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Received 14 September 2017; Revised 22 January 2018; Accepted 25 February 2018; Published 8 April 2018

Academic Editor: Gastón Schlotthauer
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The rise of mathematical developments in the theories of consciousness has led to new measures to detect consciousness in
a system. The Integrated Information Theory (IIT) is one of the best mathematical rooted attempts to quantify the level of
consciousness in a system with Φ as the effective information generated in a system above its parts. Recently, the IIT has inspired
the Perturbational Complexity Index (PCI) to detect conscious states in patients with disorders of consciousness, and it has shown
to have almost perfect classification accuracy. In this study, we explore the statistical correspondence between the theoreticalΦ and
the experimental PCI through a neurocomputational model of coupled oscillators that can be artificially perturbed, which mainly
focuses on the dynamics of collective synchronization between subsets of brain areas. Our results reveal that both measures are
statistically related but, in principle, this relationship is far to be perfect. These results are discussed in the context of the model of
coupled oscillators, which mainly focuses on the dynamics of collective synchronization between subsets of brain areas.

1. Introduction

One of the most challenging and still in progress tasks in
science is to objectively quantify to what extent a person is
conscious. One possible reason is that consciousness itself
cannot be operatively defined in an easy way since it is a
subjective phenomenon, and hence, it cannot be directly
observed [1]. There are different theoretical approaches to
consciousness [2]. For example, from a philosophical per-
spective, it has been proposed that there is a high order
thought associated with consciousness. A conscious thought
would be composed of simple percepts associated with
other thoughts that provide further semantic value. Within
neuroscience fields, theories can be divided into biological
and functionalistic theories. Biological theories state that
consciousness is a biological state of the brain; consciousness
is studied through the association of different cognitive states
with particular brain regions. On the other hand, from a
functionalistic perspective, the existence of consciousness
only requires an abstract structure to exist. For example, in

silico structures could support conscious experiences as long
as they obey the necessary conditions provided by the theory.
A good example of functionalism is the Global Workspace
account, which considers that conscious experience is the
result of competition between functional networks in the
brain [3] being conscious the winning network. However,
within functionalistic accounts, the Integrated Information
Theory (IIT) is probably the most solid and mathematically
rooted attempt to define what consciousness might be and
how it can be quantified [4–6]. Specifically, Tononi, in an
early version of his theory [4], proposed that consciousness
arises as integrated information in a system and provided
Φ as a computable measure of how conscious any physical
systemmight be.The main concept behind the calculation of
Φ is to measure to what extent a system as a whole cannot
be explained as a sum of its parts. As we will explain in
the next section, in order to compute Φ, it is necessary to
compare the information generated by the entire system with
the information of the system considered as two subsystems
(bipartition).
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2 Complexity

The main limitation in Φ computation is the necessary
condition to find and calculate the information contained in
all possible bipartitions of the system. This is a problem of
complexity class NP, which cannot be exhaustively computed
for systems with a large number of elements. Given that in
the human brain the number of neurons is in the order of
1011 [7], even if we have the entire information from every
single neuron, it would not be possible to obtain a value for
Φ. The number of possible bipartitions for a brain would
be in the order of a Stirling number of second kind that
can be computed with 2𝑛−1 − 1 and would give a number
of combinations in the order of 21011 , which interestingly
is much higher than the classic Eddington’s number that
estimates the amount of protons in the known universe
(≈1080) [8]. To solve this and other practical problems, a
number of versions and estimators have been developed in
different fields of research. One remarkable example was
provided by Barrett and Seth [9] where they proposed a
version of Φ for time series data. This version noted here as
ΦTS (TS stands for time series) can be applied to time series
from a generative dynamical model, and it perfectly agrees
with the IIT in its early version (and in the main concepts of
the further versions).

In the work we present here, we will focus on this
measure because it is theoretically well funded and easy to
apply to time series data. However, ΦTS shows the same
limitation as the original Φ, which, as stated before, includes
the computation of information from all possible bipartitions
of the system, and hence, it is only possible to be applied to
time series from systems with limited number of elements.

In a different line of research, one of the most important
empirical estimators of Φ has been developed in the field of
clinical assessment of unresponsive patients with disorder of
consciousness. Casali et al. [10] presented a Perturbational
Complexity Index (PCI) of integrated information to decide
if a given patient is conscious or not. The PCI was designed
to capture information and integration in the system. It
quantifies the richness of information in the process of prop-
agation of activity across the EEG channels right after discrete
transcranial magnetic stimulation (TMS). The theoretical
rationale of this measure is that a system with high Φ, when
stimulated with TMS pulses, needs to show cortical propaga-
tion (reflecting integration of its elements) as well as diverse
functional reactions at different areas of the cortex (differ-
entiation between the elements ≈ information). Given that
Φ is related to information and integration in a system, PCI
is proposed as an estimator of Φ for data collected from real
patients.

Although PCI has been demonstrated to classify patients
into conscious or unconscious with an almost perfect accu-
racy rate [10], it is an indirect measure ofΦ and it is not clear
whether it reflects the theoreticalΦ calculated from the brain
as a physical system. In this study, we explore the relationship
between the experimental PCI and the theoretical Φ. To
investigate this question, it would be necessary to obtain both
measures from the same system, and this is not easy since the
latter (ΦTS) is designed for simple dynamical systems and the
former (PCI) for real brains. The approach we take here is

to obtain ΦTS from an accepted neurocomputational model
of whole brain resting-state activity, that is, a variant of
the Kuramoto of coupled oscillators [10–13], which can be
artificially perturbed to simulate TMS pulses in order to
obtain a PCI for the same model.

Henceforth, in this study, we will focus on two versions
of Φ: (1) ΦTS for simple dynamical systems and time series
and (2) PCI estimator developed to measure the level of
consciousness in patients with different disorders of con-
sciousness. With this work we want to explore the possible
relationship between these two measures, ΦTS, theoretically
well founded, and the PCI, with indisputable clinical results.
To the best of our knowledge, this is the first work that directly
addresses this problem.

2. Methods

To investigate the potential relationship between the experi-
mental estimator of consciousness PCI and themore theoret-
ical index ΦTS calculated over the same system of Kuramoto
oscillators, we followed the next steps.

We first designed a Kuramoto model to simulate resting
dynamics of the cortex. Second, we calculated several realiza-
tions of the model and obtained ΦTS from the model. Third,
we perturbed the system to simulate TMSpulses and compute
the PCI of the model. In the next three sections, we explain
these steps in detail.

2.1. The Kuramoto Model to Simulate Resting-State Dynamics.
A Kuramoto model can be defined as a set of coupled
oscillators modelled as the evolution of its phases according
to the following set of coupled delay differential equations:

𝑑𝜃𝑖
𝑑𝑡 = 𝜔 + 𝑘

𝑁

∑
𝑗=1

𝑎𝑖𝑗𝑐𝑖𝑗 sin (𝜃𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝜃𝑖 (𝑡)) ,

𝑖 = 1, . . . , 𝑁,
(1)

where 𝜃𝑖 is the phase of the 𝑖th oscillator on its limit cycle and
𝜔 is its natural frequency in radians. The control parameter
𝑘 is the global excitatory coupling strength, a parameter
that scales all coupling strengths. 𝑁 is the total number
of oscillators. Importantly, 𝑐𝑖𝑗 is the connectivity strength
between each pair of oscillators and 𝜏𝑖𝑗 represents the time
delays between these oscillators. Both adjacency matrices
(connectivity strength and time delays) were obtained by
Hagmann et al. [11] that defined the structure of a network
coupled together according to human white matter tractog-
raphy (in the work of Hagmann et al. following diffusion
spectrum and MRI acquisitions, the segmented grey matter
was partitioned into 66 anatomical regions according to
anatomical landmarks. White matter tractography was used
to determine which regions pairs were connected by putative
white matter fiber tracts and to estimate their density and
corresponding length, fromwhich the structural connectivity
and delays were obtained). 𝑁 = 66 in the network of
oscillators we use here (see Figure 1). In short, each oscillator
represents a cortical region of the brain located in a three-
dimensional space with different connections to all other
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Figure 1: Spatial representation of the nodes that have been
used in the present model. In red, the nodes whose connectivity
was temporarily increased are indicated. PARC (paracentral lobe),
PCUN (precuneus), and SP (superior parietal cortex). L: left and R:
right.

oscillators. The term 𝑎𝑖𝑗 allows us to dynamically modify
the structural connectivity. It is an important term in this
study because it can generate perturbations in the model that
aimed to simulate TMS. For a Kuramotomodel, the degree of
synchrony between oscillators is conveniently measured by
an order parameter, 𝑟(𝑡), that satisfies

𝑟 (𝑡) 𝑒𝑖𝜓(𝑡) = 1
𝑁
𝑁

∑
𝑗=1

𝑒𝑖𝜃𝑗(𝑡), (2)

where 0 ≤ 𝑟(𝑡) ≤ 1 measures the phase coherence or
synchrony of the 𝑁 oscillators population; 𝑖 is the symbol
for the imaginary operator; and 𝜓 is the average phase of the
collective [12, 13]. 𝑟(𝑡) indicates how coherent oscillators are
in a given time and it qualifies if the phases of the collective are
tightly clustered or widely distributed. We have chosen 𝑟
instead of other possible order parameters, as the average
phase 𝜓, because it does not describe with accuracy the
oscillators’ collective behavior (for a given 𝜓, for example,
there are many possible phase distributions of oscillators).

According to several studies, the Kuramoto model shares
dynamical similarities with resting-state brain functioning
when it shows high metastability [14, 15]. This concept refers
to high variance of 𝑟(𝑡) which in other words can be defined
as the tendency of a system of oscillators to continuously
migrate between a variety of transient synchronous states,
allowing a dynamical organization between the elements of
the network. The system continuously goes from ordered to
disordered states [16]. Then, the values of the parameters in
the model were selected so that the global dynamics showed
high metastability. For 𝜔 = 60Hz (gamma rhythm), metasta-
bility was evident with 𝜏 = 3ms, and 0.5 < 𝑘 < 6.5, with
𝜏 as the mean value of 𝜏𝑖𝑗. Note that any change in 𝜏 can
be considered a change in the mean velocity of the conduc-
tion delays between oscillators, and other values of 𝜏 with
a different range of 𝑘 produced similar behaviors. For exam-
ple, we found approximately the same effects for 2.5 < 𝜏 <
5.

The Kuramoto model was simulated for a wide range of
𝑘 values. As indicated before, 𝑘 represents the strength in
the global connectivity of the model, and from a biological

point of view it could be seen as a parameter to characterize
integration between oscillators. Each simulation consisted of
a baseline of 65 × 103ms. As in Cabral et al. [17], we used an
Euler scheme inwhich the time step of numerical integrations
was set to .1ms.

It would be important to state that since no exper-
imental data are provided here, our results are obtained
for parameters of the model (𝑘, 𝑟, and metastability) that
have been shown, in previous works [18–20], to parallel key
characteristics of brain functioning. Hence, excluding the
parameter 𝑘, we did not manipulate the parameters in the
coupled equations of the Kuramoto system.

2.2. Integrated Information in the Kuramoto Model. Inte-
grated information was measured with the version ΦTS and
it is mainly based on the concept of effective information (𝜑)
[9].

Let 𝑋 = [𝑋1, . . . , 𝑋𝑛] be a multivariate random variable
that takes values in the space Ω𝑋. It is evident that the
dimensions of Ω𝑋 are the number of elements in the system
that generates 𝑋𝑛. The effective information generated by a
system in its current state𝑋𝑡 about the state𝑋𝑡−𝜏 with respect
to a bipartition of it 𝐵 = {𝑀1,𝑀2} is defined by the mutual
information generated by the entire systemminus the sum of
the mutual information of its parts in the bipartition:

𝜑 [𝑋, 𝜏, 𝐵] = 𝐼 (𝑋𝑡−𝜏; 𝑋𝑡) −
2

∑
𝑘=1

𝐼 (𝑀𝑘𝑡−𝜏,𝑀𝑘𝑡 ) . (3)

Mutual information in bits can be calculated with the
expression

𝐼 (𝑋𝑡−𝜏, 𝑋𝑡) = ∑
𝑥∈Ω𝑋

𝑃 (𝑋𝑡−𝜏, 𝑋𝑡) log2 𝑃 (𝑋𝑡−𝜏, 𝑋𝑡)
𝑃 (𝑋𝑡−𝜏) 𝑃 (𝑋𝑡) , (4)

a measure that gives the average bits that can be predicted
in 𝑋𝑡 given the state 𝑋𝑡−𝜏 [21]. The calculation of mutual
information includes the calculation of probabilities and
joint probabilities of any estate 𝑋𝑡 and 𝑋𝑡−𝜏. Integrated
information ΦTS is the effective information with respect to
the minimum information bipartition (MIB):

ΦTS [𝑋; 𝜏] = 𝜑 [𝑋, 𝜏, 𝐵MIB (𝑋, 𝜏)] , (5)

where

𝐵MIB = arg
𝐵

min{𝜑 [𝑋, 𝜏, 𝐵]
𝐾 (𝐵) } , (6)

with arg𝐵min stating for “the minimum number in the set”
and

𝐾 (𝐵) = min {𝐻 (𝑀1) ,𝐻 (𝑀2)} (7)

is a normalization factor to correct excessive unbalanced
bipartitions.𝐻 here stands for Shannon entropy.

To apply ΦTS to the Kuramoto model described in the
previous section, we divided the 66 regions of the original
network into 6 clusters proposed by Hagmann et al. in the
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original work [11]. This simplification allowed exploring all
possible bipartitions in the system (the Stirling number for
this case gives 26−1 −1 = 31 possible bipartitions). In addition,
and following [22], time series for each clusterwere calculated
as the synchrony between the oscillators belonging to that
cluster (𝑟𝑐(𝑡)). Then, we characterized these series as syn-
chronized or not synchronized by constructing new binary
time series from each 𝑟𝑐(𝑡). In our study, we considered a
synchronization threshold of 𝛾 = 0.8 and 1 was assigned for all
𝑟𝑐(𝑡) > 𝛾. We selected this value because it was the median
of 𝑟(𝑡), and using the median for thresholding eliminates
the possible influence of extreme values, due to its robust
properties. In addition, there was a theoretical reason for this
election. The value of 𝛾 = 0.8; it was the one used in [22],
which would allow us to compare the results we obtained.

Finally, ΦTS was calculated to these binary series and the
result was taken as the complexity value of the Kuramoto
model. We set 𝜏 = 150ms. Values of 𝜏 < 150ms gave negative
estimations of Φ and for 𝜏 > 150ms the pattern of results for
different 𝑘 values did not change.

2.3. Estimation of PCI in the Kuramoto Model. In order to
calculate an estimation of the PCI in the Kuramoto model,
it was necessary to solve two problems in the simulation
process. The first one was to perturb or stimulate the system
from an external source (to emulate the effects of TMS), and
the second difficulty we found was to calculate reliable ERPs
for the final PCI calculation. The problem of the stimulation
was easily solved since it has been done in other studies. For
example,Hellyer et al. [23] simulated external stimulation to a
similar Kuramoto model we present here by increasing the
connectivity between some nodes of the network. Similarly,
Ibáñez-Molina and Iglesias-Parro [24] stimulated another
Kuramoto version by transiently increasing the connectivity
of key oscillators in the network. Hence, in our study we
followed these studies and perturbed the system by transient
increases in the connectivity between six oscillators located in
the parietal cortex (see Figure 1). We arranged this procedure
by introducing 𝑎𝑖𝑗 = 10 for these oscillators during short peri-
ods of time of 5ms.We randomly repeated this stimulation 15
times for each numerical integration of the model.

The next step was to build reliable ERPs with the resulting
phases from the oscillators. To achieve this goal we simulated
EEG series, and then, ERPs were calculated for each model
by averaging the segments associated with each period of
stimulation. We explain this procedure in detail in the next
two sections.

2.3.1. EEG and ERPs Simulation. The EEG activity from 32
sensors was simulated for each condition in agreement with
the following weighted sum of the activity in each oscillator:

𝑥𝑘 (𝑡) =
𝑁

∑
𝑗=1

𝑤𝑘𝑗 sin (𝜃𝑗 (𝑡)) , 𝑘 = 1, . . . , 𝑃, (8)

where 𝑥𝑘(𝑡) is the time series from sensor 𝑘th and 𝑤𝑘𝑗 is
the weighted contribution of source 𝑗th in sensor 𝑘th. Each
𝑤𝑘𝑗 was calculated using a standard forwardmodel algorithm
[25] applied according to the Talairach coordinates of the
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Figure 2: Butterfly plot from simulated ERPs with themodel. In this
case, the ERPs were produced for 𝑘 = 2.5.

oscillators. After that, each oscillator was considered a cor-
tical source. Second, the weights of these sources were nor-
malized to a maximum value of 1. EEG signals obtained with
this procedure gave a set of signals that changed in amplitude
and frequency variations around 60Hz (natural frequency
of the oscillators). Because in the ERPs the interesting
information is in the amplitude, we calculated the envelope
of 𝑥𝑘(𝑡) with the Hilbert transform. Envelopes of the signal
were then used to construct the ERPs with the average of
all segments in each realization of the model. Formally, ERPs
were built with the analytical signal (in the complex plane) of
𝑥𝑘(𝑡) which is

𝑥𝑘𝑎 (𝑡) = 𝑥𝑘 (𝑡) + 𝑗𝑥𝑘 (𝑡) = 𝑎𝑘 (𝑡) 𝑒𝑖𝜑𝑘(𝑡), (9)

where 𝑥𝑘(𝑡) is the original signal and represents the real part
of the new complex series and 𝑥𝑘(𝑡) is the imaginary part
from the Hilbert transform with 𝑖 as the imaginary operator.
In the right side of the expression,𝜑𝑘(𝑡) and 𝑎𝑘(𝑡) stand for the
angle andmodulus representing the complex values in Euler’s
notation.Themodulus is the amplitude or the analytic power
of the signal and can be easily calculated with

𝑎𝑘 (𝑡) = [𝑥𝑘 (𝑡)2 + 𝑥𝑘 (𝑡)2]1/2 . (10)

These new series 𝑎𝑘(𝑡) were considered the activity from
each sensor and the ERPs were built with segments extracted
from them. For each sensor 𝑘,

ERP𝑘 = 1
𝑁𝑠∑𝑁𝑆

ak, (11)

where 𝑁𝑠 is the number of segments in a single realization
of the model and ak is a vector with 𝑎𝑘(𝑡) values from
−600 to 600ms after stimulation. 𝑁𝑠 = 15 for all numerical
integrations (see Figure 2 for a visual inspection of ERPs).

2.3.2. PCI Calculation. ERPs were the input signal for PCI
calculation. PCI was obtained following the original algo-
rithm in Casali et al. [10]. For each condition of the Kuramoto
model, first, we built a binary source matrix with dimensions
corresponding to sensors (𝑘) and time steps (𝑡) from 0 to
1200ms after stimulus presentation (SS(𝑘, 𝑡)). The signals
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Figure 3: Bifurcation diagrams constructed to explore the evolution of synchrony in time, while 𝑘 is increased (𝑘𝑡 = 𝑘𝑡+1+ 5 × 10−4 for 𝑡 in
ms). As can be seen in the plot (a), metastability is abruptly reduced for 𝑘 ≈ 6.5. In the plot (b), we show the power spectra of synchrony.
Slow components are reduced after the bifurcation in 𝑘 ≈ 6.5. An additional reduction in the components was found about 𝑘 ≈ 11. Note that
although the frequency of oscillators is 60Hz, the behavior of 𝑟(𝑡) exhibits multiple components.

were downsampled ten times to obtain a sampling rate
similar to real data. SS(𝑘, 𝑡) = 1 if the absolute value of the
poststimulus simulated signal was higher than the absolute
value of the maximum entry encountered in any sensor and
any time step from the prestimulus baseline, and SS(𝑘, 𝑡) = 0
otherwise. SS(𝑘, 𝑡) was used as input for the Lempel-Ziv
measure [26] to estimate the algorithmic complexity (𝐶𝐿).𝐶𝐿
gives the number of chains with nonredundant information
contained in SS(𝑘, 𝑡). The algorithm seeks for the minimal
number of patterns necessary to describe the sequence. For
random sequences, the asymptotic behavior of the measure
is 𝐿𝐻𝐵(𝐿)log2𝐿, where𝐻𝐵(𝐿) is the binary entropy for length𝐿

𝐻𝐵 (𝐿) = −𝑝1log2 (𝑝1) − (1 − 𝑝1) log2 (1 − 𝑝1) , (12)

where𝑝1 is the probability to find a “1” in the binary sequence
of length 𝐿. PCI is defined as the normalized value of 𝐶𝐿:

PCI = 𝐶𝐿 log2 (𝐿)𝐿𝐻𝐵 (𝐿) . (13)

3. Results and Discussion

The results for the Kuramoto simulations are characterized in
the first place to understand the basic dynamics of the model.
In addition, we include graphical descriptions of the ERPs
to visualize the structure of the averaged waves at each
sensor from simulated perturbations. Finally, we describe and
compare Φ and PCI taking into account the values of 𝑘 with
high and low metastability, which as mentioned above is a
necessary condition for brain dynamics at resting state.

3.1. Kuramoto Simulations in the Baseline Condition. In Fig-
ure 3(a) we show a diagramwith the 𝑟(𝑡) behavior in the base-
line condition at several values of its coupling parameter 𝑘.
The most important property in the evolution of 𝑟(𝑡) is the
metastability that can be estimated by the variability of 𝑟(𝑡).
As can be seen, there is a bifurcation for 𝑘 ≈ 6.5 that indicates
the end of high metastability and hence the dynamics of the
model for 𝑘 > 6.5 should be taken with caution since in
principle, there is no functional correspondence with real
cortical dynamics.

In addition, it is important to note that the frequency
structure in 𝑟(𝑡) is not fixed for all 𝑘s. One can observe in

Figure 3(a) that the frequency of 𝑟(𝑡) seems to increase with
the increase of 𝑘. To better understand this phenomenon,
we include a spectral decomposition of the evolution of 𝑟(𝑡)
in Figure 3(b). Surprisingly, we found a complex landscape
in the oscillatory structure of 𝑟(𝑡). The general structure of
the spectral diagram showed a resemblance with the bifur-
cation diagram of the classical logistic map. This similarity
appeared because it showed a bifurcation-like proliferation
of frequency components as the parameter 𝑘 increased. The
nature of this spectral structure, however, was not explored
and goes beyond the goals of this study. If we inspect
Figure 3(b), it can be stated that the end of slow oscillatory
properties of highmetastability was evident at 𝑘 ≈ 6.5. Above
this value, the critical coupling strength of certain clusters
is achieved, so their synchronization becomes stable, while
the order parameter of the whole system remains <1. As 𝑘
increases further, larger and larger synchronized clusters are
formed, resulting in a reduced number of components, until
𝑟(𝑡) approaches 1, with ultimately only a single component
as 𝑘 tens to infinity [27]. Accordingly, in Figure 3(b), the
main frequency of the signal slowly increased with 𝑘, and
the components of 𝑟(𝑡) seemed to increase with 𝑘 as well
following a complicated pattern. It is also noteworthy that
in Figure 3(b) another bifurcation-like region for 𝑘 ≈ 11
can be perceived that consists in a reduction in the number
of components. Hence, by the end of the 𝑘 landscape, 𝑟(𝑡)
seems to be more simpler with less oscillatory properties and
probably this could lead to low values of ΦTS and PCI.

The shape of this diagrams led us to consider that ΦTS
and PCI could be sensitive to the bifurcation region in 𝑟(𝑡).
If metastability is a necessary condition for brain functioning
[16] it would be reasonable to think thatΦTS should diminish
in the low metastability region. The same should be true for
PCI if thismeasure is closely related toΦTS. Aswewill show in
the next sections, the reduction after metastability was only
found for ΦTS.

3.2. Comparisons betweenΦ𝑇𝑆 and PCI. Therelation between
ΦTS and PCI was assessed using Pearson product-moment
coefficient between the values ofΦTS obtained for each of the𝑘-levels (from .5 to 15) and the corresponding values of the
PCI obtained for those same levels of 𝑘. The results showed a
nonsignificant negative correlation (𝑟 = −.21, 𝑝 = .13). Thus,
apparently, ΦTS and PCI are linearly independent. However,



6 Complexity

.5 1
1.

5 2
2.

5 3
3.

5 4
4.

5 5
5.

5 6
6.

5 7
7.

5 8
8.

5 9
9.

5 10
10

.5 11
11

.5 12
12

.5 13
13

.5 14
14

.5 15

In
fo

rm
at

io
n

k

PHI
PCI
Meta

0,3

0,2

0,1

0,0

−0,1

Figure 4: Evolution of ΦTS and PCI and the metastability of the
model for different values of global coupling strength (𝑘) assessed.

taking into account metastability values, a bifurcation for 𝑘 =
6.5 is apparent. We therefore divided the series into two parts
according to the bifurcation, before (from 𝑘= .5 to 6) and after
(from 𝑘 = 6.5 to 15) the bifurcation, and recalculated the cor-
relation between ΦTS and PCI in each of those two parts. In
this case, results showed a significant positive relation
between ΦTS and PCI before (𝑟 = .64, 𝑝 = .01) and after (r
= .51, 𝑝 = .01) the bifurcation.

A graphical description of the evolution of ΦTS and
PCI and the metastability of the model can be observed in
Figure 4. Values were calculated with .5 𝑘-steps. A visual
inspection of Figure 4 shows that bothΦTS and metastability
exhibited a big decrease around 𝑘 ≈ 6.5 indicating the
dependence between ΦTS and metastability. Actually, the
correlation between metastability and ΦTS over the whole
range of 𝑘 was significant (𝑟 = .68; 𝑝 < .01). However, the
PCI did not show a significant decrease in this region of 𝑘. In
fact, the PCI evolution seems to progressively increase with 𝑘.
The fact that there is no decrease in PCI does not mean that
this measure is not related to ΦTS; as seen before, a closer
exploration of both measures indicated a positive relation
between them. Moreover, one can observe in Figure 4 that
the PCI trend seems to stop after 𝑘 ≈ 11 which is in agreement
with the bifurcation shown in Figure 3(b) showing that the
synchrony dynamics are simpler for this region.

4. Conclusions

Under the assumption that conscious states come from
integrated information in a system, variousmetrics have been
proposed to try to quantify consciousness. In the present
work, we tested two of them using a neurocomputational
model. On the one hand, the theoretically well foundedΦ has
been proposed as a way to quantify the total amount of infor-
mation that a conscious system can integrate [28]. On the
other hand, the PCI distinguishes conscious versus uncon-
scious states at a single patient precision [10]. Under the
assumption that conscious states correspond to a distributed
but nonuniform spatiotemporal pattern of current sources,
Casali et al. applied a standard data compression scheme (the
Lempel-Ziv algorithm) to distinguish between conscious and
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Figure 5: Evolution of entropy and mutual information (mutual) of
the model as a function of the global coupling strength (𝑘).

unconscious states. Despite the excellent results at applied
level, the claim that the measure is theoretically grounded
in a conceptual understanding of consciousness deserves a
closer look. In the present work, we have tackled the possible
relationship between these two measures of the degree of
consciousness in a system.

As stated previously, according to the IIT, wakeful con-
sciousness requires the ability to integrate information across
multiple brain regions with a high degree of differentiated
activity. Thus, loss of consciousness may result as a conse-
quence of a loss of integration as well as a loss of differentia-
tion (or both). Due to ourmanipulations in the present paper
(i.e., increase of 𝑘-values), the reduction in consciousness
indicated by ΦTS values would reflect such stereotypical
behavior across different oscillators. Increasing themean field
connectivity of the model results in an increase of synchrony,
as revealed by the Kuramoto order parameter (𝑟) and in a
reduction of its variability (metastability). From this point of
view, results obtained from metastability and ΦTS converge
with the theoretical predictions that suggest thatmetastability
is a necessary condition for healthy brain functioning and
consciousness [16].

In general, as 𝑘 increases, the system as a whole is more
coherent and hence, it is more integrated.When the system is
above the bifurcation point (𝑘 > 6.5), synchrony is very high
and the dynamics of the binary time series from the clusters
tend to be 1 all the time (𝑟(𝑡) > 0.8). Hence, information
will tend to be low. So what happens is that information is
much lower as the system crosses the bifurcation point. One
can objectively see this by observing the entropy and mutual
information (in bits) of the system (see Figure 5).This descent
in the entropy after the bifurcation point could be responsible
for the apparent inability of the PCI to capture the dynamic
of the system after the bifurcation. In this respect, [29]
have suggested that the inability of Lempel-Ziv to compress
efficiently low entropy sequences is due to the inability to
cope with long runs of identical symbols. In this respect,
the Perturbative Integration Latency Index that characterizes
the latency of extinction of a massive stimulation perturbing
a basal state without drawing upon Lempel-Ziv algorithm,
recently proposed by [30], is a promising option that future
works could explore.

An important finding in this study is the significant
positive correlations between ΦTS and PCI before and after
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the bifurcation point. These correlations might indicate that
there is a modulation in the PCI when ΦTS changes due to
connectivity manipulations. Hence, from the exploration we
carried out in this study we can claim that the PCI is sensitive
to ΦTS modulations, and that this is true when the system is
considered in a coherent region of metastability (high versus
low).

One limitation in our study is that we have not found a
critical value of 𝑘 at which both measures reached a maxi-
mum. An outstanding correspondence betweenΦTS and PCI
would have led to an optimum 𝑘 parameter that characterizes
the system in terms of integrated information for both
theoretical and empirical estimators. It is evident that the
reasonswhywe did not find this perfect convergence could be
that our model is an oversimplification of brain functioning,
or the procedure to calculate ΦTS and PCI relies on many
simplifications for the characterization of the system. Due to
this oversimplification of the brain dynamics, the fact that
the PCI after the bifurcation point tend to increase could
be due to intrinsic characteristics of the model. However,
to the best of our knowledge, Casali et al. did not test PCI
when patients exhibit loss of consciousness due to global
synchronization in the cortex (epileptic states, for example).
Future works could explore the possibility that the loss of
consciousness due to global synchronization cannot be fully
captured by PCI. However, it is noteworthy that when we
consider the metastable region of the model (𝑘 < 6.5) the
maximumvalues forΦTS andPCI are found in the short range
2 < 𝑘 < 3, and the minimum values are found for 𝑘 = .5
when the connectivity of the system is relatively low. These
two findings might indicate that ΦTS and PCI could have a
better agreement for high levels of metastability, and if this is
true, it is not surprising that PCI is a good clinical indicator
of conscious states.

Another potential limitation in our study could be the
algorithmused to estimateΦTS originally proposed byBarrett
and Seth [9]. This algorithm produces negative values that
could hinder the interpretation of the obtained results. These
limitations have given rise to new versions of Φ in which the
disadvantage of negative values is solved [31, 32]. Although
both measures are highly correlated, future studies could
include both estimators.
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