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INTRODUCTION
Imagine you are approaching a stop sign at an empty intersection. It is clear

that no one else is on the road. You would like to pass right through, to save
time, gasoline, and wear on your breaks. But you also worry about the small
chance that a patrol officer may be watching, and you do not want a fine. In such
a circumstance, would it ever make sense to base your decision—whether to skip
or stop—on the flip of a coin?1

On a familiar picture associated with Bayesian decision theory (e.g., Savage
1954), such randomized decisions are rationally permissible only in cases where
the options look equally attractive. For instance, the costs associated with stop-
ping should be on a par with the prospect of either avoiding those costs or paying
a fine, weighted by the appropriate probabilities. A number of authors have
argued that situations like these—the case of Buridan’s donkey being the most
famous—present us with positive reason to want access to a randomizing device
in order to break the apparent symmetry (see Rescher 1959, and Ullman-Margalit
and Morgenbesser 1977 and the large ensuing literature for critical discussion),
though from a decision theoretic perspective any way of breaking the symme-
try is acceptable, random or not. Some have declared such dilemmas to be ex-
tremely rare, if not inconceivable: there will always be some discernible difference
between options, and further reflection will inevitably tip the balance.2 A mo-
ment’s thought will reveal either skipping or stopping as clearly the better option.
Whatever one concludes about these issues, it is apparent that the rational role
of randomization on this traditional picture is marginal at best. The sentiment
was nicely summarized by economist Robert Aumann, who wrote: ‘Practically
speaking, the idea that serious people would base important decisions on the flip
of a coin is difficult to accept’ (Aumann, 1987, 15).

∗Draft of May 4, 2019. This article has been accepted for publication in Mind (OUP).
1The example is from Godfrey-Smith (1996), where it is suggested that, intuitive though it

may at first seem, flipping a coin is never to be recommended in such a scenario (p. 213).
2Leibniz famously held such a view. See the many references in Rescher (1959) and Ullman-

Margalit and Morgenbesser (1977) for more examples.
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An empirical observation about human beings, as well as other organisms, is
that their behavior does often appear indeterminate, even random. This holds
at multiple levels of organization—from the subcellular to the group level—and
encompasses simple choice situations like the one described above (see Glimcher
2005 for a review). Meanwhile, in designing intelligent artifacts, engineers rou-
tinely add random noise to otherwise deterministic algorithms, and this often re-
sults in improvement. For example, the world champion automated Go program,
AlphaZero (Silver et al., 2018), randomizes its decision about what actions to
explore in determining its next move. Observations like these raise the question:
is randomized behavior a mere heuristic, resulting in suboptimal organisms and
artifacts, or is there some deeper normative justification that eludes the familiar
Bayesian decision theoretic analysis?

The most celebrated arguments in favor of randomization have come from
three arenas: game theory, experimental design, and reinforcement learning.3

Some game theorists propose that randomization may be helpful in strategic
situations. The ‘gold standard’ in experimental design is to use randomized, con-
trolled trials. In reinforcement learning it is often argued that balance between
exploitation of known rewards and exploration can be achieved by adding noise to
action selection. All three claims have met Bayesian resistance.4 These debates
highlight a useful sharpening of our question: if the Bayesian argument against
randomization seems convincing, but there are nonetheless situations where ran-
domizing seems prudent, what assumptions in the argument might be violated
in these situations? And what can we learn from this about when randomizing
one’s decision does promise to be helpful, even for a Bayesian?

The thesis of this article is that there are essentially two compelling rationales
for randomization. The first is banal but unassailable, and as we shall argue, ac-
counts for common intuitions in favor of randomizing: when unsure of what to
do, if the best-looking known option involves randomization, choose this option.
The second is equally unassailable, but also more interesting: access to a ran-
domizing device is provably helpful for an agent burdened with a finite memory.
This second rationale is robust, in that it applies equally to agents who are in
every other way idealized. That is, even for an agent who can costlessly deter-
mine the best course of action, if that agent has bounded memory, then access
to a random device still confers an advantage. Unifying previous results from
computer science and statistics, we describe the general conditions under which
this holds. In addition to making the positive case for these two rationales, part
of the aim is to show how they together help alleviate the tension between the
Bayesian prohibition on randomization and the observations noted above about
randomness in people and programs.

3Notably, all three originated in their modern formulation within about a decade of one
another: Borel (1923), Fisher (1935), and Thompson (1933).

4On games see, e.g., Kadane and Larkey (1982). For a recent argument against randomized
experiments see Worrall (2007). Early representative work toward a Bayesian approach to
exploration can be found in Bellman (1957).
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After clarifying our question and rehearsing some familiar arguments in favor
of randomized behavior, we then present the Bayesian counterargument. In that
context we briefly discuss the first rationale and explain how it already illuminates
many of the cases where randomization seems prudent. We turn next to matters
of computational resources. A prominent approach to computational complexity
so far reveals little motivation for randomizing. Nonetheless, it is possible to show
that there is a deep connection between randomization and memory limitations.
Having addressed the normative question of when randomization can be rational,
we return to consider how the resulting story accords with some noteworthy
empirical observations about random behavior in the biological world.

CLARIFYING THE QUESTION
Consider a decision situation in which an individual agent must choose from

among a set A of possible actions. The agent’s action, together with the state
of the world, determines an outcome. We will assume that we can measure how
good each outcome is by a real-valued utility U ∶ A×S → R, where S is the set of
possible states. Let us suppose that the agent has costless access to a randomizing
device. The agent can freely observe independent outcomes of a Bernoulli coin
flip, using a coin with any given bias between 0 and 1. One might think of this as
expanding the choice set from A to ∆(A), the space of all probabilities defined
on A. We can now pose the question: what ways of filling in more details of the
scenario would make it rational for the agent to base a decision on outcomes of this
randomizing device, to choose a nontrivial randomized action from ∆(A)? More
dramatically, when, if ever, should the agent arrange things so that the action
causally depends on one or more outcomes of the device, thereby relinquishing at
least some agential authority over the action that results (cf. Bratman 2001)?

This way of posing the question is deliberately presumptuous in what we admit
as a randomizing device. We are assuming that outcomes are unpredictable in
a strong and relatively objective sense, and in particular that the device is well
modeled using the standard probability calculus.5 The expected outcomes of
such a device will satisfy a number of dissociable properties: unpredictability,
independence with the states in S, laws of large numbers, statistics at various
orders, and so on. An argument for randomization could highlight a proper subset
of these as especially important. At the same time, some of these properties may
be easier to come by than others. Even producing pseudorandom bits is evidently
far from costless (Vadhan, 2012). The reason for making this strong assumption
is that the Bayesian argument purports to show why the agent would not strictly
benefit from access to a device with all of these properties. At the end, after
having argued the contrary, we will return to the question of where an agent
might locate suitably random sources, should such be desired.

5A compatible account of what it means for a physical process to be random would be that
of Eagle (2005). However, for present purposes it is not even necessary that the randomizing
device be physically realizable.
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A second assumption we will make is that the agent’s choice is causally in-
dependent of the states—what state in S obtains does not causally depend on
the choice selected from ∆(A)—and there is no suspicion otherwise on the part
of the agent. Violations of this assumption often constitute cases where ran-
domization trivially becomes beneficial. For instance, imagine you are playing
rock-paper-scissors and your adversary will come to know your strategy before
they choose theirs. That is, the adversary will first learn which distribution from
the set ∆({rock,paper, scissors}) you have chosen, and then make their choice.
It would obviously be desirable to opt for the fully random strategy that plays
each of the three actions with equal probability. In fact, the more random (viz.
unpredictable) your strategy is, the better you expect to fare. By assumption,
the state (i.e., the adversary’s action) is completely determined by your choice,
which effectively trivializes the decision problem. From the agent’s perspective,
carrying out an action a ∈ A should give the same utility no matter whether a
was chosen deterministically or as a result of the randomizing device; in partic-
ular, the relevant state that determines this utility should not depend on how a
was selected. Adopting this causal assumption means that we are not considering
scenarios in which randomization itself is associated with inherent cost or benefit.

Importantly, the causal assumption falls short of the stronger assumption
that the agent believes its choice is evidentially independent of the state.6 For
reasons other than direct causal dependence, our agent might well assume that its
own deliberation could reveal important information about the underlying state,
e.g., by virtue of a common cause. These scenarios do not obviously trivialize.
For instance, even if you do not think your adversary will be able to observe
your strategy in rock-paper-scissors, they may nevertheless be especially adept at
predicting what you will do. Merely finding yourself inclined toward an option
may give you information, as your adversary may well have anticipated this very
inclination. A number of authors have argued that cases like these can favor
randomized actions.7 Although the adversary may well have anticipated that
you would play a randomized strategy, they cannot effectively capitalize on this
fact. To the extent that such examples in fact occur, and to the extent that
we find the recommendation compelling, we will need to show how they can be
subsumed under our two rationales.

Finally, a related assumption that we will not be making is that the agent
possesses a representation of uncertainty in the form of a probability function
on S. We would like to begin neutral on this matter, as again, one way of
filling in more details of our scenario is that the agent lacks any such probability
function, and this in turn may play into a putative justification of randomization.
To foreshadow, the Bayesian argument will obviously hinge on whether we can

6An assumption of this sort is famously made by Savage (1954).
7Though decisions involving evidential dependence often drive a wedge between causal and

other formulations of decision theory, both proponents and critics of causal decision theory have
argued that randomization can be rational, e.g., in the famous Death in Damascus scenario
(Harper, 1986; Ahmed, 2014). Related arguments arise in game theory; see discussion below.
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assume the agent has an adequate prior probability function, and many arguments
for randomization will focus attention on this very point. It is noteworthy that
our second rationale—limited memory—is unrelated to this issue.

RATIONAL RANDOMNESS?
With so much motivation and background, it is worth briefly reviewing some

of the familiar arguments for randomization. The details of these specific debates
will not be as important as the broader intuitions that emerge from them.

Game Theory. The distinctive feature of game theoretic scenarios is that they
involve multiple agents. The relevant state of the world in S is chosen by other
intelligent agents whose interests, in the most extreme case, are perfectly an-
tagonistic. One’s win is another’s loss. Even simpler than rock-paper-scissors,
consider a version of the ‘matching pennies’ games in a penalty kick at a football
match. The kicker wants to go left if the goalie is going right, and right if the
goalie is going left. The goalie wants to go the same direction as the kicker.

Consider the goalie’s deliberation. They should try to assess whether the
kicker is more likely to go left or right, and then simply opt for that direction.
Suppose the kicker went right the last three times, so the goalie predicts they
will go right again. The kicker might suspect that the goalie will come to this
conclusion, which would lead them to opt for left this time. Anticipating this,
the goalie decides instead to go left, only to worry that this decision itself will
have been anticipated by the kicker. One begins to suspect that there is no stable
deliberative equilibrium that the goalie can ever hope to reach. In particular, the
goalie’s own deliberation seems to frustrate any transient prediction about what
the kicker will do. A similar dilemma confronts the kicker.

Traditional game theory deals with scenarios like these under an assumption
that each agent is ‘ideally’ rational: the agents both know what game they are
playing and neither agent should simply be able to outwit the other. The opera-
tive normative concept in this context is that of a Nash equilibrium, a situation
in which no agent has any motivation to deviate from their strategy, given the
strategies of all the other players. Though such equilibria are guaranteed to exist,
the strategies must in general be ‘mixed’, that is, randomized.8 For example, in
the football match scenario, the unique equilibrium is a situation in which each
player randomly chooses left or right with equal probability. Given that each is
playing such a strategy, neither has any motivation to deviate. Moreover, in this
particular situation there is no other pair of strategies that enjoys such stability.

Aside from its role in idealized equilibrium theory, the recommendation to
randomize in situations like these enjoys a certain air of plausibility. Particularly
if there is a serious concern that the adversary may in fact be more shrewd or
resourceful, randomization seems like a good safety strategy. It can provide a

8See, e.g., Leyton-Brown and Shoham (2008) for the proof. The formalism itself does not
require interpreting mixed strategies as involving randomization at all, however. For other
interpretations see, e.g., the discussion in (Osborne and Rubinstein, 1994, §3.2).
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mechanism for protecting oneself against being outwitted. Rather than try to
outguess the goalie, the kicker may be satisfied in knowing that they are at least
as likely as not to pick the right direction. In their early textbook on game theory,
Luce and Raiffa (1957) identify the virtue of mixed strategies in that they do not
‘permit us to fall prey to our human frailty’ (p. 75).

Experimental Design. As with game theory, the issues surrounding random-
ized controlled trials are complex. A helpful distinction to make up front is
between experiments to learn and experiments to prove (Kadane and Seiden-
feld, 1990). Consider an experiment to determine the causal effect of a proposed
treatment for some medical condition. In an experiment to prove, the goal is to
convince some third party, e.g., a government agency, of the causal effect. Typ-
ically, the third party will have access to the experimenter’s strategy—including
any randomization employed—and might only make their decision (accept or re-
ject the claim, together with a cited justification) upon learning the strategy. In
other words, such situations tend to violate our assumption of causal choice-state
dependence. If this third party is adversarial, they may be inclined to find a flaw
in any particular deterministic experimental design, or may simply have a blanket
policy of rejecting any non-randomized design. Perhaps unsurprisingly, there are
Bayesian arguments for randomization in experiments to prove (e.g., Berry and
Kadane 1997; Banerjee et al. 2017).

Experiments to learn, by contrast, concern a sole individual who wants to
make the best possible inference about the causal effect. Given a set of par-
ticipants sampled from the population, the task might be to determine which
participants will receive the treatment and which will receive a placebo. A worry
is that there may be variables in the population—so called confounders—that
exert independent causal influence on outcomes. Thus, if we observe that the
treatment correlates highly with recovery, we want to make sure this is due to
the treatment, and not, say, to the average age in the treatment test group be-
ing significantly lower. The existence of confounders frustrates the researcher’s
attempt at isolating the causal effect of the factor of interest.

Everyone will agree that any known confounder should be explicitly controlled,
by appropriately balancing between the control and test groups. But what should
be done once we account for these? A guiding intuition among proponents of ran-
domization is that we simply cannot foresee all the possible confounders ahead
of time, and it is quixotic—with serious potential consequences—to assume oth-
erwise.9 By letting the assignment depend on an external random source, it is
guaranteed (in the limit, as the number of participants increases) that there will
be no problematic confounders. In general, this is argued to make experimental
design more objective, again less susceptible to human fallibility.

9Fisher (1935) argues that, ‘it would be impossible to present an exhaustive list of such
possible differences appropriate to any one kind of experiment, because the uncontrolled causes
which may influence the result are always strictly innumerable’ (p. 21).
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Reinforcement Learning. A third, rather different intuition for randomiza-
tion stems from the need to balance exploitation with exploration while learning
about a dynamic environment by trial-and-error (e.g., Kaelbling et al. 1996). An
illustrative example is ordering at a restaurant. Having ordered a certain dish
before, you might know that it is likely to be good. You thus have some reason
to exploit this known reward. However, for all you know, there could be much
better items on the menu, which gives reason to explore for even higher rewards.
The puzzle is how to balance the two. An influential idea is to select each option
with probability proportional to how good you expect that option to be. This
simple suggestion simultaneously guarantees that known high-reward actions will
be exploited, but also that unknown actions will eventually be explored. It is also
an easy strategy to carry out. More or less the same motivation—adding noise to
escape ‘local minima’—has been influential in other areas of learning as well.10

The reinforcement learning setting is inherently sequential. If it is your last
visit to the restaurant, it may be most sensible to opt for what you think will be
best. The intuition behind exploration is that it might be worth sacrificing this
one meal for the sake of many future meals. Thus, one possibility, highlighted
by tasks like reinforcement learning, is that randomization becomes especially
useful when the action space actually consists of sequences of actions, perhaps
interleaved with observed outcomes.

WHEN RANDOMIZATION PROVABLY CANNOT HELP
Given an action space A—whether of moves in a game, assignment strategies

in an experiment, or sequences of choices in a learning task—we would like some
way of assessing how good a given action is, including any randomized action.
Assume for the moment that A is finite, so that ∆(A) is the n-dimensional
simplex on A, and every decision δ ∈ ∆(A) is a finite probabilistic mixture of
non-probabilistic actions: δ = r1a1+⋅ ⋅ ⋅+rnan, where each ri ∈ [0,1] and ∑i≤n ri = 1.
This setup admits useful necessary conditions on a value function V ∶∆(A)→ R
for randomization to be strictly beneficial. V is said to be convex if for any two
δ1, δ2 ∈ ∆(A), and every r ∈ [0,1], we have

V (rδ1 + (1 − r)δ2) ≤ rV (δ1) + (1 − r)V (δ2). (1)

If V is convex, then since any randomized strategy is a mixture of deterministic
strategies, it will have value no greater than the greatest of these strategies.
Hence, any argument to show that randomization is strictly useful will have to
be based on a non-convex value function.

An important example of a convex value function is the expected utility ex-
pression from Bayesian decision theory. If we have a probability p on S, then the
function EpU(δ) = ∑s p(s)(∑a δ(a)U(a, s)) is convex (even linear, meaning the

10See, e.g., Kirkpatrick et al. (1983). An early argument for randomization in machine
learning appears in Turing (1950), who proposes ‘it is probably wise to include a random
element in a learning machine’ (p. 459). In the same passage Turing anticipates the potential
advantage of randomized strategies in memory efficiency, to be discussed further below.
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inequality in (1) is an equality), ruling out the possibility that randomization will
ever be strictly useful. A similar argument can be given when A and S are both
infinite, indeed even when p is continuous, using Jensen’s inequality (Lehmann
and Casella, 1988, Corollary 7.9). This is the Bayesian argument against ran-
domization. As soon as we have a prior on S, assessing actions by their expected
utilities renders randomization useless.

This observation buttresses all of the Bayesian counterarguments to the three
proposals just canvassed. A Bayesian will take everything they know about the
situation and devise a prior that codifies their uncertainty. The injunction is
then simply to maximize the utility expected under that probability, which, as
just observed, never requires randomization and often prohibits it.

In a strategic situation this means consolidating everything one knows about
an adversary into a probability over the possible actions (which, recall, are the
states in our setup). The fact that the situation involves another agent with
opposed interests may help to sharpen this probability, but it does not pose any
insurmountable difficulties distinct from cases where states are not chosen by
another intelligent agent.11 Playing a mixed equilibrium strategy is acceptable
(again, not required) if your beliefs happen to align with the other player’s equi-
librium strategy. For instance, if you believe that your adversary is equally likely
to play rock, paper, or scissors, then playing a uniformly random strategy is as
good as (but also no better than) any other choice. Any deviation from this
specific probability assignment, however, will generally result in the equilibrium
strategy becoming strictly suboptimal. Indeed, if you think the adversary is even
slightly more likely to play rock than paper or scissors, then deterministically
choosing paper is strictly better than any randomized choice.

In experimental design the experimenter has a goal to learn as much as possible
about the causal relation between treatment and outcome. Given their quanti-
fied uncertainty about this relation, and about all the possible confounders in
the population, some actions (i.e., assignments) will be expected to provide more
information than others. The Bayesian recommendation is therefore to choose
an assignment that maximizes expected information gain.12 As a very simple (if
artificial) example, imagine an experiment with four participants. Suppose that
our experimenter feels absolutely certain (believes with probability 1) that there
is only one attribute that could possibly correlate with the outcome, and that
exactly two of the four participants possess that attribute. A Bayesian experi-
menter would then insist on balancing this attribute between the test and control
groups: one with and one without the attribute in each condition. Randomiz-
ing among the four ways of doing this is acceptable (by no means mandatory),
while any further randomization in allocation threatens to provide strictly less
information to the experimenter about the causal effect of interest.

Finally, in a learning context a Bayesian will have prior beliefs about the

11Kadane and Larkey (1982) present perhaps the most forceful argument of this sort, with a
rejoinder in the same journal issue by game theorist John Harsanyi.

12This basic argument has been made many times over, early on by Savage (1954, §9.3).
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reward distributions for the possible actions, as well as posterior beliefs given
observations of those actions’ consequences. This already means that there will be
a Bayes-optimal strategy for balancing exploration and exploitation, guaranteeing
the maximum expected long-run payoff (e.g., Bellman 1957). For example, if you
can already foresee all possible sequences of orders at the restaurant and all ways
those sequences of orders might play out (weighted by their probabilities), you
should simply choose dishes in a way that achieves the highest overall expected
reward. After all, balancing exploration and exploitation is only a means toward
the end of performing the best possible sequence of actions given your uncertainty.
Why should an agent do anything other than maximize overall expected reward?

REASONING WITH LIMITED RESOURCES
However one reacts to these debates, it must be admitted that the Bayesian

response does not address a common feature in all three arguments for random-
ization, namely the focus on human limitations. Quantifying one’s uncertainty
in a sensible way is not always easy, and this is not to mention the challenges in-
volved in calculating expected utilities for all the possible actions. Game theory,
experimental design, and reinforcement learning all involve scenarios where at-
tempts to formulate a good prior are somehow frustrated. Competitive situations
with clever adversaries raise the possibility of evidential choice-state dependence.
In experimental contexts, even when one does have prior convictions about the
possible alternative causes of the effect, the experimenter will (or should) often
lack higher-order confidence in these convictions.13 Devising a sensible prior in
reinforcement learning settings can be difficult, and at any rate it is computa-
tionally intractable to solve sequential decision problems exactly (specifically the
problem is in the class pspace; see Papadimitriou and Tsitsiklis 1987).

These considerations do not by themselves show randomization is ever to be
preferred, but they do undermine the Bayesian argument against it. Of course,
this is in no interesting sense incompatible with the traditional Bayesian stance
(at least in statistical decision theory). The broad desirability of codifying one’s
uncertainty in the form of a coherent probability measure is perfectly compatible
with the obvious fact that decisions must sometimes be made without sufficient
resources to formulate such a measure.14 At the point when a decision must be
made, the agent will inevitably have to settle on whichever option appears best
at that point. Could such an option ever involve randomization? It could, and
we have already identified several candidate scenarios where the argument sounds
compelling. For instance, our football kicker will not have the luxury of devising a
strategy that would reasonably guarantee better than one-half chance of success,
while this level is guaranteed by the fully randomized strategy.15

13Robustness against misguided priors is one of the main arguments in favor of randomization
in the influential paper by Rubin (1978).

14Essentially all of the founders of Bayesian decision theory were quite clear on this point.
See, e.g., the candid discussion in Savage (1967).

15Interestingly, both goalies and kickers do appear to employ mixed strategies; see Chiappori
et al. (2002). We will return to empirical evidence about randomizing behavior below.
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The specific features of randomized strategies that make them good candidates
as ‘baseline’ defaults for a given problem—unpredictability, simplicity, indepen-
dence, etc.—are of course important and potentially complex. But the general
principle is not especially deep. When should an agent randomize? The first
answer is simply: when there is no further opportunity to think more and the
currently best-looking option involves randomizing. The expectation that further
thought and reflection, ideally leading to a sensible probability measure, would
result in deterministic choice does nothing to call this principle into question.

If the most influential arguments for randomization are special cases of this
general principle, it seems to raise the distinct possibility that randomization is
nothing more than an expedient heuristic, appropriate only for those situations
when further deliberation about what to do is impossible or otherwise frustrated.
Jaynes (2003) gave voice to this very attitude: ‘Whenever there is a randomized
way of doing something, there is a nonrandomized way that yields better results
from the same data, but requires more thinking’ (p. 532). Is this true, or is there
yet a deeper justification for randomization? We have so far focused on obstacles
to formulating a prior and more generally to figuring out the best course of
action. A natural suggestion is that randomization might help because carrying
out a course of action can itself be costly. We now turn to this possibility.

COMPUTATIONAL COMPLEXITY
Having already observed that randomization can be reasonable when an agent

lacks resources for ideal deliberation—and that this comports with prominent
arguments in its favor—let us now imagine that deliberation is costless. Suppose,
for instance, that we are designing an agent for some environment. We know the
utility structure, and we might even have a prior over environments. From our
perspective as agent designers, with all the time and resources we need, would
we ever introduce randomization in the agent design? A natural hypothesis,
which has animated an active subfield of theoretical computer science, is that
randomization may render hard computational problems more feasible.

It will be helpful to refine our space of probabilistic actions ∆(A) to a spaceM
of probabilistic Turing Machines (PTMs),16 which we will think of as processing
some input x (encoded as a binary string) and then (perhaps noisily) giving some
output a ∈ A, which will be taken as the chosen action. Thus, an element of M
specifies both the action and the deliberation leading to it. Ultimately we are
interested in the action a, which should be appropriate to the input x, but we
also may care about the resources—space and time—consumed in determining a.

A PTM effects a mapping from inputs to probability distributions on actions.
Call this a behavior. As long as we ignore processing costs, and the space of
possible inputs is finite, the behavior of any PTM can be emulated by a prob-
abilistic mixture of deterministic Turing machines. This result, known in game

16Putnam (1967), who forcefully introduced the very idea that the mind could be likened to
a computing device, grounds his account on probabilistic Turing machines.
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theory as Kuhn’s Theorem,17 shows that merely moving to the setting of Tur-
ing machines does not defeat the Bayesian argument against randomization: the
performance of a probabilistic Turing machine can be no better than that of the
best deterministic Turing machine in the behaviorally identical mixture.

However, the field of randomized complexity theory lifts both of these as-
sumptions at once: processing costs now matter and inputs may be of any size.
The second modification is already enough to undermine Kuhn’s Theorem: even
ignoring costs, there are infinitary behaviors of PTMs that cannot be perfectly
imitated by a probabilistic mixture of deterministic machines.18 The question
is whether there is ever reason to design an agent that instantiates one of these
quintessentially probabilistic machines.

A typical problem in computational complexity theory is to determine mem-
bership in some distinguished set X of inputs. A canonical notion of feasible
time approximation (Gill, 1977) can be construed as defining a value function on
machines, VX ∶M→ {0,1}, for each X. Let us say that VX(M) = 1 just in case:

1. For all x ∈X: M returns 1 on x with probability at least .99.19

2. For all x ∉X: M returns 1 on x with probability at most .01.
3. There is a polynomial function f ∶ N → N, such that for all x: M always

halts on x within f(∣x∣) steps, where ∣x∣ is the length of x.

When restricting to deterministic machines, this notion of feasibility collapses to
the well-known class of polynomial time algorithms. It was long hoped that there
would be problems X such that VX(M) = 1 only for probabilistic machines—a
conjecture known as P≠BPP—meaning that randomization truly helps in this set-
ting. Yet, a number of developments in the field have convinced most researchers
that P=BPP, that randomization does not help (Vadhan, 2012).

A similar question can be raised with respect to memory usage. If we replace
3 above by the requirement that there be a logarithmic function g such that M
never uses more than g(∣x∣) memory cells during the computation, this formalizes
a canonical notion of feasible space approximation. The analogous conjecture for
space complexity—known as L≠RL—is also widely believed to fail (see Vadhan
2012 for further discussion).

These considerations suggest we are unlikely to find a justification for ran-
domization in this particular approach to complexity theory. It is sometimes
concluded that this would mean, from a computational perspective, randomiza-
tion has nothing but heuristic value.20 This conclusion is premature.

17See Kuhn (1950). While the argument is not given in terms of Turing machines, it is
straightforward to see that the proof relativizes to the computable setting.

18Consider a PTM that on input n returns each n-bit number with probability 2−n. Any
distribution over deterministic Turing machines will assign some M probability ε > 0. Now
choose n with 2−n < ε. On input n the machine will return M(n) with probability greater than
2−n. This observation was already made by Meggido (1994).

19The threshold of .99 is arbitrary. Any threshold greater than 0.5 can be chosen.
20In the canonical textbook on artificial intelligence, for example, the authors write, ‘In single-
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REASONING WITH A BOUNDED MEMORY
A distinctive challenge facing virtually any intelligent agent is that the amount

of data they will receive is vastly greater than the memory space they have avail-
able. From a decision theoretic perspective, this means that violations of the
Principle of Total Evidence—according to which one’s probability estimates and
decisions should be based on all available information—will be inevitable. What
should an otherwise perfect Bayesian agent do if they know they will not be able
to process all of the data they will receive? As it turns out, this sole relaxation
of the idealized picture is already sufficient to rationalize randomized behavior.

As a first illustration, consider a hypothesis testing scenario with K states
S = {1, . . . ,K}, each i ≤ K associated with a Bernoulli probability pi of ‘heads’
(and 1 − pi of ‘tails’). After some observed coin flips, the aim is to guess the
right hypothesis. Hypothesis testing is a central and ubiquitous task and has
been argued to characterize fundamental cognitive problems ranging from concept
learning (Fodor, 1975) to perceptual object recognition (Kersten et al., 2004).

When each hypothesis is equiprobable, the optimal solution is of course to
guess the hypothesis that assigns highest likelihood to the observed sequence.
Yet for an agent with a limited memory even this simple strategy is generally
unavailable. Such an agent can only be in one of finitely many different states.
It is therefore natural to model them as a (probabilistic) finite state automaton.

Whereas a Turing machine possesses an infinite tape that it can use as an
unbounded memory buffer, a finite state automaton is simply (equivalent to) a
Turing machine with a finite work tape and thus a fixed upper bound on memory
space (see, e.g., Minsky 1967).21 In the present context we think of the agent as
starting in some initial state and then transitioning to other states depending on
the data point most recently observed. Each state of the agent, we can assume,
is associated with exactly one hypothesis i ∈ S (‘The current guess is i’), though
for each hypothesis i ∈ S there may be many possible agent states in which i
is the current guess. For a fixed number n, we want to ask: what is the best
automaton with exactly n states for a given hypothesis testing problem? It was
shown in early work by Hellman and Cover (1970, 1971) that allowing stochastic
transitions in the automaton is strictly helpful for hypothesis testing.22

To see the intuition, consider a toy example of just two hypotheses, with
p1 = 0.99 and p2 = 0.9. In neither case do we expect to see many tails. We
nonetheless expect to see it ten times more often if hypothesis 2 is true. Suppose
the agent can be in one of only two mental states at any given moment. What

agent environments, randomization is usually not rational. [. . . ] In most cases we can do much
better with more sophisticated deterministic agents’ (Russell and Norvig, 2010, p. 50).

21Note that Putnam (1967) originally referred to probabilistic Turing machines as ‘proba-
bilistic automata’, though he did not impose any restriction on memory.

22The notion of optimality in these papers is asymptotic. An agent’s performance is given
by the expected limiting proportion of correct guesses, a value that always exists for finite
state automata. This work has been extended along a number of lines, including more general
decision problems, recently in Wilson (2014).
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is the optimal strategy for solving this problem? The best a deterministic agent
with only two states can do is to begin by guessing hypothesis 1, and then the
first time tails is ever observed guess hypothesis 2 forever thereafter. That is, the
following automaton is optimal for this problem:

1 2

H H,T

T

The agent begins on the left hypothesizing 1, remaining there as long as heads is
observed. Upon observing tails, the agent transitions to the right state, remaining
there forever. On average, after 100 observations such an agent expects to make
the correct guess about 68% of the time, certainly well above chance. After 200
observations this drops to 57%, and by 500 observations we expect any two-state
deterministic automaton to be scarcely better than chance.

Suppose now that our agent can undergo probabilistic transitions between
states. Is there any way to improve upon the performance of the best determin-
istic agent? A general result by Hellman and Cover shows that the following
probabilistic automaton is optimal, where in this case λ ≈ 0.97.23

1 2

H H ∶ λ,TT

H ∶ 1 − λ

The agent again begins on the left, guessing 1 as long as heads are observed. Upon
observation of the first tails, the agent transitions to the right state, now guessing
2. Unlike in the deterministic automaton, from state 2 a heads observation will,
with very small probability (1 − λ ≈ 0.03), lead back to guessing 1.

The role of randomization here is similar to typical learning settings, in that it
provides an inexpensive means of escaping hypotheses that are decreasingly likely
given the data. Unlike all deterministic automata of its size, this probabilistic
automaton in this example is expected to be correct at least 77% of the time,
for any number of data points above a few dozen, again assuming p1 and p2 are
equally likely. The same overall pattern arises for any finite numbers of states
and hypotheses and other prior distributions on hypotheses.

The hypothesis testing problem is already reasonably general, but the under-
lying rationale for randomization in this setting is much more general and can
be explained more abstractly. Fixing the space of actions A and a finite space of
possible observations O, recall a behavior is a function from O to ∆(A). Kuhn’s

23In general λ = 1 − (
(1−p1)(1−p2)

p1p2
)

1
2 . See Hellman and Cover (1970, 1971).
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Theorem tells us that any behavior encoded by a PTM can be achieved by a
probabilistic mixture of deterministic machines. But now suppose we restrict at-
tention to the space Fn of probabilistic finite automata of size at most n. Kuhn’s
Theorem now fails, in that there will be automata in Fn whose behavior can-
not be emulated by any mixture of deterministic machines in Fn. The example
above illustrates this failure. If O includes all possible sequences of 500 coin flips,
then the behavior of every deterministic two-state machine leads to chance per-
formance. Hence, no mixture of such machines could reach the performance of
77% achieved by the best probabilistic machine.

If we think of assessment as now being defined over the space of finite state
machines, there will often be value functions V ∶ Fn → R whose maxima are
concentrated around randomized machines whose behaviors are unachievable by
deterministic machines in Fn. Thus, the failure of Kuhn’s Theorem defeats the
Bayesian convexity argument against randomization.24 Whether we are in such a
case will of course depend on a number of details, and in particular on the nature
of the underlying value function. It is worth giving several further examples of
the general phenomenon to illustrate how widespread it is.

The same phenomenon can be witnessed in mundane, small-scale problems.
Recall our opening example of the choice between skipping or stopping at a
stop sign. Imagine the agent will meet Y stop signs, and the probability of
a patrol officer at each is independent, estimated at 0.1. Each ticket would
provide disutility −20. Suppose the disutility of stopping is not additive but
multiplicative—wear and tear on the car is worse with each stop—so that stopping
K times gives disutility −(1.1K). In a one-shot case, i.e., when Y = 1, it is easy to
calculate that the agent should stop. For the case of Y = 35, however, the Bayes-
optimal strategy is to stop 32 times and skip 3 (in any order)—the risk of tickets
on those three occasions is outweighed by the compounded cost of stopping.

Carrying out any version of this (deterministic) strategy requires remembering
previous actions. Suppose our agent has no memory for past actions whatsoever.
Then a randomized strategy of skipping each time with probability 0.1 (≈ 3

35)
dominates both memoryless deterministic strategies (always skip or always stop).
The reason is again simply that randomization affords the agent behaviors that
it otherwise could not effect. The aim is to skip roughly 10% of the time, and
the only way to come even close to this behavior (with high probability) without
memory is by appeal to the randomizing device.

One final, somewhat different example of this same phenomenon, where lim-
ited memory renders randomization strictly beneficial, is in the area of estimat-
ing statistics from large data streams. Imagine an agent will observe many data
points, coming from some class of possible observations O, and the task is to

24Early in the development of modern game theory it was realized that imperfect recall could
lead to failure of Kuhn’s Theorem, and could even rationalize randomized behavioral strategies,
e.g., Isbell (1957). See also Piccione and Rubinstein (1997). The broader significance of these
observations to decision-making more generally, and their connection to conceptually quite
different computational issues, seems not to have been noticed.
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estimate the number of distinct members of O observed. Envision, for instance,
a restaurant owner who expects to see many thousands of customers throughout
the year, many of whom visit multiple times. By the end of the year, the owner
wants to know how many distinct customers came into the restaurant.

Let us assume that a practical solution to this problem can only use an amount
of memory sublinear in the size of O and the length of the stream. Thus, the
restaurant owner cannot simply keep a tally with the number of distinct cus-
tomers. What would be a good strategy to guarantee a reasonable estimate at
the end of the year? It is known that there is no deterministic approach to this
problem that even approximates the correct answer for every stream of a given
fixed size, whereas a uniformly close approximation is possible if we allow random-
ization.25 This highlights another known instance where a desirable probabilistic
behavior is not simply a mixture of comparably memory-efficient deterministic
behaviors. An agent facing a problem of this character would want to execute a
good randomized strategy, if possible.

In sum, any concrete agent will have a finite memory, indeed a memory that
will typically appear paltry in comparison with the vast amount of data they
will have to confront. This relatively mild presumption is already enough to
show how and why randomization may be strictly beneficial. As the examples
make apparent, the theoretical possibility is plausibly common, from statistical
inferences to sequential decision problems to basic data processing tasks.

WHENCE RANDOM BITS?
We have identified two reasons to randomize: (1) establishing the best course

of action (including formulating a prior on states) can be costly, and (2) memory
space is finite. Both evidently affect typical agents, whether biological or artificial,
and we should thus expect randomization to be beneficial for a wide variety of
agents and circumstances. Granting (1) and (2) as compelling rationales, we can
now ask two further questions. First, how could an actual agent hope to carry
out a randomized strategy? Second, do we already find evidence of intelligent
organisms responding to (1) and (2) with appropriately random behavior?

The first question highlights the multitude of characteristics that a perfectly
random source will embody, only some of which will be requisite for a given task.
Fooling an adversary requires unpredictability; unbiased assignment in an exper-
imental trial requires lack of correlation with traits in the population; and so on.
For some tasks very simple ad hoc chance devices such as two-sided coins, or parity
of the second-hand on a clock, will be sufficient. Other tasks are more demand-
ing in what counts as suitably random. As an extreme example, cryptographic
problems, where strategies must be unpredictable by virtually any conceivable
computing agent, seem to demand methods whose very existence depends on ma-

25This and related landmark results are due to Alon et al. (1999). One good randomized
strategy for this problem is quite simple. Begin by randomly choosing a ‘hash’ function h ∶ O →
[0,1]. Initialize a variable Z ∶= 1. On each new data point o from O, set Z ∶= min(Z,h(o)). At
the end return 1/Z.
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jor unproven conjectures in computational complexity theory. As Donald Knuth
famously quipped about pseudorandom number generators, ‘Random numbers
should not be generated with a method chosen at random’ (Knuth, 1969, 6).

It would be convenient, if quixotic, to imagine that human beings and other
animals were capable of behaving more or less randomly without any external
aid. To be sure, the kicker does not have recourse to coins or even hands of a
clock during that fraction of a second when a choice must be made. Dating back
as far as Reichenbach (1949) (§3, ‘Normal Sequences’), many have been skeptical
of the idea that people could act at random, and the skepticism was buttressed
by empirical work claiming as much (Wagenaar, 1972). Reflecting this common
wisdom Arntzenius (2008) writes, as a matter of course, ‘It is not as if one has a
chance device stored away in some convenient part of one’s brain’ (p. 292).

Yet there is evidence of something like this. Cortical neurons are known to en-
code magnitudes such as orientation by their average firing rates, and these firing
rates are a fairly reliable indicator of the stimulus. When it comes to the precise
firing pattern underlying this average, however, a number of studies have found
the pattern to be best modeled as a genuinely random process.26 Some studies
have probed further in an effort to ascertain what kinds of unmeasured determin-
istic processes might ground this apparently stochasticity. One notable finding is
that firing patterns seem to be a deterministic function of membrane potential, as
established by inputs from neighboring synapses (Mainen and Sejnowski, 1995),
which raises the possibility that the apparent stochasticity might be traced all
the way to the molecular level. Such findings paint a rather different picture,
on which random behavior is a kind of default that the nervous system must
somehow mitigate in the direction of more determinate and deliberate activity.
At the same time, the extent to which this randomness in neural firing manifests
in observable behavior, not to mention whether it is in some sense available to
an organism for strategic purposes, is admittedly very much an open question.27

In any event, despite the common wisdom that people are unable to act ran-
domly, there are more direct behavioral studies on humans and non-human ani-
mals suggesting otherwise. In one study with human participants (Rapoport and
Budescu, 1992), researchers found that people will generate sequences that pass
relatively stringent statistical tests provided they are put in an adversarial situa-
tion involving monetary payoffs. In most previous experiments participants were
explicitly asked to produce ‘random’ sequences, resulting in far too many easily
detectable patterns, e.g., too few long runs of the same move. In these experi-
ments, by contrast, the task is not explicitly to produce a sequence with a given
property, but rather to gain as much reward as possible throughout the sequence
of plays. Such strategic scenarios elicit behavior that largely avoids most of the
easily detectable patterns.

26Specifically, the patterns are best modeled by a Poisson distribution fixed only by the
average rate itself. That is, holding the average rate fixed, neural firing patterns seem to be
completely random. The first work demonstrating this was Tolhurst et al. (1983).

27See Glimcher (2005) for an illuminating discussion of the issue, and many other references.
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It is perhaps telling that a small number of participants in Rapoport and
Budescu’s experiments were able to achieve as good or better performance, com-
pared to the random strategy, by relying on fairly simple deterministic strategies.
When one’s adversary is playing a fully randomized strategy, any strategy is as
good as any other. At the same time, any detectable pattern that deviates from
the fully random strategy could inform a reasonable probability about what they
are likely to do next. If one is confident in the pattern, as discussed earlier, a
deterministic strategy will be strictly better. While most participants seem to
have attempted a defensive safety strategy, some appear to have believed (in
some cases correctly) that they could improve on this baseline by capitalizing on
predictable deviations from the safety strategy. (Of course, this also means that
some non-random strategies performed worse than the random safety strategy.)

Even more remarkable behavior has been observed in non-human animals.
Using frequency-dependent reward schedules, researchers have been able to test
whether variability in behavior could be reinforced and encouraged in pigeons
(Page and Neuringer, 1985). The study described here is from Machado (1993).
Given two choices—press the left key (L) or the right key (R)—in succession, a
bird will come to produce a sequence. The goal is for the sequence to be normal
at level k, meaning that the proportion of all k-length subsequences should be
uniform. One can think of this on the model of a search problem. Imagine
there is some ‘prize’ k-length sequence, such that producing that sequence gives
positive probability of a large prize. Assuming all k-length sequences are equally
likely, the goal is to produce each subsequence the same number of times so as to
maximize the overall chance of a prize. In these experiments, reward in the form
of food is delivered throughout the trial, with probability of reward proportional
to how balanced the produced sequence is among subsequences of length k.

There exists an optimal deterministic strategy for this task, provided by so
called de Bruijn sequences. In the case of k = 1, the optimal strategy is simple al-
ternation, LRLRLRLR. . . , guaranteeing the same number of L as R throughout.
Pigeons routinely learn this strategy. For k = 2, the optimal strategy is slightly
less obvious: alternating LLRRLLRR. . . balances all subsequences of length 2.
With slightly more difficulty, pigeons are able to learn this strategy (Machado,
1993, Exp. 1). The answer for k = 3, however, is not at all obvious: repeating the
sequence LLLRLRRR is the optimal strategy. No pigeons in this study demon-
strated such behavior. More interesting, however, is the finding that almost all of
the birds in this experiment behaved in a way that was eventually indistinguish-
able from a random Bernoulli process. The produced sequences passed a barrage
of statistical tests, suggesting that they had learned to achieve variability by
acting more or less randomly (Machado, 1993, Exp. 2).

A basic fact about the de Bruijn sequence LLLRLRRR is that repeating any
strictly shorter sequence will necessarily omit at least one 3-length sequence alto-
gether. This means that any deterministic strategy for this problem which uses
strictly less memory than what is required for the optimal strategy will necessarily
lead to significant imbalance. As shown by the cases of k = 1 and k = 2, pigeons
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are adept at finding optimal deterministic solutions when those are feasible. But
remarkably, when the memory requirements become too demanding, the pigeons
in this study latch on to the optimal alternative, which in this case is simply to act
randomly, all but guaranteeing approximate balance for long enough sequences.
Other studies have shown very similar patterns.28

Our two proposed rationales, (1) and (2), may certainly both be at play in a
given scenario. In this case, for instance, not only is the memory demand high for
carrying out the optimal strategy, but identifying the de Bruijn sequence itself
can be difficult. If an agent’s search is biased toward memory-efficient strategies
in the first place, as certainly seems reasonable, then the resulting behavior may
be naturally explained by appeal to both rationales.

To the extent that an agent demonstrates random behavior in a decision prob-
lem with causal choice-state independence, and to the extent that this random
behavior seems rationally defensible, the claim is that we should expect such be-
havior to be explained by appeal to at least one of the two proposed rationales.
The empirical phenomena discussed here provide some support for the claim.
When feasible and clearly favorable, deterministic strategies are preferred. But
when memory requirements become too demanding, or when concerns about be-
ing outwitted frustrate formulation of a compelling prior, organisms as diverse
as people and pigeons are evidently able to utilize (approximate) randomization.
Whether this behavior is ultimately traceable to stochasticity underlying neural
firing patterns, or improvised association with some other suitably indeterminate
and independent source, the end effect is close enough to what one would expect,
rationally speaking, even given costless access to a perfectly random device.

CONCLUSION
It is sometimes assumed, following a familiar Bayesian decision theoretic ar-

gument, that randomization is never rationally required, aside perhaps from its
marginal role in tie breaking. One of the founders of decision theory was nev-
ertheless quick to point out, ‘The need for randomization presumably lies in the
imperfection of actual people’ (Savage, 1962, 34). This admission leaves open
which ‘imperfections’—that is, which assumptions in the Bayesian argument—
are most pivotal.29 Difficulties in formulating a prior highlight an important class
of cases, which fuel many of the familiar arguments in favor of randomization,
from game theory, experimental design, and the theory of learning. While the
many debates continue about exactly when and how one can sensibly codify one’s

28For instance, Page and Neuringer (1985) had pigeons produce a series of separate sequences
of length 8, and they were rewarded for the number of distinct 8-length sequences produced.
While there are of course many optimal deterministic solutions to this problem, these all require
significant memory. This task again induced apparently stochastic behavior.

29Savage himself drew attention to the multiagent setting, continuing that the need may lie
‘in the fact that more than one person is ordinarily concerned with an investigation’ (p. 34). As
discussed earlier, situations involving causal choice-state dependence are widely acknowledged
to legitimize randomization. Our interest has been in situations without such dependence.
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uncertainty by means of a prior probability measure—and thus about when ran-
domization should even be considered as a viable alternative—it is undeniable
that there will be instances when a good ‘satisficing’ solution (Simon, 1956) to a
problem involves randomizing.

Perhaps more striking is the fact that, even if we idealize away the difficulties
involved in deliberation, the mere observation that agents are limited by a finite
memory—which in turn limits the strategies they may be able to carry out—is
enough to undermine the argument against randomization. This is not only due
to cases of absent-mindedness or mundane forgetting. It arises as a fundamental
facet of real-world agency: the amount of potentially relevant information con-
fronting an agent is vastly greater than the amount of memory available. Thus,
even from the perspective of an ideal (resource-unlimited) Bayesian agent choos-
ing an automaton for a given task, there will be cases where one would strictly
prefer a probabilistic automaton over any deterministic one. It should therefore
be no surprise that even carefully constructed artificial agents, honed through
decades of research and practical experience, would still involve randomization
at multiple levels. The same can be said for biological agents. There is a precise
sense in which certain randomizing agents could not be improved in any way,
short of augmenting them with additional memory capacity.

The focus in this article has been on strategic aspects of randomization, viewed
as a potential means toward an end. Lifting the assumption we have been mak-
ing throughout, that the relevant states do not causally depend on the agent’s
choice, reveals further subtleties around the question of when random behavior
is desirable. For many purposes randomization is itself seen as inherently either
valuable or objectionable. One of the very features of randomization that makes
it initially questionable from a decision theoretic perspective—that the agent is
essentially relinquishing authorship, and perhaps also responsibility, for the re-
sulting action—can be a virtue. Randomized decisions are often seen as more fair,
and in some contexts less agonizing, precisely because any potential link between
the resulting action and a possible motivating reason is severed (Gauthier, 1965).
By the same token, echoing the sentiment expressed by Aumann and others,
even in situations where two options are judged to be on a par, which we might
expect to yield indifference, people are nevertheless reluctant to relegate their
decision to a chance device if the possible outcomes are significant and morally
charged (Keren and Teigen, 2010).30 The issues here are complex, involving re-
sponsibility, reasons for action, agential authority, and other weighty topics. To
assess the proper role of randomization in human agency broadly—not to men-
tion its desired role in artificially engineered agents—these rich complexities must
be confronted and ultimately reconciled with the strategic aspects examined in
this article. Understanding the purely instrumental value of randomization is an

30How exactly participants in these experiments manage to break the apparent symmetry is
another empirical question, also bearing on significant normative questions around the role of
agency in parity cases, cf. Chang (2009).

19



important step toward that end.31
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