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Abstract In this paper a method to construct Kripke models for subtheories of con-
structive set theory is introduced that uses constructions from classical model theory
such as constructible sets and generic extensions. Under the main construction all
axioms except the collection axioms can be shown to hold in the constructed Kripke
model. It is shown that by carefully choosing the classical models various instances
of the collection axioms, such as exponentiation, can be forced to hold as well. The
paper does not contain any deep results. It consists of first observations on the subject,
and is meant to introduce some notions that could serve as a foundation for further
research.
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1 Introduction

Constructive set theory was introduced by John Myhill in 1975. It serves as a founda-
tion for constructive mathematics, in much the same way that Zermelo-Fraenkel set
theory serves as a foundation for classical mathematics. To obtain a constructive set
theory, the first naive idea would be to only restrict the logic of classical set theory
to intuitionistic logic but leave the axioms unchanged. This, however, does not work
since already the Axiom of Foundation implies the law of the excluded middle. There-
fore the set theoretic axioms have to be chosen with care. Some classical axioms are
severely restricted, such as the Separation Axiom, that in a constructive setting allows
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148 R. Iemhoff

the construction of extensions based on bounded formulas only. For other axioms it
suffices to replace them by a classically equivalent form. Set Induction, for example,
is classically equivalent to Foundation and an accepted principle of constructive set
theory.

Several systems have been proposed as a constructive set theory in the course of
time, but we will concentrate in this paper on one particular brand of constructive set
theory called Constructive Zermelo Fraenkel set theory CZF. CZF, which is based on
Myhill’s system, was introduced by Peter Aczel, who also confirmed the constructivity
of the theory by providing an interpretation of it in Martin-Löf type theory [1–3,12].
Later Michael Rathjen constructed a realizability interpretation of the theory, and
using this showed that CZF possesses constructive properties such as the disjunction
property and various existence properties.

In this paper we study the Kripke models of Constructive Zermelo Fraenkel set
theory. Kripke models are a useful tool to study constructive theories and because of
their simplicity have been applied with great success to non-classical logics in general,
and intuitionistic logic and Heyting Arithmetic in particular. Although nowadays there
exist various models of CZF, such as the two interpretations discussed above, as well
as others in topos theory [10] and in the form of Heyting algebras [5], Kripke models
have been less investigated. In [7] Robert Lubarsky constructed two beautiful Kripke
models of CZF that refute classical principles such as the Power Set Axiom.

In this paper the aim is to construct, given a frame, a model of CZF on that frame
by using constructions from classical model theory such as the constructible sets and
generic extensions. The idea is to attach classical models (the so-called local models)
to the nodes of the frame and see how far, by carefully choosing the local models, the
axioms of CZF can be forced to hold in the Kripke model.

This paper is just a small first step in that direction. We introduce the framework
and provide requirements on the local models under which the model constructed on
a given frame is indeed a Kripke model. Then we proceed to show that under certain
natural conditions such as transitivity, the Kripke models thus constructed satisfy the
axioms of CZF minus the collection axioms, although certain instances of the latter
can be shown to hold as well. These results are straightforward: they follow easily
from the definition of the models. The conditions on the local models for which this
subtheory of CZF is satisfied in the final model are quite general, and there are many
ways to construct Kripke models that satisfy the necessary requirements.

Finally we show how to produce Kripke models for various forms of collection by
using specific properties of certain generic extensions. Given a frame we attach generic
extensions of a certain ground model to the leaves of the frame, and the model itself
to all interior nodes. We will see that several instances and variations of the collection
axioms can be recovered via requirements on the partial orders on which the generic
extensions are based, such as the countable chain condition. In particular, a bounded
form of Exponentiation can be forced to hold.

These are modest results, but we do hope that the method presented in this paper, in
particular the relation between properties of Kripke models and the generic extensions
on which they are based, can be pushed further, and will ultimately lead to models of
full CZF.

I thank an anonymous referee for useful and supportive comments.
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Kripke models for subtheories of CZF 149

2 CZF

Constructive Zermelo Fraenkel set theory CZF consists of the axioms and rules of
intuitionistic logic with equality extended by the following axioms.

Extensionality a = b ↔ ∀x(x ∈ a ↔ x ∈ b).

Empty Set ∃x∀y(y �∈ x)

Pairing ∃c∀x(x ∈ c ↔ x = a ∨ x = b).

Union ∃b∀x (x ∈ b ↔ ∃y ∈ a(x ∈ y)).

Bounded Separation ∃b∀x (x ∈ b ↔ x ∈ a ∧ ϕ(x)) (ϕ bounded).

Strong Infinity ∃ω∀x (x ∈ ω ↔ x = ∅ ∨ ∃y ∈ ω(x = y ∪ {y})).

Set Induction ∀x (∀y ∈ xϕ(y) → ϕ(x)) → ∀xϕ(x).

Strong Collection ∀x ∈ a∃yϕ(x, y) →
∃b (∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)).

Subset Collection ∃c∀z (∀x ∈ a∃y ∈ bϕ(x, y, z) →
∃d ∈ c (∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x∈aϕ(x, y, z))).

Bounded formulas are formulas in which every quantifier is bounded, thus of the
form ∀x ∈ y or ∃x ∈ y. CZFc is CZF minus the collection axioms, CZFic is CZFc

minus Set Induction.
Note that Set Induction is the constructive variant of Foundation, to which it is

classically equivalent. It resembles the situation in Heyting Arithmetic, for which
induction is one of the axioms, while the least number principle, which is classically
equivalent to it, does not hold. Also note that Strong Collection is formulated in the
way it is above since only full Separation would make it equivalent to the form most
commonly used:

∀x ∈ a∃yϕ(x, y) → ∃b∀x ∈ a∃y ∈ bϕ(x, y).

Bounded Strong Collection is Strong Collection in which the ϕ is a bounded for-
mula. Below we will define what it means when a term is set-bounded in a formula.
Given these notions, Set-bounded Subset Collection is Subset Collection in which the
ϕ(x, y, z) is a bounded formula in which z is set-bounded.

The following two axioms are equivalent (over the other axioms) to, respectively,
Bounded Separation and Subset Collection [4].

Binary Intersection ∃c∀x(x ∈ c ↔ x ∈ a ∧ x ∈ b)
Fullness ∃c∀r ∈ mv(ab)∃r ′ ∈ mv(ab)(r ′ ⊆ r ∧ r ′ ∈ c)
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150 R. Iemhoff

In Fullness mv(ab) stands for all multi-valued relations from a to b, i.e., all r ⊆ a×b
such that ∀x ∈ a∃y ∈ b 〈a, b〉 ∈ r . The property r ′ ⊆ r expresses that r ′ is a refinement
of r . Thus Fullness expresses that there is a set that contains at least one refinement
for every r ∈ mv(ab). Note that if r : a → b, Fullness implies that r ∈ c. Therefore
Fullness and Bounded Separation imply Exponentiation, that is, that ba is a set. This,
however, does not imply that Power Set holds, because the existence of a set {0, 1}a

does not imply that the power set of a exists: the existence of undecidable sets shows
that not every subset of a corresponds to a function in {0, 1}a .

We define

Separationϕ ∃b∀x (x ∈ b ↔ x ∈ a ∧ ϕ(x)),

and similarly for Strong Collectionϕ and Subset Collectionϕ . Note that Bounded Sepa-
ration, Strong Collection and Subset Collection are axiom schemes, while their variants
()ϕ are formulas.

An axiom that is often used in constructive set theory is the Regularity Axiom
which guarantees the existence of greatest fixed points, which are used in the set-
ting of inductive definitions. In this paper the focus is on the other axioms and the
Regularity Axiom will not be discussed any further here.

3 Kripke models

In this section we introduce the method to construct Kripke models for subtheories
of CZF from classical models of ZF, which is the main object of study in this paper.
Intuitively, given a frame F and classical models Mi for every node i of F , the Kripke
model will be the result of attaching model Mi to node i , where the forcing of atomic
formulas at a node corresponds to the validity of atomic formulas in the model at that
node. Of course, in order to obtain a Kripke model various requirements have to be
fulfilled. For example, for upwards persistency every model Mi has to be a subset of
the models at nodes above i , and every atomic formula that holds in Mi , should hold
in all models at the nodes above i . The definitions below provide such restrictions. A
collection of models is called sound for a given frame, it if satisfies all the necessary
requirements.

Although in the applications to come classical models will be attached to nodes in
a frame, one could also attach Kripke models to these nodes. The definitions below
describe the construction on this level of generality, but it might be clarifying to keep
in mind that in the theorems to come only the former restricted version of the con-
struction is used. Clearly, the general case covers the specific case, as classical models
are instances of Kripke models, namely Kripke models consisting of one node.

Note that in the general case we deal with nodes on two levels: nodes of the under-
lying frame F , and nodes in the Kripke models Mi that we attach to the nodes of F .
For a node m in Mi we denote forcing in Mi at this node by Mi ,m �, and in the final
Kripke model we denote forcing at node i in F and node m in Mi by 〈i,m〉 �. Here
follow the details.
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Kripke models for subtheories of CZF 151

Given a Kripke model K we denote by W K , �K , DK and I K , respectively, its set
of nodes, partial ordering, set of domains and its interpretations. A similar notation is
used for frames. When K is clear from the context we omit the superscript. Given a
node i in a model K , DK

i denotes the domain at node i , and I K
i the interpretation at

node i .
Given a frame F = (W,�), we call a collection of (Kripke) models M = {Mi |

i ∈ W } sound for F if

∀i, j ∈ W ∀m ∈ W Mi ∀n ∈ W M j : i � j ⇒ DMi
m ⊆ D

M j
n ,

∀i, j ∈ W∀m ∈ W Mi ∀n ∈ W M j ∀a, b ∈ DMi
m :

i � j ∧ Mi ,m � P(a, b) ⇒ M j , n � P(a, b) (P is = or ∈) .

Given a frame F and a collection of Kripke models M = {Mi | i ∈ W F } that is sound
for F , the Kripke model KF (M) = (W,�, D, I ) is defined as follows:

• W ≡de f
⋃ {{i} × W Mi | i ∈ W F },

• D〈i,m〉 ≡de f DMi
m ,

• 〈i,m〉 � 〈 j, n〉 ≡de f (i = j ∧ m �Mi n) ∨ (i ≺F j),

• I〈i,m〉 ≡de f I Mi
m .

Thus KF (M) is obtained from F by replacing node i in F by the Kripke model Mi .
The models in M are called local models. We sometimes call KF (M) the final model.

Soundness guarantees the result to be a Kripke model:

Lemma 1 If M is sound for F, then in KF (M):

〈i,m〉 � 〈 j, n〉 ⇒ (〈i,m〉 � ϕ ⇒ 〈 j, n〉 � ϕ) .

In the following, when talking about a model KF (M), we tacitly assume that M is
sound for F .

Clearly, classical models are models of the form KF (M), where F consists of one
node. We will mainly consider models of the form KF (M) for which M consists of
classical models and F is finite. Let us first consider an example of this form, where
F is the frame

1 2

3

�������

�������
4

5

��������

��������
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152 R. Iemhoff

and M = {Mi | i = 1, . . . , 5} consists of classical models. Then KF (M) is the
model

M1 M2

M3

��������

��������
M4

M5

��������

��������

This model has 5 nodes.
An example for which the models in M consist of more than one node is for

example given by the following frame F

1 2

3

�������

�������

and the collection of models M = {Mi | i = 1, 2, 3}, where the frames of the models
Mi are of the form

ai

bi

Thus KF (M) is the following 6 node model:

a1 a2

b1 b2

a3

�������

�������

b3

As mentioned above, if forcing in a model Mi is considered this will always be indi-
cated, as in expressions Mi ,m � ϕ. In case the forcing is relative to KF (M), the model
will be often omitted, which means that 〈i,m〉 � ϕ is short for KF (M), 〈i,m〉 � ϕ
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(recall that all nodes in KF (M) are of the form 〈i,m〉). Similar remarks apply to �Mi

and �KF (M).

3.1 Model properties

This section discusses all the properties used to describe the requirements on F and
M under which KF (M) is a Kripke model of certain axioms of CZF. The properties
are listed below, but the reader might consider to not consult them before the particular
point at which they are used in the theorems, since their meaning will become clear
from their application.

D-formula

Given a set D, ϕ is a D-formula if all its parameters are in D.

Set-bounded

Given a formula ϕ and a term t , t is set-bounded in ϕ, if, when it occurs inϕ, ϕ → t ∈ s
is derivable in intuitionistic logic, for some term s that occurs in ϕ. In t ∈ s, for exam-
ple, t is set-bounded while s is not.

Bounded

A formula is bounded if all its quantified subformulas are of the form ∃x ∈ aϕ(x) or
∀x ∈ aϕ(x).

∈-sound

To establish that KF (M) satisfies certain axioms of CZF we will sometimes use that
these axioms hold on the meta-level. For example, in the case of Set Induction we use
that Set Induction holds in the real universe in which our objects live. For this we need
the notion of ∈-soundness.

M is ∈-sound or sound for ∈ if

∀a, b ∈ DMi
m : Mi ,m � a ∈ b ⇒ a ∈ b.

Here the a ∈ b in the conclusion of ⇒ refers to the underlying real universe, here
taken to be classical set theory, if not explicitly stated otherwise. Note that classical
∈-models are ∈-sound.

Transitive

To force that certain simple axioms of CZF such as pairing and union hold in KF (M)

we require that sets do not grow when moving up in the model, a property that is
captured by the notion of transitivity.
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154 R. Iemhoff

M is transitive at 〈i,m〉 if

∀〈 j, n〉 � 〈i,m〉∀a ∈ DMi
m ∀b ∈ D

M j
n : M j , n � (b ∈ a ∨ b = a) ⇒ b ∈ DMi

m .

Note that this implies

∀〈 j, n〉 � 〈i,m〉∀a ∈ DMi
m ∀b ∈ D

M j
n : 〈 j, n〉 � (b ∈ a ∨ b = a) ⇒ b ∈ DMi

m .

M is transitive if it is transitive at every node. Note that if M consists of classical
models, transitivity implies that the models are transitive in the usual sense, and vice
versa.

To establish that KF (M) satisfies certain axioms of CZF we will often use that the
local models satisfy these axioms. For example, in order to have KF (M) be a model
of Bounded Separation, we need to understand for which formulas forcing at a node
in a local model is equal to forcing at that node in KF (M). For in these cases KF (M)

satisfies Bounded Separation if the local models do. The formulas for which we can
establish such a property are the bounded formulas, for which we will show that they
are preserved and decided in KF (M).

Decidable

A DMi
m -formula ϕ(x̄) is decided at 〈i,m〉 if

∀ā ∈ DMi
m ∀〈 j, n〉 � 〈i,m〉 : 〈 j, n〉 � ϕ(ā) ⇔ 〈i,m〉 � ϕ(ā).

This is equivalent to 〈i,m〉 � ϕ(ā) ∨ ¬ϕ(ā). ϕ is decided in KF (M) if it is decided

at every node 〈 j, n〉 for which ϕ is a D
M j
n -formula. Observe that every formula is

decided at the leaves of KF (M). M decides atomic formulas if all atomic formulas

are decided in KF (M). Note that this means that for all a, b ∈ DMi
m ∩ D

M j
n :

Mi ,m � a = b ⇔ M j , n � a = b Mi ,m � a ∈ b ⇔ M j , n � a ∈ b.

Note that this notion depends on the models in M only.

Preserved

A DMi
m -formula ϕ(x̄) is preserved at 〈i,m〉 if

∀ā ∈ DMi
m : 〈i,m〉 � ϕ(ā) ⇔ Mi ,m � ϕ(ā).

ϕ is preserved in KF (M) if it is preserved at every node 〈 j, n〉 for which ϕ is a

D
M j
n -formula. Observe that every formula is preserved at the leaves of KF (M).
As we will see, in this paper we did not succeed in showing that, under the condi-

tions considered in this paper, KF (M) is a model of the collection axioms. We do,
however, recover certain instances of them. The requirements under which this holds
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Kripke models for subtheories of CZF 155

are expressibility and collapse. These properties are rather strong, and we feel that in
contrast to the results on the other axioms of CZF, the results using these two proper-
ties are unnatural, and leave ample room for improvement. In the last two sections we
present some possible improvements by providing particular local models for which
KF (M) is a model of a restricted form of Exponentiation and other principles related
to functions.

Expressible

A DMi
m -formula ϕ(x, y), in which x, y are the only free variables, is expressible at

〈i,m〉 if

∀a, b ∈ DMi
m : 〈i,m〉 � ∀x ∈ a∃y ∈ bϕ(x, y) ⇔ Mi ,m � ∀x ∈ a∃y ∈ bψ i

m(x, y).

The formulas ψ i
m are called the companions of ϕ. Observe that every ϕ is a com-

panion of itself at the leaves of KF (M). Corollary 1 below implies that every bounded
DMi

m -formula is expressible at 〈i,m〉 by itself.

Lemma 2 If M is a transitive class of models of Pairing and decides atomic formulas,
and ϕ(x, y) is expressible by companions ψ i

m , then

∀d, e ∈ DMi
m : 〈i,m〉 � ϕ(d, e) ⇔ Mi ,m � ψ i

m(d, e).

Proof Consider d, e ∈ DMi
m . Because the Mi are models of Pairing, there exists a set

{d} ∈ DMi
m such that

Mi
m � ∀x(x ∈ {d} ↔ x = d).

The assumption that M is transitive and decides atomic formulas implies that also

〈i,m〉 � ∀x(x ∈ {d} ↔ x = d).

This implies that

〈i,m〉 � ϕ(d, e) ⇔ 〈i,m〉 � ∀x ∈ {d}∃y ∈ {e}ϕ(x, y).

The same reasoning gives

Mi
m � ψ i

m(d, e) ⇔ Mi
m � ∀x ∈ {d}∃y ∈ {e}ψ i

m(x, y).

Now we can use that ϕ is expressible by ψ i
m at 〈i,m〉 to obtain the desired

result. ��
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Collapse

Given 〈 j, n〉 � 〈i,m〉, and a DMi
m -formula ϕ(x, y, z), in which x, y, z are the only

free variables, then ϕ(x, y, z) collapses from 〈 j, n〉 to 〈i,m〉 if

∀c ∈ D
M j
n ∀a, b ∈ DMi

m : 〈 j, n〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c) ⇒
(
〈 j, n〉 � ¬∃x ∈ a or

(
c ∈ DMi

m and 〈i,m〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c)
))
.

ϕ(x, y, z) collapses if it collapses from 〈 j, n〉 to 〈i,m〉 for all 〈 j, n〉 � 〈i,m〉.
Lemma 3 If M is a transitive class of models of Set Induction that decides atomic
formulas, and the DMi

m -formula ϕ(x, y, z) is bounded, z is set-bounded in it, and
x, y, z are the only free variables in it, then ϕ(x, y, z) collapses.

Proof We have to show that for all 〈 j, n〉 � 〈i,m〉:

∀c ∈ D
M j
n ∀a, b ∈ DMi

m : 〈 j, n〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c) ⇒
(
〈 j, n〉 � ¬∃x ∈ a or

(
c ∈ DMi

m and 〈i,m〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c)
))
.

Therefore suppose 〈 j, n〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c) and 〈 j, n〉 �� ¬∃x ∈ a. Thus for
some 〈h, k〉 � 〈 j, n〉, 〈h, k〉 � ∃x ∈ a ∧∀x ∈ a∃y ∈ bϕ(x, y, c). It follows that there
exist elements u, v such that 〈h, k〉 � u ∈ a ∧ v ∈ b ∧ ϕ(u, v, c). Hence u, v ∈ DMi

m
by transitivity. Since z is set-bounded in ϕ(x, y, z) it follows that 〈h, k〉 � c ∈ t ,
for some term in ϕ(u, v, c). Because Set Induction holds in the models, t �= c. Since
all terms in ϕ(u, v, c) except c belong to DMi

m , it follows that c ∈ DMi
m by transi-

tivity. That also 〈i,m〉 � ∀x ∈ a∃y ∈ bϕ(x, y, c) holds, follows from Corollary 1
below. ��

Recall that an ∈-model is a model in which the membership relation is that of the
universe.

Lemma 4 If M consists of classical transitive ∈-models, then M is transitive,
∈-sound and decides atomic formulas.

Note that in the lemma the requirement that the models of ZF are ∈-models is not
only needed for the ∈-soundness, but also for the decidability of atomic formulas.

3.2 Forcing in the two models

Here follow some lemmas relating forcing in the local models to forcing in the final
model. As we explained in the previous section, bounded formulas will be central in
some of the theorems below. In this section we show that such formulas are preserved
and decided in KF (M).

When we consider a formula at Mi ,m or 〈i,m〉 we tacitly assume that all its param-
eters belong to DMi

m , that is, that it is a DMi
m -formula.
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Kripke models for subtheories of CZF 157

Lemma 5 If M is transitive and decides atomic formulas, then all bounded formulas
are decided in KF (M).

Proof We have to show that for bounded formulas ϕ:

∀〈 j, n〉 � 〈i,m〉 : 〈i,m〉 � ϕ ⇔ 〈 j, n〉 � ϕ.

We use formula induction. For atomic formulas the lemma holds because M decides
atomic formulas. That it holds for conjunction, disjunction and implication follows
easily. We treat the existential quantifier, the universal quantifier being similar.

∃ If 〈 j, n〉 � ∃x ∈ aψ(x), then for some d ∈ D
M j
n , 〈 j, n〉 � d ∈ a ∧ ψ(d). By

transitivity d ∈ DMi
m , and whence 〈i,m〉 � d ∈ a ∧ψ(d) by the induction hypothesis.

Thus 〈i,m〉 � ∃x ∈ aψ(x). ��
Lemma 6 If M is transitive and decides atomic formulas, then all bounded formulas
are preserved in KF (M).

Proof We have to show that for bounded DMi
m -formulas ϕ:

〈i,m〉 � ϕ ⇔ Mi ,m � ϕ.

We use formula induction. For atomic formulas the lemma holds because atomic
formulas are preserved by definition of KF (M). That it holds for conjunction and dis-
junction follows easily. For implication we use the induction hypothesis and Lemma 5
that implies that all bounded formulas are decided in KF (M). We treat the universal
quantifier, the existential quantifier being similar.

We have to show that

〈i,m〉 � ∀x ∈ aψ(x) ⇔ Mi ,m � ∀x ∈ aψ(x).

⇒ Suppose n �Mi m, and d ∈ DMi
n and Mi , n � d ∈ a. Thus d ∈ DMi

m by transitivity.
Hence 〈i,m〉 � d ∈ a by decidability. Thus 〈i,m〉 � ψ(d). Hence 〈i, n〉 � ψ(d) by
upwards persistency, and thus Mi , n � ψ(d) by the induction hypothesis. This proves
that Mi ,m � ∀x ∈ aψ(x).

⇐ Suppose 〈 j, n〉 � 〈i,m〉, and d ∈ D
M j
n , and 〈 j, n〉 � d ∈ a. Hence d ∈ DMi

m
by transitivity and Mi ,m � d ∈ a by decidability. Thus Mi ,m � ψ(d). Hence
〈i,m〉 � ψ(d) by the induction hypothesis. Thus 〈 j, n〉 � ψ(d). This proves that
〈i,m〉 � ∀x ∈ aψ(x). ��

Observe that the condition of atomic decidability in the previous lemma cannot be
replaced by atomic preservation, since the argument for implication in the proof by
induction might no longer be true.

Corollary 1 If M is transitive and decides atomic formulas, then all bounded formu-
las are decided and preserved in KF (M).

Corollary 2 If M consists of transitive ∈-models of ZF, then all bounded formulas
are decided and preserved in K F (M).
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4 Models of CZF

4.1 Models of CZFic

Proposition 1 If M is transitive and decides atomic formulas, then for all axioms ϕ
of CZFic except Strong Infinity, if the models in M satisfy Extensionality and ϕ, then
so does KF (M).

Proof The proof of this theorem is simple, but we have included all details for com-
pleteness’ sake. Essential is that bounded formulas are preserved and decided.

Extensionality We have to show that

〈i,m〉 � ∀x(x ∈ a ↔ x ∈ b) ↔ a = b.

Observe that the formula is bounded. Since the Mi are models of Extensionality, they
satisfy this formula at all their nodes. Lemma 6 implies that whence the formula holds
at all nodes in KF (M).

Empty Set Suppose the models in M are models of Empty Set. Thus for all nodes
m in Mi there exists a set ∅i

m ∈ DMi
m that is the empty set at that node, i.e., such that

Mi ,m � ∀x(x ∈ ∅i
m → ⊥).

Since ∀x(x ∈ ∅i
m → ⊥) is a bounded formula, Lemma 6 implies that it is forced at

〈i,m〉 too.
Pairing Suppose the models in M are models of Pairing. Thus there exist sets,

denoted {a, b}i
m , in DMi

m for which

Mi ,m � ∀x(x ∈ {a, b}i
m ↔ x = a ∨ x = b).

Transitivity and the fact that atomic formulas are decided implies that ∀x(x ∈
{a, b}i

m ↔ x = a ∨ x = b) is forced at 〈i,m〉 too.
Union Suppose the models in M are models of Union. The existence of sets ∪ai

m ∈
DMi

m such that

Mi ,m � ∀x
(

x ∈ ∪ai
m ↔ ∃y ∈ a(x ∈ y)

)
,

implies that

〈i,m〉 � ∀x
(

x ∈ ∪ai
m ↔ ∃y ∈ a(x ∈ y)

)

by transitivity and the fact that atomic formulas are decided.
Bounded Separation Suppose the models in M are models of Bounded Separation.

Let ϕ be a bounded formula. Thus there are sets ci
m ∈ DMi

m for which

Mi ,m � ∀x
(

x ∈ ci
m ↔ x ∈ a ∧ ϕ(x)

)
.
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Since ∀x
(
x ∈ ci

m ↔ x ∈ a ∧ ϕ(x)) is a bounded formula, it follows from Lemma 6
that 〈i,m〉 forces that formula too. ��

4.2 Strong Infinity

Proposition 2 If M is a transitive class of models of CZFic that decides atomic
formulas, then KF (M) is a model of Strong Infinity.

Proof Let ∅i
m be the sets such that

Mi ,m � ∀x¬(x ∈ ∅i
m).

Because the models are models of Strong Infinity, there are sets ωi
m such that

Mi ,m � ∀x
(

x ∈ ωi
m ↔ x = ∅i

m ∨ ∃y ∈ ωi
m(x = y ∪ {y})

)
.

It suffices to show that 〈i,m〉 forces the formula, that is, that for 〈 j, n〉 � 〈i,m〉 and

x ∈ D
M j
n :

〈 j, n〉 � x ∈ ωi
m ⇔ 〈 j, n〉 � x = ∅i

m ∨ ∃y ∈ ωi
m(x = y ∪ {y}).

We will use that for x, y ∈ DMi
m :

Mi ,m � x = y ∪ {y} ⇔ 〈i,m〉 � x = y ∪ {y}.

It is not difficult to see that this holds, using transitivity, the decidability of atomic
formulas, and that x = y ∪ {y} is equivalent to ∀z(z ∈ x ↔ z ∈ y ∨ z = y). ⇒ Sup-
pose 〈 j, n〉 � x ∈ ωi

m . We show that 〈i,m〉 forces x = ∅i
m ∨ ∃y ∈ ωi

m(x = y ∪ {y}).
Transitivity and the decidability of atomic formulas implies that x ∈ DMi

m and 〈i,m〉 �
x ∈ ωi

m . Thus Mi ,m forces x ∈ ωi
m , and whence x = ∅i

m ∨ ∃y ∈ ωi
m(x = y ∪ {y}).

The observations above imply that 〈i,m〉 forces that formula too.
⇐ First suppose 〈 j, n〉 � x = ∅i

m . Note that 〈i,m〉 forces ∅i
m ∈ ωi

m since Mi ,m does.
Hence 〈 j, n〉 forces x ∈ ωi

m by the equality axioms. Second, suppose for some y, 〈 j, n〉
forces y ∈ ωi

m ∧ x = y ∪ {y}. Thus y ∈ DMi
m by transitivity, and 〈i,m〉 � y ∈ ωi

m

by the decidability of atoms. There is a set x ′ ∈ DMi
m such that 〈i,m〉, and whence

Mi ,m, forces x ′ = y ∪ {y}. Thus Mi ,m, and whence 〈i,m〉, forces x ′ ∈ ωi
m . Hence

〈 j, n〉 � x ′ ∈ ωi
m . Since 〈 j, n〉 forces x = x ′ by Extensionality, it forces x ∈ ωi

m by
the equality axioms. ��
Corollary 3 If M is transitive and decides atomic formulas, and all models in M
are models of CZFic, then KF (M) is a model of CZFic.

Combining this with Lemma 4 we obtain the following corollary.

Corollary 4 If M consists of transitive ∈-models of ZF, then KF (M) is a model of
CZFic.
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160 R. Iemhoff

4.3 Models of Set Induction

As mentioned in the beginning, the background theory in this paper is taken to be ZFC,
but we do think that in most cases CZF would suffice. In this section we explicitly
state in which background theory we work, because in the case of Set Induction it is
instructive to see how the conditions on the local models have to be changed if we only
allow constructive reasoning and wish the final model to be a model of Set Induction.

Proposition 3 (CZF) If M is sound for ∈, then KF (M) is a model of Set Induction.

Proof Set Induction We show that ∀x(∀y ∈ xϕ(y) → ϕ(x)) → ∀xϕ(x) holds in
KF (M). Note that it suffices to show that

〈i,m〉 � ∀x(∀y ∈ xϕ(y) → ϕ(x)) ⇒ 〈i,m〉 � ∀xϕ(x).

Therefore suppose 〈i,m〉 � ∀x(∀y ∈ xϕ(y) → ϕ(x)). We have to show that

∀〈 j, n〉 � 〈i,m〉 ∀x ∈ D
M j
n 〈 j, n〉 � ϕ(x).

Let

ψ(x) ≡de f ∀〈 j, n〉 � 〈i,m〉
(

x ∈ D
M j
n → 〈 j, n〉 � ϕ(x)

)
.

It suffices to show that ∀x (∀y ∈ xψ(y) → ψ(x)), since an application of Set Induc-
tion to this formula on the meta level then gives ∀xψ(x), i.e., 〈i,m〉 � ∀xϕ(x). Thus

assume ∀y ∈ xψ(y). To show ψ(x), we prove that for 〈 j, n〉 � 〈i,m〉 and x ∈ D
M j
n ,

we have 〈 j, n〉 � ∀y ∈ xϕ(y). Since 〈i,m〉 forces ∀x(∀y ∈ xϕ(y) → ϕ(x)), so
does 〈 j, n〉, and hence 〈 j, n〉 � ϕ(x). This will show that ψ(x), and completes the
argument.

Therefore consider 〈h, k〉 � 〈 j, n〉, y ∈ DMh
k and 〈h, k〉 � y ∈ x . Then y ∈ x by

∈-soundness. Because we have ∀y ∈ xψ(y), this implies 〈h, k〉 � ϕ(y). Thus indeed
〈 j, n〉 � ∀y ∈ xϕ(y). ��

By Lemma 4, Corollary 4, and the previous theorem we obtain the following cor-
ollary.

Corollary 5 If M consists of transitive ∈-models of ZF, then KF (M) is a model of
CZFc.

Proposition 4 (ZF) If M consists of models of Foundation, and F is a frame without
infinite ascending branches, then KF (M) is a model of Set Induction.

Proof Since all Mi consist of one node, 〈i,m〉 becomes i , and we write M j for DM j .
We have to show that

i � ∀x(∀y ∈ xϕ(y) → ϕ(x)) ⇒ i � ∀xϕ(x).
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Therefore suppose i � ∀x(∀y ∈ xϕ(y) → ϕ(x)). Suppose i �� ∀xϕ(x). Thus
i1 �� ϕ(a1) for some a1 ∈ Mi1 and i1 � i . This implies that i1 �� ∀x ∈ a1ϕ(x), say
i2 �� ϕ(a2) for some a2 ∈ Mi2 such that i2 � i1 and i2 � a2 ∈ a1. Hence i3 �� ϕ(a3)

for some a3 ∈ Mi3 such that i3 � i2 and i � a3 ∈ a2, etcetera. Since F has no infinite
ascending branches, there exists an i j such that for all h ≥ j with h ∈ ω, ah ∈ Mi j

and Mi j |� ah+1 ∈ ah . But this contradicts the fact that the models in M are models
of Foundation. ��

4.4 Models of Strong Collection

The theorem below implies that under the standard conditions we have used so far,
Bounded Collection holds in models of the form KF (M). Although many applica-
tions of collection require only Bounded Collection, we feel that the result in this
section is rather weak. We chose to include it because the treatment of collection here
is similar to the treatment of the other axioms we have encountered so far. In Section
6 several variations of this theorem will be proved showing that by a careful choice of
the models in M, other forms of collection can be forced to hold in KF (M).

Proposition 5 If M is transitive and decides atomic formulas, then for every ϕ that is
expressible by companionsψ i

m , if the models in M are models of Strong Collectionψ i
m

and Pairing, then K F (M) is a model of Strong Collectionϕ .

Proof Let ψ i
m be the companions of ϕ. We show that for a ∈ DMi

m

〈i,m〉 � ∀x ∈ a∃yϕ(x, y) → ∃b (∀x ∈ a∃y ∈ bϕ(x, y) ∧ ∀y ∈ b∃x ∈ aϕ(x, y)) .

Therefore suppose 〈i,m〉 � ∀x ∈ a∃yϕ(x, y). We first show that

Mi ,m � ∀x ∈ a∃yψ i
m(x, y).

Namely, if n � m and x ∈ DMi
n such that Mi , n � x ∈ a, then x ∈ DMi

m by transitivity,
and Mi ,m � x ∈ a by decidability. Thus 〈i,m〉 � x ∈ a and whence 〈i,m〉 � ϕ(x, c)
for some c ∈ DMi

m . Thus Mi
m � ψ i

m(x, c) by Lemma 2, and therefore ∃yψ i
m(x, y), is

forced at Mi ,m, whence also at Mi , n.
Since the Mi are models of Strong Collectionψ i

m
, this implies that there exist sets

bi
m ∈ DMi

m such that

Mi ,m � ∀x ∈ a∃y ∈ bi
mψ

i
m(x, y) ∧ ∀y ∈ bi

m∃x ∈ aψ i
m(x, y).

By the expressibility of ϕ this implies

〈i,m〉 � ∀x ∈ a∃y ∈ bi
mϕ(x, y) ∧ ∀y ∈ bi

m∃x ∈ aϕ(x, y).

��
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162 R. Iemhoff

Corollary 6 If M is transitive and decides atomic formulas, then if the models in M
are models of Bounded Strong Collection, so is KF (M).

Proof If ϕ is bounded, Corollary 1 implies that ϕ is expressible by ϕ. Apply the
previous theorem. ��

4.5 Models of Subset Collection

The theorem below implies that under the standard conditions we have used so far, Set-
bounded Subset Collection holds in models of the form KF (M). The same remark as
in the case of Strong Collection applies here: the result is not strong since the expressive
power of the formulas in the axiom is limited. In Section 7 we will encounter sev-
eral variations of this theorem showing that under reasonable conditions a restricted
version of Exponentiation holds in KF (M).

Proposition 6 If M is transitive and decides atomic formulas, then for every ϕ that
collapses and is expressible by formulas ψ i

m , if the models in M are models of Subset
Collectionψ i

m
, then KF (M) is a model of Subset Collectionϕ .

Proof We show that for a, b ∈ DMi
m ,

〈i,m〉 � ∃c∀z[∀x ∈ a∃y ∈ bϕ(x, y, z) →
∃d ∈ c (∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z))]. (1)

Let ψ i
m be the companions of ϕ. Since the Mi are models of Subset Collectionψ i

m
,

there are ci
m ∈ DMi

m for which

Mi ,m � ∀z[∀x ∈ a∃y ∈ bψ i
m(x, y, z) →

∃d ∈ ci
m

(
∀x ∈ a∃y ∈ dψ i

m(x, y, z) ∧ ∀y ∈ d∃x ∈ aψ i
m(x, y, z)

)
]. (2)

It suffices to show that for all 〈 j, n〉 � 〈i,m〉 and all z ∈ D
M j
n

〈 j, n〉 � ∀x ∈ a∃y ∈ bϕ(x, y, z)

⇒
〈 j, n〉 � ∃d ∈ ci

m (∀x ∈ a∃y ∈ dϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ aϕ(x, y, z)) .

Therefore assume 〈 j, n〉 � 〈i,m〉, z ∈ D
M j
n , and 〈 j, n〉 � ∀x ∈ a∃y ∈ bϕ(x, y, z).

Thus 〈 j, n〉 � ¬∃x ∈ a or z ∈ DMi
m and 〈i,m〉 � ∀x ∈ a∃y ∈ bϕ(x, y, z). In the

latter case, by expressibility Mi ,m � ∀x ∈ a∃y ∈ bψ i
m(x, y, z). And thus for some

d ∈ DMi
m , Mi ,m forces

d ∈ ci
m ∧ ∀x ∈ a∃y ∈ dψ i

m(x, y, z) ∧ ∀y ∈ d∃x ∈ aψ i
m(x, y, z). (3)
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By expressibility 〈i,m〉 forces

d ∈ ci
m ∧ ∀x ∈ a∃y ∈ d ϕ(x, y, z) ∧ ∀y ∈ d∃x ∈ a ϕ(x, y, z). (4)

Thus so does 〈 j, n〉, which is what we had to show. In the former case, 〈 j, n〉 forces
¬∃x ∈ a, it follows that 〈i,m〉, and whence Mi ,m, forces � ¬∃x ∈ a too, by transi-
tivity and decidability. Hence Mi ,m � ∀x ∈ a∃y ∈ bψ i

m(x, y, z). Consider the d for
which (3). It follows that Mi ,m, and whence 〈i,m〉, forces ¬∃x ∈ d. Thus so does
〈 j, n〉, which implies that 〈 j, n〉 forces (4), which is what we had to show. ��
Corollary 7 If M is transitive and decides atomic formulas, then if the models in M
are models of Set Induction and Set-bounded Subset Collection, K F (M) is a model
of Set-bounded Subset Collection.

Proof Let ϕ(x, y, z) be a bounded formula in which z is set-bounded. By Corollary 1,
ϕ is expressible by itself, and Lemma 3 implies that ϕ collapses. Thus we can apply
the previous theorem. ��

If we combine all results above we obtain the following corollaries.

Corollary 8 If M is sound for ∈, consists of transitive models of CZF, and decides
atomic formulas, then KF (M) is a model of CZFc and Bounded Strong Collection
and Set-bounded Subset Collection.

Corollary 9 If M decides atomic formulas and consists of transitive models of ZF,
such that these are ∈-models or F has no infinite branches, then KF (M) is a model
of CZFc plus Bounded Strong Collection and Set-bounded Subset Collection.

5 Examples of models

Here follow some examples of classes of models satisfying Corollary 9.

5.1 Constructible set models

A collection M of models sound for a frame F is called an L-extension if every model
that does not correspond to a leaf of F is L, that is, if all Mi , where i is not a leaf of
F , equal L. In this case we denote KF (M) by K L

F (M). The following is an example
of such a model:

M1 M2

L

����������

����������
M3

L

����������

����������
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Recall that for every classical transitive proper class model M of ZF, LM = L
(Theorem 3.5 in [6]), and thus L is contained in M . Therefore a class of models M is
an L-extension on a frame F if the models in M corresponding to the leaves of F are
classical transitive proper class models of ZF, and all other models are L.

Proposition 7 If M is an L-extension of transitive ∈-models of ZF, then K L
F (M) is

a model of CZFc, Bounded Strong Collection, and Set-bounded Subset Collection.

5.2 Generic models

A collection M of models that is sound for a frame F is called an M-extension if Mi

is a generic extension M[Gi ] of M if i is a leaf of F , and it is the model M otherwise.
In this case we denote KF (M) by K M

F (M). Note that such models decide atomic
formulas.

We follow the notation of the book by Kenneth Kunen on set theory [6]. We let Pi

be the partial order in M with respect to which Gi is generic. Since for every generic
set G every m corresponds to a name m̆, such that (m̆)G = m, it follows that M is a
subset of every M[Gi ].

The following is an example of a model K M
F (M):

M[G1] M[G2] M[G3] M[G4]

M

��										

��

M

�� ��











M

�����������

�����������

Proposition 8 If M is an M-extension of transitive models of ZF sound for a frame
F with no infinite ascending branches, then K M

F (M) is a model of CZFc, Bounded
Strong Collection, and Set-bounded Subset Collection.

6 Functions

The use of constructible sets and generic extensions in the results above does not
seem to rely on constructibility or genericity in an essential way. The theorems merely
serve as natural applications of the more abstract lemmas that were proved before.
The results in this section, however, show that by carefully choosing generic models
for the leaves of a frame, the final model can be forced to satisfy certain principles on
the existence of functions at the interior nodes.

For cardinals κ and natural numbers n we define

¬¬Functionsn
κ

for all a ∈ M with |a| < κ: ¬¬∀x ∈ a∃!y ∈ bϕ(x, y) →
∃ f1, . . . , fn ∈ ba∀x ∈ a∀y ∈ b¬¬∨n

i=1(ϕ(x, y) ↔ fi (x) = y).
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The “for all a with |a| < κ” is meant externally, in the real universe. The ¬¬ refers
to the fact the antecedent of the implication is a double negated formula as well as
to the fact that the fi are only not not equivalent to ϕ. The property states that the
existence of certain functions at the leaves imply the existence, at the interior nodes,
of a finite number of functions that at the leaves behave like the original functions.

Theorem 1 If κ is a cardinal, M is an M-extension of transitive models of ZF, and
F is a finite frame with n leaves, and all Pi associated with the M[Gi ] are κ-closed,
then K M

F (M) is a model of ¬¬Functionsn
κ .

Proof Since the models in M are classical, we write i instead of 〈i,m〉, and Mi instead
of DMi . Suppose i � ¬¬∀x ∈ a∃!y ∈ bϕ(x, y), where a, b ∈ Mi and |a| < κ . Hence
j � ∀x ∈ a∃!y ∈ bϕ(x) for all leaves j � i . Since all formulas are preserved at leaves,
it follows that ϕ represents a function f j : a → b that belongs to M j = M[G j ]. If
i = j we are done. So suppose i is not a leaf.

In Theorem VII.6.14 in [6] it is shown that if P is κ-closed, then for all G that are
P-generic over M , for all a, b ∈ M with |a| < κ , if g : a → b is in M[G], then it is in
M . Therefore f j ∈ M . Hence f j ∈ ba in M . That ¬¬∨n

j=1(ϕ(x, y) ↔ f j (x) = y)
follows easily. ��

Weak ¬¬Functionsn

¬¬∀x ∈ a∃!y ∈ bϕ(x, y) → ∃ f1, . . . , fn ∈ P(b)a
∀x ∈ a∀y ∈ b

(∧n
i=1 | fi (x)| ≤ ω ∧ ¬¬∨n

i=1 (ϕ(x, y) → y ∈ fi (x))
)
.

The Weakness refers to the fact that the fi belong to P(b)a instead of ba , but in
contrast to ¬¬Functionsn

κ , there is no restriction on the cardinality of a. Note that in
the requirement | fi (x)| ≤ ω lies the non triviality of the property, as otherwise we
could take fi (x) = b, and the property would trivially hold.

Theorem 2 If M is an M-extension of transitive models of ZF sound for a finite frame
F with n leaves, and (Pi has c.c.c.)M , then K M

F (M) is a model of Weak ¬¬Func-
tionsn.

Proof Since the models in M are classical, we write i instead of 〈i,m〉, and Mi

instead of DMi . Suppose i � ¬¬∀x ∈ a∃!y ∈ bϕ(x, y), where a, b ∈ Mi . Hence
j � ∀x ∈ a∃!y ∈ bϕ(x) for all leaves j � i . Since all formulas are preserved at leaves,
it follows that ϕ represents a function g j : a → b that belongs to M j = M[G j ]. If
i = j we can take f j (x) = {g j (x)} and are done. So suppose i is not a leaf.

In Lemma VII.5.5 in [6] it is shown that if (P has c.c.c.)M and g : a → b is in
M[G] where a, b ∈ M , there is a map f : a → P(b) in M such that for all x ∈ a,
g(x) ∈ f (x) and (| f (x)| ≤ ω)M .

Thus there exist f j ∈ M such that f j : a → P(b) and

∀x ∈ a(g j (x) ∈ f j (x)) ∧ (| f j (x)| ≤ ω)M .
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We have to show that the following formula is forced at i :

∀x ∈ a∀y ∈ b

⎛

⎝
n∧

j=1

| f j (x)| ≤ ω ∧ ¬¬
n∨

j=1

(
ϕ(x, y) → y ∈ f j (x)

)
⎞

⎠ .

The second part clearly holds as for leaves j , j � ϕ(x, y) ↔ g j (x) = y. For the
first part, note that since ω is absolute for transitive models, it belongs to all models
in M. Since

∧n
j=1 | f j (x)| ≤ ω holds in M , there exist injections hx

j : f j (x) → ω in
M . It is easy to see that by Corollary 1, i forces that the hx

j are injections too, since
injectivity can be expressed by a bounded formula. ��

7 Exponentiation

In this section we show that under certain conditions on the generic sets instances of
exponentiation can be recovered. We write f : a → b as an abbreviation of “ f is a
function from a to b”. Exponentiation is the axiom stating that the set ba of functions
from a to b exists for all a and b:

Exponentiation ∀a∀b∃c∀ f ( f ∈ c ↔ f : a → b).

For cardinals κ we define a bounded version of Exponentiation:

Exponentiationκ
for all a ∈ M with |a| < κ: ∀b∃c∀ f ( f ∈ c ↔ f : a → b)

The “for all a with |a| < κ” is meant externally, in the real universe.

Theorem 3 If κ is a cardinal, M is an M-extension of transitive models of ZF sound
for a finite frame F with n leaves, and all Pi associated with the M[Gi ] are κ-closed,
then K M

F (M) is a model of Exponentiationκ .

Proof Since Exponentiation holds in the leaves of K M
F (M), it suffices to show that

for all i that are not leaves, for all a, b ∈ M with |a| < κ , there is a set ci ∈ M such
that i forces ∀ f ( f ∈ ci ↔ f : a → b). Take for all ci the set ba in M consisting of
all functions in M from a to b. This set exists because M is a model of ZF, and thus
of Exponentiation. We show that this c satisfies the right property, that is, that for any
node i :

i � ∀ f ( f ∈ c ↔ f : a → b).

If i is a leaf and f ∈ c, this means that f ∈ M by the transitivity of M , and thus
f : a → b holds in Mi = M[Gi ] too. If f : a → b in M[Gi ], then we use Theorem
6.14 in [6] stating that if P is κ-closed, then for all G that are P-generic over M , for
all a, b ∈ M with |a| < κ , if g : a → b is in M[G], then it is in M . Thus f ∈ M , and
whence f ∈ c.
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If i is not a leaf, we only have to consider the case that f ∈ M , as f ∈ M[Gi ] has
been treated above. But in this case f ∈ c ↔ f : a → b is clearly forced at i . ��

The results in the last two sections show how the choice of the generic sets can force
the final Kripke model to be a model of certain instances of collection. The obvious
open problem is whether this method can be pushed further to obtain models of larger
subtheories of CZF than the theories treated in this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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