linguistic facts. This is not to say that there is indeterminacy only at the
linguistic level. More specifically, in the case of domain indeterminacy this
is not to rule out the existence of indeterminacy at the metaphysical level.
It is consistent with a description of domain indeterminacy as a linguistic
phenomenon to suppose that the very things over which a quantifier expres-
sion ranges are indeterminate. What such description requires is simply that
there is indeterminacy at least at the linguistic level.
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Moreover, domain indeterminacy and quantifier indeterminacy are clearly
independent of each other. On the one hand, it can be the case that a quan-
tifier expression (as it is used on a given occasion) is indeterminate in the
first sense without being indeterminate in the second. For example, ‘all’
always specifies a determinate portion of the intended domain, even if in
some cases it may be indeterminate which is the intended domain. On the
other, it is conceivable that a quantifier expression (as it is used on a given
occasion) is indeterminate in the second sense without being indeterminate
in the first. For example, even assuming that ‘most’ ranges over a definite
domain in a given case, it still makes sense to say that it fails to specify a
definite portion of that domain.

In substance, domain indeterminacy and quantifier indeterminacy can be
regarded as two ways in which quantifier expressions may be vague. That is,
if a quantifier expression (as it is used on a given occasion) is vague, then it
is affected either by quantifier indeterminacy, or by domain indeterminacy,
or by both. This explains why the question of what it is for a quantifier
expression to be vague seems to admit two different kinds of answer.

3 Precisifications of quantifier expressions

As is well known, there are different views of vagueness, because there are
different ways to explain its distinctive form of unclarity. But the divergences
on the nature of vagueness are to a good extent irrelevant for the purposes
of this paper. In what follows it will simply be assumed that the vagueness
of a language entails its capacity in principle to be made precise in more
than one way. That is,

(VP) If an expression is vague, then it admits different precisifications.

Although (VP) is not universally accepted, it is consistent with more than
one view of vagueness. In particular, it is consistent with supervaluation-
ism, epistemicism, and other views that differ both from supervaluationism
and from epistemicism. This section suggests that the distinction between
quantifier indeterminacy and domain indeterminacy may be understood as
a distinction between two kinds of variations in the precisifications of a
quantifier expression3.

To see how domain indeterminacy may be described in terms of precisi-
fications, it suffices to focus on (1)-(3). Let us assume that an interpretation

3Supervaluationism is consistent with (VP) both in its standard version outlined in
Fine [?] and in non-standard versions such as that provided in McGee and McLaughlin
[?]. Epistemicism is consistent with (VP) at least in the version advocated in Williamson
[?]. Other views consistent with (VP) are those suggested in Braun and Sider [?] and in
Iacona [?], which qualify as neither supervaluationist nor epistemicist. Finally, (VP) is
consistent with some views according to which vagueness is in rebus, as in Barnes [?] and
in Barnes and Williams [?] and [?].
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of a sentence s is an assignment of semantic properties to the expressions
in s which are compatible with their linguistic meaning and determines def-
inite truth conditions for s. On the assumption that an interpretation of
a quantified sentence fixes a domain for the quantifier expression which oc-
curs in the sentence, a case of domain indeterminacy may be described as a
case in which a quantified sentence is used in a context, but a plurality of
interpretations of the sentence are equally admissible in the context. Each
interpretation provides a precisification of the quantifier expression which
occurs in the sentence.

To illustrate, suppose that (1) is uttered to assert that all philosophers in
U are rich, but that no unique set of contextually relevant objects is specified.
In particular, suppose that D is a set of people working or studying in U ,
and that D′ is a proper subset of D which differs from D only in that it does
not include a certain person whose affiliation to U is unclear for some reason.
Then there are two precisifications p1 and p2 such that p1 assigns D to ‘all’
and p2 assigns D′ to ‘all’. Consequently, it may be unclear whether (1) is
true. For (1) might have different truth values in the two corresponding
interpretations.

In order to describe quantifier indeterminacy in terms of precisifications,
the meaning of ‘most’, ‘few’ and ‘many’ will be defined along the lines sug-
gested in section 1. Even though the definitions that will be adopted may be
controversial, since there is no general agreement on the meaning of ‘most’,
‘few’ and ‘many’, nothing essential depends on them. For the present pur-
poses, they may simply be regarded as possible options that illustrate the
way in which ‘most’, ‘few’ and ‘many’ differ from ‘all’, ‘some’ and ‘more
than half of’.

Let us start with ‘most’. A basic fact about most seems to be that the
condition stated in definition 3 must be satisfied for the intended relation
to obtain: if one says that most philosophers are rich, one says at least that
more than half of philosophers are rich. This may be regarded as a necessary
condition on most. Yet it is not a sufficient condition. Certainly, we can
imagine situations in which ‘most’ is used as synonymous of ‘more than half
of’. But if the meaning of ‘most’ were exhausted by that condition, ‘most’
wouldn’t be indeterminate in the way considered. The meaning of ‘most’
seems to allow for variation in the proportion between the size of A ∩ B
and the size of A. Suppose that there are exactly 1.000.000 philosophers on
earth, and that exactly 501.000 of them are rich. In that circumstance it
might be unclear whether (4) is true, while it is clear that (3) is true. In
order to account for this variation, a definition of most may be given along
the following lines:

Definition 4. mostD(A,B) if and only if | A ∩B |> n/m | A |

Here 0 < n < m and n/m ≥ 1/2. For example, 1/2 and 2/3 are equally
acceptable values for n/m. In other words, most is defined as a class of
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quantifiers rather than as a single quantifier. Consequently, the meaning of
(4) may be described as a class of functions from domains to truth conditions
that is obtained by combining most with the meanings of ‘philosophers’ and
‘rich’. This means that (4) differs from (1)-(3), in that the determination
of its truth conditions involves a parameter other than the domain. Let A
and B be sets denoted by ‘philosophers’ and ‘rich’ relative to D. Whether
mostD obtains between A and B depends on the values assigned to n and
m. For example, if n = 2 and m = 3, then it obtains just in case | A∩B |>
2/3 | A |. In order to determine definite truth conditions for (4), we need
both a domain and a value of the additional parameter whose variation is
allowed by the indeterminacy of ‘most’4.

As in the case of ‘most’, the meaning of ‘few’ and ‘many’ may be defined
as a class of quantifiers. But there is a significant difference. While ‘most’
is clearly proportional, it is at least prima facie acceptable that ‘few’ and
‘many’ behave non-proportionally. Consider few. A basic fact about few
seems to be that, for an arbitrary D, to say that fewD holds between A and
B is to set an upper bound on the size of A∩B. There are at least two ways
to express this fact. The first may be called the absolute reading of ‘few’:

Definition 5. fewD(A,B) if and only if | A ∩B |≤ n

This reading is called absolute because the upper bound on the size of
A ∩B is fixed without reference to the size of A or B. The second reading,
instead, may be called the proportional reading of ‘few’, and comes in two
versions:

Definition 6. fewD(A,B) if and only if | A ∩B |≤ n/m | A |

Definition 7. fewD(A,B) if and only if | A ∩B |≤ n/m | B |

Here n and m are such that 0 < n < m. Definition 6 may be appropriate
for (5), given that in (5) the number of rich philosophers is said to be small
with respect to the number of philosophers. The following sentence, instead,
is naturally understood in terms of definition 7:

(7) Few cooks applied

In (7) it is said that the number of applicant cooks is small with respect to
the number of applicants, rather than the other way round.

The case of many is analogous. A basic fact about many seems to be
that, for an arbitrary D, to say that manyD holds between A and B is to
set a lower bound on the size of A ∩ B. Again, there are at least two ways
to express this fact. The first may be called the absolute reading of ‘many’:

4Definition 4 is in line with the suggestion in Barwise and Cooper [?], p. 163, and the
account in Westerst̊ahl [?], pp. 405-406. In the latter work, two readings of ‘most’ are
considered. But if definition 4 is adopted there seems to be no reason to do that.
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Definition 8. manyD(A,B) if and only if | A ∩B |≥ n

This reading is called absolute because the lower bound on the size of
A ∩B is fixed without reference to the size of A or B. The second reading,
instead, may be called the proportional reading of ‘many’, and comes in two
versions:

Definition 9. manyD(A,B) if and only if | A ∩B |≥ n/m | A |

Definition 10. manyD(A,B) if and only if | A ∩B |≥ n/m | B |

Definition 9 may be appropriate for (6), given that in (6) the number
of rich philosophers is said to be big with respect to the number of philoso-
phers. The following sentence, instead, is naturally understood in terms of
definition 10:

(8) Many Scandinavians have won the Nobel Prize

In (8) it is said that the number of Scandinavian Nobel Prize winners is big
with respect to the number of Nobel Prize winners5.

The absolute reading and the proportional reading of ‘few’ and ‘many’
might be regarded either as two distinct meanings that ‘few’ and ‘many’
can take depending on the occasion, or as two different hypotheses about
their unique meaning. In any case, the meaning of (5) and (6) is obtained
by combining few and many with the meanings of ‘philosophers’ and ‘rich’.
Therefore, it may be described as a class of functions from domains to truth
conditions6.

If the meaning of ‘most’, ‘few’ and ‘many’ is defined in the way sug-
gested, quantifier indeterminacy may be described in terms of precisifica-
tions. Consider definition 4. The variables n and m which occur in this
definition indicate the variability of the proportion between | A ∩ B | and
| A |, which constitutes the quantifier indeterminacy of ‘most’. Each assign-
ment of values to n and m amounts to a way of sharpening the meaning
of ‘most’. So it may be assumed that a precisification of ‘most’ involves
such an assignment, in addition to the domain parameter. For example, one
precisification of ‘most’ is that according to which n = 2 and m = 3, so the
condition required is that | A∩B |> 2/3 | A |. Definitions 5-10 are similar to
definition 4 in this respect. For each of these definitions - no matter whether
the reading is absolute or proportional - entails that the quantifier expres-
sion defined admits precisifications that differ in the same way. As in the
case of domain indeterminacy, the precisifications of a quantifier expression
determine interpretations of the quantified sentence in which it occurs.

5The examples (7) and (8) are drawn from Peters and Westerst̊ahl [?], pp. 213.
6The hypothesis that ‘most’, ‘few’ and ‘many’ can be treated along the way suggested

is adopted in Barwise and Cooper [?] and in Westerst̊ahl [?]. Instead, Keenan and Stavi
[?] and Lappin [?] provide differents accounts of ‘few’ and ‘many’.
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From what has been said so far it turns out that the distinction between
domain indeterminacy and quantifier indeterminacy may be described in
terms of two kids of variations in the precisifications of a quantifier expres-
sion. On the one hand, if a quantifier expression (as it is used on a given oc-
casion) exhibits domain indeterminacy, then it admits precisifications that
involve domain variation. On the other, if a quantifier expression (as it
is used on a given occasion) exhibits quantifier indeterminacy, then it ad-
mits precisifications that involve quantifier variation. Since interpretations
of quantified sentences include precisifications of the quantifier expressions
which occur in them, the same distinction may be drawn with respect to
interpretations of quantified sentences.

4 Truth conditions and logical form

The foregoing sections draw attention to the distinction between domain
indeterminacy and quantifier indeterminacy, and outline an account of the
distinction based on some relatively uncontroversial assumptions. This sec-
tion and the following show how the account outlined may be articulated
at the level of logical form. The assumptions that will be adopted are more
controversial, so the same goes for the conclusions that will be drawn. But
it is important to understand that, even if one is not sympathetic with the
line of thought that will be advanced, one may still regard what has been
said so far as plausible and interesting in itself.

There are at least two senses in which one may wonder what is the logical
form of quantified sentences. One question is how quantified sentences are
to be formally represented in order to explain the valid inferences in which
they occur. Another question is how quantified sentences are to be formally
represented in order to provide a compositional account of their meaning.
Although it is often assumed that a unique notion of logical form can provide
answers to both questions, it will not be assumed here. In what follows
we will focus only on the first question, leaving aside the second. The
crucial hypothesis that will be held about the formal explanation of valid
inferences is that the notion of logical form it requires is a truth conditional
notion, that is, a notion according to which logical form is a matter of truth
conditions. Since no uniqueness assumption will be made, this is compatible
with there being a different notion of logical form that is suitable for the
second question. More precisely, it is compatible with the hypothesis that a
syntactic notion of logical form - such the notion of LF adopted in linguistics
- is to be adopted to answer the second question7.

The truth conditional notion of logical form stems from the idea that
an adequate formalization of a sentence must provide a representation of its

7Iacona [?] provides an argument against the uniqueness assumption.
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content that exhibits its truth conditions. Let L be a standard first order
language with identity. Consider the following sentences:

(9) Aristotle is rich

(10) Aristotle is indeed rich

(11) Plato is rich

Clearly, (9) and (10) have the same truth conditions, because they describe
the same object as having the same property, while (9) and (11) have differ-
ent truth conditions, because they describe different objects as having that
property. Therefore, (9)-(11) are adequately formalized in L as Fa, Fa, Fb.
On the understanding of adequate formalization that will be adopted, if s̄ is
an n-tuple of sentences and ᾱ is an n-tuple of formulas, then ᾱ adequately
formalizes s̄ only if the formulas in ᾱ represent the truth conditions of the
sentences in s̄ in such a way that two formulas in ᾱ are logically equivalent
if and only if the sentences in s̄ to which they are assigned have the same
truth conditions8.

Note that this is only a necessary condition for adequate formalization,
so it may not be regarded as a complete account of adequate formalization.
When a set of sentences is represented in a formal language, the represen-
tation is intended to capture what is said by using these sentences, in some
sense of ‘what is said’ that is relevant for the purpose of formal explanation.
So it is reasonable to presume that, for a n-tuple of sentences s̄, only some
of the n-tuples of formulas that satisfy that condition adequately formal-
ize s̄. For example, it is usually taken for granted that Fa is better than
∼∼ Fa or Fa∧ (Gb∨ ∼ Gb) as a representation of (9). Even though ∼∼ Fa
and Fa ∧ (Gb∨ ∼ Gb) are logically equivalent to Fa, they do not capture
what is said by using (9) in the relevant sense of ‘what is said’. The un-
derlying thought is that, in order to adequately formalize a sentence, one
should choose a formula whose complexity is strictly that required by a cor-
rect analysis of the content of the sentence, which means that the formula
must have the minimum complexity that is necessary to capture that con-
tent. Here ‘complexity’ is understood in the standard way, as the number
of logical symbols that occur in the formula, and ‘correct logical analysis’ is
irreducibly vague and hard to define9.

On the assumption that sentences have truth conditions relative to inter-
pretations, it seems correct to claim that sentences have logical form relative

8This is just a rough characterization and certainly does not settle every issue concern-
ing sameness of truth conditions. In particular, it does not entail that truth conditions
are sets of possible worlds. For example, it is consistent with the characterization pro-
vided to say that ‘2 is even’ and ‘3 is odd’ have different truth conditions, in that they
describe different objects as having different properties, even though they are both true
in all possible worlds.

9Sainsbury [?] suggests a criterion of adequate formalization that rests on the idea that
formalization must preserve what is said, pp. 161-162.
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to interpretations. Let it be granted that, for an n-tuple of sentences s̄, an
interpretation of s̄ is an n-tuple ī such that each term in ī is an interpretation
of the corresponding term in s̄. The criterion of individuation that underlies
the truth conditional notion of logical form may be stated as follows:

Definition 11. s̄ has logical form ᾱ in ī if and only if s̄ is adequately
formalized by ᾱ in ī.

When s̄ has exactly one term, we get that s has logical form α in i if
and only if s is adequately formalized by α in i10.

Definition 11 leaves room for two senses in which a formula α can be said
to express the logical form of a sentence s relative to an interpretation i. The
first is that in which α, as distinct from some other formula, represents the
content of s relative to i, as distinct from some other content. For example,
if (9) and (11) are formalized as Fa and Fb, the fact that Fa and Fb contain
different individual constants shows that (9) and (11) have different truth
conditions because ‘Aristotle’ and ‘Plato’ refer to different individuals. The
second is that in which α represents the structure of the content of s relative
to i in virtue of its being a formula of a certain kind. For example, Fa and
Fb are both formulas of the form Πτ , where Π indicates any unary predicate
of L and τ indicates any individual constant of L. In this sense, it is plausible
to say that (9) and (11) have the same logical form, although they express
different contents.

The account of the meaning of quantified sentences outlined in sections
1 and 3 may be integrated with an analysis of quantified sentences based on
the truth conditional notion of logical form. To illustrate, consider (1). As
it turns out from section 1, (1) can be understood in more than one way.
The simplest case is that in which (1) is used without restriction on the
domain. Recall that the assumption that quantifier expressions are used in
association with domains does not entail that, whenever one uses a quantifier
expression, one has in mind a definite set of contextually relevant objects.
It is consistent with that assumption to say that there are contexts in which
nothing is excluded as irrelevant. The following formula represents (1) as
used in such a context, if P stands for ‘philosopher’ and Q stands for ‘rich’:

(12) ∀x(Px ⊃ Qx)

In order to deal with a context in which some things are excluded as irrel-
evant, instead, P can be read as including the intended restriction. Suppose
that (1) is used to assert that all philosophers in U are rich. In this case,
(1) can be represented as (12), where P stands for ‘philosopher in U ’ and Q
stands for ‘rich’. So if two utterances of (1) differ in the intended restriction

10Brun [?], p. 27, and Baumgartner and Lampert [?], p. 104, provide some considera-
tions in support of the claim that the logical form of a set of sentences is expressed by an
adequate formalization of the set.
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on the domain, they may be represented by means of different predicate
letters. Suppose that (1) is used on one occasion to assert that all philoso-
phers in U are rich and on another occasion to assert that all philosophers
in U ′ are rich. This difference may be represented in terms of the difference
between (12) and the following formula:

(13) ∀x(Rx ⊃ Qx))

Here R stands for ‘philosopher in U ′’. Note that (12) and (13) are analogous
to Fa and Fb. On the one hand, (12) and (13) represent different contents
insofar as P and R stand for different conditions. On the other, (12) and
(13) are formulas of the same kind, in that they differ only for a predicate
letter. In this sense it is plausible to say that they express the same logical
form.

5 First order definability and first order express-
ibility

The thesis that quantified sentences can be formalized in L in virtue of their
truth conditions has an important consequence which concerns a fact that
is usually regarded as crucial for the expressive power of first order logic.
The fact is that some quantifiers are not first order definable, in the sense
that they do not denote quantifiers that satisfy the following condition:

Definition 12. A quantifier Q is first order definable if and only if there is
a formula α of L containing two unary predicate letters such that, for every
set D and A,B ⊆ D, QD(A,B) if and only if α is true in a structure with
domain D where the predicate letters in α denote A and B.

Here ‘two’ means ‘exactly two’. It is easy to see that ‘all’ is first order
definable, in that (12) satisfies the condition required. The same goes for
‘some’, given that (2) can be represented as follows:

(14) ∃x(Px ∧Qx)

However, ‘more than half of’ is not first order definable. The same goes
for ‘most’, ‘few’ and ‘many’. Although (3)-(6) are semantically similar to
(1) and (2), in that they are formed by expressions of the same semantic
categories combined in the same way, there is no formula of L that translates
(3)-(6) in the same sense in which (12) and (14) translate (1) and (2)11.

It is often taken for granted that this fact constitutes a serious limitation
of the expressive power of first order logic. For it is assumed that formal-
ization is a matter of translation, understood as meaning preservation: to

11Barwise and Cooper provide a proof of the first order undefinability of more than half
of in [?], pp. 213-214. Peters and Westerst̊ahl, in [?], pp. 466-468, spell out a proof
method that extends to other proportional quantifiers.
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say that a quantifier expression is first order definable is to say that L con-
tains some expression that captures its meaning. However, without that
assumption there is no reason to think that the first order undefinability of
‘more than half of’, ‘most’, ‘few’ and ‘many’ rules out the possibility that
(3)-(6) are formalized in L. Certainly, it undermines the claim that there are
sentences of L that have the same meaning as (3)-(6). But if logical form is
a matter of truth conditions, such a claim makes little sense anyway, even in
the case of (1) and (2). Instead of asking whether a quantifier is first order
definable, one may ask whether it is first order expressible, that is, whether
it denotes a quantifier that satisfies the following condition:

Definition 13. A quantifier Q is first order expressible if and only if, for
every set D and A,B ⊆ D, there is an adequate formula α of L containing
two unary predicate letters such that QD(A,B) if and only if α is true in a
structure with domain D where the two predicate letters denote A and B.

Again, ‘two’ means ‘exactly two’. The sense in which α is required to be
adequate is the same in which a formalization is expected to be adequate,
as explained in section 4. That is, α must represent what is said, relative to
D, by a sentence which contains a quantifier expression that denotes Q and
two predicates for A and B. Of course, adequacy so understood is a vague
notion, so it can hardly be phrased in formal terms. However, this does not
prevent definition 13 from playing a role analogous to that of definition 12.
For if one takes a case in which the notion of adequacy definitely applies,
and in which it is provable that the rest of the conditions that constitute
first-order expressibility are satisfied, then one can rightfully conclude that
definition 13 applies. This is just the kind of case at issue. The formulas
that will be considered in our reasoning are assumed to be clear cases of
adequacy, so the reasoning itself is to be understood as conditional on that
assumption.

To see how adequacy matters, it suffices to think that a trivial proof of
the existence of α can be provided if no such condition is imposed on α. For
it is easy to find some α that has the required truth value for independent
reasons. For example, if QD(A,B) and α is a logical truth, then QD(A,B)
if and only if α is true in the structure. But from what has been said about
adequacy it turns out clear that in this case α is not adequate. The same
goes for similar trivial proofs of the existence of α. What is not trivial,
instead, is to prove the existence of an adequate α. As it will be shown,
‘more than half of’, ‘most’, ‘few’ and ‘many’ are first order expressible, in
that for every D and A,B ⊆ D, there is an adequate α containing two
predicate letters such that QD(A,B) if and only if α is true in a structure
with domain D where the predicate letters denote A and B.

Let us start with ‘more than half of’ and ‘most’. In this case the adequacy
assumption that underlies the reasoning is that, if what is said by s relative
to D is that at least n As are Bs, then a formula of L that contains n
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occurrences of ∃ followed by n distinct variables and two unary predicates
P and Q can provide an adequate representation of s. Such a formula will
be indicated as follows:

(15) ∃≥nx(Px ∧Qx)

A further assumption is that A and B are finite, as it is natural to expect
given that ‘more than half of’ and ‘most’ are normally used to state relations
between finite quantities.

Given these two assumptions, the first order expressibility of ‘most’ can
be proved by showing that, if A,B ⊆ D and 0 < n < m, there is a k such
that | B |> n/m | A | if and only if | B |≥ k. The first order expressibility
of ‘more than half of’ follows from this result, as it concerns the special case
in which n = 1 and m = 2.

Theorem 1. For every D and A,B ⊆ D, there is an adequate formula α
of L that contains two unary predicate letters such that mostD(A,B) if and
only if α is true in a structure with domain D where the two predicate letters
denote A and B.

Proof. First it will be shown that, if A,B ⊆ D and 0 < n < m, there is a k
such that | B |> n/m | A | if and only if | B |≥ k. Suppose that A,B ⊆ D
and 0 < n < m. A function F can be defined in the following way. If j = 0,
then F (j) = 1. If j > 0 and j is divisible by m, then

F (j) =
n

m
j + 1

If j > 0 and j is not divisible by m, then F (j) is the smallest integer such
that

F (j) >
n

m
j

Now let | A |= j and k = F (j). k is such that | B |> n/m | A | if and only if
| B |≥ k. Suppose that j = 0. Then n/m | A |= 0 and F (j) = 1, so | B |> 0
if and only if | B |≥ 1. Suppose that j > 0 and j is divisible by m. Then
| B |> (n/m)j if and only if | B |≥ (n/m)j + 1. Finally, suppose that j > 0
and j is not divisible by m. Since | B | is a natural number, | B |> (n/m)j
if and only if | B |≥ F (j).

Once it is shown that, if A,B ⊆ D and 0 < n < m, there is a k such that
| B |> n/m | A | if and only if | B |≥ k, replacing B with A∩B it turns out
that there is a k such that | A ∩B |> n/m | A | if and only if | A ∩B |≥ k.
Therefore, mostD(A,B) if and only if | A ∩ B |≥ k. This means that (15),
for n = k, can be used to express in L the claim that mostD(A,B). For (15)
is true in a structure with domain D where P and Q denote A and B.

To see that the first order expressibility of ‘more than half of’ follows
from this proof it suffices to think that, once it is shown that there is a k
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such that | B |> n/m | A | if and only if | B |≥ k, a fortiori it is shown that
there is a k such that | B |> 1/2 | A | if and only if | B |≥ k. Replacing B
with A ∩ B, we get that there is a k such that more than half of D(A,B) if
and only if | A ∩B |≥ k12.

From theorem 1 it turns out that, although more than half of and most
are characterized by a proportional relation, more than half of D and mostD
fix a non-proportional relation expressible in L for each D. Theorem 1,
accordingly, “squeezes” a proportional relation on a set of non-proportional
relations. So, for any interpretation, (3) has a logical form representable in
L relative to that interpretation, and the same goes for (4).

Now let us consider (5) and (6). Although ‘few’ and ‘many’ admit both
an absolute reading and a proportional reading, the difference between the
two readings does not really matter as far as formalization in L is concerned.
The two readings certainly differ with respect to first order definability, for
‘few’ and ‘many’ turn out first order definable on the absolute reading but
not on the proportional reading. However, what matters to formalization in
L is first order expressibility. As in the case of ‘most’, a squeezing argument
can be provided to the effect that ‘few’ and ‘many’ are first order expressible.
In the case of ‘many’ the adequacy assumption is the same, while in the case
of ‘few’ it is that, if what is said by s relative to D is that at most n As
are Bs, then a formula of L that contains n occurrences of ∃ followed by n
distinct variables and two unary predicates P and Q can provide an adequate
representation of s:

(16) ∃≤nx(Px ∧Qx)

Theorem 2. For every D and A,B ⊆ D, there is an adequate formula α of
L that contains two unary predicate letters such that fewD(A,B) if and only
if α is true in a structure with domain D where the two predicate letters
denote A and B.

Proof. Let A,B ⊆ D. If definition 5 is assumed, fewD(A,B) if and only if
| A∩B |≤ n. Therefore, fewD(A,B) if and only if (16) is true in a structure
with domain D where P and Q denote A and B. If definition 6 is assumed,
fewD(A,B) if and only if | A ∩ B |≤ n/m | A |. But a result similar to
theorem 1 can be proved in similar way, that is, if A,B ⊆ D and 0 < n < m,
there is a k such that | B |≤ n/m | A | if and only if | B |≤ k. Therefore,
fewD(A,B) if and only if (16) is true in a structure with domain D where
P and Q denote A and B. The same goes if definition 7 is assumed.

Theorem 3. For every D and A,B ⊆ D, there is an adequate formula α
of L that contains two unary predicate letters such that manyD(A,B) if and
only if α is true in a structure with domain D where the two predicate letters
denote A and B.

12A direct proof of the first order expressibility of ‘more than half of’ is provided in
Iacona [?]. The theorems presented in this section provide a generalization of that result.
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Proof. Let A,B ⊆ D. If definition 8 is assumed, manyD(A,B) if and only
if | A ∩ B |≥ n. Therefore, manyD(A,B) if and only if (15) is true in a
structure with domain D where P and Q denote A and B. If definition 9 is
assumed, manyD(A,B) if and only if | A ∩ B |≥ n/m | A |. But a theorem
similar to theorem 1 can be proved in similar way, that is, if A,B ⊆ D and
0 < n < m, there is a k such that | B |≥ n/m | A | if and only if | B |≥ k.
Therefore, we get that manyD(A,B) if and only if (15) is true in a structure
with domain D where P and Q denote A and B. The same goes if definition
10 is assumed.

From theorems 1-3 it turns out that (4)-(6) can be formalized in L. For
every precisification of the quantifier expressions that occur in (4)-(6), there
is a formula of L that represents the truth conditions of (4)-(6). On the
assumption that interpretations of quantified sentences include precisifica-
tions of the quantifier expressions which occur in them, this means that for
every interpretation of (4)-(6), there is a formula of L that represents the
truth conditions of (4)-(6).

6 Two kinds of formal variation

From what has been said so far it turns out that a quantified sentence can
be represented by different formulas on different interpretations. But there
are basically two ways in which a representation of a quantified sentence
can vary as a function of its interpretation. Consider (1) and (3). In section
4 we saw that (12) and (13) can represent (1) on different interpretations.
Similarly, section 5 shows how the following formulas can represent (3) on
different interpretations:

(17) ∃≥3x(Px ∧Qx)

(18) ∃≥4x(Px ∧Qx)

In the second case, however, the difference seems more substantial: one thing
is to say that more than half of five things have a certain property, quite
another thing is to say that more than half of six things have that property.

The difference between these two kinds of variation may be spelled out
in terms of a notion of minimality based on the understanding of adequate
formalization suggested in section 4. As explained in that section, it is
plausible to assume that, in order to adequately formalize a sentence s on
a given interpretation, a formula must provide a correct logical analysis of
the content expressed by s. This assumption leaves room for the possibility
that different formulas adequately formalize s on that interpretation. If the
differences between formulas that obtain in such a case are called ‘minimal’,
the two kinds of variation in the formal representation of a sentence may be
defined as follows:
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Definition 14. A minimal variation in the formal representation of a sen-
tence s is a variation that involves some minimal difference in the formulas
assigned to s.

Definition 15. A non-minimal variation in the formal representation of
a sentence s is a variation that involves some difference in the formulas
assigned to s which is not minimal.

The meaning of ‘minimal’ can be specified in more than one way. On the
one hand, any admissible definition of minimality must entail that certain
differences between formulas are minimal, in that they definitely do not
affect adequate formalization. Clearly, if two formulas α and β differ only in
that β is obtained from α by uniformly replacing some non-logical expression
with another expression of the same category, as in the case of Fa and
Fb, the difference between them is minimal. The same goes if α and β
differ only in that β is obtained from α by applying elementary syntactic
transformations that involve simple order, such as that from Fa ∧ Fb to
Fb ∧ Fa. On the other hand, any admissible definition of minimality must
entail that certain differences between formulas are not minimal, in that they
definitely affect adequate formalization. Clearly, if α and β are not logically
equivalent, it cannot be the case that they both adequately formalize the
same sentence in the same interpretation. But there are also intermediate
cases in which it is not obvious whether a difference between formulas should
be classified as minimal. For example, the transformation from ∀x(α ∧ β)
to ∀xα ∧ ∀xβ might be minimal according to one admissible understanding
of minimality and not minimal according to another.

However, it is not essential for the purposes at hand that the meaning
of ‘minimal’ is actually specified in this or that way. For the distinction
between minimal and non minimal variations is sufficienty clear in our case:
the difference between (12) and (13) turns out to be minimal on any admis-
sible definition of minimality, while that between (17) and (18) turns out
to be non minimal on any admissible definition of minimality. This means
that, given definitions 14 and 15, the former may be described in terms of
minimal variation in the formal representation of (1), while the latter may
be described in terms of non-minimal variation in the formal representation
of (3).

Note that, in accordance with the suggestion provided in section 4, same-
ness of logical form can be defined in terms of minimal variation in the formal
representation of a sentence.

Definition 16. A sentence s has the same logical form on two interpreta-
tions i and i′ if and only if the difference between i and i′ entails at most
minimal variation in the formal representation of s.

Thus, (1) has the same logical form on the interpretations represented
by (12) and (13). By contrast, (3) does not have the same logical form on
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the interpretations represented by (17) and (18).
Definitions 14 and 15 may be employed to characterize domain indeter-

minacy and quantifier indeterminacy. In the first place, it seems correct to
say that domain indeterminacy entails minimal variation in formal repre-
sentation. If a quantifier expression e (as it is used on a given occasion)
exhibits domain indeterminacy and s is a quantified sentence containing e,
then it is indeterminate which is the set of contextually relevant objects
over which e is taken to range. That is, there are two sets D and D′ such
that it is not clear whether e ranges over D or D′. But then there are two
precisifications p1 and p2 such that the difference between p1 and p2 entails
minimal variation in the formal representation of s. For different predicate
letters must be employed to represent in L the difference between D and
D′. Therefore, there are two interpretations which require two minimally
different formulas of L13.

In the second place, it seems correct to say that quantifier indetermi-
nacy entails non-minimal variation in formal representation. If a quantifier
expression e (as it is used on a given occasion) is affected by quantifier in-
determinacy and s is a quantified sentence containing e, then there are two
precisifications p1 and p2 such that the difference between p1 and p2 entails
non-minimal variation in the formal representation of s. For the definition
of the meaning of e must include some variables such that, for any domain,
different values of those variables determine different binary relations on
that domain (no matter whether e is understood as proportional or non-
proportional). So if p1 and p2 are precisifications that differ in such values,
the formulas assigned to s in the corresponding interpretations must differ
in non-minimal way14.

7 Logicality

These last three sections show some implications of the analysis suggested
on three debated issues concerning quantification. The first is the issue of
logicality. It is generally believed that some quantifier expressions deserve
the label of “logical” expressions, in that their meaning has a special signif-
icance for logic. So it is natural to wonder whether a principled distinction
can be drawn between logical and non-logical quantifier expressions. More

13Here it is assumed that contextual restrictions are formally represented in the way sug-
gested in section 4. But note that one would get the same result even if one adopted a for-
mal representation in which a separate predicate letter expresses the restricting condition,
because in that case (12) and (13) would be replaced by two formulas ∀x(Rx ⊃ (Px ⊃ Qx))
and ∀x(Sx ⊃ (Px ⊃ Qx)) which differ in the first predicate letter.

14Note that the converse entailment clearly does not hold. For it may be the case
that the sentences containing a quantifier expression e (as it is used on a given occasion)
admit non-minimal variation in formal representation even if e does not exhibit quantifier
indeterminacy. This is shown by the case of ‘more than half of’, which does not exhibit
quantifier indeterminacy even though (3) may be represented as (17) or (18).

19



specifically, one may ask whether such a distinction holds for the quantifier
expressions that occur in (1)-(6). This section outlines a coherent answer
to the latter question. The answer, which implies that logicality and vague-
ness are independent properties, is intended to apply to the restricted class
of sentences considered so far, so it not to be regarded as an attempt to
provide a comprehensive account of logicality.

On the one hand, it is seems right to think that not all the quantifier
expressions that occur in (1)-(6) must be classified as logical. According to
Barwise and Cooper, a distinction must be drawn between logical and non-
logical quantifier expressions: ‘all’ and ‘some’ belong to the first category,
while ‘more than half of’, ‘most’, ‘few’ and ‘many’ belong to the second. As
they have observed, it would be wrong to think that the meaning of every
quantifier expression must be “built into the logic”15.

On the other hand, however, it might be argued that the distinction be-
tween logical and non-logical quantifier expressions misses something impor-
tant, namely, that non-logical quantifier expressions may play some logically
interesting role in inferences. Consider the following argument:

A
(4) Most philosophers are rich

(2) Some philosophers are rich

Apparently, A is valid, and its validity depends on the fact that ‘most’ oc-
curs in (4). As Peters and Westerst̊ahl point out, if we switch the predicates
in A, we still have a valid inference, while if we switch the quantifier expres-
sions, the entailment is lost. This shows, according to them, that ‘most’ is
constant in a way in which ‘philosophers’ is not. A worked out and improved
version of this notion of constancy is provided by Bonnay and Westerst̊ahl,
where it is suggested that, on a suitable understanding of interpretations, a
quantifier expression is constant if at least one argument in which it occurs is
valid in one interpretation but becomes invalid in another interpretation16.

As it will be shown, this apparent conflict can be resolved in accordance
with the method of formalization adopted here: a distinction can be drawn
between logical and non-logical quantifier expressions, without leaving un-
explained the inferential role of non-logical quantifier expressions. Given
definition 16, logicality may be defined as follows:

Definition 17. A quantifier expression e is logical if and only if, for every
sentence s in which e occurs and for every pair of interpretations i and i′

such that i′ differs from i in the domain assigned to e, s has the same logical
form in i and i′17.

15Barwise and Cooper [?], p. 162.
16Peters and Westerst̊ahl [?], pp. 334-335, Bonnay and Westerst̊ahl [?], section 8.
17Note that, given the restriction mentioned in section 1, ‘sentence’ refers to simple

quantified sentences such as (1)-(6).
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From definition 17 it turns out that ‘all’ is logical. Let s be a sentence
which contains ‘all’, and let i and i′ be interpretations of s that differ in the
domain assigned to ‘all’. Since the difference between i and i′ is represented
by assigning to s two formulas which differ in the first predicate letter, as
in the case of (12) and (13), s has the same logical form in i and i′. Similar
considerations hold for ‘some’. By contrast, ‘more than half of’, ‘most’,
‘few’ and ‘many’ are non-logical. As it has been shown in the case of (3)-
(6), two interpretations that differ in the domain assigned to ‘more than
half of’, ‘most’, ‘few’ and ‘many’ can determine a difference of logical form.
This characterization of logicality entails that logicality and vagueness are
independent properties. A quantifier expression (as it is used on a certain
occasion) may or may not be vague - in either of the two senses considered
- independently of whether it is logical or non-logical18.

Once it is clear how the quantifier expressions that occur in (1)-(6) can
be classified as logical or non-logical, it remains to be said how the infer-
ential role of non-logical quantifier expressions can be explained. Consider
A. Given definition 11, it is consistent to hold that an argument can have
different forms in different interpretations, each of which is valid. This is
precisely what happens in the case of A. Since (4) has different logical forms
on different interpretations, A has different forms on different interpreta-
tions. Suppose for example that (17) and (18) express the logical form of
(4) as understood on two different occasions. Then there are two different
but equally valid forms for A, that is

A1
(17) ∃≥3x(Px ∧Qx)

(14) ∃x(Px ∧Qx)

A2
(18) ∃≥4x(Px ∧Qx)

(14) ∃x(Px ∧Qx)

More generally, the validity of A can be explained in terms of formal valid-
ity by using standard principles of first order logic. In this respect, there is
no difference between A and any argument that involves logical quantifier
expressions.

It is easy to see how other apparently valid arguments can be treated in
similar way. In particular, an explanation along the lines suggested seems
to hold for a considerably wide class of valid arguments formed by sentences
containing either ‘most’ or ‘some’. Note, however, that this does not mean
that every argument containing ‘most’ which is valid in some interpretation
must be valid in all interpretations. For example, consider the following:

18Instead, there is a straightforward connection between logicality so understood and
first order definability. Iacona [?] proves that every logical quantifier expression is first
order definable.

21



B
(19) Most beers are cool

(20) At least four beers are cool

If (17) and (18) express the logical form of (19) as understood on two dif-
ferent occasions, then B is valid in some interpretations but invalid in other
interpretations. Therefore, the explanation of the validity of arguments such
as A is consistent with the hypothesis that ‘most’ is constant in the sense
spelled out by Bonnay and Westerst̊ahl, although the explanation itself does
not appeal to constancy so understood. In the perspective adopted here, log-
icality and constancy may be regarded as distinct properties of quantifier
expressions19.

8 Unrestricted quantification

The second issue that will be addressed is the issue of unrestricted quantifi-
cation. Although quantifier expressions often carry a tacit restriction to a
set of contextually relevant objects, it is legitimate to ask whether they can
coherently be used without such restriction, that is, whether it is possible to
quantify over absolutely everything. Some uses of quantifier expressions are
plausibly interpreted as involving unrestricted quantification. For example,
if one uses the word ‘everything’, which is equivalent to ‘all things’, to state a
general metaphysical claim, presumably one does not want to exclude some
things as contextually irrelevant. So, at least prima facie, natural language
seems to leave room for unrestricted quantification.

Of course, even if it is granted that some uses of quantifier expressions are
plausibly interpreted as involving unrestricted quantification, this does not
mean that a coherent formal account of unrestricted quantification can be
provided. In standard first order semantics, each structure includes a set as
its domain, so when formulas are interpreted with respect to the structure,
the symbols ∀ and ∃ are read as restricted to the members of that domain.
But according to set theory there is no universal set, that is, there is no set
of which everything is a member. The naive idea that there is such a set is
proved inconsistent by the Russell paradox. Therefore, in order to provide
a formal account of unrestricted quantification, some alternative semantics
must be given.

Williamson has argued that there is a viable alternative to standard first
order semantics. His main point is that, even though a Russell-like paradox
can arise if it is assumed that interpretations can be quantified over like
other things, that is, with first order quantification, no such paradox can
arise if we give up that assumption and recognize that the semantics must

19Moss [?], section 8.2, provides a complete axiomatization of a class of inferences involv-
ing sentences containing either ‘most’ or ‘some’. The explanation suggested here seems to
hold at least for that class.
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be phrased in an irreducibly second order way. Others, instead, are not con-
vinced by his line of argument and continue to claim that quantification over
everything is incoherent. However, this question will not be addressed here.
In what follows it will simply be granted that, since at least some uses of
quantifier expressions may plausibly be interpreted as involving unrestricted
quantification, the possibility of unrestricted quantification must be taken
into account20.

To see that definitions 1-10 are compatible with unrestricted quantifica-
tion, recall that, as explained in section 1, the use of a quantifier expression
may or may not involve an intended delimitation of the domain: there are
contexts in which some things are excluded as irrelevant on the basis of some
intended condition, and contexts in which nothing is excluded as irrelevant.
The distinction between restricted and unrestricted quantification may be
understood in terms of these two cases. That is, the contexts of the second
kind may be understood as contexts in which the domain is the totality of
everything.

Note that, since there is no universal set, if the domain associated to
a certain use of a quantifier expression is the totality of everything, that
domain is not a set. So it cannot in general be assumed that domains are
sets. But this is compatible with definitions 1-10, given that definitions 1-10
do not depend on that assumption. A domain may or may not be a set.
All that matters is that, on each domain, a quantifier expression denotes a
binary relation over the domain21.

9 Vague existence

The third issue that will be addressed is the issue of vague existence. Some
recent discussions on whether it can be vague if certain things exist hinge
on a claim that plays a key role in metaphysical disputes concerning unre-
stricted mereological composition and four-dimensionalism:

(UP) If ‘all’ and ‘some’ are unrestricted, then they are precise.

The main argument for (UP), first sketched by Lewis and then elaborated by
Sider, rests on (VP), the assumption about vagueness considered in section
3. The argument is intended to show that, given (VP), it is inconsistent to
suppose that ‘all’ or ‘some’ are unrestricted and admit different precisifica-
tions. Consider ‘all’. If ‘all’ were vague, there would be two precisifications
p1 and p2 such that, for some x, it is determinately the case that ‘all’ ranges

20Williamson [?], pp. 424-427 and 452-460. Glanzberg [?] argues against Williamson
that, for every every domain purporting to contain everything, there are in fact things
falling outside the domain.

21Peters and Westerst̊ahl, among others, assume that domains are sets, see p. 48. In
section 5 the same assumption is adopted for the sake of argument.
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over x according to p1 but not according to p2. But since ‘all’ is unrestricted,
if there is such an x then ‘all’ ranges over x. So it is not determinately the
case that ‘all’ ranges over x according to p1 but not according to p2. The
same goes for ‘some’22.

This argument has been widely discussed. Some find it compelling, oth-
ers do not. So it is a controversial question whether (UP) is justified. But
that question will not be addressed. In what follows it will simply be as-
sumed that (UP) deserves consideration, so that it may be worth to dwell on
its relation with the account of quantifier expressions provided in the previ-
ous sections. As it will be explained, what has been said so far is consistent
with (UP)23.

First of all, it must be noted that here quantifier indeterminacy is not
at issue: since ‘all’ and ‘some’ are not vague in that sense, (UP) is clearly
safe from quantifier indeterminacy. So the crucial question is whether the
fact that ‘all’ or ‘some’ can exhibit domain indeterminacy is compatible with
(UP). The answer to this question is affirmative, on the assumption that do-
main indeterminacy arises only in connection with restricted quantification.
That is, one may consistently claim that domain indeterminacy concerns the
specification of a restricting condition, so that it does not arise if no restrict-
ing condition is specified. Thus if (1) is used on a certain occasion and ‘all’
exhibits domain indeterminacy, that is, there are different precisifications p1
and p2 which involve different sets as domains, then its indeterminacy may
be understood in terms of different formulas such as (12) and (13) being
ascribed to (1) on different interpretations. By contrast, the same kind of
ambivalence does not arise when ‘all’ is used unrestrictedly24.

At least two interesting corollaries may be drawn from what has been
said so far. The first is that, when one deals with vague existence and re-
lated metaphysical issues, one must not confuse the quantifier expressions
‘all’ and ‘some’, which belong to natural language, with the symbols ∀ and
∃, which belong to formal languages such as L. In the debate on vague ex-
istence, both the advocates of (UP) and their opponents tend to use the
two kinds of expressions interchangeably, as if there were a straightforward
connection between quantified sentences and their logical form. But accord-
ing to the method of formalization adopted here, the connection is not so
straightforward. Even if ‘all’ and ‘some’ may be vague in some sense, in
that they may involve domain indeterminacy, there is no sense in which the

22Lewis [?], p. 213, Sider [?], pp. 128-129, Sider [?], pp. 137-142.
23Lopez De Sa [?] and Sider [?] elaborate and defend the argument. Liebesman and

Eklund [?] and Torza [?] argue against it.
24Note, however, that it might be unclear whether ‘all’ is used unrestrictedly, in which

case a similar kind of indeterminacy would arise. Note also that, just like ‘all’ may involve
a restriction, the same goes for the general term ‘thing’ as it occurs in ‘all things’. As it
is made clear in Lopez de Sa [?], pp. 405-406, (UP) is compatible with recognizing that
there might be restricted uses of ‘thing’ that are vague. For in that case, quantifying over
every thing in that sense is not the same thing as quantifying over absolutely everything.
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symbols ∀ and ∃ may be vague.
The second corollary is that domain indeterminacy, unlike quantifier in-

determinacy, is a property that concerns the use of a quantifier expression,
rather than the expression itself. In other terms, while quantifier indeter-
minacy is an intrinsic property of quantifier expressions, domain indetermi-
nacy is an extrinsic property of quantifier expressions, in that it arises only
in connection with restricting conditions that may be associated with them.
Perhaps one might be tempted to conclude that domain indeterminacy is not
a genuine property of quantifier expressions, namely, that the only sense in
which quantifier expressions may be vague is that in which they may involve
quantifier indeterminacy. But much depends on what ‘genuine property’ is
taken to mean. In any case, even if domain indeterminacy were not classified
as genuine because it is not an intrinsic property of quantifier expressions,
its existence could hardly be denied. All that matters for this paper is that
there is a kind of indeterminacy which arises in connection with the use of
quantifier expressions and differs from quantifier indeterminacy in the way
suggested.

A different question that might be raised in connection with this second
corollary is the following: if the domain indeterminacy that affects a quanti-
fier expression e as it is used on a certain occasion depends on the restricting
condition associated with e on that occasion, doesn’t it follow that domain
indeterminacy is reducible to indeterminacy of expressions other than e, the
expressions that are tacitly taken to fix that condition? The answer to this
question is that strictly speaking it doesn’t follow. At least two further is-
sues seems relevant to the justification of such conclusion. One is whether
every restriction is fixed - or can in principle be fixed - by some description.
The other is the issue mentioned in section 1, that is, whether the restriction
depends on some variable or parameter in the determiner or in the noun.
Since neither of these two issues need be addressed here, the reducibility
question may be left unsettled. In any case, nothing important hinges on
that question. Again, all that matters is that there is a kind of indetermi-
nacy which arises in connection with the use of quantifier expressions and
differs from quantifier indeterminacy in the way suggested25.

25I presented the material for this paper in talks at the University of Milan (spring 2014),
at the University of Barcelona (spring 2015), and at the University of L’Aquila (fall 2014).
The paper has benefited enormously from the questions, objections, and suggestions I have
received on those occasions. Special thanks go to Dan López De Sa, Sven Rosenkranz and
Elia Zardini. I also owe much to two anonymous referees for their sharp and accurate
comments.
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