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1 Solutions Exercises 1

Ex. 17

Let us call the new system L, i.e. its axioms are all propositional tautologies
(Axiom 1) plus the axioms 2> (Axiom 2) and 2φ∧2ψ → 2(φ∧ψ) (Axiom 3),
and the rules modus ponens and

φ→ ψ

2φ→ 2ψ

We have to show that for all formulas φ

`K φ ⇔ `L φ.

⇒: For this direction we have to show that L derives all axioms of K and all its
rules.
Axiom 1 of K is the same as Axiom 1 in L, thus we have nothing to prove.
Axiom 2 of K is 2(φ→ ψ) → (2φ→ 2ψ). We give a derivation of this formula
in L:

(φ→ ψ) ∧ φ→ ψ

2((φ→ ψ) ∧ φ) → 2ψ
(the rule from L)

2(φ→ ψ) ∧2φ→ 2ψ
(axiom 3 of L and propositional logic)

2(φ→ ψ) → (2φ→ 2ψ)
(propositional logic)

Remain the rules of K. Modus ponens is a rule of both so there is nothing to
prove. We show that L proves the Necessitation rule. That is, we have to show
that if `L φ, then `L 2φ. The following derivation in L from assumption φ
shows this:

φ

> → φ
(propositional logic)

2> → 2φ
(the rule from L)

2φ
(modus ponens using axiom 2>)

This completes the direction of the proof form left to right.
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⇐: For this direction we have to show that K derives all axioms of L and all its
rules.
Axiom 1 of L is the same as Axiom 1 in K, thus we have nothing to prove.
Axiom 2 of L is 2>. But since we have `K > (> clearly being a tautology), we
also have `K 2> by Necessitation.
Axiom 3 of L is 2φ ∧2ψ → 2(φ ∧ ψ). That K derives this formula is shown as
follows:

φ→ (ψ → (φ ∧ ψ))

2
(
φ→ (ψ → (φ ∧ ψ))

) (necessitation rule)

2φ→ (2ψ → 2(φ ∧ ψ))
(two applications of axiom 2 of K plus propositional logic)

2φ ∧2ψ → 2(φ ∧ ψ)
(propositional logic)

Remain the rules of L. Modus ponens is a rule of both so there is nothing to
prove. We show that K proves the other rule of L. That is, we have to show that
if `K φ→ ψ, then `K 2φ→ 2ψ. The following derivation in K from assumption
φ→ ψ shows this:

φ→ ψ

2(φ→ ψ)
(necessitation rule)

2φ→ 2ψ
(axiom 2 of K plus propositional logic)

This completes the direction of the proof from right to left. And thus we have
proved the exercise.

Ex. 19

Let us first consider some examples. Indeed, if φ → ψ is derivable in K, then
so is 2φ → 2ψ by necessitation and Axiom 2 of K. But then also the formula
¬2ψ → ¬2φ is derivable by contraposition. And then, again by necessitation
and Axiom 2, also 2¬2ψ → 2¬2φ is derivable. By contraposition thus also
¬2¬2φ → ¬2¬2ψ. (Contraposition means: if we prove ϕ → χ, then also
¬χ→ ¬ϕ holds, as it is a formula that is equivalent to the former formula.)
Thus if φ→ ψ is derivable, then so are Mφ→Mψ for M = 2 and M = ¬2¬2,
and Mψ → Mφ for M = ¬2 and 2¬2. Note that in the former case the
number of negations in M is even, and in the latter case it is odd.
The general case we prove by induction on the number of symbols, n, in M .
Suppose φ→ ψ is derivable in K. We have to show that Mφ→Mψ is derivable
in case the number of negations in M is even, and Mψ → Mφ is derivable in
case the number of negations in M is odd.
(Base case n = 0) In this case M is an empty sequence. Thus Mφ → Mψ is
equal to φ→ ψ, and thus it follows that Mφ→Mψ is derivable.
(Case n+ 1) In this case M = 2N or M = ¬N for a sequence N of boxes and
negations that contains n symbols. We split this case in four separate cases:
Case M = 2N and the number of negations in N is even. Note that in this
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case the number of occurrences of negations in M is the same as in N , and thus
even. By the induction hypothesis on N we have that Nφ → Nψ is derivable.
But then so is 2Nφ → 2Nψ by necessitation and Axiom 2. Thus Mφ → Mψ
is derivable.
Case M = 2N and the number of negations in N is odd. Note that in this case
the number of occurrences of negations in M is the same as in N , and thus odd.
By the induction hypothesis on N we have that Nψ → Nφ is derivable. But
then so is 2Nψ → 2Nφ by necessitation and Axiom 2. Thus Mψ → Mφ is
derivable.
Case M = ¬N and the number of negations in N is even. Note that in this
case the number of occurrences of negations in M is one more that the number
of negations in N , and thus odd. Hence we have to show that Mψ → Mφ
is derivable. By the induction hypothesis on N we have that Nφ → Nψ is
derivable. But then so is ¬Nψ → ¬Nφ by contraposition. That is, Mψ →Mφ
is derivable.
Case M = ¬N and the number of negations in N is odd. Note that in this
case the number of negations in M is one more that the number of negations
in N , and thus even. Hence we have to show that Mφ→Mψ is derivable. By
the induction hypothesis on N we have that Nψ → Nφ is derivable. But then
so is ¬Nφ → ¬Nψ by contraposition. That is, Mφ → Mψ is derivable. This
completes the proof.

Ex. 27

For all frames F :

F |= 2⊥ if and only if F is completely disconnected.

Proof ⇐: Suppose F = (W,R) is completely disconnected, i.e. ¬(wRv) for all
worlds w and v in W . We have to show that F |= 2⊥, that is, that for all
valuations V , for all w ∈ W , w |= 2⊥ in the model (W,R, V ). Thus consider
an arbitrary valuation V and an arbitrary world w in W . Since F is completely
disconnected w has no successors. w |= 2⊥ means that v |= ⊥ for all successors
of w. But since w has no successors, this is trivially true. Thus w |= 2⊥ indeed.
Note that we have in fact shown that in this model w |= 2φ for all φ.
⇒: This direction we show by contraposition. Thus we assume F = (W,R) is
not completely disconnected, and then show that F 6|= 2⊥. In other words, we
have to show that if F is not completely disconnected, then there is a valuation
V and a world w in W such that w 6|= 2⊥ in the model (W,R, V ). Thus suppose
F is not completely disconnected. Then there are at least two worlds w and
v (possibly the same) such that wRv. Observe that w |= 2⊥ means that all
successors of w, thus in particular v, force ⊥. Since in every model never v |= ⊥,
it follows that w 6|= 2⊥. 2
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Ex. 28

22⊥.

Ex. 30

For all frames F :

F |= 32ϕ→ ϕ if and only if F is symmetric.

Proof ⇐: Suppose F = (W,R) is symmetric. We have to show that F |=
32ϕ→ ϕ, that is, that for all formulas ϕ, for all valuations V , for all w ∈ W ,
w |= 32ϕ → ϕ in the model (W,R, V ). Thus consider an arbitrary formula
ϕ, an arbitrary valuation V and an arbitrary world w in W . Now suppose
w |= 32ϕ. We have to show that w |= ϕ. w |= 32ϕ implies the existence of
a world v such that wRv and v |= 2ϕ. But the symmetry of F implies vRw.
And thus w |= ϕ, since v |= 2ϕ.
⇒: This direction we show by contraposition. Thus we assume F = (W,R) is
not symmetric, and then show that F 6|= 32ϕ → ϕ. In other words, we have
to show that if F is not symmetric, then there is a formula ϕ and a valuation
V and a world w in W such that w 6|= 32ϕ→ ϕ in the model (W,R, V ). Note
that w 6|= 32ϕ → ϕ is equivalent to w |= 32ϕ ∧ ¬ϕ. Thus suppose F is not
symmetric. Then there are at least two worlds w and v such that wRv and not
vRw. Now define the valuation V on F as follows:

u ∈ V (p) ⇔ vRu.

Thus, we put u |= p if vRu, and for all other nodes u in W we put u |= ¬p. E.g.
as in this model:

(p) x y (p)

(¬p) v

eeLLLLLLLLLL

88rrrrrrrrrr

(¬p) w

OO

Since not vRw, we have w |= ¬p. Also, v |= 2p follows from the definition of
V . Since wRv this implies that w |= 32p. And thus w |= 32p ∧ ¬p. Hence
we have a found a formula ϕ, namely p, for which w |= 32ϕ ∧ ¬ϕ, and this
completes the proof. 2

Ex. 31

2n⊥ (2n⊥ is 22 . . .2⊥, n times 2).
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Ex. 34

Recall that irreflexive is ∀w¬wRw, and thus it is not the same as not reflexive,
which is ∃w¬wRw. Suppose R is well-founded. We show that it is irreflexive
and asymmetric.
If there would be a node w such that wRw, then clearly there would be w1, w2, . . .
such that . . . w3Rw2Rw1Rw, because we can take wn = w for all n ≥ 1. Sim-
ilarly, if R would not be asymmetric, there would be two nodes w and v such
that wRv and vRw. Thus we can find a chain . . . w3Rw2Rw1Rw, by taking
w2n+1 = v and w2n = w, for all n ≥ 0.

Ex. 37

Recall from the notes that if a set has a model, then it is consistent. Thus it
suffices to provide a model for the given set. We leave the construction of such
a model to you.
The set is not consistent in T, as e.g. 22p implies 2p in this system, and thus
the set would then derive 2p ∧ ¬2p.

Ex. 41

The bisimulation Z is:

Z = {〈w, 1〉, 〈x, 2〉, 〈y, 2〉, 〈z, 2〉, 〈v, 2〉}.

Less formal, one may also say: Z satisfies exactly wZ1 and xZ2, yZ2, zZ2 and
vZ2. It is instructive to check for yourself that Z is indeed a bisimulation.

Ex. 43

Fv1 validates 2⊥, which F does not. The frame

2

1

OO

is a p-morphic image of F . The p-morphism f is:

f = {〈w, 1〉} ∪ {〈vi, 2〉 | i = 1, 2, . . . }.

Less formal, one may also say: f(w) = 1 and f(vi) = 2 for all i ≥ 1.

Ex. 44

2n⊥ does not hold in the frame. E.g., it is not forced in any vm with m > n.
But there are many more nodes in which it is not forced: w, many ui, many xi,
etc. 3> does not hold either, as it does not hold in e.g. v1.
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We show that no finite frame can be the p-morphic image of F , by showing
that if f is a p-morphism from F to a frame G, then G has to be infinite. We
know that for the models M and N on F and G in which we do not force
any propositional variables, w |=M ϕ ⇔ w |=N ϕ holds, by the p-morphism
theorem. Now note that for all i ≥ 1, vi |= ¬2⊥∧¬22⊥∧ . . .∧¬2i−1⊥∧2i⊥.
Thus all these vi have to be mapped to different nodes under f , from which it
follows that G is infinite.

Ex. 45

If there would be a p-morphism f , then y should be mapped to either 1 or 2.
We show that both cases cannot occur. Call the accessibility relation in the
left frame R and in the right frame R′. If f(y) = 1, then because 1R′2, there
should be a node a such that yRa and f(a) = 2. But there is no such node.
If f(y) = 2, then because 2R′2, there should be a node a such that yRa and
f(a) = 2. But there is no such node.
Are there models on . . . ? No, w |= 32⊥ and 1 6|= 32⊥.
Is the generated . . . ? Yes.

Ex. 49

The formula is the conjunction of the formula that characterizes the reflexive and
the formula that characterizes the transitive frames: (2ϕ→ ϕ)∧ (2ϕ→ 22ϕ).
We show that indeed

F |= (2ϕ→ ϕ) ∧ (2ϕ→ 22ϕ) ⇔ F is a reflexive transitive frame.

We use the characterization theorem for the reflexive and for the transitive
frames treated in the notes.
⇒: Suppose that F |= (2ϕ → ϕ) ∧ (2ϕ → 22ϕ). Hence F |= 2ϕ → ϕ and
F |= 2ϕ→ 22ϕ. By the mentioned theorem it follows that F is transitive and
reflexive.
⇐: Suppose F is transitive and reflexive. By the mentioned theorem it follows
that F |= 2ϕ→ ϕ and F |= 2ϕ→ 22ϕ. Hence F |= (2ϕ→ ϕ)∧(2ϕ→ 22ϕ).

Ex. 50

Theorem 1 (Valuation theorem) For any maximal K-consistent set of formulas
Γ (that is, for any node in the canonical model), for any formula ϕ:

Γ |= ϕ ⇔ ϕ ∈ Γ.

(Note that here Γ |= ϕ means that Γ forces ϕ in the canonical model.)

Proof We prove the statement by formula induction on ϕ. Thus we show that
it holds for atomic formulas, and then, assuming it holds for φ and ψ, we show
that it holds for φ ∧ ψ, φ ∨ ψ, φ→ ψ, ¬φ and 2φ.
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Suppose ϕ is a propositional variable p. Then Γ |= p ⇔ p ∈ Γ by the definition
of the canonical model.
Suppose ϕ = φ ∧ ψ and that Π |= φ ⇔ φ ∈ Π and Π |= ψ ⇔ ψ ∈ Π have
already been proved for any Π (the induction hypothesis), in particular for Γ.
We show that

Γ |= φ ∧ ψ ⇔ φ ∧ ψ ∈ Γ.

⇒: Suppose Γ |= φ ∧ ψ. Then Γ |= φ and Γ |= ψ. By the induction hypothesis
φ ∈ Γ and ψ ∈ Γ. Because Γ is maximal consistent, either φ ∧ ψ ∈ Γ or
¬(φ∧ψ) ∈ Γ. We show that the last case cannot occur: since φ ∈ Γ and ψ ∈ Γ,
Γ `K φ ∧ ψ. Hence ¬(φ ∧ ψ) ∈ Γ would imply Γ `K (φ ∧ ψ) ∧ ¬(φ ∧ ψ), which
cannot be because Γ is consistent. Hence φ ∧ ψ ∈ Γ, and we are done.
⇐: Suppose φ ∧ ψ is in Γ. We show that φ, ψ ∈ Γ. First φ ∈ Γ. Because Γ
is maximal consistent, either φ ∈ Γ or ¬φ ∈ Γ. Suppose ¬φ ∈ Γ. We show
that this cannot be the case. Then φ ∈ Γ will follow. For suppose ¬φ ∈ Γ.
Then Γ would derive ¬(φ ∧ ψ) and φ ∧ ψ, since ¬φ `K ¬(φ ∧ ψ), and thus
φ ∧ ψ,¬φ `K ¬(φ ∧ ψ) ∧ (φ ∧ ψ), and thus Γ `K ¬(φ ∧ ψ) ∧ (φ ∧ ψ). But
this cannot be, because Γ is consistent. Thus ¬φ cannot be in Γ, and whence
φ ∈ Γ. The same argument applies to ψ. Thus we have shown that φ ∈ Γ and
ψ ∈ Γ. Now the induction hypothesis implies that Γ |= φ and Γ |= ψ. But then
Γ |= φ ∧ ψ follows, and we are done.
The cases for the other connectives are similar.
The last case, suppose ϕ = 2φ and that Π |= φ ⇔ φ ∈ Π has already been
proved for all Π (the induction hypothesis). We show that

Γ |= 2φ ⇔ 2φ ∈ Γ.

⇒: Suppose Γ |= 2φ. We have to show that 2φ ∈ Γ. Because Γ is maximal
consistent either 2φ or ¬2φ is an element of Γ. We show that the last case
cannot occur. For if ¬2φ ∈ Γ, there is a maximal consistent set Π such that
¬φ ∈ Π and for all 2χ ∈ Γ, χ ∈ Π, i.e. ΓRKΠ. To see that such a Π exists
requires a somewhat longer argument, and we leave it unproved, and just state
the fact here. Since ¬φ ∈ Π, then also Π 6|= φ by the induction hypothesis, and
thus Γ 6|= 2φ, which we assumed. This shows that ¬2φ ∈ Γ cannot be the case,
and thus 2φ ∈ Γ follows, and that is what we had to show.
⇐: Suppose 2φ ∈ Γ. We have to show that Γ |= φ, i.e. for all Π with ΓRKΠ,
Π |= φ holds. Suppose ΓRKΠ. By the definition of RK it follows that φ ∈ Π.
By the induction hypothesis it follows that Π |= φ. This shows that Γ |= 2φ.

2

Ex. 51

Theorem 2 If there is a bisimulation Z between two models M = (W,R, V )
and M ′ = (W ′, R′, V ′), then for all w ∈W and w′ ∈W ′ such that wZw′ holds,
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for all formulas ϕ:
w |=M ϕ ⇔ w′ |=M ′ ϕ.

Proof Suppose Z, M , M ′ are as in the theorem and consider w ∈ W and
w′ ∈ W ′ such that wZw′. We leave out the subscripts M and M ′ at |=, as it
is clear which models are meant. We prove the statement by formula induction
on ϕ. Thus we show that it holds for atomic formulas, and then, assuming it
holds for φ and ψ, we show that it holds for φ ∧ ψ, φ ∨ ψ, φ→ ψ, ¬φ and 2φ.
Suppose ϕ is a propositional variable p. Then w |= p ⇔ w′ |= p follows from
the definition of bisimulation.
Suppose ϕ = φ ∧ ψ and that

v |= φ ⇔ v′ |= φ v |= ψ ⇔ v′ |= ψ

has already been proved for all v ∈W and v′ ∈W ′ such that vZv′ (the induction
hypothesis). We have to show that

w |= φ ∧ ψ ⇔ w′ |= φ ∧ ψ.

⇒: suppose w |= φ ∧ ψ. Thus w |= φ and w |= ψ. By the induction hypothesis
w′ |= φ and w′ |= ψ. Hence w′ |= φ∧ψ, and that is what we had to prove. The
case ⇐ is completely similar.
The cases φ ∨ ψ, φ → ψ, ¬φ have a similar argument. We only treat 2φ. So,
assuming that

v |= φ ⇔ v′ |= φ

has already been proved for all v ∈W and all v′ ∈W ′ such that vZv′ (induction
hypothesis), we show that

w |= 2φ ⇔ w′ |= 2φ

holds.
⇒: we show this by contraposition. Thus we assume w′ |= ¬2φ, and show
that then w |= ¬2φ will follow. Thus assume w′ |= ¬2φ. By the definition of
forcing there has to be a v′ ∈W ′ such that w′R′v′ and v′ 6|= φ. By the definition
of bisimulation there is a v ∈ W such that wRv and vZv′. By the induction
hypothesis on v and φ it follows that v 6|= φ. But since wRv, then w |= ¬2φ
follows, and that is what we had to show. The direction ⇐ is completely similar.
This completes the proof. 2

Ex. 54

We start with T and show that the frame of the T-canonical model is reflexive.
Let R be the relation of the T-canonical model. Recall that for two maximal
T-consistent sets Γ and Π

ΓRΠ ⇔ ∀ϕ(2ϕ ∈ Γ ⇒ ϕ ∈ Π).
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Thus to show that R is reflexive we have to show that

∀ϕ(2ϕ ∈ Γ ⇒ ϕ ∈ Γ).

But this follows from the axiom 2ϕ → ϕ. For suppose 2ϕ ∈ Γ. Because Γ is
maximal T-consistent ϕ ∈ Γ or ¬ϕ ∈ Γ. ¬ϕ cannot be in Γ, since the axiom
2ϕ→ ϕ then would imply that Γ `T ϕ∧¬ϕ, which cannot be as Γ is consistent.
Thus ϕ ∈ Γ, and this is what we had to show.
The case K4. We have to show that the frame of the K4-canonical model is
transitive. Let R be the relation of the K4-canonical model. Thus we have to
show that ΓRΠRΘ implies ΓRΘ. Using the definition of R on canonical models,
This means that we have to show that ΓRΠRΘ implies

∀ϕ(2ϕ ∈ Γ ⇒ ϕ ∈ Θ).

But this follows from the axiom 2ϕ → 22ϕ. For suppose 2ϕ ∈ Γ. Because
Γ is maximal K4-consistent 22ϕ ∈ Γ or ¬22ϕ ∈ Γ. ¬22ϕ cannot be in Γ,
since the axiom 2ϕ→ 22ϕ then would imply that Γ `K4 22ϕ∧¬22ϕ, which
cannot be as Γ is consistent. Thus 22ϕ ∈ Γ. Hence 2ϕ ∈ Π since ΓRΠ. But
then ϕ ∈ Θ since ΠRΘ, and this is what we had to show.

Ex. 55

Kaφ→ Kbφ, KcKaϕ→ KbKaϕ, Kaψ → ¬Kb¬ψ, KaKbKaϕ.

Ex. 56

F |= 2aϕ→ 2bϕ ⇔ Rb ⊆ Ra.

⇐: Suppose Rb ⊆ Ra, and that w |= 2aϕ in a model on the frame. We have
to show that w |= 2bϕ, i.e. ∀v(wRbv ⇒ v |= ϕ). If wRbv, then wRav because
Rb ⊆ Ra. Thus v |= ϕ since w |= 2aϕ, and that is what we had to show.
⇒: this we prove by contraposition. Suppose Rb 6⊆ Ra, i.e. there are wRbv such
that not wRav. Define

x ∈ V (p) ⇔ wRax.

We leave it to you to check that indeed w |= 2ap, and w |= ¬2bp. This then
shows that not for all ϕ, 2aϕ→ 2bϕ holds on the frame.

Ex. 58

F |= 31ϕ→ 3232ϕ ⇔ ∀w∀v(wR1v ⇒ ∃u(wR2uR1v)).

⇐: Suppose ∀w∀v(wR1v ⇒ ∃u(wR2uR1v)), and that w |= 31ϕ in a model on
the frame, i.e. there exists a v such that wR1v and v |= ϕ. We have to show
that w |= 3231ϕ, i.e. ∃u∃z(wR2uR1z ∧ z |= ϕ). But if wR1v, then wR2uR1v
for some u, because of the property of the frame. Thus we can take z = v, and
then indeed have that (wR2uR1z ∧ z |= ϕ), and that is what we had to show.
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⇒: this we prove by contraposition. Suppose that ∀w∀v(wRv ⇒ ∃u(wR2uR1v))
does not hold, i.e. there are w and v such that wR1v and for no u wR2uR1v
holds. Define

V (x, p) = 1 if x = v, and V (p, x) = 0 otherwise.

Note that thus p is only forced at node v. Indeed, w |= 31p, as wR1v and
v |= p. But w |= ¬3231p, since v is the only node that forces p, and thus for
w |= 3231p to hold, there should be a u such that wR2uR1v, but there is no
such u. This shows that not for all ϕ, 31ϕ→ 3231ϕ holds on the frame.

Ex. 59

Consider the frame F
w rr

Let G be the frame
v2 // v3

~~||
||

||
||

v1

``BBBBBBBB

It is not difficult to see that F is a p-morphic image of G. But G is asymmetric
and F is not (it is symmetric). If the class of asymmetric frames were char-
acterized by a formula φ, then it would follow that G |= φ and F 6|= φ, which
contradicts th eP-mophism theorem.
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