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Abstract

If the Visser rules are admissible for an intermediate logic, they form
a basis for the admissible rules of the logic. How to characterize the
admissible rules of intermediate logics for which not all of the Visser rules
are admissible is not known. In this paper we give a brief overview of
results on admisisble rules in the context of intermediate logics. We apply
these results to some well-known intermediate logics. We provide natural
examples of logics for which the Visser rule are derivable, admissible but
nonderivable, or not admissible.

Keywords: Intermediate logics, admissible rules, realizability, Rieger-Nishimura for-
mulas, Medvedev logic, Independence of Premise.

1 Introduction

Admissible rules, the rules under which a theory is closed, form one of the most
intriguing aspects of intermediate logics. A rule A/ B is admissible for a theory
if B is provable in it whenever A is. The rule A/ B is said to be derivable if the
theory proves that A → B. Classical propositional logic CPC does not have any
non-derivable admissible rules, because in this case A/ B is admissible if and
only if A → B is derivable, but for example intuitionistic propositional logic
IPC has many admissible rules that are not derivable in the theory itself. For
example, the Independence of Premise rule IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C)

is not derivable as an implication within the system, but it is an admissible rule
of it. Therefore, knowing that ¬A → B ∨ C is provable gives you much more
than just that, because it then follows that also one of the stronger (¬A → B)
or (¬A → C) is provable. Thus the admissible rules shed light on what it means
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to be constructively derivable, in a way that is not measured by the axioms or
derivability in the theory itself.
The Visser rules (given below) form an infinite collection of rules that play an
important role in this context. Namely, in [10] it has been show that if for a logic
Visser’s rules are admissible, then they form a basis for the admisisble rules of
the logic. The latter means that all the admissible rules of the logic can then
be derived from the Visser rules. The paper is meant as a brief survey on the
role that the Visser rules play in intermediate logic. The paper does not contain
deep new results, but lists the theorems on the subject been obtained so far, and
contains applications of these results to intermediate logics. This will provide
a complete description of the admissible rules of some well-known intermediate
logics for which Visser’s rules are admissible or even derivable. In contrast to
this we discuss some logics for which not all of Visser’s rule are admissible. As
we will see, general theorems on the admissible rules of these logics, let alone a
complete description of them, are rare. The results obtained so far are mostly
of the form that for a certain logic we know that this or that specific rule is
admissible or not. In many cases this rule is the Independence of Premise rule
given above.
The paper is build up as follows. The next section contains the intermediate
logics that we will discuss. The third section coonsists of preliminaries. The
fourth section lists most of the general results on admissible rules for interme-
diate logics that have been obtained so far. In the last section we present some
new results on the admissible rules of intermediate logics given in the next sec-
tion. As we will see, in case not all of the Visser rules are admissible we know
not much of the admissible rules of a logic. And hence the last section contains
a long list of open questions in this area.
Acknowledgements I thank Jaap van Oosten and Albert Visser for useful con-
versations on realizability, and Jaap also for proving that IPR is not effectvely
realizable (Proposition 23).

2 Intermediate logics

Below follows the list of intermediate logics that we will discuss. As the reader
can see, it consists mainly of quite well-known and natural logics, whatever
the word natural might exactly mean. This is not accidently so, as we are
particularly interested in these kind of logics. For it might well be that for
specific purposes, e.g. for showing that there exist logics for which not all Visser
rules are admissible,one can cook up a logic that serves as an example, but we
feel that to come up with a well-known and natural instance of such a logic is
somehow much moresatisfying.
In the list below we have tried to provide references to the paper in which the
logic first appears (die Uraufführung). When we do not have such a reference
we refer to the book [3] or PhD thesis [5], which mention most of these logics
and prove frame completeness and decidability results for them.
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A point of terminology: when we say “axiomatized by ...” we mean ”axiomatized
over IPC by ...”. For a class of frames F , L is called the logic of the frames F
when L is sound and complete with respect to F .

Bdn The logic of frames of depth at most n. Bd1 is axiomatized by bd1 =
A1 ∨ ¬A1, and Bdn+1 by bdn+1 = (An+1 ∨ (An+1 → bdn)) [3].

Dn The Gabbay-de Jongh logics [6], axiomatized by the following scheme:∧n+1
i=0 ((Ai →

∨
j !=i Aj) →

∨
j !=i Aj) →

∨n+1
i=0 Ai. Dn is complete with

respect to the class of finite trees in which every point has at most (n+1)
immediate successors.

Gk The Gödel logics, first introduced in [9]. They are extensions of LC axiom-
atized by A1 ∨ (A1 → A2) ∨ . . . ∨ (A1 ∧ . . . ∧ Ak−1 → Ak). Gk is the logic
of the linearly ordered Kripke frames with at most k − 1 nodes [1].

KC De Morgan logic (also called Jankov logic), axiomatized by ¬A∨¬¬A. The
logic of the frames with one maximal node.

KP The logic axiomatized by IP, i.e. by (¬A → B ∨ C) → (¬A → B) ∨
(¬A → C). The logic is called Kreisel-Putnam logic. It constituted the
first counterexample to "Lukasiewicz conjecture that IPC is the greatest
intermediate logic with the disjunction property [13].

LC Gödel-Dummett logic [4], the logic of the linear frames. It is axiomatized
by the scheme (A → B) ∨ (B → A).

ML Medvedev logic [14]. The logic of the frames F1, F2, . . ., where the nodes
of Fn are the nonempty subsets of {1, . . . , n} and ! is ⊇.

Mn The logic of frames with at most n maximal nodes. Note that M1 = KC.

NDn The logic of frames with at most n nodes.

NLn The logics axiomatized by formulas in one propositional variable (so-called
Nishimura formulas nfn [16]). NLn is axiomatized by nfn, where

nf0 = ⊥ NL0 is inconsistent
nf1 = p NL1 is inconsistent
nf2 = ¬p NL2 is inconsistent
nf2n+1 = nf2n ∨ nf2n−1 nf2n+2 = nf2n → nf2n−1.

Note that

nf3 = p ∨ ¬p NL3 = CPC
nf4 = ¬p → p ≡ ¬¬p NL4 is inconsistent
nf5 = (¬p → p) ∨ ¬p ≡ ¬¬p ∨ ¬p NL5 = KC
nf6 = (¬p → p) → p ∨ ¬p ≡ ¬¬p → p NL6 = CPC
nf7 = nf6 ∨ nf5 ≡ (¬¬p → p) ∨ ¬¬p
nf8 = nf6 → nf5 ≡ (¬¬p → p) → p ∨ ¬p NL8 = KC.

(NL8 = KC follows by substituting ¬¬p for p.)
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ER The logic of effectively realizable formulas: the logic consisting of formulas
A(p1, . . . , pn) for which there exists a recursive function f such that for any
substitution of the pi by arithmetical formulas ϕi with Gödel numbers mi,
f(m1, . . . , mn) realizes the result, i.e. NI |=“f(m1, . . . , mn)rA(ϕ1, . . . ,ϕn)”.
There is no r.e. axiomatization known for this logic, but it is known that
it is a proper extension of IPC [19].

UR The logic of formulas that are effectively realizable by a constant function,
i.e. the logic consisting of formulas A(p1, . . . , pn) such that there exists a
number e such that for any substitution of the pi by arithmetical formulas
ϕi, e realizes the result, i.e. NI |=“erA(ϕ1, . . . ,ϕn)”. There is no r.e.
axiomatization known for this logic, but it was shown in [19] that it is a
proper extension of IPC.

Sm The greatest intermediate logic properly included in classical logic. It is
axiomatized by

(
(A → B) ∨ (B → A)

)
∧ (A ∨ (A → B ∨ ¬B)) and it is

complete with respect to frames of at most 2 nodes [3].

V The logic axiomatized by V →
1 , i.e. by the implication corresponding to the

rule V −
1 :

(
(A1 → B) → A2 ∨ A3

)
→

∨3
i=1

(
(A1 → B) → Ai

)
.

3 Preliminaries

This section contains the preliminaries needed to understand the proofs in Sec-
tion 5. For most of the next section, which contains an overview of the main
results in the area, these preliminaries are not needed.
As mentioned above, we will only be concerned with intermediate logics L, i.e.
logics between (possibly equal to) IPC and CPC. We write (L for derivability
in L. The letters A, B, C, D, E, F, H range over formulas, the letters p, q, r, s, t,
range over propositional variables. We assume ) and ⊥ to be present in the
language. ¬A is defined as (A → ⊥). We omit parentheses when possible;
∧ binds stronger than ∨, which in turn binds stronger than →. The class of
Harrop formulas H is the class of formulas in which every disjunction occurs in
the negative scope of an implication.

3.1 Admissible rules

A substitution σ in this paper will always be a map from propositional formulas
to propositional formulas that commutes with the connectives. A (propositional)
admissible rule of a logic L is a rule A/B such that adding the rule to the logic
does not change the theorems of L, i.e.

∀σ : (L σA implies (L σB.

We write A |∼ LB if A/B is an admissible rule of L. The rule is called derivable if
A (L B and non-derivable if A +(L B. When R is the rule A/B, we write R→ for
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the implication A → B. We say that a collection R of rules, e.g. V , is admissible
for L if all rules in R are admissible for L. R is derivable for L if all rules in R are
derivable for L. We write A (R

L B if B is derivable from A in the logic consisting
of L extended with the rules R, i.e. there are A = A1, . . . , An = B such that for
all i < n, Ai (L Ai+1 or there exists a σ such that σBi/σBi+1 = Ai/Ai+1 and
Bi/Bi+1 ∈ R. If X and R are sets of admissible rules of L, then R is a basis for
X if for every rule admissible rule A / B in X we have A (R

L B. If X consists
of all the admissible rules of L, then R is called a basis for the admissible rules
of L.

3.2 Kripke models

A Kripke models K is a triple (W, !, "), where W is a set (the set of nodes)
with a unique least element that is called the root, ! is a partial order on W
and ", the forcing relation, a binary relation on W and sets of propositional
variables. The pair (W, !) is called the frame of K. The notion of truth in a
Kripke model is defined as usual. We write K |= A if A is forced in all nodes of
K and say that A holds in K. We write Kk for the model which domain consists
of all nodes k ! k′ and which partial order and valuation are the restrictions of
the corresponding relations of K to this domain.

3.3 Bounded morphisms

A map f : (W, !, ") → (W ′, !′, "′) is a bounded morphism when the following
conditions hold

1. k and f(k) force the same atoms,

2. k ! l implies f(k) !′ f(l),

3. if f(k) ! l, then there is a k′ # k in W such that f(k′) = l.

K ′ is a bounded morphic image of K, K $ K ′, whenever there is a surjective
bounded morphism from K to K ′. It is well-known (see e.g. [2]) that when f
is a bounded morphism from K to K ′, then for all k in K, for all formulas A:
k " A ⇔ f(k) "′ A. Thus if K ′ is a bounded morphic image of K, it validates
exactly the same formulas as K.

3.4 Extension properties

For Kripke models K1, . . . , Kn, (
∑

i Ki)′ denotes the Kripke model which is
the result of attaching one new node at which no propositional variables are
forced, below all nodes in K1, . . . , Kn. (

∑
·)′ is called the Smorynski operator.

Two models K, K ′ are variants of each other, written KvK ′, when they have
the same set of nodes and partial order, and their forcing relations agree on all
nodes except possibly the root. A class of models U has the extension property if
for every finite family of models K1, . . . , Kn ∈ U , there is a variant of (

∑
i Ki)′
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which belongs to U . U has the weak extension property if for every model
K ∈ U , and every finite collection of nodes k1, . . . , kn ∈ K distinct from the
root, there exists a model M ∈ U such that

∃M1

(
(
∑

i

Kki)
′vM1 ∧ (M1 $ M)

)
.

U has the offspring property if for every model K ∈ U , and for every finite
collection of nodes k1, . . . , kn ∈ K distinct from the root, there exists a model
M ∈ U such that

∃M1∃M0

(
(
∑

i

Kki)
′vM1 ∧ (M1 + K)′vM0 ∧ (M0 $ M)

)
.

A logic L has the extension (weak extension, offspring) property if it is sound
and complete with respect to some class of models that has the extension (weak
extension, offspring) property. Note that for all three properties the class of
models involved does not have to be the class of all models of L. However, we
might as well require that, because in [10] it has been shown that if a logic has
the offspring property, then so does the class of all its models. Since the class
of all models of a logic is closed under submodels and bounded morphic images,
this also implies that for logics

extension property ⇒ offspring property ⇒ weak extension property.

The reason that we have chosen the definition of offspring property as given
above, not the most elegant one, is that it will turn out particularly useful for
the application to various frame complete logics discussed in the last section.
There are quite natural classes of models that satisfy the offspring property, e.g.
the class of linear models, as the reader may wish to verify for himself.
If we would not restrict our models to rooted ones, the extension property and
the weak extension property would be equivalent, at least for logics. Since we
require our Kripke models to be rooted, there is a subtle difference between the
two:

Fact 4 If a logic L has the extension property, it has the disjunction property.

As there are logics that do not have the disjunction property, but that have the
weak extension property, the latter is indeed stronger. We will see examples of
such logics in Section 5.

4 Overview of general results

In this section we state the general results on the Visser rules and intermedi-
ate logics known so far. In the next section we’ll discuss results on specific
intermediate logics, which will often be applications of general theorems in this
scetion. We will only be concerned with intermediate propositional logics, i.e.
logics between (possibly equal to) IPC and CPC.
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4.1 Computability

The first results on admissible rules were by Rybakov and Ghilardi. In [20, 21]
Rybakov showed that admissible derivability for IPC, |∼ , is decidable. And in
two beautiful papers [7] [8] Ghilardi presented a transparent algorithm for |∼
and established a connection between admissibility and unification. A descrip-
tion of these results falls outside the scope of this paper, we refer the reader to
the cited literature instead.

4.2 The situation for IPC

First, let us briefly recall the situation for IPC. As said, this logic has many
non derivable rules. In [11] it has been shown that the following collection of
rules, the so-called Visser rules, forms a basis for the admissible rules of IPC.
This means that all admissible rules can be derived from Visser’s rules and the
theorems of IPC. The Visser rules are the rules

Vn (
n∧

i=1

(Ai → Bi) → An+1 ∨ An+2) ∨ C /
n+2∨

j=1

(
n∧

i=1

(Ai → Bi) → Aj) ∨ C.

V denotes the collection {Vn | . . . n = 1, 2, 3, . . .} of Visser’s rules. The men-
tioned result is a syntactical characterization of the admissible rules of IPC.
Based on the algorithm for admissibility given in [8] we constructed a proof
system for admissibilty. This system is still very close to the algorithm, and
at the moment Ghilardi’s algorithm is by far the best method to check the
admissibility of a given rule.

4.3 Remarks on Visser’s rules

Visser’s rules are an infinite collection of rules, that is, there is no n for which
V(n+1) is derivable in IPC extended by the rule Vn [12]. Note that on the other
hand Vn is derivable from V(n+1) for all n. In particular, if V1 is not admissible
for a logic, then none of Visser’s rules are admissible.
The independence of premise rule IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C)

is a special instance of V1. Having IPR admissible is strictly weaker than the
admissibility of V1; below we will see examples of logics for which the first one
is admissible while the latter is not.
Note than when Visser’s rules are admissible, then so are the rules

Vnm (
n∧

i=1

(Ai → Bi) →
m∨

j=n+1

Aj) ∨ C/
m∨

h=1

(
n∧

i=1

(Ai → Bi) → Ah) ∨ C.

7



As an example we will show that V13 is admissible for any logic for which
V1 is admissible. For simplicity of notation we take C empty. Assume that
(L (A1 → B) → A2∨A3∨A4. Then by V1, reading A2∨A3∨A4 as A2∨(A3∨A4),

(L

(
(A1 → B) → A1

)
∨

(
(A1 → B) → A2

)
∨

(
(A1 → B) → A3 ∨ A4

)
.

A second application of V1, with C =
(
(A1 → B) → A1

)
∨

(
(A1 → B) → A2

)
,

gives

(L

2∨

i=1

(
(A1 → B) → Ai

)
∨

∨

i=1,3,4

(
(A1 → B) → Ai

)
.

Therefore, (L
∨4

i=1

(
(A1 → B) → Ai

)
.

In a similar way one can see that when V1 is derivable for a logic, then so are
all the Visser rules.

4.4 When Visser’s rules are admissible

As we will see in this section, the Visser rules play an important role for other
intermediate logics too.

Theorem 5 [10] If V is admissible for L then V is a basis for the admissible
rules of L.

Thus, once Visser’s rules are admissible we have a characterization of all ad-
missible rules of the logic. In Section 5 it will be shown that there are some
well-known intermediate logics to which this result applies. e.g. the Gabbay-de
Jongh logics Dn, De Morgan logic KC, the Gödel logics Gn, and Gödel-Dummett
logic LC. For all these logics Visser’s rules are admissible, and whence form a
basis for their admissible rules.
Note that Theorem 5 in particular provides a condition for having no non-
derivable admissible rules.

Corollary 6 If V is derivable for L then L has no nonderivable admissible rules.

The Gödel logics and Gödel-Dummett logic are in fact examples of this, as for
these logics Visser’s rules are not only admissible but also derivable. For the
Gabbay-de Jongh logics and De Morgan logic one can show that this is not the
case (Section 5).

4.5 When are Visser’s rules admissible?

For logics for which we have some knowledge about their Kripke models, a
necessary condition for having the Visser rules admissible exist (for definitions
see Section 3.4).
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Theorem 7 [10] For any intermediate logic L, Visser’s rules are admissible for
L if and only if L has the offspring property.

Theorem 8 [10] For any intermediate logic L with the disjunction property,
Visser’s rules are admissible for L if and only if L has the weak extension prop-
erty.

All the results on specific intermediate logics mentioned above and proved in
Section 5, use these conditions for admissibility.

4.6 When Visser’s rule are not admissible

In the case that not all of the Visser rules are admissible we do not know of any
general results that describes the admissible rules of such logics. Up till now
there only exist some partial results on specific intermediate logics, stating that
some Visser rule is not admissible or that the logic in question has nonderivable
admissible rules (Section 5). These results at least imply that

Fact 9 For every n, there are intermediate logics for which Vn is admissible
while Vn+1 is not, i.e. V1, . . . , Vn are admissible and Vn+1, Vn+2 . . . are not.

Fact 10 There are intermediate logics for which none of the Visser rules are
admissible, but that do have nonderivable admissible rules.

The logics of (uniform) effective realizability UR and ER are examples of log-
ics that have nonderivable admissible rules but for which V1 is not admissible
respectively derivable. Interestingly, for both these logics, the same special in-
stance of V1, namely the Independence of Premise rule IPR is a nonderivable
admissible rule. That the rule is admissible in both logics is no coincedence, as
the next section shows.

4.7 Disjunction property

A logic L has the disjunction property if

(L A ∨ B ⇒ (L A or (L B.

The disjunction property plays an interesting role in the context of admissible
rules. First of all, in combination with the admissibility of Visser’s rules it
characterizes IPC.

Theorem 11 [11] The only intermediate logic with the disjunction property
for which all of the Visser rules are admissible is IPC.

This implies that if a logic has the disjunction property, not all of the Visser
rules can be admissible. However, there is an instance of V1 that will always be
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admissible in this case, namely IPR, see the section on Independence of Premise
below.
Theorem 11 shows the implications of the disjunction property on the admis-
siblity of the Visser rules. The next theorem shows the implications of the
disjunction property on the derivability of the Visser rules. The proof as given
here contains a funny self-application of V1.

Proposition 12 If an intermediate logic L has the disjunction property, V1 is
not derivable in L. Hence none of the Visser rules are then derivable in L.

Proof Suppose L has the disjunction property and that V1 is derivable in L.
Thus for X = (p1 → q), L derives the following instance of V1,

L ( (X → p2 ∨ p3) →
3∨

i=1

(X → pi).

Since V1 is derivable, it is certainly admissible. Thus so is V13 (see the Remarks
on Visser’s rules in the Introduction). Applying the rule (now with A1 = (X →
p2 ∨ p3) and Ai = (X → pi) for i > 1) then gives

L (
(
(X → p2 ∨ p3) → X

)
∨

3∨

i=1

(
(X → p2 ∨ p3) → (X → pi)

)
.

Since L has the disjunction property, this would imply that at least one of(
(X → p2 ∨ p3) → (X → pi)

)
, or

(
(X → p2 ∨ p3) → X

)
is derivable in L.

However, these formulas are not even derivable in classical logic. !

4.7.1 The restricted Visser rules

For logics L that do have the disjunction property, A |∼ LC and B |∼ LC implies
A ∨ B |∼ LC. In the context of the Visser rules this implies that when the the
following special instances of the Visser rules, the restricted Visser rules

V −
n (

n∧

i=1

(Ai → Bi) → An+1 ∨ An+2) /
n+2∨

j=1

(
n∧

i=1

(Ai → Bi) → Aj),

are admissible for L, then so are the Visser rules. Therefore, when considering
only logics with the disjunction property, like e.g. IPC, the difference between
the Visser and the restricted Visser rules does not play a role. However, when
considering intermediate logics in all generality, as we do in this paper, we
cannot restrict ourselves to this sub-collection of the Visser rules.

4.8 Independence of Premise

Although we have encountered logics for which V1 is not admissible, there is
an instance of this rule, an instance of V −

1 in fact, that is admissible for all
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intermediate logics: the rule IPR

¬A → B ∨ C / (¬A → B) ∨ (¬A → C).

Theorem 13 (Minari and Wronski [15]) For any intermediate logic L, we have
(H is the class of Harrop formulas, see preliminaries):

∀A ∈ H : L ( (A → B ∨ C) ⇒ L ( (A → B) ∨ (A → C).

Since any negation is a Harrop formula this is a strengthening of the following
theorem by Prucnal from 1979.

Theorem 14 (Prucnal [18]) In any intermediate logic the rule IPR is admissi-
ble.

Note that on the other hand we cannot conclude that for every Harrop formula
A we have (A → B∨C) |∼ L(A → B)∨(A → C), as the class of Harrop formulas
is not closed under substitution.
In fact, the above theorem even holds for a wider class of formulas than the
Harrop formulas. In [7], Ghilardi defined the notion of projective formulas,
which are the formulas which class of models is closed under the extension
property (see preliminaries). This class of formulas contains the class of Harrop
formulas (also see preliminaries, Remark ??).

Theorem 15 For any intermediate logic L, for any projective formula A,

L ( (A → B ∨ C) ⇒ L ( (A → B) ∨ (A → C).

Proof In [7] it has been shown that for any projective formula A there is a
substitution σA such that

IPC ( σA(A) and ∀B : A (IPC B ↔ σA(B).

(In fact, Ghilardi defined projective formulas in this way and showed that they
have the extension property, but that is not relevant here.) Given this fact,
the proof is complety analoguous to the Minari-Wronski theorem. Assume L (
(A → B ∨C) for some projective A. Since IPC ( σA(A), also L ( σA(A). Hence
L ( σA(B)∨σA(C). As also L ( σA(B) → (A → B) and L ( σA(C) → (A → C),
the result follows. !

To see that the last theorem is a strengthening of Theorem 13 we have to show
the class of Harrop formulas is properly contained in the class of projective
formulas. Thatthe containment is proper follows from the fact that (p → q ∨ r)
is projective but not a Harrop formula. That the Harrop formulas are projective
follows from the fact that the class of models of a Harrop formula has the
extension poperty. Here follows the argument. Note that every Harrop formula
H is equivalent to a conjunction

∧n
i=1(Ai → pi), where the pi are atoms. Given

models K1, . . . , Km of H , we construct a variant K of (
∑

i Ki)′ by forcing at
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the root all pi that are forced in all K1, . . . , Km. Why is this a model of H? If
Ai is not forced in the root, (Ai → pi) is forced in K because it is forced in the
Kj . If Ai is forced at the root, it follows that Ai is forced in the Kj. Hence pi

is forced in the Kj , and thus pi is forced at the root by definition. Therefore,
(Ai → pi) is forced in K also in this case.
The principle IPR→ is denoted IP and called Independence of Premise:

IP (¬A → B ∨ C) → (¬A → B) ∨ (¬A → C).

Observe that Theorem 14 implies the following corollary, which we will use in
the next section to show that certain logics have nonderivable admissible rules.

Corollary 16 If IPR is not derivable in a logic, i.e. if the principle IP does not
belong to the logic, then the logic has nonderivable admissible rules.

4.9 General remarks

For completeness sake we include the following known facts about admissibility
that states which rules might come up as admissible rules for a logic.

Fact 17 If A |∼ LB, then CPC ( A → B.

Proof Suppose A |∼ LB. This means that for all σ, (L σA implies (L σB.
Suppose the variables that occur in A and B are among p1 . . . pn. Consider
σ ∈ {),⊥}n. Note that for such σ, (CPC σA iff (IPC σA iff (L σA. Whence for
all σ ∈ {),⊥}n, if (CPC σA then (CPC σB. Thus (CPC A → B. !

Corollary 18 If A |∼ LB, then the logic that consists of L extended with the
axiom scheme (A → B) is consistent.

5 Results

In this section we collect the results on specific intermediate logics discussed in
the introduction. We present proofs of the observations that are new, and refer
to the literature for the ones that have been obtained before.

5.1 The Visser rules are admissible

Theorem 19 The Visser rules are derivable in Bd1, Gk, LC, Sm and V. Hence
these logics do not have nonderivable admissible rules.

Proof Proof in [10]. For the first four logics one uses the fact that these logics
are complete with respect to classes of linear frames, and the fact that V →

1

(Section 3.1) holds on these frames, which implies (Section 4.3) that V →
n holds

on these frames for all n. !

12



Theorem 20 The Visser rules form a basis for the admissible rules of the logics
KC, Mn and NDm (m ≥ 3). Visser’s rules are not derivable in any of these logics.
However, the rule IPR is derivable in these logics.

Proof We leave the second part of the lemma, showing the derivability of IPR
in the logics, to the reader (use their frame completeness). We turn to the
Visser rules. For the first two logics the statement has been proved in [10].
For NDm we treat the case m = 3, the other cases are similar. We show that
ND3 has the offspring property, from which it follows that the Visser rules are
admissible in the logic by Theorem 7. Let U be the class of models based on
the frames for ND3: F1 consists of one node, F2 of two nodes k0 ! k1 and F31 =
({k0, k1, k2}, {(k0, k1), (k0, k2)} and F32 = ({k0, k1, k2}, {(k0, k1), (k1, k2), (k0, k2)}.
We show that for any of these frames F , for any model K on F , there is a vari-
ant M1 of (ΣiKli)′ such that K is a bounded morphic image of a variant M0

of (M1 + K)′. This will show that TF has the offspring property. We leave the
proof of this for the linear frames F1, F2 and F32 to the reader (force at the
root of M1 and M0 the same atoms as at the root of K).
We treat F31. Let K be a model based on F31. Pick nodes l1, . . . , ln in K
distinct from the root. We have to show that there is a variant M1 of (ΣiKli)′
such that a bounded morphic image M of a variant M0 of (M1 + K)′ has at
most three nodes. If n = 1, say l1 = k1, then ((ΣKl1)′)′ has frame F32. Whence
((ΣKl1)′)′ belongs to U and we are done. If n = 2, we can force at the roots
m1, m0 of the variants M1, M0 the same atoms as at k0. We leave it to the
reader to verify that K is a bounded morphic image of M0.
To see that the Visser rules are not derivable in ND3, we leave it to the reader
to construct appropriate countermodels to V →

1 , i.e. to

((p1 → q) → p2 ∨ p3) →
3∨

i=1

(p1 → q) → pi,

which is an instance of V −
1 . Whence none of Visser’s rules can be derivable,

because V →
n implies V →

1 (Section 4.3). !

Note that all the logics in the previous theorem are examples of logics which have
the weak extension property, but not the extension property, as they do not have
the disjunction property (see Fact 4). That they do not have the disjunction
property follows from the fact that the only logic with the disjunction property
for which all Visser’s rules are admissible is IPC, Theorem 11.
Next we consider intermediate logics for which a full characterization of their
admissible rules is not known. We will see

• examples of logics for which some but not all of the Visser rules are non-
derivable admissible rules: the logics Dn.

• an example of a logic for which none of the Visser rules are admissible but
that has nonderivable admissible rules (the rule IPR): the logic UR.
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• example of a logic for which none of the Visser rules are admissible but in
which IPR is derivable: the logic KP.

Finally, we discuss some logics for which we do not know whether the Visser
rules are admissible or not:

• the logics Bdn (n ≥ 2), in which the restricted Visser rules are nonderivable
admissible rules.

• the logic ML, in which IPR is derivable, and the logic EU, in which IPR
is a nonderivable admissible rule.

5.2 IPR is a nonderivable admissible rule

Theorem 21 [10] The restricted Visser rules and IPR are admissible but not
derivable for Bdn for n ≥ 2.

Theorem 22 [11] For the logics Dn (n ≥ 1), Vn+1 is admissible, while Vn+2 is
not. In none of the logics Visser’s rules or IPR are derivable.

Proof The first part has been proved in [11]. For the sceond part, it suffices to
construct a countermodel to the principle IP in D1. This will show that IP does
not hold Dn, and whence that IPR and V1, and thus Vm, cannot be derivable in
Dn. We leave the construction of the countermodel to the reader. !

Proposition 23 (with Jaap van Oosten) V1 is not admissible in UR. IPR is a
nonderivable admissible rule of UR and ER (and thus V1 is not derivable in ER).

Proof It is convenient to assume that our coding of pairs and recursive functions
is such that 〈0, 0〉 = 0 and 0·x = 0 for all x(a·b denotes the result of applying
the a-th partial recursive function to b). Then 0 realizes every negation of a
sentence that has no realizers.
First, we show that V1 is not admissible for UR. In [19] G.F. Rose showed that
the following formula, not derivable in IPC, belongs to UR: for A = ¬p ∨ ¬q,

UR (
(
(¬¬A → A) → ¬¬A ∨ ¬A

)
→ ¬¬A ∨ ¬A.

Let B =
(
(¬¬A → A) → ¬¬A ∨ ¬A

)
. If the 1st Visser rule V1 would be

admissible, this would imply that

UR ( (B → ¬¬A) ∨ (B → ¬A) ∨ (B → (¬¬A → A)).

The fact that UR has the disjunction property, plus some elementary logic, leads
to

UR ( (B → ¬¬A) or UR ( (B → ¬A) or UR ( (¬¬A → A).

As classical logic does not even derive (B → ¬¬A) or (B → ¬A), certainly
UR +( (B → ¬¬A) and UR +( (B → ¬A). Also UR +( (¬¬A → A). For if not,

14



there is a realizer e of every substitution instance ¬¬(¬ϕ ∨ ¬ψ) → ¬ϕ ∨ ¬ψ of
(¬¬A → A). From this we derive a contradiction as follows. Thus for all x such
that xr¬¬(¬ϕ∨¬ψ), (e ·x)0 = 0 and (e ·x)1r¬ϕ, or (e ·x)0 = 1 and (e ·x)1r¬ψ.
Take ϕ = ⊥ and ψ = ). Let χ = (¬ϕ ∨ ¬ψ) and χ′ = (¬ψ ∨ ¬ϕ). Note that
∀y¬

(
yr¬χ) and ∀y¬

(
yr¬χ′). Since for all φ

xr¬¬φ ↔ ∀y¬(yr¬φ),

this implies that every number, in particular 0, is a realizer of ¬¬χ and ¬¬χ′.
Whence (e · 0) is a realizer of both χ and χ′. If (e · 0)0 = 0, then (e · 0)1r¬ψ,
and if (e · 0)0 = 1, then (e · 0)1r¬ψ too. As ¬ψ cannot have a realizer, we have
reached the desired contradiction.
To show that ¬A → B0 ∨ B1 |∼UR(¬A → B0) ∨ (¬A → B1), assume that
UR ( ¬A → B0∨B1, for some A, B0, B1, and suppose that the atoms that occur
in A, B0, B1 are p1, . . . , pn. So there is a number e such that for all ψ1, . . . ,ψn,
e realizes (¬A → B0 ∨ B1)(ψ1, . . . ,ψn). We write A(ψ̄) for A(ψ1, . . . ,ψn), and
similarly for B0, B1. We have to construct a realizer that, for all ψ1, . . . ,ψn,
realizes

(¬A(ψ̄) → B0(ψ̄)) ∨ (¬A(ψ̄) → B1(ψ̄)). (1)
Since we reason classically, as we consider uniform effective realizability, ei-
ther ∃x(xr¬A(ψ̄)) or ∀x¬(xr¬A(ψ̄)). Thus by the definition of realizability,
∀x¬(xrA(ψ̄)) or ∀x¬(xr¬A(ψ̄)). In the first case, e · 0r(B0(ψ̄) ∨ B1(ψ̄)). Thus
for i = 0, 1, if (e · 0)0 = i, (e · 0)1rBi((ψ̄), whence if d is the code of the program
that always outputs (e · 0)1, then < i, d > realizes (1). In the second case,
∀x¬(xr¬A(ψ̄)), < e, 0 > realizes (1), as ¬A(ψ̄) has no realizers.
Jaap van Oosten in [17] showed that IPR is not derivable in ER, which implies
that IPR is a non-derivable admissible rule of both ER and UR by Corollary 14.
Thus, to finish the proof of the theorem, it remains to prove the non-derivability
of IPR in ER. We repeat van Oosten’s proof, as given in [17]:
Let A(f) be the sentence ∀x∃yT (f, x, y) and let B(f) and C(f) be negative
sentences, expressing “there is an x on which f is undefined, and the least such
x is even” (respectively, odd). Suppose there is a total recursive function F such
that for every f , F (f) realizes

(¬A(f) → B(f) ∨ C(f)) → ((¬A(f) → B(f)) ∨ (¬A(f) → C(f))).

Choose, by the recursion theorem, an index f of a partial recursive function of
two variables, such that:
f ·(g, x) = 0 if there is no w ≤ x witnessing that F (S1

1(f, g))·g is defined, or if
x is the least such witness, and either (F (S1

1(f, g))·g)0 = 0 and x is even, or
(F (S1

1 (f, g))·g)0 += 0 and x is odd;
f ·(g, x) is undefined in all other cases.
Then for every g we have:

• F (S1
1(f, g))·g is defined. For otherwise, f ·(g, x) = 0 for all x, hence

S1
1(f, g) is total, so g realizes

¬A(S1
1 (f, g)) → B(S1

1 (f, g)) ∨ C(S1
1 (f, g)),
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which would imply that F (S1
1(f, g))·g is defined, a contradiction;

• If (F (S1
1 (f, g))·g)0 = 0 then the first number on which S1

1(f, g) is undefined
is odd, so C(S1

1 (f, g)) holds;

• If (F (S1
1(f, g))·g)0 += 0 then B(S1

1(f, g)) holds.

Now let, again by the recursion theorem, g be chosen such that for all y:

g·y =
{

〈1, 0〉 if (F (S1
1(f, g))·g)0 = 0

〈0, 0〉 if (F (S1
1(f, g))·g)0 += 0

Then g is a realizer for ¬A(S1
1 (f, g)) → [B(S1

1(f, g))∨C(S1
1 (f, g))]. However, it

is easy to see that F (S1
1(f, g))·g makes the wrong choice

This finishes van Oosten’s proof that IPR is not derivable in ER, and thereby
the proposition is proved. !

5.3 IPR is derivable

Proposition 24 IPR is derivable in ML. V1 is not derivable in ML.

Proof That V1 is not derivable in ML follows from Proposition 12, because the
logic has the disjunction property [5]. To see that IPR is derivable in L, i.e. that
IP is a principle of ML, we use the frame characterization of ML given above.
The proof is left to the reader. !

As mentioned above, we do not know whether the Visser rules are admissible
in ML. For the following logics we do not know whether they have nonderivable
admissible rules, although we know that the Visser rules are not admissible.

Proposition 25 [10] IPR is derivable in KP. V1 is not admissible for KP.

5.4 The Rieger-Nishimura formulas

Proposition 26 For the logics

NLn (n ≥ 9, n odd) V1 is not admissible
NLn (n ≥ 9, n even) V −

1 is not admissible (whence V1 is not admissible too)
NLn (n = 5, 8) the Visser rules are admissible and nonderivable
NLn (n ≤ 4, n = 6) the Visser rules are derivable.

We do not know what the situation is for n = 7.

Proof Observe that for n = 0, 1, 2, 4 the logic is inconsistent (nf4 ≡ ¬¬p), for
n = 5, 8 it is equal to KC [16], and for n = 3, 6 it is CPC (nf6 ≡ ¬¬p → p,
substituting A ∨ ¬A for p shows that the corresponding logic is CPC). This
treats the cases n ≤ 6 and n = 8. For n ≥ 9 we show that V1 is not admissible
for NLn. Since for even n ≥ 10 the logics NLn have the disjunction property

16



[22], this will imply that V −
1 is not admissible for n ≥ 10 (see the section on the

disjunction property), and whence prove the theorem.
To prove that V1 is not admissible, we will use the following fact.

Fact 27 [16] NLn +( NLm for all 7 ≤ m < n.
For all l, for all k ≥ l + 3: IPC ( (nfl → nfk).
For all l: IPC ( (nf2l+2 ∨ nf2l ≡ nf2l+3) (use line above).

The main ingredient of the proof is the following claim.
Claim For all n, if V1 is admissible for NLn, then for all even k ≥ 8, for all A,

NLn ( nfk ∨ A ⇒ NLn ( nfk−4 ∨ nfk−6 ∨ A. (2)

Proof of the Claim Assume V1 is admissible for NLn and NLn ( nfk ∨ A
for some even k ≥ 8. Note that the assumption that k ≥ 8 guarantees that
nfk−8, . . . , nfk are all well-defined. We will use the observation that the admis-
sibility of V1 for NLn implies that for even m:

NLn ( nfm ∨ A ⇒ NLn ( (nfm−2 → nfm−4) ∨ (nfm−2 → nfm−5) ∨ A. (3)

To see that (3) holds, observe that

nfm = nfm−2 → nfm−3 = (nfm−4 → nfm−5) → nfm−4 ∨ nfm−5

since m is even. Application of V1 to this formula then gives

(nfm−2 → nfm−4) ∨ (nfm−2 → nfm−4) ∨ (nfm−2 → nfm−5) ∨ A.

This shows that (3) holds.
Another observation we will apply is that

∀k ≥ l + 1(l even) : NLn ( (nfk → nfl) → (nfl−2 → nfl−3) ∨ A. (4)

To see that (4) holds, observe that (nfk → nfl) = nfk → (nfl−2 → nfl−3) ≡
nfk ∧ nfl−2 → nfl−3, and then apply the second part of Fact 27.
We return to the proof of the claim. Since k is even we can apply (3) and obtain

NLn ( (nfk−2 → nfk−4) ∨ (nfk−2 → nfk−5) ∨ A. (5)

Using that

nfk−2 → nfk−5 = (nfk−4 → nfk−5) → nfk−6 ∨ nfk−7,

we can apply V1 to (5) again. This gives

NLn ( (nfk−2 → nfk−4) ∨ (nfk−2 → nfk−6) ∨ (nfk−2 → nfk−7) ∨ A.

Applying (4) to the first disjunt and the second part of Fact 27 to the third
disjunct leads to

NLn ( (nfk−6 → nfk−7) ∨ (nfk−2 → nfk−6) ∨ (nfk−6 → nfk−7) ∨ A.
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Using the definition of the nf ’s this gives

NLn ( nfk−4 ∨ (nfk−2 → nfk−6) ∨ A. (6)

Finally, we have to distinguish two cases. If k ≥ 9, (4) shows that the second
disjunct of (6) implies nfk−8 → nfk−9 = nfn−6. This leads to

NLn ( nfk−4 ∨ nfk−6 ∨ A. (7)

If k = 8, the second disjunct of (6) is nf6 → nf2 = nf6 → ¬p ≡ nf6 ∧ p → ⊥,
which is equivalent to ¬p = nf2 = nfk−6. This also leads to (7), as desired.
This proves (2), and thereby the claim. !

We continue with the proof of the theorem by showing that for all n ≥ 9, the
assumption that V1 is admissible for NLn leads to a contradiction. We treat the
odd and even cases separately.
First, assume V1 is admissible for NLn, for some even n ≥ 10. Since NLn ( nfn,
application of the Claim (take A empty) gives

NLn ( nfn−4 ∨ nfn−6. (8)

We distinguish the cases n = 10 and n ≥ 12. If n = 10, we have

nfn−4 ∨ nfn−6 = nf6 ∨ nf4 ≡ nf7.

The equivalence follows from Fact 27. Together with (8) this implies NL10 ( NL7,
contradicting Fact 27. For the case of the even n ≥ 12, a second application
of the Claim, with A = nfn−6, to (8) leads to NLn ( nfn−8 ∨ nfn−10 ∨ nfn−6.
Note that we can apply the Claim because n ≥ 12 implies that n − 4 ≥ 8. By
the second part of Fact 27,

IPC ( (nfn−6 ∨ nfn−8 ∨ nfn−10) → nfn−1.

Hence NLn ( nfn−1, and thus NLn ( NLn−1, which contradicts Fact 27.
Second, assume V1 is admissible for NLn, for some odd n ≥ 9. Observe that
NLn ( nfn−1 ∨ nfn−2. Applying the Claim (with A = nfn−2) gives

NLn ( nfn−5 ∨ nfn−7 ∨ nfn−2. (9)

Since nfn−2 = nfn−3 ∨ nfn−4 and nfn−4 = nfn−5 ∨ nfn−6 this gives

NLn ( nfn−3 ∨ nfn−5 ∨ nfn−6 ∨ nfn−7. (10)

If n = 9, this disjunction is equal to nf6 ∨ (nf4 ∨ nf3) ∨ nf2 ≡ nf6 ∨ nf5 ∨ nf2.
Using the second part of Fact 27 this is again equivalent to nf6 ∨ nf5 = nf7.
Thus (10) implies NL9 ( NL7, contradicting Fact 27. For the odd n ≥ 11, we
apply the Claim again to (10), with A = nfn−5 ∨ nfn−6 ∨ nfn−7. This can be
done as n ≥ 11, whence n − 3 ≥ 8. This leads to

NLn ( nfn−5 ∨ nfn−6 ∨ nfn−7 ∨ nfn−9.

By the second part of Fact 27 this implies NLn ( nfn−1, and thus NLn ( NLn−1,
which contradicts Fact 27. !
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5.5 Some questions

There are too many questions to list them all. We list some of the most inter-
esting ones that are related to the results discussed in this paper.

• Is the rule Vn+1 a basis for the admissible rules of Dn?

• Which of the Visser rules (if any) are admissible for the logics ER, NL7,
or ML?

• Do the logics ML, NLn (n ≥ 9), or KP have nonderivable admissible rules?

• If n is the largest n for which Vn is admissible for a logic with the dis-
junction property, do the rules {V1, . . . , Vn}, i.e. {Vn}, form a basis for the
admissible rules of the logic? And a similar question for the Vmn in case
the logic does not have the disjunction property.

• Do there exist intermediate logics that have nonderivable admissible rules
that are not instances of one of the Visser rules?

• Do there exist intermediate logics for which the restricted Visser rules are
nonderivable admissible rules and the Visser rules are not?
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