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This text contains some basic facts about modal logic. For motivation,
intuition and examples the reader should consult one of the standard textbooks

in the field.
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1 Expressive power

Many statements can be expressed in a meaningful way in propositional logic.
Statements such as

1. John likes Mary and Susan (L(John,Mary) ∧ L(John, Susan), where
L(x, y) is “x likes y”),

2. I do not like potatoes in summer”. (S → ¬L(I, potatos), where S is “it is
summer”).

1.1 Predicate logic

Certain sentences do not have such a clear translation in the setting of propo-
sitional logic. A sentence like “John loves all women”, cannot be expressed in
propositional logic in a meaningful way: the only possibility is p, where p then
denotes the statement “John likes all women”, but this does not reflect any of
the structure of the statement. To be able to capture the meaning of this kind
of sentences one can improve the expressive power of the language by adding
universal (∀) and existentional (∃) quantifiers which respectively denote “for all
. . . ” and “there exists . . . ”. In this setting “John likes all women” becomes
∀x

(
W (x) → L(John, x)

)
, where W (x) is “x is a woman”. This logic is called

predicate logic.

1.2 Propositional modal logic

It is not difficult to see that there are many other structures in sentences that
still cannot be expressed in predicate logic. Sentences of the form “when it
rains it is necessary I take a cab”, or “there is the possibility that I graduate
before I am 25”. To capture the structure of these sentences one can extend
propositional logic in a different way by adding two modal operators: 2 and 3.
2ϕ means “it is necessary that ϕ”, and 3ϕ means “it is possible that ϕ”. Thus
the two sentences above become R → 2C(I), where R is “it rains” and C(x)
“x takes a cab”, and 3(G(I) ∧ T (I)), where G(x) is “x graduates” and T (x) is
“x is younger than 25”.
Of course, to increase the expressive power of the system even more the modality
operators could be added to predicate instead of propositional logic. These
systems become considerably more complex than propositional modal logic and
fall outside the scope of this course.
Important There are various names for the modal operators, 2 is often denoted
by K and 3 by K̂.

1.3 Brief overview of propositional logic

This section contains a brief summary of the necessary definitions of proposi-
tional logic needed to follow the rest of the exposition. Readers familiar with
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the subject will find nothing new here and can proceed with the next section.
Propositional logic is the logic of propositional formulas. Propositional formulas
are build up in the usual way from propositional variables, also called atoms
and often denoted by p, q, p1, p2, . . . , the atoms ⊥ (false) and > (true), and
the connectives ∧, ∨, → and ¬, that is, conjunction (and), disjunction (or),
implication (if . . . , then . . . ) and negation (not). Thus p is a formula, and so is
¬p ∧ ((q → p) ∨ ¬r), but pp and p ∧ q → are not.
A valuation for a formula ϕ is a map from the propositional variables in ϕ to
{0, 1}. A formula is true or satisfiable under a valuation v if, when we assign
to atoms p the values v(p) the formula becomes true. Here the evaluation of
formulas in which all the atoms are replaced by 0’s or 1’s is as expected: 0
stands for false, and 1 stands for true, and

0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0 1 ∧ 1 = 1,

1 ∨ 1 = 0 ∨ 1 = 1 ∨ 0 = 1 0 ∨ 0 = 0,

(0 → 0) = (0 → 1) = (1 → 1) = 1 (1 → 0) = 0,

¬0 = 1 ¬1 = 0.

A formula is satisfiable when there is at least one valuation under which the
formula is true. It is a tautology when it is true under all valuations. It is
inconsistent when it is not satisfiable.

Example 1 1. p is a satisfiable formula (take v(p) = 1).

2. (p → q) ∧ ¬p is a satisfiable formula (take v(p) = 0 and v(q) is 0 or
v(q) = 1).

3. p ∧ ¬p is inconsistent.

4. ¬¬p→ p is a tautology.

5. p ∨ ¬p is a tautology.

2 Modal logic

Keeping the intuitive meaning of 2 and 3 in mind it is not difficult to write
down some principles that we wish our modal operators to satisfy. Principles
like

2ϕ↔ ¬3¬ϕ 3ϕ↔ ¬2¬ϕ

and
2(ϕ→ ψ) → (2ϕ→ 2ψ),

and
2(p ∨ ¬p) ¬3(p ∧ ¬p).
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Also, it seems reasonable to say that whenever a propositional formula ϕ is a
tautology, that then 2ϕ. These considerations have lead to the formulation
of the basic modal logic K. It consists, more of less, of the most obviously
true principles about 2 and 3. Thus it is thereby the logic of necessity and
possibility.

2.1 Kripke models

A Kripke frame is a pair (W,R) where W is a non-empty set and R is a relation
on W , i.e. R ⊆ W ×W . A Kripke model is a triple (W,R, V ), where (W,R)
is a frame and V is a valuation that assigns sets of worlds to propositional
variables, i.e. V : P → P (W ), where P is the set of propositional variables.
V (p) is interpretetd as the set of worlds where p is true. Of course, when we are
only interested in formulas in, say, the variables {p1. . . . , pn} we do not have to
define V for all variables, but only for the pi. Frames are often denoted by F ,
models by M . The elements of W are often called nodes or worlds. R is called
the accessibility relation of the frame or the model. The word Kripke is often
omitted.
Modal formulas are evaluated at worlds in a model. We define what it is for a
formula ϕ to be valid at a world w in a model M , denoted by M,w |= ϕ.

M,w |= p ⇔ w ∈ V (p) (for propositional variables p)
M,w |= ϕ ∧ ψ ⇔ M,w |= ϕ and M,w |= ψ
M,w |= ϕ ∨ ψ ⇔ M,w |= ϕ or M,w |= ψ
M,w |= ϕ→ ψ ⇔ M,w |= ϕ implies M,w |= ψ
M,w |= ¬ϕ ⇔ M,w 6|= ϕ
M,w |= 2ϕ ⇔ ∀v(wRv implies M,v |= ϕ)
M,w |= 3ϕ ⇔ ∃v(wRv and M,v |= ϕ).

If M is clear from the context we omit it and write w |= ϕ. If M,w |= ϕ, we
say that w forces ϕ in M or that ϕ is valid at w in M or that ϕ holds at w in
M . Sometimes M,w |= ϕ is denoted by w |=M ϕ.
The definition of truth at a node in a model as given above naturally gives
rise to three more global notions of truth. A formula ϕ is valid in a model M ,
denoted M |= ϕ, if for all worlds w in M , M,w |= ϕ. ϕ is valid on a frame F ,
denoted F |= ϕ, if for all valuations V on F , for all worlds w in F , M,w |= ϕ,
where M is the model with frame F and valuation V , i.e. M = (F, V ). ϕ is
valid, |= ϕ, if it holds on all frames. Thus we have three levels of valuation

M,w |= . . .

M |= . . .

F |= . . .

|= . . .

Example 2 For models M , frames F and worlds w in it, the following holds.
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· M,w |= ϕ ∨ ¬ϕ, M |= ϕ ∨ ¬ϕ, F |= ϕ ∨ ¬ϕ, |= ϕ ∨ ¬ϕ,

· |= ϕ for all propositional tautologies ϕ,

· F |= 3ϕ→ 3>,

· F |= (2ϕ ∧2ψ) ↔ 2(ϕ ∧ ψ),

· F |= (2ϕ ∨2ψ) → 2(ϕ ∨ ψ),

· F |= 2(ϕ→ ψ) ∧2ϕ→ 2ψ,

· (W,R, V ) |= ϕ implies (W,R, V ), w |= ϕ, for all worlds w ∈ W and all
formulas ϕ.

· (W,R) |= ϕ implies (W,R, V ) |= ϕ, for all valuations V on (W,R) and all
formulas ϕ.

Given a model M = (W,R, V ) we write wR∗v if there exists nodes u1 . . . un such
that w = u1 and v = un and uiRui+1. Given a node w in M , Mw denotes the
model which set of nodes is {v ∈W | wR∗v}, and which relation and valuation
are the restriction of R and V to this set.

Lemma 1 For all models M , all nodes w in M and all nodes v in Mw:

M,v |= ϕ ⇔ Mw, v |= ϕ.

Proof You will be asked to prove this in the exercises. ♥

2.2 Conventions

If R is the relation of the Kripke model we draw wRv as

w // v

We write the atoms that are forced at a node in brackets beside it. Thus in

(p, q) w // v (p)

w |= p, w |= q and v |= p, and e.g. v |= ¬q.
In formulas 2 and ¬ bind stronger than ∨ and ∧, which bind stronger than →.
E.g. p ∧ q → r is short for (p ∧ q) → r, and 2p ∧ q is short for (2p) ∧ q.

3 Interpretations of the modal operators

There are many interpretations of the modal operators 2 and 3. The particu-
lar interpretation we have in mind determines the principles (formulas) we are
wishing to except, and the restrictions we wish to impose on the Kripke models.
Here follow three examples.
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3.1 Epistemic logic

In epistemic logic w |= 2ϕ is interpreted as (or is the formalization of) “being
in world/state w I know ϕ”. Thus the worlds are viewed as states of knowledge.
Hence w |= 3ϕ means “being in w I consider it possible that ϕ holds”, or “there
is a knowledge state consistent with my knowledge in w where ϕ holds”. We
discuss some of the modal formulas that should hold in this context, and the
properties the accessibility relation should satisfy.
Axioms Assuming that I can only know true things, the principle 2ϕ → ϕ
should be valid in this context (if I know ϕ, then ϕ is true). And so should
2ϕ → 22ϕ be (if I know ϕ, then I know that I know ϕ). On the other hand,
a principle like ϕ → 2ϕ we would not be willing to accept (if ϕ is true, then I
know ϕ).
Models What is the corresponding meaning of the accessibility relation R in the
Kripke models when interpreting the modal operators in this way? Here wRv
should mean that v is a world that is consistent with the knowledge I have in
w. In a picture,

w // v “v is consistent with my knowledge in w”

And indeed, by the definition of |= ϕ, we have

w |= 2ϕ⇔ ∀v(wRv → v |= ϕ).

In words: it can never be the case that in v something (ϕ) holds which I know
not to be the case (2¬ϕ) when in w. What kind of properties should R have in
this setting? For example, R should be reflexive, wRw, because the world w is
consistent with the knowledge I have in w. Thus for all worlds w:

w




3.2 Tense logic

In tense logic t |= 2ϕ is interpreted as “from t on it is always going to be the
case that ϕ”, meaning that from time t on, ϕ will always hold. If one would
wish to include point t in “from t on”, then t |= 3ϕ means “there is a point in
time, later than t or t itself, where ϕ holds”. Some of the modal formulas that
should hold and some of the properties that the relations in the frames should
satisfy are the following.
Axioms Again 2ϕ→ 22ϕ seems naturally true in this setting. If you consider
time as infinite, then 3> should be valid: there is always a point later in time,
at which > holds. If one wishes to include t in “from t on”, then 2ϕ→ ϕ should
hold too.
Models In this setting wRv should mean that v is a point later in time than w:

w // v “v is a point later in time than w”
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In this setting R should be transitive: if wRv and vRu, then wRu:

w 88// v // u

Namely, if v is later than w and u later than v, then u is later than w.
If time is considered to be infinite, the Kripke models should look like

w1 // w2 // w3 // . . .

As mentioned above, under this interpretation, it is natural to require that R is
transitive. But we should e.g. also require that for every w there is a v such that
wRv and w 6= v: at every point in time there is a point later in time. Observe
that this property of the accessibility relation is not one that one should require
in the example above.

3.3 Agent logic

Here we interpret w |= 2ϕ as “all people w knows think that ϕ holds”. Here
the worlds can be viewed as persons (agents) and the formulas valid at a node
(agent) w represent the things w thinks true. Thus w |= 3ϕ means “w knows
a person that thinks ϕ is true”.
Axioms Again, the formula 2ϕ → ϕ should be valid, since all people know
themselves: if all people w knows think ϕ is true (w |= 2ϕ), then in particular
w thinks ϕ is true (w |= ϕ).
On the other hand, the principle 2ϕ→ 22ϕ seems not plausible. If John knows
Mary, and all people that John knows think ϕ is true (John|= 2ϕ), then this
does not imply that all acquaintances of Mary do so (Mary|= 2ϕ), since Mary
may know people that John does not know. Thus 2ϕ might not be valid for
Mary. Hence 22ϕ might be false for John.
Models What is the corresponding meaning of the accessibility relation R in this
setting? wRv corresponds to person w knowing person v:

w // v “w knows v”

Under this interpretation we again should require that R is reflexive, as above.
However, transitivity is not likely. The example above shows this: it might be
the case that John knows Mary and Mary knows George, but John does not
know George:

John // Mary // George

and whence there is no arrow from John to George.

8



4 Basic modal logic

All examples above share a collection of principles that holds for all of them.
This is the basic modal logic K given by the following logic and rules:

Axioms Tautologies of propositional logic

2(ϕ→ ψ) → (2ϕ→ 2ψ)

Rules
ϕ→ ψ ϕ

Modus Ponens
ψ

ϕ
Necessitation2ϕ

Axiom 2(ϕ → ψ) → (2ϕ → 2ψ) is named after the logic and called the K-
axiom. We say that ϕ is derivable in K and write `K ϕ if there is a derivation
of ϕ in K.
The logic K is called the basic modal logic because it is the logic of all Kripke
frames, see Theorem 6. The following theorem is a first step in that direction.
It states that all formulas that are derivable in K are true on all frames.

Theorem 1 (Soundness theorem)

`K ϕ ⇒ ϕ holds on all frames.

Proof You will be asked to prove this in the exercises. ♥

5 Frame properties

In Section 3 we saw how the interpretation of the modal operators determines
the formulas which the operators should satisfy. Also, it naturally induces re-
strictions on the Kripke models. Note that in the examples above all these are
restrictions on the asseccibility relation of the models. Thus they are indepen-
dent of the paricular valuation of the model. Such properties are called frame
properties.
The relation between formulas and frame properties is a tight one, which is one
of the reasons for the success of modal logic. The connection will be discussed
in detail below. This section contains the definitions of certain frame properties
that play an important role in modal logic. We first list the name, then the
description of the property by a formula, and then the corresponding picture.

9



Definition 1

reflexive ∀w(wRw) w rr

transitive ∀w∀v∀u(wRvRu→ wRu) w 88// v // u

symmetric ∀w∀v(wRv → vRw) w
((
vii

euclidean ∀w∀v∀u(wRv ∧ wRu→ vRu) v // u

w

__????????

??��������

dense ∀w∀v(wRv → ∃u(wRuRv)) w //

��

v

u

??

The following properties are a bit harder to draw. Therefore only their descrip-
tion in terms of formulas is given.

Definition 2

irreflexive ∀x¬(xRx)

asymmetric ∀x∀y(x 6= y ∧ xRy → ¬yRx)

antisymmetric ∀x∀y(xRy ∧ yRx→ x = y)

weakly ordered ∀x∀y(xRy ∨ yRx ∨ x = y)

partial order reflexive, transitive and antisymmetric

equivalence relation reflexive, transitive and symmetric

serial ∀x∃y(xRy)

completely disconnected ∀x∀y¬(xRy)

well-founded there is no infinite chain . . . x3Rx2Rx1
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A frame F = (W,R) is called reflexive if its accessibility relation R is reflexive,
and similarly for the other properties. If wRv, then v is called a successor of w
and w a predeccessor of v. We write wRvRu for (wRv ∧ vRu). Observe that
irreflexive and antisymmetric are not the same as the properties of being not
reflexive or not symmetric.

6 Important modal logics

There exist modal logics other than K that, like K, correspond to classes of
frames. The following four logics are famous examples of such correspondences.
They are extensions of K by the following axioms(s):

T 2ϕ→ ϕ
K4 2ϕ→ 22ϕ
S4 2ϕ→ ϕ and 2ϕ→ 22ϕ
S5 2ϕ→ ϕ and 2ϕ→ 22ϕ and 32ϕ→ ϕ.

Thus S4 is the systems T and K4 taken together, and S5 is S4 plus the axiom
32ϕ→ ϕ.
There exist beautiful connections between these logics and properties on frames,
as will be explained in the next section. We first state the soundness theorems
for these logics, which foreshadow the correspondence results.

Theorem 2 (Soundness theorem)

`T ϕ ⇒ ϕ holds on all reflexive frames.
`K4 ϕ ⇒ ϕ holds on all transitive frames.
`S4 ϕ ⇒ ϕ holds on all reflexive and transitive frames.
`S5 ϕ ⇒ ϕ holds on all frames for which the relation

is an equivalence relation.

Proof You will be asked to prove this in the exercises. ♥

7 Axioms and frame properties

Many frame properties are closely related to modal formulas. The possible inter-
pretations of the operators as discussed above seem to imply such a correspon-
dence. In this section this connection is made explicit via the correspondence
theorems.

Theorem 3 (Correspondence theorem for reflexive frames)
For all frames F :

∀ϕ (F |= 2ϕ→ ϕ) if and only if F is reflexive. (1)
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Proof⇐: Suppose F = (W,R) is reflexive. We have to show that F |= 2ϕ→ ϕ,
that is, that for all formulas ϕ, for all valuations V , for all w ∈W , w |= 2ϕ→ ϕ
in the model (W,R, V ). Thus consider an arbitrary formula ϕ, an arbitrary
valuation V and an arbitrary world w in W . Since R is reflexive wRw has to
hold. Now suppose w |= 2ϕ. This means that for all v, if wRv, then v |= ϕ.
Since wRw, this implies that w |= ϕ. This proves that w |= 2ϕ → ϕ, and we
are done.
⇒: This direction we show by contraposition. Thus we assume F = (W,R) is
not reflexive, and then show that F 6|= 2ϕ → ϕ for some formula ϕ. In other
words, we have to show that if F is not reflexive, then there is a formula ϕ
and a valuation V and a world w in W such that w 6|= 2ϕ → ϕ in the model
(W,R, V ). Note that w 6|= 2ϕ→ ϕ is the same as w |= 2ϕ∧¬ϕ. Thus suppose
F is not reflexive. Then there is at least one world w such that not wRw. Now
define the valuation V on F as follows. For all worlds v:

v ∈ V (p) ⇔ wRv.

Observe that in this definition the v are arbitrary, but w is the particular world
such that not wRw that we fixed above. The definition implies that v |= p if
wRv, and for all other nodes x in W we put x 6|= p, i.e. x |= ¬p. E.g. as in this
model:

(p) u v (p)

w (¬p)

eeLLLLLLLLLL

99rrrrrrrrrr

x (¬p)

OO

Since not wRw, we have w |= ¬p. But the definition of V implies that all
successors v of w, i.e. all nodes such that wRv, have v |= p. Thus w |= 2p.
Hence w |= 2p ∧ ¬p. Hence w 6|= 2p → p. And thus there is a formula ϕ,
namely the formula p, such that w 6|= 2ϕ→ ϕ. This proves (1). ♥

Theorem 4 (Correspondence theorem for transitive frames)
For all frames F :

∀ϕ (F |= 2ϕ→ 22ϕ) if and only if F is transitive. (2)

Proof ⇐: Suppose F = (W,R) is transitive. We have to show that F |=
2ϕ→ 22ϕ, that is, that for all formulas ϕ, for all valuations V , for all w ∈W ,
w |= 2ϕ→ 22ϕ in the model (W,R, V ). Thus consider an arbitrary formula ϕ,
an arbitrary valuation V and an arbitrary world w in W . Now suppose w |= 2ϕ.
We have to show that w |= 22ϕ, i.e. for all v such that wRv, v |= 2ϕ. Thus
consider a v such that wRv. To show v |= 2ϕ, we have to show that for all u
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with vRu, u |= ϕ. Thus consider a vRu. The transitivity of R now implies that
wRu. Since w |= 2ϕ, this means that all successors of w force ϕ. Since wRu,
u is a successor of w. Hence u |= ϕ. Thus we have shown that for all u with
vRu, u |= ϕ. Hence v |= 2ϕ. And that is what we had to show, as it proves
that w |= 2ϕ→ 22ϕ.
⇒: This direction we show by contraposition. Thus we assume F = (W,R)
is not transitive, and then show that F 6|= 2ϕ → 22ϕ for some ϕ. In other
words, we have to show that if F is not transitive, then there is a formula ϕ
and a valuation V and a world w in W such that w 6|= 2ϕ→ 22ϕ in the model
(W,R, V ). Note that w 6|= 2ϕ → 22ϕ is the same as w |= 2ϕ ∧ ¬22ϕ. Thus
suppose F is not transitive. Then there are at least three worlds w, v and u
such that wRv and vRu and not wRu. Now define the valuation V on F as
follows:

x ∈ V (p) ⇔ wRx.

Thus, we put v |= p if wRv, and for all other nodes u in W we put u 6|= p, i.e.
u |= ¬p. E.g. as in this model:

(¬p) u

(p) v

OO

(¬p) w

OO

Since not wRu, we have u |= ¬p. This implies that v |= ¬2p. But this again
implies that w |= ¬22p. But the definition of V implies that all successors
v of w, i.e. all nodes such that wRv, have v |= p. Thus w |= 2p. Hence
w |= 2p ∧ ¬22p. Thus w 6|= 2p→ 22p. Thus there is a formula ϕ, namely p,
such that w 6|= 2ϕ→ 22ϕ. This proves (2). ♥

In a similar way one can prove several other correspondences between formulas
and frame properties. You will be asked to prove the following correspondence
theorems in the exercises.

Theorem 5 (Correspondence theorems)

F |= 2⊥ if and only if F is completely disconnected.

F |= 3> if and only if F is serial.

∀ϕ (F |= 32ϕ→ ϕ) if and only if F is symmetric.

∀ϕ (F |= 2(2ϕ→ ϕ) → 2ϕ) if and only if F is transitive and well-founded.
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8 Soundness and completeness

Soundness and completeness theorems link the syntax and semantics of modal
logics, by providing a correspondence between derivability (`) and validity (|=).
The general outline of the proof of this main theorem in modal logic will be
given below, in the section on canonical models.

Theorem 6 (Completeness theorem)

`K ϕ ⇔ ϕ holds on all frames.
`T ϕ ⇔ ϕ holds on all reflexive frames.
`K4 ϕ ⇔ ϕ holds on all transitive frames.
`S4 ϕ ⇔ ϕ holds on all reflexive and transitive frames.
`S5 ϕ ⇔ ϕ holds on all frames for which the relation

is an equivalence relation.

Thus for these logics derivability is connected to a frame property in an elegant
way. Because of the correspondence theorems we also know that these classes
of frames can be characterized by one single formula, e.g. 2ϕ → ϕ in case of
the relexive frames, the formula that is the characteristic axiom of T.

8.1 The canonical model

Every modal logic has one special model that is in some sense as general as
possible. It is close to the syntax of the logic because its worlds are sets of
formulas. This model is called the canonical model. Its importance stems from
the fact that from the existence of such a model one can in some cases easily
prove the completeness of the logic in question. We will do so at the end of this
section. We will consider the canonical model in detail for the logic K and later
comment on its construction for other modal logics. Some definitions first.

Definition 3 A set of formulas is K-consistent if one cannot derive a contra-
diction from it, i.e. if it cannot derive φ∧¬φ in K for any φ. It is called maximal
K-consistent if it is K-consistent and for every formula φ, either φ belongs to
the set or ¬φ does. For other logics we define similar notions. E.g. T-consistent
is defined as K-consistent but reading T for K: a set of formulas is T-consistent
if one cannot derive a contradiction from it in T, i.e. if it cannot derive φ ∧ ¬φ
in T for any φ.

We will mainly work with K in this section, therefore the K-part is often omitted,
so consistent means K-consistent, etc. A simple but important observation:

Proposition 1 If a set of formulas has a model, then it is consistent.

Proof For if not, it would derive φ ∧ ¬φ for some φ. But then φ ∧ ¬φ should
hold in the model, which cannot be. ♥

14



Because of this, the set {p,2q} clearly is consistent, as there are models in which
both the formulas hold. The same argument applies to the set

{p,¬2p,22p,¬222p,2222p, . . . }.

Obviously, the set {φ,¬φ} is not consistent, as it derives φ ∧ ¬φ. Also the set
{2(φ → ψ),2(> → φ),3¬ψ} is inconsistent, since 2ψ ∧ ¬2ψ follows from it
(you will be asked to show all this in the exercises).
The set {p,2q} is not maximal consistent since neither q nor ¬q belongs to the
set (and so do many other formulas). Examples of maximal consistent sets are
a bit harder to desribe. The typical example is the following. Given a node
w in a model, the set of formulas L = {ϕ | w |= ϕ} is a maximal consistent
set. That it is consistent is clear, as it has a model. That it is also maximal
in this respect follows from the fact that for any formula φ, either w |= φ or
w |= ¬φ, and thus either φ ∈ L or ¬φ ∈ L. Thus we see that nodes in a model
naturally correspond to maximal consistent sets of formulas. This is the guiding
idea behind the canonical model.
One more observation on the correspondence between nodes and maximal con-
sistent sets of formulas. Given that wRv holds in a model, then for the sets

Lw = {φ | w |= φ} Lv = {φ | v |= φ},

it holds that 2φ ∈ Lw implies φ ∈ Lv, for all formulas φ. This immediately
follows from the definition of forcing, and you will be asked to prove it in the
exercises.
We are ready for the definition of a canonical model.

Definition 4 The K-canonical model is the Kripke model MK = (WK, RK, VK),
where

1. WK = {Γ | Γ is a maximal K-consistent set of formulas},

2. ΓRKΠ ⇔ ∀φ (2φ ∈ Γ ⇒ φ ∈ Π),

3. Γ ∈ V (p) ⇔ p ∈ Γ.

Thus the canonical model consists of all maximal consistent sets, with arrows
between them at the appropriate places (think of the remark on Lw and Lv

above). As explained above, for every world w in a model, the set {ϕ | w |= ϕ}
is maximal K-consistent. Thus one could view the canonical model as containing
all possible Kripke models together, and putting arrows between two sets {ϕ |
w |= ϕ} and {ϕ | v |= ϕ} if for all 2ψ ∈ {ϕ | w |= ϕ} we have ψ ∈ {ϕ | v |= ϕ}.

Lemma 2 (Valuation lemma) For any maximal K-consistent set of formulas Γ
(that is, for any node in the canonical model), for any formula ϕ:

MK,Γ |= ϕ ⇔ ϕ ∈ Γ.

(Note that here MK,Γ |= ϕ means that Γ forces ϕ in the canonical model.)
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Proof You will be asked to prove this in the exercises. ♥

Now we are ready to prove the completeness theorem. We only treat the case
K, as the arguments for the other logics are more or less similar.

Theorem 7 `K ϕ ⇔ |= ϕ (ϕ holds on all frames).

Proof ⇒: this is the soundness theorem, Theorem 1. You will be asked to
prove this in the exercises.
⇐: this direction we prove by contraposition, showing that 6`K ϕ implies 6|= ϕ.
If 6`K ϕ, there is a maximal consistent set Γ containing ¬ϕ. We do not prove
this here, but the argument is not difficult. We only remark in passing that if
`K ϕ, then there is no maximal consistent set containing ¬ϕ, as then the set
would contain both ϕ and ¬ϕ and whence be inconsistent.
To return to Γ, by the definition of canonical model it is a node in this model.
By the Valuation lemma we have that Γ |= ¬ϕ ⇔ ¬ϕ ∈ Γ. And thus Γ |= ¬ϕ,
since ¬ϕ ∈ Γ. Hence there is a Kripke model, namely MK, and a node in it,
namely Γ, that forces ¬ϕ. Therefore, 6|= ϕ, and that is what we had to show. ♥

As remarked above, the proofs of Theorem 6 for the other logics follow the same
pattern as the proof for K given above.

8.2 Small models

In view of the completeness theorem, to establish e.g. `K ϕ it suffices to show
that ϕ holds on all frames. And to establish that 6`K ϕ, it suffices to show that
there is a frame F that refutes ϕ, i.e. such that F 6|= ϕ. Given that there are
infinitely many frames, this might not be an easy task. However, we can restrict
the frames that we have to consider in such a way that in order to check whether
there is a frame that refutes ϕ, we only have to check a finite number of finite
frames, which implies the decidability of the logic. This is the content of this
section. We will see that the number of frames only depends on the size of the
formula ϕ.
Intuitively, we establish “how far up” we have to inspect the frame in order to
establish whether a certain node forces a formula. It turns out that the number
of boxes decides this. First, consider the following example.

Example 3
x (¬p)

(p) u v (p)

OO

w (¬p)

eeLLLLLLLLLL

77ppppppppppp
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To see that w |= 2p it suffices to check for v and u whether they force p. In
other words, the truth of w |= 2p does only depend on the forcing relation at
the successors of w and not on the node x, which is not a successor of w. If x
would force p, this would not change the truth of w |= 2p, whereas a change in
the forcing of u or v could. On the other hand, for a formula with two boxes,
like 22p, whether w |= 22p holds (it does not) depends on the valuation of p
in x.

Before we continue we need a definition.

Definition 5 The depth of a frame F is the maximum length of a path from a
root of the frame (a lowest node, a node that is no successor of another node)
to the top. Formally: the depth of a frame F is the maximum number n for
which there exists a chain w1Rw2R . . . RwnRwn+1 in the frame, where all wi

are distinct. Clearly, frames can have infinite depth.
The depth of a node v from a node w is the length of the shortest path from w
to v. v is of depth 0 from w when it is equal to w or when it cannot be reached
from w by travelling along the arrows.
Let |ϕ| be the size of ϕ, i.e. the number of symbols in it, and let b(φ) denote the
maximal nesting of boxes in φ. The size of a frame is the number of nodes in it.

Example 4 This frame has depth 2:

x

u v

OO

w

``AAAAAAAA

>>}}}}}}}}

The node x has depth 2 from w and depth 1 from v and depth 0 from x and
from u. And this frame has depth 0:

w rr

In this frame there are no nodes with depth > 0.
The maximal nesting of boxes in (22p∧2q) is 2, and in 2(2p→ 2(2p∧ q)) it
is 3 (coming from the box in front of p, and the box in front of the conjunction,
and finally the box in front of the implication). Note that the nesting of boxes
in 23p is 2, not 1.

Returning to the first example, it seems to suggest that to evaluate a formula
φ in a node w in a model M , we have to consider only the nodes in M that are
of depth ≤ b(φ) from w. Here follow two more examples to support this claim.
First we consider the case that the number of boxes in a formula φ is 0, i.e.
b(φ) = 0. This means that the formula does not contain boxes. Considering
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the definition of w |= φ, it is not difficult to see that to establish w |= φ for a
formula without boxes, one only has to know which propositional variables are
forced in w and which are not. Thus the truth of φ at w is indepedent of the
model outside w.
In the following example,

x y qq

v

``@@@@@@@@

??~~~~~~~~

w

OO

QQ

the truth of w |= 2p does not depend x or y. In other words, w |= 2p holds if
and only if w |= p and v |= p, no matter whether x or y force p or not. However,
the truth of v |= 2p depends on the forcing at x, since v |= 2p if and only if
x |= p and y |= p. On the other hand, to verify whether w |= 2p→ 22q all the
nodes w, v, x, and y have to be taken into account.
This intuition is captured by the following theorem.

Theorem 8 (Finite depth theorem) For all numbers n, for all models M and
all nodes w in M there exists a model N of depth n with root w′ such that for
all ϕ with b(ϕ) ≤ n:

M,w |= ϕ ⇔ N,w′ |= ϕ.

Proof We do not formally prove this statement, but only sketch the idea. Given
a model M with node w, consider Mw. By Lemma 1 we have for all formulas ϕ
that for all v in Mw,

M,v |= ϕ ⇔ Mw, v |= ϕ,

but this does not prove the lemma as Mw may still have depth > n. Therefore,
in Mw we cut out all nodes that have depth > n from w and call this model N .
Observe that the root of N is w. The ideas explained above imply that for all
formulas ϕ with b(ϕ) ≤ n we have M,w |= ϕ if and only if N,w |= ϕ. ♥

Corollary 1

`K ϕ ⇔ F |= ϕ for all frames F of depth ≤ b(ϕ).

Proof ⇒: this direction is the soundness theorem.
⇐: this direction we show by contraposition. Thus assuming 6`K ϕ we show
that there is a frame F of depth ≤ b(ϕ) such that F 6|= ϕ. Thus suppose 6`K ϕ.
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By the completeness theorem, there should be a frame G such that G 6|= ϕ.
Thus there is a model M on this frame and a node w such that M,w |= ¬ϕ.
By Theorem 8 there is a model N of depth ≤ b(¬ϕ) and a node v such that
v |=N ¬ϕ. Since the number of boxes in ϕ and ¬ϕ is the same, b(¬ϕ) = b(ϕ).
Let F be the frame of N . This then shows that F has depth ≤ b(ϕ) and F 6|= ϕ,
and we are done. ♥

8.3 The finite model property

Results similar to Corollary 1 hold for various modal logics. The result can also
be improved in such a way that in the completeness theorem not only can we
restrict ourselves to frames of finite depth, but even to frames that are finite.
The precise formulation is as follows.

Theorem 9

`K ϕ ⇔ ϕ holds on all frames of size ≤ 2|ϕ|.
`T ϕ ⇔ ϕ holds on all reflexive frames of size ≤ 2|ϕ|.
`K4 ϕ ⇔ ϕ holds on all transitive frames of size ≤ 2|ϕ|.
`S4 ϕ ⇔ ϕ holds on all reflexive transitive frames of size ≤ 2|ϕ|.
`S5 ϕ ⇔ ϕ holds on all frames of size ≤ 2|ϕ| for which the relation

is an equivalence relation.

We say that a logic has the finite model property (FMP) if, whenever a formula
ϕ is not derivable in the logic, there is a finite model of the logic (a model in
which all formulas of the logic are forced) that contains a world in which ϕ is
refuted.

Corollary 2 The logics K, K4, T, S4, S5 have the finite model property.

Proof We prove it for T. Suppose 6`T ϕ. Then by Theorem 9 there is a reflexive
frame F of size ≤ 2|ϕ| on which ϕ does not hold. Thus there is a model M on
the frame and a node w such that w |= ¬ϕ. By the correspondence theorem
2φ → φ holds on all reflexive frames. That is, T holds on all reflexive frames.
Thus M is a finite model of T with a world that forces ¬ϕ. This proves that T
has the finite model property. ♥

8.4 Decidability

Recall that a language is decidable if there is a Turing machine that decides
it. We can define a similar notion for logics, by considering them as languages,
namely as the set of all formulas that are derivable in the logic. We say that
a formula belongs to a logic when it is derivable in it. E.g. with a logic L is
associated the set {ϕ | `L ϕ}. We call a Turing machine a decider for L when
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it decides {ϕ | `L ϕ}. In general, we call a logic L decidable if there is a Turing
machine that is a decider for L. The previous theorem implies the decidability
of all modal logics mentioned there.

Corollary 3 The logics K, K4, T, S4, S5 are decidable.

Proof We show that K is decidable and leave the other logics to the reader.
Thus we have to construct a Turing machine that, given a formula ϕ, outputs
“yes” if `K ϕ and “no” otherwise. By Theorem 9, `K ϕ is equivalent to ϕ being
valid in all frames of size ≤ 2|ϕ|. Thus the TM has to do the following. Given
ϕ it tests for all nodes w in all models M on all frames of size ≤ 2|ϕ| whether
M,w |= ϕ. If in all cases the answer is positive, it accepts, and otherwise it
rejects. It is clear that this TM decides K. ♥

8.5 Complexity

In terms of complexity the TM constructed in the proof above might not do
so well since there are at least exponentially many frames of size ≤ 2|ϕ|. The
exponential factor is likely to be essential, as for many of these logics, including
K, T, K4 and S4, one can show that the corresponding satisfiability problems
are PSPACE-complete. That is, it can be solved in polynomial space whether
a formula belongs to such a logic or not, and any problem in PSPACE can be
reduced to such problems. (Recall that the satisfiability problem for proposi-
tional logic is NP-complete.) On the other hand, decidability is still nice. Recall
that predicate logic is not decidable. Of course, propositional logic is, but since
modal logics are extensions of propositional logic with much more expressive
power, their decidability is not apparant, and indeed these facts have nontrivial
proofs that, regrettably, fall outside the scope of this exposition.

9 Bisimulation

Bisimulation is a general method to establish whether two models are modally
distinct, i.e. whether there is a modal formula that distinguishes the one from
the other.
Given two models M = (W,R, V ) and M ′ = (W ′, R′, V ′), a bisimulation be-
tween M and M ′ is a relation Z on W ×W ′ such that

1. wZw′ implies that w and w′ force the same propositional variables,

2. wZw′ and wRv implies that there is a v′ ∈W ′ such that w′R′v′ and vZv′

(the forth condition),

3. wZw′ and w′R′v′ implies that there is a v ∈ W such that wRv and vZv′

(the back condition).
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If wZw′ holds for some bisimulation Z, we say that w and w′ are bisimilar.
There is neat way to visualize the back and forth conditions of bisimulations,
the two windows:

v Z // v′

w

R

OO

Z // w′

R′

OO v Z // v′

w

R

OO

Z // w′

R′

OO

Theorem 10 (Bisimulation theorem) If for two models M = (W,R, V ) and
M ′ = (W ′, R′, V ′) there is a bisimulation Z such that wZw′ for some w ∈ W
and w′ ∈W ′, then w and w′ force the same formulas: for all formulas ϕ

M,w |= ϕ ⇔ M ′, w′ |= ϕ.

Proof By formula induction. You will be asked to prove this in the exercises.
♥

10 P-morphisms

P-morphisms are functions between frames. They exist when there is a certain
similarity between the frames. That is, given a p-morphism f one can define
valuations on the frames such that a node and its image under the p-morphism
cannot be distinguished modally: w |= ϕ ⇔ f(w) |= ϕ.
Given two frames F = (W,R) and F ′ = (W ′, R′), a p-morphism f : W → W ′

between F and F ′ is a map such that

1. f is a surjection,

2. wRv implies f(w)R′f(v),

3. f(w)R′v′ implies that there is a v ∈W such that wRv and f(v) = v′.

F ′ is called a p-morphic image of F .
Note the difference between p-morphisms and bisimulations: the former are
functions between frames, while bisimulations are relations between models.
As for bisimulations, the third condition on p-morphisms can be depicted as
follows:

v f // v′

w

R

OO

f(w)

R′

OO

Like the bisimulation theorem, there exists a theorem that states that the exis-
tence of a p-morphism implies that nodes that are connected via this function
or relation are not modally indistinguishable:
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Theorem 11 (P-morphism theorem) If f : W →W ′ is a p-morphism between
F = (W,R) and F ′ = (W ′, R′) and two valuations V and V ′ are such that for
the models M = (W,R, V ) and M ′ = (W ′, R′, V ′), M,w |= p ⇔ M ′, w′ |= p
holds, then

M,w |= ϕ ⇔ M ′, w′ |= ϕ.

Proof By formula induction. The proof is similar to the proof of the bisimu-
lation theorem, and you will be asked to provide such a proof in the exercises.
♥

From this theorem follows an interesting fact. If a frame F has a node w in
which 2n⊥ is forced, and a frame G has a node v that does not force 2n⊥, then
there is no p-morphism f from F to G such that f(w) = v. Namely, consider the
valuations on the frames that do not force any propositional variable anywhere:
V (p) = ∅ for all p. Then the conditions of the P-morphism theorem are met,
and thus w |= φ iff f(w) |= φ. And this implies that f(w) 6= v since w |= 2n⊥
and v 6|= 2n⊥. Note that we use here the fact that the forcing of a formula 2n⊥
in a model does not depend on the valuation. Can you think of a more general
statement than the above?
Observe that p-morphic images can be used to show that a certain frame prop-
erty is not characterizable by a modal formula, in the following way.

Theorem 12 If a frame F is a p-morphic image of a frame G, then G |= ϕ
implies F |= ϕ.

Proof Assume F is a p-morphic image of G, and let f be the p-morphism and
G |= ϕ. We have to show that F |= ϕ. Thus for an arbitrary valuation V ′ on
F and an arbitrary world v in F , we have to show that v |= ϕ. Given V ′ we
define a valuation V on G via

x ∈ V (p) ⇔ f(x) ∈ V ′(p).

It is easy to see that in this case w |= p ⇔ f(w) |= p for all propositional
variables p, for all worlds w in G. Thus we can apply the P-morphism theorem,
and conclude that w |= ψ ⇔ f(w) |= ψ for all formulas ψ. Since G |= ϕ, it
follows that w |= ϕ for all nodes w in G. And thus f(w) |= ϕ. Observe that
every node v in F is of the form f(w) for some w, i.e. v = f(w), because f is
a surjection. Since also f(w) |= ϕ, it follows that every node v in F forces ϕ.
And that is what we had to show. ♥

The converse of the previous theorem is in general not the case. You will be
asked to prove this in the exercises.

Corollary 4 If for a certain property of frames there are frames F and G such
that F is a p-morphic image of a frame G, and G has the property and F has
it not, then this property is not characterizable by a modal formula.
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Proof Suppose this property is characterizable by a formula ϕ. Then G |= ϕ,
and by the previous theorem F |= ϕ. But this contradicts the fact that F does
not have the property. ♥

By the previous corollary, to show that a certain frame property is not charac-
terizable by a modal formula, it suffices to show that there are frames F and G
as in the corollary.
The following theorem shows that bisimulations are generalizations of p-morphisms
on the level of models. Historically, p-morphisms were first. Nowadays, bisim-
ulations rule.

Theorem 13 If for a p-morphism f : F → F ′ we define valuations V and V ′

in such a way that
w ∈ V (p) ⇔ f(w) ∈ V ′(p),

then the relation Z defined by wRw′ ⇔ w′ = f(w) is a bisimulation between
the models (F, V ) and (F ′, V ′).

Proof We have to show that Z satisfies 1,2, and 3 in the definition of a bisim-
ulation. Let F = (W,R) and F ′ = (W ′, R′). Property 1. follows from the way
in which the valuations and Z are defined. We prove 2. and leave 3., which is
similar, to the reader. Thus assuming wZw′ and wRv, we have to find a v′ ∈W ′

such that vZv′ and w′R′v′. Unwinding the definition of Z we find that wRv
and f(w) = w′, and have to find a v′ ∈W ′ such that w′R′v′ and f(v) = v′. But
f(w)R′f(v), that is w′R′f(v), follows from the definition of p-morphism. ♥

11 Multimodal logics

Multimodal logics are logics with more modal operators than 2 and 3. To
distinguish them from another these modalities are often indexed by letters or
numbers: 2a, 21, 3a, 31. One also writes Ka for 2a.
On the syntactic side the formulas involve now the new operators, on the seman-
tic side the Kripke models are now equiped with relations for every operator:
Ra for 2a, R1 for 21, etc. Forcing is then defined for every modal operator 2a

seperately, in a way similar to the forcing of 2:

w |= 2aϕ ⇔ ∀v(wRav ⇒ v |= ϕ).

More modalities can model a lot more than one modality. For example, in
epistemic logic, i.e. when interpreting 2aϕ as “person a knows ϕ”, one can
express statements like “a knows that b knows ϕ”, via 2a2bϕ. Especially in
this setting the extension to more modal operators is natural.
For the multimodal version of S4, called S4m, we replace the axioms of S4 by
their multimodal versions. For all indices a we add axioms 2a(ϕ → ψ) →
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(2aϕ→ 2aψ), 2aϕ→ ϕ and 2aϕ→ 2a2aϕ. As in the unimodal case, we can
prove frame characterizations and completeness theorems like the following.

Theorem 14 2aϕ→ ϕ charaterizes the frames in which Ra is reflexive:

∀ϕ (F |= 2aϕ→ ϕ) if and only if Ra is reflexive.

Theorem 15 S4m is sound and complete with respect to the frames in which
the relations are reflexive and transitive.

There also exist theorems that relate different modalities and that therefore
do not have a unimodal equivalent. The following theorem charecterizes the
property that b knows all that a knows.

Theorem 16 2aϕ→ 2bϕ charaterizes the frames in which Rb ⊆ Ra:

F |= 2aϕ→ 2bϕ ⇔ if Rb ⊆ Ra.

Proof You will be asked to prove this theorem in the exercises. ♥

12 Exercises

1. Given this Kripke model

u (p)

(p) v1

;;wwwwwwwww
v2 (q)

ccGGGGGGGGG

w

::uuuuuuuuu

ddIIIIIIIII

Which of the following statements is true?

a. w |= ¬p b. v1 |= 2p
c. u |= 3> d. u |= 2⊥
e. w |= 2(p ∨ q) f. w |= 2p ∨2q
g. v2 |= 22⊥ h. v1 |= 2q → ¬p
i. w |= 3⊥ j. w |= 2>

2. Given the frame F
u x

v

``AAAAAAAA

>>}}}}}}}}

w

OO
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Define a valuation on the frame such that the following holds: w |= 3p,
w |= 22p, v |= 3q, u |= ¬q. Does there exist more than one valuation
that validates these constraints?

3. Show that 3(p ∧ ¬p) holds in no Kripke model.

4. Which of the following formulas is valid, that is, which formulas hold in
all worlds of all models? If a formula is not valid, give a counter model.

a. 2> b. 2⊥
c. 3> d. 3⊥
e. 2p→ 3p f. 2ϕ ∧3ψ → 3ϕ
g. 2(p ∨ q) ∧3¬p→ 3q h. 2(ϕ→ ϕ).

Here ϕ and ψ are arbitrary formulas and p and q are atoms.

5. Consider the following model M where w has infinitely many successors,
v1, v2, . . . :

v1 // v2 // v3 // . . . . . .

w

aaBBBBBBBB

OO ==||||||||

66mmmmmmmmmmmmmmm

44hhhhhhhhhhhhhhhhhhhhhhh

Assume that p is only forced at the vi for which i is odd. Which of the
following statements is true?

a. w |= 2p b. w |= 22p
c. w |= 3p d. w |= 3¬p

For all of the following formulas, describe the i for which the formula holds
at vi.

a. 2p b. 22p
c. 3p d. 3¬p
e. 33p f. 333¬p
g. 3p→ 22p h. 3¬p→ 33p

6. Explain why the following formulas hold in all worlds in all models:

(a) ϕ ∨ ¬ϕ,

(b) ϕ, 2ϕ, 22ϕ, . . . , for all propositional tautologies ϕ,

(c) 3ϕ→ 3>,

(d) (2ϕ ∧2ψ) ↔ 2(ϕ ∧ ψ),

(e) (2ϕ ∨2ψ) → 2(ϕ ∨ ψ),

(f) 2(ϕ→ ψ) ∧2ϕ→ 2ψ,

7. Show that the other direction of the true formula (2ϕ∨2ψ) → 2(ϕ∨ ψ)
given above, i.e. 2(ϕ∨ψ) → 2ϕ∨2ψ, is not generally valid. That is, give
formulas ϕ and ψ and a model and world at which 2(ϕ ∨ ψ) → 2ϕ ∨2ψ
does not hold.
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8. Give instances of ϕ and ψ for which 2(ϕ∨ψ) → 2ϕ∨2ψ does hold in all
worlds in all models.

9. Which of the following formulas hold in the frame F given in Exercise 2?

a. 2p b. 222⊥
c. 3> d. 2p ∨ ¬2p
e. 22p→ (2⊥ → p) f. 3q → ¬2⊥

10. Prove Theorems 1 and 2. For the former it suffices to show the following
three things. First, show that all axioms of K hold on all frames. Second,
for the modus ponens rule of K, show that if ϕ → ψ and ϕ hold on all
frames, then so does ψ. Third, for the necessitation rule of K, show that
if ϕ holds on all frames, then so does 2ϕ. The proof of Theorem 2 has
the same pattern.

11. Give a derivation of 2(p ∨ ¬p) in K.

12. Why is 2p not derivable in K?

13. Prove that
ϕ→ ψ ϕ→ χ

ϕ→ ψ ∧ χ
is a derived rule in K, i.e. if K derives the premisses, then it derives the
conclusion.

14. Prove that
ϕ→ ψ ψ → χ

ϕ→ χ

is a derived rule in K.

15. Show that 6`K p→ 2p, 6`K 2p→ p, 6`K 2(p ∨ q) → 2p ∨2q.

16. Show that if `K ϕ→ ψ, then `K 2ϕ→ 2ψ.

17. Show that when we replace in K the axiom 2(ϕ → ψ) → (2ϕ → 2ψ) by
the axioms 2> and 2ϕ∧2ψ → 2(ϕ∧ψ), and we replace the necessitation
rule by

ϕ→ ψ

2ϕ→ 2ψ

we obtain a system that is equivalent to K in that it derives exactly the
same formulas.

18. Show that if `K ϕ ↔ ψ, then for any formula χ(p) in which variable p
occurs, `K χ(ϕ) ↔ χ(ψ). Here χ(ϕ) is the result of substituting ϕ for p
in χ. Use formula induction on χ.
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19. Let A be a sequence of ¬ and 2. Prove by induction on the length of A
the following two statements. When ¬ occurs an even number of times
in A, then if `K ϕ → ψ, then `K Aϕ → Aψ. When ¬ occurs an odd
number of times in A, then if `K ϕ→ ψ, then `K Aψ → Aϕ. Use the one
statement in the induction of the other. First try the cases that ¬ occurs
0, 1 or 2 times in A.

20. Prove Lemma 1 by formula induction.

21. For all the frame properties discussed in Section 5, give a model with at
least four nodes and four arrows that satisfies the property.

22. For all the frame properties discussed in Section 5, give a model that does
not satisfy the property.

23. Show that for every euclidean relation it holds that ∀x∀y∀z(xRy∧xRz →
yRz ∧ zRy).

24. Consider the Kripke model where the nodes are the integers and the ac-
cessibility relation R is defined as mRn iff m ≤ n, i.e. the asseccibility
relation is ≤. Is this frame well-founded, or reflexive, or euclidean?

25. Consider the Kripke frame where the nodes are the natural numbers and
the relation is <. Is this frame dense? And is it dense if we replace the
natural numbers by the rational numbers?

26. Is the Kripke model where the nodes are real numbers and the relation
is ≤ a reasonable model for tense logic? And the same question for the
rationals.

27. Prove that 2⊥ characterizes the completely disconnected frames.

28. Which formula characterizes the frames where there are no three nodes
w, v, u such that wRvRu?

29. Prove that 3> characterizes the serial frames.

30. Prove that 32ϕ→ ϕ characterizes the symmetric frames.

31. Which formula characterizes the frames where every chain of nodes v1, . . . , vm

such that v1Rv2R . . . Rvm, has length at most n, thus m ≤ n. (Hint: con-
sider the exercise above on frames in which every node has at most one
successor.)

32. Proof that 2(2ϕ → ϕ) → 2ϕ characterizes the class of transitive and
well-founded frames.

33. Show that every reflexive frame is dense.

34. If a relation is well-founded, then it is irreflexive and asymmetric. Prove
this fact.
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35. Does F |= ϕ∨¬ϕ hold for all frames F and for all formulas ϕ? And does
(F |= ϕ or F |= ¬ϕ) hold for all ϕ?

36. Show that {2(φ→ ψ),2(> → φ),3¬ψ} is inconsistent.

37. Show that this set is K consistent. Is it T-consistent?

{p,¬2p,22p,¬222p,2222p, . . . }.

38. Given that wRv holds in a model, show that for the sets

Lw = {φ | w |= φ} Lv = {φ | v |= φ},

it holds that 2φ ∈ Lw implies φ ∈ Lv, for all formulas φ.

39. Prove the Valuation lemma, Lemma 2.

40. Give a bisimulation between the following two models such that w and a
become bisimilar.

(q) x y (q)

(p) z

ddIIIIIIIII

::uuuuuuuuu

(p) v u (p)

w

eeKKKKKKKKKK

OO

99ssssssssss

(q) c

(p) b

OO

d (p)

a

OO

99tttttttttt

41. Give a bisimulation between the following two models such that w and 1
become bisimilar.

v

�� ��
x

GG

y

[[

z qq

w (p)

ccGGGGGGGGG

;;wwwwwwwww

OO 2 qq

1 (p)

OO

42. Is the model with frame the rational numbers at which no atoms are
forced, bisimilar with the model with frame the real numbers at which no
atom is forced? Explain your answer. The same question for the natural
numbers instead of the reals.
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43. Consider the following frame F = (W,R) where w has infinitely many
successors, v1, v2, . . . .

v1 v2 v3 . . . . . .

w

aaBBBBBBBB

OO ==||||||||

66mmmmmmmmmmmmmmm

44hhhhhhhhhhhhhhhhhhhhhhh

Does F validates the same formulas as Fv1? Construct a finite frame that
is a p-morphic image of F .

44. Consider the following infinite frame F = (W,R)

...
...

x3 . . . . . .

u2 u3

OO

. . . . . .

v1 v2

OO

v3

OO

. . . . . .

w

aaCCCCCCCC

OO =={{{{{{{{

66mmmmmmmmmmmmmmm

44hhhhhhhhhhhhhhhhhhhhhhh

Does 2n⊥ hold in the frame for some n? And does 3> hold? Show that
no finite frame is a p-morphic image of F .

45. Show that there is no p-morphism between the following two frames.

v

��
x

GG

y z qq

w

``@@@@@@@@

??~~~~~~~~

OO 2 qq

1

OO

Are there models on the frames such that w and 1 force the same formulas?
Is the generated subframe generated by x a p-morphic image of the frame
generated by 2?

46. Show that the same formulas are forced in the following two models, using
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the Bisimulation theorem.

y (q)

		
x (q)

II

z (q) ||

w (p)

eeJJJJJJJJJ

;;wwwwwwww

2 (q)
��

1 (p)

OO

47. Show that the same formulas are forced in the following two models, using
the bisimulation theorem.

...

u (p)

OO

v (p)

OO

w

OO

(p) 2
��

1

OO

48. Prove that 2φ↔ 22φ holds on all reflexive transitive frames.

49. Give a formula ϕ that characterizes the reflexive transitive frames, i.e.

F |= ϕ ⇔ F is a reflexive transitive frame,

and prove this fact. Show that 2ϕ↔ 22ϕ does not characterize this class
of frames.

50. Prove the Valuation Theorem. Use formula induction. Some steps are
explained in the syllabus, Lemma 18.

51. Prove the Bisimulation Theorem. Use formula induction.

52. Prove the P-morphism theorem. Use formula induction.

53. Show with an example that the converse of Theorem 12 does not hold.

54. The canonical model for T is defined in exactly the same way as for K,
reading T everywhere for K. Thus the nodes of the T-canonical model are
maximal T-consistent sets. Prove that the frame of the T-canonical model
is reflexive, and that that of the K4-canonical model is transitive.
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55. Consider the multimodal logic with modal operators Ka, Kb, and Kc.
When we read Kaϕ as “a knows ϕ”, give formulas expressing the following
statements.

If a knows φ, then so does b (b knows everything that a knows).

If c knows that a knows ϕ, then also b knows that a knows ϕ (b knows
all about a that c knows).

If a knows ψ it is possible that b knows it too.

a knows that b knows that it, i.e. a, knows ϕ.

56. Consider the multimodal logic with two modal operators 2a and 2b, and
corresponding relations Ra and Rb in the Kripke models. Prove that
2aϕ→ 2bϕ characterizes the class of frames in which Rb ⊆ Ra, i.e. wRbv
implies wRav for all w and v.

57. Consider the multimodal logic with two modal operators 2a and 2b, and
corresponding relations Ra and Rb in the Kripke models. Give the class
of frames on which 3aϕ→ 3bϕ holds, and prove this fact.

58. Consider the multimodal logic with two modal operators K1 and K2 and
corresponding relations R1 and R2 in the Kripke models. Prove that
31ϕ → 3231ϕ characterizes the class of frames in which wR1v implies
the existence of a u such that wR2uR1v.

59. Prove that the class of asymmetric frames is not characterizable by a
modal formula.

60. Which formula characterizes the class of frames in which wRvRuRs im-
plies wRs?
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