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Abstract

In this paper we study the modal behavior of ¥-preservativity, an ex-
tension of provability which is equivalent to interpretability for classical
superarithmetical theories. We explain the connection between the princi-
ples of this logic and some well-known properties of HA, like the disjunc-
tion property and its admissible rules. We show that the intuitionistic
modal logic given by the preservativity principles of HA known so far, is
complete with respect to a certain class of frames.

1 Introduction

An intriguing open problem in provability logic is the axiomatization of the
provability logic of HA, the constructive theory of the natural numbers. Up
till now no decent (r.e.) axiomatization for this logic has been found, but a
proof that such an axiomatization could not exist has not been found either.
Most classical theories have a finitely axiomatizable, decidable provability logic
with a simple modal semantics. A remarkable thing is their stability: many
classical theories, e.g. PA, ZF, IAg+exp, share the same provability logic, GL.
Observe that the provability logic of HA could certainly not be equal to GL
since GL contains classical propositional logic. However, since PA is the classical
counterpart of HA one could wonder whether the provability logic of HA is, as
an intuitionistic modal logic, axiomatized by the modal axioms of GL. It turns
out that this is not the case, as was shown by Leivant in the 70’s (a proof will
be given in the next section). Given the stability of classical provability logics,
this makes the study of the provability logic of HA all the more interesting.
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Some years ago Visser [10] axiomatized a fragment iPH of the so-called preser-
vativity logic of HA. Preservativity logic is an extension of provability logic
that we will introduce below. The logic iPH captured all the principles of the
provability logic of HA that were discovered before that time. Furthermore, re-
sults in [4][9] implied that for well-known properties of HA that are expressible
in preservativity logic, the statement that expresses this property either is not
contained in the preservativity logic of HA, or it belongs to iPH (this will be
discussed in more detail in the next section). This has lead us to the conjecture
that iPH axiomatizes the preservativity logic of HA. The reason that we prefer
to study preservativity instead of provability logic is that many principles have
a more transparant formulation in this setting. At the moment of writing this
paper it is not even clear whether there is a nice axiomatization of the logic
consisting of all formulas in the language of provability logic that are valid in
iPH.

In the remaining part of the introduction we explain what preservativity logic is
and we discuss its connection with interpretability logic. The rest of the paper
is devoted to the modal characterization of the principles of the given preser-
vativity logic. The main result is the modal completeness of the preservativity
logic with respect to a certain class of frames. The motivation for this research
is the fact that completeness proofs for provability and interpretability logics,
in the style of the landmark paper [8], partly rely on the modal completeness of
the logic in question.

Preservativity logic is defined as follows. Let ¥; and II; denote the first levels
of the arithmetical hierarchy. For an arithmetical theory 7" and sentences ¢ and
¥ in the language of T', ¢ is said to ¥ -preserve 1) with respect to 7', if for all
3, -sentences 6 it holds that T+ (6 — ¢) implies T' F (6 — ). We denote this
with o>, Since we will not consider any other forms of preservativity than
Y1-preservativity we will, as in the title, always refer to preservativity instead.

On the modal side the notion of preservativity gives rise to a modal language
L with one binary modal operator, I>. Analogous to provability logic the
preservativity logic of T' is defined as the collection of L -formulas A such that
T  A* for any arithmetical realization *. In this context the definition of an
arithmetical realization is extended to cover formulas in which the preservativity
symbol > occurs: an arithmetical realization * is a mapping from L -formulas
to arithmetical formulas which commutes with the connectives and such that
(A>B)* = Presp("A*7,"B*7), where Presy(z,y) is a formula in the language
of T that is the formalized version of the statement A>7B. The formulas in
Ly are called modal formula

Clearly, preservativity logic is an extension of provability logic because we have
Ore iff TBTe.

All the principles of the fragment of the provability logic of HA studied in [3]
are derivable in the preservativity logic considered in this paper. See [5] for a
discussion on this connection.



For classical theories T the notion of preservativity is equivalent to the no-
tion of IT;-conservativity: we have that ¢ Xj-preserves ¢ if and only if —p
is II;-conservative over —wp. For many classical theories, for example PA, II;-
conservativity is equivalent to the well-investigated notion of interpretability.
Therefore, for these theories the preservativity logic is known, although the no-
tion is not studied directly but only via the equivalence with interpretability. It
is not difficult to see that all the principles of the interpretability logic of PA,
ILM are inherited by HA (that is, if we reformulate ILM in terms of preservativity
by replacing A>;B by =B>=A4). The converse does not hold, see Section 2.0.1.

As we will see, many principles of the provability logic of HA have a elegant
formulation in the setting of preservativity logic. This seems to suggest that the
notion of preservativity gives the right view on questions in provability logic of
constructive theories.

In the context of intuitionistic logic the notion of intuitionistic truth provability
logic seems less natural, because the intuitionistic notion of truth depends heav-
ily on the constructive thruths one is willing to accept. Thus the notion can
only be meaningful once we know what our meta-theory is. We have chosen not
to address this question in this paper, and therefore we will concentrate solely
on provability logic. But let us note in passing that O(AV B) —» OAV OB is
an example of a principle that, for almost all reasonable meta-theories, is in the
truth provability logic of HA but not in the provability logic of HA.

In the next section we introduce the preservativity logic given by the principles
discovered by Visser. We discuss the meaning of the principles and explain
why we conjecture the given logic to be (all of) the preservativity logic of HA.
Section 3 contains preliminaries and Sections 4- 8 contain the completeness
results for the individual principles. Section 9 contains the main theorem of
the paper, i.e. the modal completeness of the preservativity logic. Section 10
discusses some admissible rules of the logic.

As said, our interest in the modal properties of this logic stems from the fact
that completeness proofs for provability and interpretability logics partly rely
on the modal completeness of the logic in question. However, the paper could
also be viewed as a study in intuitionistic modal logic. The characterization
of the principles requires many technical tools from modal logic. Moreover,
these logics deviate considerably from the logics that are regularly studied in
intuitionistic modal logic. Therefore, some proofs are quite different from the
ones for modal logics than one usually encounters. Therefore, also from the
modal point of view of these logics seem to be interesting.

I thank Albert Visser and Dick de Jongh for introducing me to preservativity
logic, and I thank them and Anne Troelstra and Lex Hendriks for the many
discussions we had on this topic.



2 The preservativity logic of Heyting Arithmetic

To state the principles of the preservativity logic of HA we need the following no-
tation. For formulas A, By, ..., By, the formula (A)(By,...,B,) is inductively
defined to be

(A)(B,C1,...,Cn) =ur (A)(B)V(A)(Ch,...,Cn)
(A) (L) = L

(A)(BAB) = (A)(B)A(A)(B')
(A)(OB) =,; OB

(4)(B) =. (A—B)

B not of the form L, (C AC") or OC.

Note that we have (A)(C1,...,Cp) = (A)(C1)V...V(A)(C,), and that (4)(T) =
(A — T), hence (A)(T) < T.

The expression (-)(+) is an abbreviation and not an operator, because applying
it to equivalent formulas does not give equivalent results. For example, Op is
equivalent to (T — Op), but (A)(T — Op) = (A — (T — Op)) and (4)(Op) =
Op. Hence the formulas (A)(T — Op) and (A)(Op) are in general not equivalent.
In [10] the following principles of the preservativity logic of HA known so far are
given. In fact, we give here a slightly different axiomatization then the one used
by Visser. In [5] it is shown that the two systems are equivalent. We denote
intuitionistic propositional logic by IPC. Recall that ¢ is provable if and only if
T preserves . This accounts for the definition of O in the system.

Azioms:

OA=,, T>A
Taut all tautologies of IPC
P1 A>B A B>C — A>C
P2 CrAACP>B— Cr(AAB)

Dp A>CAB>C — (AV B)>C (Disjunctive Principle)
Ap A>OA
Lp (0DA - A)>A (Lob’s Preservativity Principle

Mp A>rB — (OC — A)>(O0C — B) (Montagna’s Principle
Von  (NZi(Ai = Bi) = Apg1 V Ani2)> (AL (A = Bi)) (A, Ange
(Visser’s Principles

Vp  Vp,Vps,Vps,... (Visser’s Scheme



Rules:

Modus Ponens A (A— B)/B
Preservation Rule (A — B)/A>B

We use the name iPH for the logic given by these principles and rules.

As mentioned in the introduction, all principles except the Disjunctive Principle
hold for PA as well. It is not difficult to see that the Disjunctive Principle does
not hold for PA, see below. For all of these principles, besides Vp and Dp, it is
easy to verify that they are indeed principles of the preservativity logic of HA.
For the arithmetical validity of Vp and Dp we refer the reader to [10].

In the remainder of this section we discuss the meaning of the given principles.
We will see that these principles form a natural fragment of the preservativity
logic of HA. Namely, each of them corresponds to either a principle of the
provability logic of PA or to one of the following characteristic properties of HA:
its propositional admissible rules, Markov’s Rule and the Disjunction Property.

The definition of O and the first two principles are easily seen to be principles
of the preservativity logic of HA. The principles 4p and Lp resemble the two
characteristic axioms for the provability logic of PA, which are

4 0OA—0OOA

L O(mA — A) - OA.

Since Al>B implies (O0A — OB) in the system (Section 3.6), the principles /p
and Lp imply their provability counterparts 4 and L. The principle 4 is derivable
from L, but usually it is still included in the axioms. We will see that in the
same way 4p is derivable from Lp (Section 6). The principle Mp is baptized
after its classical counterpart in interpretability logic, which is discussed below.
It is easy to see that it belongs to the preservativity logic of HA, using the fact
that the arithmetical realization of a formula OC' is always ;.

2.0.1 The Disjunctive Principle and the Disjunction Property

The Disjunctive Principle Dp is related to the Disjunction Property of HA,
which reads

(Disjunction Property) if HA+ p V4, then HAF ¢ or HA F 1.

Friedman (1975) has shown that HA does not prove its disjunction property, i.e.
HA does not derive the true formula O(p V ) — (O V Ov). Leivant (1975)
showed that HA does prove the weaker version

HAFO(p V) = O(p vV OY).

Hence the so-called Leivant Principle O(A V B) — O(A V OB) is part of the
provability logic of HA. In the preservativity logic of HA this principle occurs



as a consequence of the two principles 4p and Dp. Note that the fact that Dp
and /p are in the preservativity logic of HA imply the following strengthening
of Leivant’s Principle:

HAE (o V) (e Vv OV).

Finally, let us show that the Leivant’s Principle does not belong to GL, the
provability logic of PA. This implies that de Disjunctive Principle does not be-
long to the preservativity logic of PA (hence the reformulation of the principle in
terms of interpretability does not belong to the interpretability logic of PA). We
reason as follows. If GL would derive the Leivant Principle it would also derive
O(O0LvO-0OLl), as it clearly derives O(O.L vV —-OL1). But then an application of
L shows that it would derive OOL. Hence the provability logic of HA is not a
part of GL. The converse is not true either. The principle (pV —p) is a theorem
of the provability logic of PA, but not of the corresponding logic of HA. Note
that this also shows that there is no monotonicity (converse monotonicity) in
provability logics; stronger theories do not necessarily have stronger (weaker)
provability logics.

2.0.2 Visser’s Scheme and the admissible rules

The scheme Vp is called after A. Visser who proved its arithmetical validity [10].
Note that it is not a principle but a collection of infinitely many principles. In [5]
it is shown that no Vp,, derives Vp,, for m < n over the base preservativity logic
defined below. Hence the scheme consists really of infinitely many principles.
The principles describe (some) admissible rules of HA. For propositional for-
mulas A, B we say that the rule A/B is a propositional admissible rule of HA
if HA + o A implies HA + ¢ B, for all substitutions ¢ which replace the propo-
sitional variables by arithmetical formulas. Note that if (O0A — OB) is in the
provability logic of HA, then A/B is an admissible rule of HA. Since A>B im-
plies (DA — OB), it follows that if A>B is in the preservativity logic of HA,
then A/B is an admissible rule for HA. The two most meaningful instances of
Vp describe the propositional admissible rules and Markov’s Rule for HA. We
will discuss them briefly.

If one restricts Visser’s Scheme to pure propositional formulas, i.e. without O
or >, it characterizes the propositional admissible rules of HA:

for propositional formulas A, B:
A/B is a propositional admissible rule of HA iff iPH - A>B.
This follows from results in [4][10][9], a proof can be found in [5].
Markov’s Rule, a well-known admisible rule for HA, reads

(Markov’s Rule) for all ¢ € IIy: if HA - ——¢p, then HA F .

To see how Markov’s Rule is captured by Visser’s Scheme, observe that the
following formula is one of the consequences of Visser’s Scheme,

(1) —-—0A>OA.



Namely, -—0OA is short for (DA — L) — 1), and by Visser’s Scheme

(OA— 1) - L)>(0A — L)(OA4, 1) =
(DA - 1L)(ODA)V(OA - 1)(L)=(0AV 1) =0A.

Now (1) implies that HA proves the arithmetical realizations of the formula
(0-—-0A — OOA), which is a partial formalization of Markov’s Rule. Thus the
fact that (1) is in the preservativity logic of HA implies that HA proves Markov’s
Rule: HA F (O0-—-0A4 — OOA).

Summarizing we could say that the preservativity logic presented in [10] seems
a very natural part (if not all) of the preservativity logic of HA. It contains
three basic principles, P1, P2 and Montagna’s Principle, which arithmetical va-
lidity is trivial. It contains the (preservativity form of the) two characteristic
principles of the provability logic of PA, namely 4p and Lp. And it contains two
axioms, the Disjunctive Principle and Visser’s Scheme, which are directly re-
lated to three well-known properties of HA: the Disjunction Property, Markov’s
Rule and the propositional admissible rules. Thus from these properties of HA
that are expressible in provability logic we do know whether they belong to the
provability logic of HA or not. For another important part, namely the propo-
sitional fragment, this is known as well. Namely, it was shown in [6] that the
propositional fragment of the provability logic of HA is equivalent to IPC. All
these facts together has lead us to the conjecture that the preservativity logic
above is (all of) the preservativity logic of HA.

3 Conventions and definitions

In this section we introduce a semantics for preservativity logic, and we define
the canonical model and the construction method. These are all fairly standard
definitions except for the way in which the operator > is interpreted in models.
This semantics for > is an idea from Visser. We also define the ‘new’ notion
of an extendible property. In the proofs that this or that logic is canonical
we need extensions of given sets of formulas. These extensions are all special
instances of a ‘general’ principle of extension, which gave rise to the definition
of an extendible property.

3.1 Definitions

The language L of preservativity logic is that of propositional logic extended
with one binary modal operator, >. We assume L (falsum) and T (true) to
be present as primitive symbols in our propositional language. Recall that OA
is defined as T>A. A formula of the form A>B is called a preservation and a
formula of the form OA is called a boxed formula. We adhere to some reading
conventions and omit parentheses when possible. The negation binds stronger
than > which binds stronger than A and V, which in turn bind stronger than
—. Further I'™>A is short for AT'>\/ A.



A logic is a theory closed under substitution. We call the logic which has as
axioms all tautologies of IPC and the principles PI and P2 (and Dp) and as
rules Modus Ponens and the Preservation Rule, the arithmetical (semantical)
base preservativity logic and denote it with iP~ (iP). For any principles A and
B, iP(A® B) is the preservativity logic consisting of the axioms of iP plus A and
B, and the rules Modus Ponens and Necessitation. When T' denotes the infinite
set of principles A;, Ao, ..., we also write iP(T) for iP(A; ® A @ ...). When
Ap is one of the principles given above we write iPA for iP(Ap). We write Fi1 A
when A is derivable in iT. We write I' b+ A when there is a derivation of A in
iT from I without use of Necessitation, in other words, when A is derivable by
Modus Ponens from theorems of iT and formulae in T'.

The name ‘semantical base preservativity logic’ for iP comes from from the fact
that it is sound and complete with respect to a certain kind of frame seman-
tics defined in Section 3.2. Thus, semantically seen, it is a base preservativity
logic. On the other hand, the only axioms of iP which trivially hold for all
arithmetical interpretations in HA are only P! and P2, which accounts for the
name ‘arithmetical base preservativity logic’ for iP~.

It is not very difficult to see that the logic consisting of the rules P! and P2
plus

0(4A — B) - A>B

and the rules Modus Ponens and Necessitation is equivalent to iP~.

3.2 A semantics

A possible semantics for preservativity logic can be produced via frames: we
just add one extra clause for the interpretation of I>. The frames we use occur
already in the literature on intuitionistic modal logic, e.g. in [7][1][11].

First some notation. When R and S are two binary relations, (R;S) is the
relation defined via w(R;S)u = Fv(wRvSu).

A frame is a triple F = (W, %, R), where W is a nonempty set (the set of nodes),
< is a partial ordering on W (the intuitionistic relation) and R a binary relation
on W (the modal relation) such that (x;R) C R.

A model is a quadruple M = (W, <, R, V), where (W, <, R) is a frame and V a
valuation relation on pairs consisting of nodes and propositional variables. We
demand that V is persistent, i.e.

(persistence) if w < v and wVp, then vVp.

We inductively define what it means for a formula A to be forced (or valid) at



a node w of a model M (M, w I+ A):

M,wlp =, wVp

MwlFAANB =, M,wlkAand M,wl-B

M,wt+AVB =, M,wltAor M,wl- B

MwltA—B =, YviEw (M,vlk Aimplies M,v I+ B)
M,w - A>B =.; Yo (if wRv and M,v I+ A then M,v I+ B)
M,wlFOA =,; Yv (if wRv then M, v |- A).

Note that the definition of forcing for O A agrees with the fact that OA is defined
as TP>A, and that OA gets the standard interpretation on frames. When M is
clear from the context we write w IF A instead of M, w IF A. The formula A is
valid in M, notation M |= A, if A is forced in all nodes in M. The formula A is
valid in a frame F, notation F |= A, if A is valid in all models with underlying
frame F.

A node v in a frame is called a successor of w if wRv, in which case w is called
a predecessor of v. We use an abbreviation for the relation (R;<):

R=., (RX).

For a relation R we define wR = {v | wRv}. For a set U , we write u 5 U if for
alz e U, u g z. We write ‘2 S y1,...,yn for c Az Sy A A Sy,
Similarly for other relations. A node v in a frame is above w if w < v. In this
case w is called below v.

Remark 1 The condition (x;R) C R, included to guarantee persistence for
formulas A>B, may be weakened to

(%;R) C (R;X) (w L w'Rv" = Fu(wRu X v')).

However we prefer to work with the simple condition where possible. For more
discussion on this topic, see [7].

A property P on frames corresponds to a set T of formulas if for all frames F:
F E T iff F has property P. Note that in this case we have

if F1 A then A is valid on all frames with property P.

When a frame F has a property P we say that F is a P-frame. We call F a
P, ... P,-frame when it has the properties P, ... P,. If C is a class of frames, a
logic iT is called complete with respect to C if

for all A: H71 A iff A valid on all frames in C.

The logic iT is called complete if C is the class of frames to which iT corresponds.



3.3 Canonicity

Canonical models are defined in a similar manner as in classical modal logic.
A set of formulas X is called adequate if it is closed under subformulas and
contains T and L. A set of formulas I is called X-saturated with respect to a
logic T if it is a consistent subset of X such that

e 'y Aimplies A €T, for all A € X,
e I'Fp AV Bimplies AcTorBeTl, forall AV B € X.

If X is the set of all formulas, an X-saturated set is just called saturated. It
can be easily seen that for any (finite) adequate set X and for any A for which
t/ A, there is an (finite) X-saturated set I" such that I' i/ A. Note also that any
A C X for which A I/ A, can be extended to an X-saturated I" such that ' t/ A.

For any logic T', for any adequate set X, the T-canonical X -model is the model
(W, <, R,V) defined as follows:

W consists of the X-saturated sets (with respect to )

w=xv =4 wCo

wRv =,, ifA,...,A,,BeX,wkr Ay,..., A,>B and
Ai,..., Ay €v, then B€w

wlkp =,.;, p€w, for propositional variables p € X.

Recall that Ay, ..., A,>B is short for (A 4;)>B. Note that in the definition of
R we take formulas A>B into account which do not belong to X.

To see that this indeed defines a model, see the completeness proof for iP. When
X is the set of all formulas, we call the canonical X-model the canonical model
of T. We call a logic iT canonical if the canonical model has the frame property
to which the logic corresponds.

Note that in the iT-canonical frame in general (R;<) C R does not hold. On the
other hand, if we restrict our language to O and the connectives, the canonical
models do satisfy (R;<) C R. That (R;x) C R is too strong a requirement in
the context of preservativity logic follows from the fact that A>B — O(A — B)
is valid on such frames. This principle is not in the preservativity logic of HA,
as the following deduction shoes.

HA+ -Ol>O-0OL (4p)
O(-0L - 0-0l)
O(-0L - 0l1) (L)
O(——Ol1)

Thus HA would derive O—-—-0OL, and hence it would derive its own iterated
inconsistency OO, quod non.
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3.4 Extendible properties

In this section we introduce a general construction to make certain extensions
of sets of formulas. In many proofs to come we will extend certain sets of
formulas to saturated sets with certain properties. It turns out that the way
these extensions are made follow the same pattern. Therefore, we choose to
define a general notion of extension which covers this.

Let iT be a preservativity logic and X an adequate set. A property *(-) on sets
of formulas such that we have both

for all A € X: if #(x) and = i1 A, then * (z U {A})
forall (AVB)e X: if x(zU{AV B}), then
x(x U {A}) or x(zU{B}),
is called an iT-extendible property (w.r.t. X). If in addition it holds that

forall A€ X: if x(z) and y k7 2> A, then = (x U {A4})

then it is called an iT-extendible y-successor property. For a property x such
that *(T') holds, the x-extension of T is the union x = |J z; of sets x; which are
constructed as follows. Given an enumeration By, By, ... of all formulas in X,
in which every formula occurs infinitely often, we define

To = I

x; if  not *(z; U{B;})

z; U {B;} if  *(z; U{B;}), B; no disjunction
Tit1 = z; U{B;,E} if x(z;U{B;}),Bi=CVD,

E=Cif % (CEZ U {Bl,C}),
E = D otherwise.

Observe that x D T' is X-saturated. Thus, z is a node in the canonical X-model,
and if I" is a node in the canonical X-model as well, then I < z. If in addition *
is an iT-extendible y-successor property, then also y Rz holds in the iT-canonical
X-model.

Remark 2 Note that for an iT-extendible w-successor property, the first re-
quirement is redundant, because it follows from the third one. Namely, if z - A
holds we have kit (z — A), and hence by Preservation Rule Ft z>A. Thus
clearly w kit x> A.

In the completeness proofs in the next chapters we often use extendible prop-
erties in the following way. Given a set A with a certain property, we want to
extend it to a saturated set with this property, i.e. to a node in the canonical
model with this property. There are two particular properties which often occur
in this setting. The following lemma shows that these properties are extendible
w-successor properties.

11



Lemma 3 For any logic iT containing iP, for any formula C' and for all nodes
w, v in the iT-canonical model, the following two properties are extendible w-
successor properties:

x(z) w T 2>C.
*(z) for all D: w bt >D implies D € v.

Proof We write F for k1. First we consider the property *(-). We have to show
that

for all A € X: ifwl «>C and x - A, then w I/ x, A>C
forall (AvB)e X: ifwlfz,(AV B)>C, then wlf x, A>C or

w b x, B>C
for all A € X: if wt/ z>C and w F z> A, then w tf z, A>C.

Recall that we write z, A>C for (Az A A)>C. By Remark 2 we know that if
the third requirement holds, so does the first. Therefore, it suffices to show that
the last two requirements hold.

For the second requirement, assume w + x, A>C and w F x, B>>C'. To show that
x(-) satisfies the second requirement we have to prove that w - z, (A VvV B)>C.
This follows immediately from Dp.

For the third requirement assume w + z>A and w + x, A>C. We show that
w F z>C, and this will show that *(-) satisfies the third requirement. By the
Preservation Rule we have F > A z, which is short for - A > A . Therefore,
we certainly have w F > A z. Thus by P2 we have w F 2>(A x A A). Together
with w F 2, A>C and P1 this leads to w - z>C.

Consider the property =. To show that x is an extendible w-successor property
we have to prove that

for all A € X: if x(xz) and  F A, then

(for all D: wt+ z, A>D implies D € v)
forall (AVB)e X: if x(zU{AV B}), then

(for all D: wt x, A>D implies D € v) or

(for all D: w+ z, B>D implies D € v)
for all A € X: if x(z) and w F z>A, then

(for all D: w t x, A>D implies D € v).

By Remark 2, it suffices to show that the last two requirements hold.

For the second requirement, assume that neither x(z U {A}) nor x(z U {B})
holds. We prove that x(z U {A V B}) does not hold. By assumption there

12



are formulas C' and D such that C' ¢ v and D ¢ v, and both w + 2, A>C and
w  z, B>D. Clearly, both C and D imply (C'VD). Hence by Preservation Rule
we have F C>(C' Vv D) and + D>(C'V D). Applying P1 gives w - z, AD(C' V D)
and w + z, B>(C Vv D). Thus by Dp we have w + z,(AV B)>(C Vv D). If
*(z U {A V B}) would hold, this would imply that (C'V D) € v. Since v is a
node in the canonical model it is a saturated set. Therefore, this would imply
that C' € v or D € v, which contradicts our assumption.

We show that the third requirement holds. Assume that *(z) and w F z>A
hold, and that we have w F x, A>D, for some D. We have to show that D € v.
The same reasoning as above for x(-), shows that we have w - zI>(A z A A).
Therefore, w -z, A>D implies w F z>D by P1. The fact that x(z) holds, gives
D €. QED

3.5 The Construction Method

We define a method, the construction method, to obtain from a given model
a new one. This method is similar to the construction method in classical
modal logic. The construction method is often used to obtain a completeness
result with respect to some class of finite frames. Let M = (W, %, R, V') be some
canonical model, let X be an adequate set for which A>B € X implies OB € X.
The method allows us to construct for any w € W amodel M' = (W', ', R, V')
the domain of which consists of (copies of) nodes in W, which intuitively is the
minimal set of nodes required to have w forcing the same formulae in X in the
models M and M'. We will restrict ourselves to a construction method for
models that besides iP also satisfy Lp and Mp.

The construction proceeds as follows. We choose step by step, starting with w,
a subset of W which will be the domain W' of our new model M’. Note that
the elements of W are sets of formulas. First, define

wE = {A>B € X | A>B € w}

w{?ﬁ ={A>B € X | A>B ¢ w}.

Similarly for — and O. We omit the superscript X when possible. Let * denote
the concatenation function on strings:

(1, ) * Y1y Ym) = (T oy Ty Yy - e s Y )

Put ay = w. Suppose v = a, is defined. We choose elements a,,(a—p) and
gy a>py in W, for all elements (4 — B) € T 4 A>B € T

The node a,.(a—p) is an element u € W such that v X u, A € u and B ¢ u.
Note that such elements can always be found. The node a, (4[> gy is an element
w € W such that vRu, A € u, B € v and OB € u. Observe that u contains
more boxed formulas than v, for in the presence of Lp, and hence of 4p and
4, vRu and OC € v implies that OC € u. To prove that such a node u exists
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it suffices to show that in any canonical model for a logic containing iPLM, if
AD>B ¢ v there exists a v-successor extension of {4, 0B} omitting {B}. Thus
we have to see that v I/ A, OB>B. Suppose not. Then we have, using Lp and
Mp:

v F A,O0B>B
(0B - AANOB)>(OB — B)
A>(OB — B)
AP>B.

Define W' = {0 | 0 is defined }, and V via
olkp=.a,lFp, forpe X.

We define the intuitionistic and the modal relation such that
forall Ae X, forallc e W': a,lF Aiff o IF A.

As the choice of the relations will differ from case to case we do not give any
specific examples here besides the obvious one;

! —
U< T = aa'#a‘r

oR't =.;, asRa;.

It is not difficult to see that this choice gives a model with the desired property,
be it not always on a frame with the desired properties.

Remark 4 It is easy to see that W' is finite if X is. First note that by construc-
tion, a node (saturated set) o * (BI>C') contains more boxed formulas (formulas
of the form OC) that belong to X than 0. A node o x (B — C) contains more
implications that belong to X than o. Moreover, for a node 7 = g% (B — C) we
have that a, < a;, holds in the canonical model, i.e. a, C a,. Clearly, all the
implications that have to be treated, i.e. all implications for which we possibly
have to add a new node in the construction, belong to X. And similarly for
boxed formulas and preservations. Therefore, in going from o to o x (B>C)
or o % (B — C) either the number of boxed formulas that have to be treated
decreases, or it stays the same and the number of implications that have to be
treated decreases. Finally, if there are no more boxed formulas to be treated this
means that for all OB € X, it holds that OB € a,. Hence for all B>C € X,
we have OC' € a, and thus B>C € a,. Therefore, if there are no more boxed
formulas to be treated there are no formulas of the form BI>C to be treated
either. Since the preservations and implications that belong to X are the only
formulas that have to be treated in the construction method, this shows that
the method is finite if X is.

14



3.6 Useful lemma’s

In this section we prove two lemma’s that state basic properties of preservativ-
ity logic. We will often use these properties in the rest of the paper without
mentioning it.

Lemma 5
(i) for any logic iT containing iP~: k1 A implies k7 OA.
(i1) Fp- O(4 = B) = A>B and kp- A>B — (0A — OB).

Proof (i) Observe that kit (A — B) implies 1 T — (A — B). Hence by the
Preservation Rule kit T>(A — B), which is equivalent to O(A — B).

(1) The second implication follows immediately from P1, using the fact that
OA is defined as T>A. The following derivation proofs the first implication.

We have

Fp- O(A— B)« T>(A— B) (1)
A>T (Preservation Rule) (2)
O(A - B) » A>(A — B) (1)(P1) (3)
A A (Preservation Rule) (4)
O(4 » B) » A>(AA (A > B) (3)(#)(P2) (5)
(AN(A— B))>B (Preservation Rule) (6)
O(A — B) - A>B. (5)(6)(P1)

This completes the proof. QED

The next lemma will only be used when we treat Visser’ Scheme in Section 8
Lemma 6
(i) (A)(B) implies (A — B), and (4)(B) Vv (4)(C) implies (4)(B Vv C).
(i4) For A= (A}, (4; — B;)), for all m, we have

I_IPV (A — An+1 V...V An+m)|>(A)(A1, . 7An+m)-

Proof (i) Left to the reader; for the first statement, use induction on B, for the
second statement, use the first one.

(i4) Use induction on m. For m = 1, observe that (A — A,1) is equivalent
to (A — Apg1 V L). We leave the rest of this case to the reader. For m = 2
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the statement holds by the definition of Visser’s Scheme. For m > 2, we let
C=A,42V...V A, Itisclear that

I_IPV (A = Ap1 V...V An+m)l>(A — Ap1 Vv C)
By the definition of Visser’s Scheme we have that

|_IPV (A — An+1 \ C)D(A)(Al, ey An+1,0).
Note that because C' is a disjunction it holds that (A)(C) = (A — C). By
induction hypothesis we have

Fipy (A= O)>(A)(Ar, .. An, Angoy - Anem)-
We leave it to the reader to check that, using the Disjunctive Principle and P1,
all this leads to the desired result,

l_iPV (A - An+1 V...V An+m)>(A)(Ala sy An-i—m)-

QED

4 The semantical base preservativity logic

In this section we show that the frames defined in Subsection 3.2 are exactly
the frames we need for the semantical base preservativity logic iP.

Proposition 7 F;p A iff A is valid on all finite frames.

Proof We treat the direction from right to left. Suppose iP ¥ A. We have to
show that there is a model for iP which does not force A. Let X be a finite
adequate set containing A. We prove that the canonical X-model is such a
model. Observe that the canonical X-model is indeed a model, i.e. (x;R) C R,
and that every model satisfies the axioms of iP. It is easy to see that there
is an X-saturated set (hence a node in this model) which does not contain A.
Therefore, to see that A is not valid on this model it suffices to show that

VB e XVw: Bewiff wlt B.

This can be easily shown by formula induction. We only treat implication and
preservation for the direction from right to left. Suppose B = (C — D) and
B ¢ w. If wU{C} would derive D, then also w  (C'— D). Thus wU{C} I/ D.
This implies that w U {C} is consistent. Let v be an X-saturated extension of
w U {C} which does not derive D. Then w < v, v I C and v I} D hold, hence
wlf (C = D).

Now suppose B = C>D ¢ w. It suffices to construct an X -saturated set v such
that wRv and C' € v while D € v. Consider the property

*(z) wltf z>D.

By Lemma 3, *(-) is an iP-extendible w-successor property. Note that *(C)
holds. Any x-extension of {C'} can be taken for v. The fact that v does not
contain D follows from the definition of a *-extension. QED
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5 The principle 4p

We show that iP4 is complete with respect to the class of gathering frames. We
call a model or a frame gathering if it satisfies

(gathering) wRvRu = v < u.

Proposition 8
(1) The principle 4p corresponds to gatheringness.
(1) The logic iP4 is canonical.
(iii) F;pg A iff A valid on all finite gathering frames.

Proof The three statements are easy to prove. We leave (i), (ii) and the
direction from left to right of (ii7) to the reader. For the the direction from right
to left of the last statement it suffices to observe that for any finite adequate
set which contains OB for any nonboxed B € X, the iP4-canonical X-model is
gathering. QED

6 Lob’s Preservativity Principle

We show that Lob’s Preservativity Principle Lp corresponds to the gathering
conversely well-founded frames. We call a frame conversely well-founded if the
modal relation on the frame is conversely well-founded. We do not know if iPL
is also complete with respect to these frames. If we restrict ourselves to the
language without > but with O, then L&b’s Principle is complete with respect
to the gathering conversely well-founded frames [3]. However, the ‘trick’ used in
this completeness proof for iL breaks down for iPL in the absence of the principle
Mp. The completeness proof for iL is similar to the one in classical logic. We
have included it for completeness’ sake.

Classically as well as intuitionistically we have that the principles 4 is derivable
from Lob’s Principle. In analogy with that we have
|—ip|_ L and |—ip|_ 4]) and |—ip(4p@|_) Lp.

The first deduction is trivial. The second one has a similar proof as the above
mentioned analogue:

FpL A— (O(@AAA) — OANA))
A>(O(DAANA) - OANA))
A>(OAN A)

A>OA

17



The third derivation runs as follows.

HL O(O(0A — A) — 0OA)
HiL 0(0A — A)>OA
Fipa 0A — A)>O(0A = A) A (OA — A)

(
Fpapar) (O0A — A)>(OAA (DA — A))
(

I_iP(4pEBL) 04 — A)|>A

Lemma 9 The principle Lp corresponds to gatheringness plus converse well-
foundedness of the modal relation.

Proof Left to the reader. QED

7 Montagna’s Principle

We show that Montagna’s Principle Mp corresponds to the Mp-property defined
as

(Mp-property) wRv K u — Jz(wRx Av Xz uAzR CuR).

Then we prove that iPM is canonical.

If a principle corresponds to a frame property in which expressions like zR C yR
occur, like Montagna’s Principle, then for a proof of its canonicity we need to
know what R C yR means on the canonical model, i.e. in terms of saturated
sets. This is the content of the following lemma. For the definition of wg see
Section 3.5.

Lemma 10 In any canonical model: vRCwRif wy Cug.

Proof First the direction from left to right. Suppose OA € w while OA ¢ v.
By Lemma 3, the property

*(z) v x> A,

is an extendible v-successor property. Note that *({T}) holds, and let u be any
x-extension of {T}. Clearly, vRu, and A ¢ u hence w(R;<)u cannot hold.

For the other direction, assume wy C vy and vRu. We have to construct a
node u' such that wRu' C u. By Lemma 3, the property

*(x) for all A: w 2> A implies A € u,

is an extendible w-successor property. Clearly, *({T}) holds. Therefore, any
x-extension of {T} will do for «'. QED

Proposition 11
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(i) The principle Mp corresponds to the the Mp-property.
(i) The logic iPM is canonical.

Proof We prove part (i¢) of the proposition and leave (¢) to the reader. Consider
wRv <X u in the iPM-canonical model. Define the property

*(x) for all A: wh z>A implies A € u.

It is easy to see that %(-) is an iPM-extendible w-successor property. Thus if
*(v U un) holds, then any x-extension of v U ug is a node z such that wRz
(Section 3.4) and v < < u and 2R C uR hold (Lemma 10). Thus it remains
to show that *(vUum) holds. This follows from the fact that for all finite subsets
I' Cvand A C ug, and for all B we have that w F ', AD>B implies B € u.
Therefore, suppose that for some such I', A, B it does hold that w + ', A>B.
Replace A by the equivalent OA where A = (A{C | OC € A}). Then

w F T,0A4>B
(DA - AT ADOA)>(DA — B)
I'>(0A — B).

This implies that (DA — B) € v, whence that B € u. QED

8 Visser’s Scheme

For the frame characterization of Visser’s Scheme we need the notion of a tight
predecessor. We will first give the intuition behind it. Let v, @ range over finite
sets of nodes, and write e.g. « < © for ‘for all v € ¥(z < v)’, and similarly for R
and R. Consider two main instances of Visser’s Scheme:

n n+2 n
(2) (/\(Ai = Bi) = Apt1 V Apg2)>( \/ (/\(Ai — Bi) — 4;))

(3) (\/ ﬂﬂmAi>>(\/ DA).

The first principle arises when we restrict Visser’s Scheme to pure propositional
variables, the second one if we restrict it to boxed formulas and 1. These
two principles are related to two parts of the frame characterization of Visser’s
Scheme. It is easy to see that (3) is valid on frames which satisfy

(4) wRvRa — 3z (v <z AzRaA-Fy(z <y)).
Formula (2) holds on frames which satisfy

(5) wRvx?7—>3Jz(v2x0AYYy =232 € 9(z Ly)).
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We show this for n = 3. If for nodes wRv in such a frame we have v IF ((p1 —
g) = p2 V p3), and not v Ik (p1 = ¢) — p; then there are nodes ui,us,us = v
that force (p1 — ¢) and such that u; does not force p;. Let v = {uy,u2,us} and
let = be the node such that v X z < v and such that for all y > z, it holds that
u; < y for some . Observe that z forces (p1 — ¢) but that it does not force
(p2 V p3), contradicting the assumption that v forces ((p1 — q) = p2 V p3). For
arbitrary n the reasoning is the same.

The combination of the two frame properties above leads to the frame property
with respect to which Vp is complete. However, Vp does correspond to a weaker
property, which will be called the Vp°°-property. This is best illustrated by the
discussion on formula (2) above. Namely, one can weaken (5) by requiring that
all nodes y above z are either below all nodes in ¥ or above at least one node
in o:

wRv x> g3 0AVy =2(yxoVIzev(zxXy))).
The same reasoning as above shows that Vp is still valid on frames with this
property.
8.0.1 Tight predecessors (in modal logic)
We say that a node x in K is a semi-tight predecessor of © holding u, if

X U0AzRuAYy =23z € v(z < y) V (y < 0 AyRa)).
It is called a tight predecessor if in addition there holds the stronger

vR C 2R AVy = 232 € 5(2 L y).

We call a frame (model) a Vp™°-frame (model) if it has the Vp*-property:
(Vp™ -property)  for all finite sets of nodes o, 4: wRv Av < 0 AvRa —

Jz = v(x is a semi-tight predecessor of ¢ holding @).

An inspection of the Vp™°-property will convince the reader that there are hardly
any finite models that have this property.

Observe that if one reads tight for semi-tight in the Vp°°-property, it expresses
(4) if v is empty, and (5) if @ is empty.

Proposition 12
(i) Visser’s Scheme corresponds to the Vp®-property.
(i) The logic iPV is canonical.

(i31) The canonical model iPV satisfies the following property which is
stronger than the Vp™-property:

(Vp-property) wRv K v1,...,0m —
Jr(w Lz <L v1,...,0m AVR C 2R Ay = 23i(v; < 7).

(Recall that in this case x is called a tight predecessor of vi, ..., v, forv.)
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Proof We often use part (i) of Lemma 6 without mentioning. (7) First we show
that Vp holds on a Vp*-frame. Suppose wRv and v Iff (A)(D1,...,Dpi2)
hold, for some A = A (D; — E;), on some Vp~-frame. We show that
vIf (A= Dpy1 V Dyyo). Assume D; = B; A OC;, where B; is not of the form
OC. From the assumption it follows that v If (A — B;) A OC;, whence either
v OC; or v ¥ (A — B;). Therefore, there are finite sets of nodes ¥ and @ such
that for all i we have that either there is a node x € 4 with vRx and z If C; or
there is a node ¢ € v with v < ¢, I A and z | B;. Let v and @ be a smallest
pair of sets with these properties. Let u = v be a semi-tight predecessor of v
holding 4. We show that u IF A and u Iff (Dp41 V Dpiso). This will prove that
v |y (A — Dn+1 \Y Dn+2).

To see that that u If (Dyy1V Dyia), note that for i = n+ 1,n + 2 we have that
either there is node « € u with z | C; or there is a node x € v with x I+ A and
z ¥ B;. In the first case we have that uRz, and hence u |f OC;. In the second
case we have that v < = and thus u If (A — B;). Hence in both cases we can
conclude u If D;. To see that u I- A, consider y > u. Then either y < ¥ and
yRu, or z < y for some z € . In the last case y forces A because all nodes in
v force A. In the first case, it suffices to show that for all i < n, we have that
y I B; A OC;. Note that for all i < n either there is node z € @ with z I} C;
or there is a node x € ¥ with z IF A and = |f B;. In the first case we have
that yRz holds, and whence y I OC;. In the second case we have y < z, and
therefore y If B;. Hence in both cases we can conclude y If D;.

For the other part of (i), assume that a frame F does not have the Vp°°-
property. Thus there are nodes wRv and finite sets v < ¥ and vR@ such that
for all x = v, x is no semi-tight predecessor of v holding @. Thus

?

(6) Vz = v(-(zRa) VVy > 2(Vz € 5(2 £ v) A (y £ 5V ~(yRa))).
First, the case that v is empty. Then (6) becomes V& = v-(zRi). Suppose
U= Ui,...,Un. Define the valuation

k=2 R
Let A= A", —Or;. We leave it to the reader to verify that v I (A — L), but
vl (A)(Qry,...,0r,,L1).
Now we consider the case that v contains at least one node. Note that in that
case it has to contain at least two nodes, otherwise this single node in ¥ is a

semi-tight predecessor of ¥ holding #. Suppose ¥ = vy,...,v, 2. For the same
reason, there have to be at least two nodes among them, say v,41,vp42, such
that neither v,41 < Vp42 NOr vpyo X Upy1. Suppose @ = uq,...,Un. Define

the following valuation,

rlhp = xR
xlFqg =u viz, for somei <n+2
xlhry =i xR u.

Let

n
A= /\ Di = q) /\ =0r;.
i=1
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We leave it to the reader to verify that under this valuation we have v If
(A)(p1,- -+, Pnt2,0r1,...,0Ory), since v I Or; and v; - A but v; I p;. We show
that v IF (A = pny1 V Ppa2). Therefore, consider v < z IF A. Thus zRa. By
(6) there exists a node y > « such that Vz € 4(z £ v) A (y £ 0V ~(yRa)). Since
y IF A, in particular y IF ~Or;. Thus yRa. This implies Vz € 6(z £ v) Ay £ ©.
If y £ v;, for some i < n, then y I+ p;. Since y IF A, then y IF g. But this contr-
tadicts the fact that Vz € 0(z £ v). Therefore, y £ ¢ implies that y £ v,4+1 or
Yy & Upy2. Thus the same holds for z, and this shows that z IF pp11 V pria.

(#4) This follows from (iii).
(731) Consider nodes wRv, v < v1,...,0,, in the iPV-canonical model. Let o

denotes v; N ...Nwv,,. First note that in general v is not saturated. Therefore,
it is not necessarily a node in the canonical model. Let

A={(ENOQE' - F)|FeioA(E¢Z0oVOE ¢v)}.

(Thus in particular the implications (F — F') and (OFE — F), for which F' € v
and respectively E ¢ © and OF ¢ v, are in A.) Note that A C 9. Let () be
the property

x(r) xF A V...VA,VvOBV...vOB, implies 3i (4; € ¥ or OB; € v).

Clearly, x(-) is an extendible property (Section 3.4). We show that *(v U A)
holds. Let C = A; V...V A, vOB; V...VvOB, and suppose v UA F C. This
implies that there is a conjunct D = /\le(Ei — F;) of implications in A, such
that v F (D — C). Thus (D — C) € v, because v is saturated. Since

(D — O)D(D)(El,...Ek,Al,...,Am,DBl,...,DBn),

also (D)(E1,...Ex, Ay,..., A, 0By,...,0B,) € v. From the construction of
A it follows that v does not contain any of (D — E) AQE', for E; = EAOQE'.
Therefore v contains either (D — A;) or OB; for some i. This proofs that
x(vUA) holds. Let u be the x-extension of vUA. As described in Section 3.4, u
is saturated. We show that wu is a semi-tight predecessor of ¢ holding @. Clearly,
v<u=v,...,0, holds, and by Lemma 10 we have vR C uR.

It remains to show that
Yy = uJi(v; X y).

Arguing by contradiction, suppose u < u' for some saturated set u’ and assume
that no v; is contained in u’. For all ¢ < m, we choose a formula A; € v; outside
u'. Then the formula (4;V...VA,,) isin 0 but not in »'. From the construction
of u, and the fact that u’ is a superset of u, it follows that there is a formula
(EAQE') € u such that either E ¢ ¢ or E' € 1. Now (EAQE — A1 V.. .VAp,)
is an element of A, thus also of u. Hence (4; V...V A,) should be in v, a
contradiction. This proves that iPV is canonical. QED
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9 The completeness iPH

First we sketch the idea of the completeness proof for iPH and then we treat
the proof in full detail. Recall that iPH (Section 2) is the logic we conjecture to
be the preservativity logic of HA.

9.0.2 Proof sketch

For formulas A that are not derivable in iPH we have to show that there is a
model that refutes A and which has a gathering conversely well-founded Mp Vp-
frame. To construct such a model we use the construction method (Section 3.5)
with respect to a certain finite adequate set X. As expected, the resulting
model will in general be infinite, since most of the frames which validate Visser’s
Scheme are not finite (Section 8). We use four subconstructions 3,4, ¢, . Each
of them expands a frame by adding nodes from the canonical model to it in an
adequate way. We will explain how they select these nodes. To ensure that the
new nodes = have certain properties we require that a, has the corresponding
properties in the canonical model. For example, if we demand =z < o, then
we choose a, in such a way that o, < a, holds in the canonical model. If
R C oR is the desired property, we demand that (a,)n C (az)o. Note that
by Lemma 10 this is equivalent with a,R C a, R.

The construction § choses nodes o % (B — C) and o *x (BI>C') as is usual in the
construction method. In combination with §, the construction ¢ ensures that the
final frame has the Mp-property (Section 7): for nodes cRT < 7' it constructs
a node a = o * (m, 7,7') such that in the final model cRa and 7 < a < 7" and
aR C 7'R hold.

In combination with &, the construction ¢ ensures that the final frame has

the Vp-property (Section 8): for nodes ¢ RT < 71,..., T, it constructs a node
a = 7 *{v,T1,...,7) such that in the final model v < a and a is a tight
predecessor of 1q,...,7, for 7.

The construction ¢ is an addition to both ¢ and ¢. If we want 7R C 7'R to
hold in the final model and we add a node Rz, then § constructs a node
a = 7 % (m,7") such that 7'Ra < w". Therefore, 7' Rx” will hold. The
discussion above shows that we have to ensure that 7R C 7'R holds in the
following cases: T = o x (m, 7,7’y orm =0 x(m, 7'y or #' =7 * (v, 71,...,Tn)-
The following tricks are used in the construction in order to guarantee that no
unnecessary nodes are selected. The reader interested in the construction but
not in the complications which arise from this attempt for efficiency can skip
these details.

If we want to guarantee that 7R C #'R we do not have to add a node 7' (m, 7'
for all the nodes 7’ with 7Rx". For example, it could be that 7'Rr already
holds. Therefore, we will define a property *(m,n’,7n"") that holds exactly when
we want 7R C «'R to hold, and wRx" holds but not «’Rx”. For a similar
reason, we define properties x(o, 7,7') and o(r,71,...,7,) which holds exactly
when we have to add nodes o x (m,7,7') or 7 % (v, 71, ...,T,) respectively. To
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recognize if * or x hold we use a function . If for example o RT < 7' holds but
T = o % (m,7'), then we do not have to add a node o * (m, 7, 7') since 7 itself
will have the desired properties. The same holds for instance in the case that
T=0cx{m,m,7') and 7' = ¢’ x (m,7'). We let the function v cover all these
cases by defining (o) inductively as: if o = ¢” * (m,7,0') or 0 = ¢ % (m, o'},
then v(o) = v(0'), and (o) = o otherwise.

We use one device more to lower the number of nodes we have to construct.
We let R and <" be one-step relations: intuitively, we have o Rt if there is
no cRT'R7, and similarly for <”. We let < be the transitive closure of <"
and define R* and <* as the minimal extensions of R and < for which R* is
gathering and <* is a partial order and (*;R*) C R* holds (Lemma 15). For
example, when o Ro'(";R)T we put o R*o’ R*7 and ¢’ <* 7. The relations R*
and <* will be the modal and intuitionistic relation in our final model. The
use of R and <" is best illustrated by an example. Suppose we have to define
a node o % (m,7,7'), and o R*7 holds and oR7 does not hold. It follows from
the definition of R* that there is a node ¢’ RT. We only construct the node
o' x (m,7,7') and observe that also cR*c' * (m, 7, 7). Hence o’ x (m,7,7') has
the desired properties of o * (m,7,7') in the final model. Therefore, the latter
node does not have to be constructed.

Finally, in construction ¢ we select the nodes a = 7’ * (m, 7"’) in such a way that
(az) o = (aq) 5. This allows us to ensure that 7" R = aR in the final model.
And that guarantees that for the situation n’'Ra < #'', which arises from the
definition of a, we do not again have to add a node 7' % (m, a, 7"}, since the node
a has the same properties. Lemma 13 shows that we can choose «a, as desired.
This completes the informal discussion of the completeness proof for iPH.

Lemma 13 In any canonical model of a logic containing Mp it holds that
if wg Cvg AvRu then Ju' (wRu' S uAu'y =ug).

(By Lemma 10 this is equivalent with the property that if wg C vy and vRu,
then there exists a node u' such that wRu' < v and 'R = uR.)

Proof Let () be the property
*(x) for all A: wF x>A implies A € u.

In Lemma 3 we have shown that  is an extendible w-successor property (in the
lemma it is denoted with ) and that *(u5) holds. Let u’ be the x-extension of
up. Clearly, u’ has the desired properties. QED

Remark 14 In any gathering model,
if w' Rw < v1Rvy < vsRvy < ...v, then, for all i, w < v;.

This can be easily seen, using the gatheringness and the fact that (5;R) C R.
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9.0.3 The relations R* and <*

Let R and < respectively be a binary relation and a partial order on a finite set
W. We define relations <* and R* which are the minimal extensions of < and
R such that R* is gathering and (*;R*) C R* holds. The idea behind these
extensions is given by Remark 14. We define * and R* via

wR*vy  =,; Jr(w LzRo)V Iz, ...¢couy(w Ly K T1A

ANY'RyAw £ z1Rxy < 23 ... 2,RV)

*

w*v =, wsoVIzyzZ(w gz AZRzAw K 2Ry K v).

We write R* for (R*;<*). The first disjunct in the definition of R* arises from
the fact that we want to have (x*;R*) C R*. The second disjunct arises from
the fact that we want R* to be gathering. Namely, by Remark 14, y' Ry and
y X 1Rz X x3...2, implies y <* x,, since we construct <* and R* in such a
way that R* is gathering. Thus we have w < y <* z,Rv, hence w(x*;R)v. As
we want to have (*;R*) C R*, we have to demand wR*v. Similar explanations
apply to the definition of <*.

Lemma 15 Let R and < respectively be a binary relation and a partial order
on a finite set W. If both

wRy <* u — Jz(wR*z Av * 2 <* uA z2(5;R) C uR*)
wRY * ur,. .. Uy = (v XF 2 LF U, U, A
v(5;R) C zR* AVy >* x(u; <* y, for some 7))
then (W, R*, <*) is a gathering Mp Vp-frame.

Proof Although one have to check many cases, it is not difficult to see that
(W, R*,<x*) is indeed a frame, (g* is a partial order and (£*;R*) C R* holds),
and that it is gathering. We show that

wR*v <* v — Jx(wR*z Av * = <* uAzR* C uR¥)
wR*y * U1, ..Uy = (v ¥ X UL, Uy A
tR* CuR* AVy =* z(u; <* y, for some i))

hold, that is, that (W, R*,<*) is an Mp Vp-frame. The following two Claims
suffice.

Claim 1 If wR*v then there exists a node w' such that w' Rv and for all w' R*v’,
also wR*v'.

Proof of Claim 1 Suppose wR*v. This implies that there are x1,y1,---Tn,Yn,
such that

w <£U1Ry1 K xR... #anyn:fU’
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and either n =1,s0 v =y, or 3zz'(w 5 z X 1 A 2’Rz). In both cases,
w' = x,, has the desired properties. This proves Claim 1.

Claim 2 If 2(<;R) C uR*, then zR* C uR*.

Proof of Claim 2 Suppose xR*a. This implies there are x < a1 Ras < ... Ra
such that either as = a or 3bb'(x < b < a1 A b'Rb). By assumption uR*as, say
uR*u' < ay. In the first case, we clearly have uR*a. In the second case, since
uwR*u' there is v Ru', from which it follows that u' <* a. Hence also uR*a.

This proves Claim 2. QED

Theorem 16 Fipy A iff A is valid on all gathering Mp Vp-frames for which
the modal relation is conversely well-founded.

Proof We only treat the direction from right to left. Suppose I/;py A. We
construct a gathering Mp Vp-model for which the modal relation is conversely
well-founded by the construction method (see Subsection 3.5). Let X be a finite
adequate set, containing A, such that B>C € X implies OC € X. Consider the
iPH-canonical model and let R' and <’ be the relations on this model. Let o
be a node at which A is not valid. With W*, R*, <* we denote respectively the
domain and the relations of the model M* we are going to construct.

Using the construction method, we construct binary relations R and <" along
with a set W*. We denote the reflexive transitive closure of <" by <. Then we
define R* and x* as explained above, and show that in (W*, <* R*),

(7) oRTx*7' - Jzx(cR*z ATz " 7" ANz (5R) C T'R*)

8) oRT<x"7,....,7n = Jx(r M 11, ., TN
7(x;R) C xR* AVy =* x(r; ™ y, for some i))
and apply Lemma 15 to conclude that (W*, R*, 5*) is a gathering Mp Vp-frame.
Finally, we show that R* is conversely well-founded.
During the construction we guarantee that

(9) if oR7 respectively o < 7, then a, R'a, respectively a, <’ a,.

We will often use (9) without mentioning it.

First some notations and conventions. We write o x A for o % (A) and o5 for
(ay) o For a sequence o, we define (o) inductively via: if o = ¢ * (m, 7,0")
or o = 0" x(m,o’), then y(o) = v(¢'), and (o) = o otherwise.

For B>C' € X\ay, the node a,,(p> ¢y is a node such that a, R'aq. (5> ¢y, and
B € asyprcy while C € o, (grcy- For (B = C) € X\a, the node aq.(p—c)
is a node for which a; <" agw(B-cy, and B € oy gy While C € agupcy
(Section 3.5).

For o R <* 7', the node «,, where a = o * (m,7,7'), is a node with the
following properties: ayR'aq, (aq)o = (ar)o and a, ' @, <" . Note that
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the existence of a, is guaranteed by Proposition 11, using (9). Observe that,
by Lemma 10, (o) o = (@) g implies aR' C ar R (R' = (R';X)).

For oRT <* 71,...,7Ts, the node a,, where a = 7 % (v,71,...,7,), is a node
such that a; <’ ay and~ Qg 18 aNtight predecessor of ar,,...,a,, for a,, that is:
oy %' ary .0, ar R Ca,R and for all x =" a,, a,, '« for some i. Note
that such a node exists by Corollary 12.

If o'(x;R)7, and o is either y(¢') or o' * (v,71,...,7,), the node a(m ) is a
node such that agR'epi(m,x) X' ar and (Qge(m,ry)o = mn. Note that such
nodes exist by Lemma 13, using the fact that o)y = 0.

We define properties i(-),p(-) and *(-),o(-),*(-) on respectively pairs of nodes
and formulas, and sequences of nodes:

i(o,B—=-C) (B=C)eX\ocA—-Jo'(c xc'ABed' AC ¢0o')
p(o,B>C) Br>C e X\oA-Jo'(cR*0c' A\Beo' ANC ¢ 0o')

x(o,7,7) oRT x* 7' Ay(T) £ (")
o(r,T1,...,Tn) Jo(CRT)AT*T1,...,Tn
Ko,0h1)  o(<eR)T A=(o! (RSN
(' =~() Vo' =0 x(m,...,7,), for some 7;).

Note that these properties can change during the construction. For example,
if YY" are two distinct sets of constructed nodes containing o,0’, 7, *(o,0',7)
can hold in Y but not in Y.

The construction of (W*, R, %) uses four subconstructions, £, 4, (, &, which we
will apply in a certain order. Every subconstruction consists of making an
extension of the frame constructed so far by constructing some new nodes. The
result, 5(Y’), of the application of § to a frame Y = (Wy, <y, Ry) results in
a frame (Ws(y), <s(v), Ra(v)). Similarly for 6, and . When we say that for
some nodes o, 7,7 in Y, x(o,7,7") does (not) hold in Y, we read <y for <, and
similarly for the other relations. Similarly for the other properties. Again, <y
is the transitive closure of <%, thus to define xy it suffices to define x§.. The
definitions of 3,4, (, & run as follows.

Wsyy = Wy,U{o*(B—C)|i(0,B— C)holdsinY}U
{o % (B>C) | p(0, B — C) holds in Y}

424(1/) = xV UW{(o,0%x(B—->C))|ox(B—=>C)¢Y}

Rsyy = RyU{(o,0%(B>C))|ox(B>C)¢Y}
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Wewy = WyU{ox(m,7,7') | x(o,7,7') holds in Y}
<II(Y) — 41{/ U

{(ryo % (m, 7, 7)), (6% (m, 7,7, 7") | o % (m,7,7') €Y}

Reyy = RyU{(o,0x(m,7,7") |ox(m,7,7) €Y

Weyy = WyU{r*(v,mi,...,7) [o(r,71,...,75) holds in Y}

Sevy = SyUl(nrx(o,m, ) (T (T, ), T) |
T* (U, T1,...,Tn) € Y,i <n}

Reyy = Ry

Wiy = WyU{o'*(m,7)|*(o,0',7) holds in Y}

5y = Sy Yo'« (m,7),7) [ o' x (m,T) gV}

Rg(y) = RY u {(OJ’UI * <m7T>) | o' * <m,7'> g Y}

Let k = ({B - C|(B - C) € X}|+1)-{OB|OB € X}|. We define an iterated
version of B(Y), B(Y), to be the frame (U, Wy, UL, <v:, U, Ry.), where
Yo =Y and Yy = B(Y5). It is easy to see that i(o, B — C) or p(o, B>C) can
never hold in 5(Y).

Now define frames Yy, Y1,... via: Yy = (Wy,, Sv,, Ry, ), where Wy, = {{}},
<v,= {((), ()} and Ry, is empty, and

Yon+1 = B(Yen) Yonts = B(Yont+2) Yonts = B(Yonta)
Yont2 = C(Yont+1) Yonta = E(Yont+3) Yonts = 0(Yonts)-

Let W* = |J, Wy;, and let < be the transitive closure of |J;, <y, and let
R = | Ry,. We show that (7) holds in W*: if oRT <* 7" and ~v(r) # (')
it is clear that there will be a node © = o * {(m,7,7') such that cR*z and
7"z <* 7 and z(x;R) C 7' R*. We show that also in the case that cRT <* 7/
but v(7) = v(7'), there exists such a node z, namely = 7. It suffices to show
that 7(x;R) C 7'R*. Therefore, assume 7(<;R)w. Thus, by construction,
(') = y(r)R*x. If o(r) = 7' this gives 7' R*m. If (') # 7', there exists
o' R7'. Because also 7'(5;R*), since 7' < ('), we can again conclude 7/ R*.
To see that (8) also holds, first observe that the construction is such that if
oRT X* 71,...,Tn, there exists a node * = 7 * (v, 71,...,7,) such that = g*
z <* 1, and 7(x;R) C zR*. Let Y, be the first V; in which z occurs. It is clear
that in Y, we have Yy >=* z(r; <* y), for some i. We show that this remains the
case during the construction. We show this by induction on Y,,. The case Y, is
done. The case (n > m). Assume z <* y holds in Y}, but not in Y,,_;. Without
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loss of generality assume that there is no x <* y' <* y. First, observe that the
construction is such that ¢’ R7" implies that 7' = o’ * D, for some D of the form
Br>C,(m,r, 7'y or (m,w). Therefore, there is no z’ with ' Rx. Hence x <* y
implies z < y. And since there is no z <* y' <*y, ¢ <" y. If Y, = B(Y_1),
this implies y = x * (B — C'). We show that this cannot be, by showing that
i(z, B = C) can never hold. It suffices to show that i(z, B — C') does not hold
in Y,,. Note that all 7; are already elements of some Y} with j < m. This implies
that i(r;, B — C') does not hold in Y;,. Consider (B — C) ¢ z. Either B € x
and C ¢ x, in which case i(xz, B — C) does not hold, or B ¢ z. In the last case,
B — C,B & a,. Since ay is a tight predecessor of a;,,...,a,, in the canonical
model, this implies that (B — C) ¢ a.,, for some i. Because i(7;, B — C) does
not hold in Y,,, this implies that there exists 7’ such that ; < 7’ and B € 7’
while C' ¢ 7'. Clearly, this implies that i(z, B — C) does not hold in Y,,,. Now
consider the case in which Y, = ((Y,—1). The fact that z <" y holds in Y,
but not in Y,_1, implies that x = 7 < ¢’ * (m, 7, 7'y = y. Hence o' Rz. But
we concluded before that there is no 2’ with 2’ Rz, a contradiction. In the case
that Y, = &(Y,—1), we have z < = % (v,7{,...,7;,,) = y. But this implies that
there exists ' with #’' Rz, contradicting our previous observation that there is
no ' with 2’ Rx. We leave the remaining case, Y, = 6(Y,—1), to the reader.
This completes the proof that (8) holds.

Since (7) and (8) hold, we can apply Lemma 15 to conclude that the frame
(W*, R*, %*) is a gathering Mp Vp-frame. To show that R* is conversely well-
founded, it suffices to show that

oR*7 implies |[{OB € X|OB ¢ 7}| < |{0B € X|0OB ¢ 7}|,
a proof which we leave to the reader. The valuation
olkp=.a,lFp, forpe X.

(see Subsection 3.5) makes the frame into a model on which A is not valid,
which completes the proof. QED

10 Admissible rules of preservativity logic

In this section we treat two admissible rules of iPH. If iPH would be the preser-
vativity logic of HA it should certainly satisfy the

Reflection Rule 0OA/A,

as (the arithmetical version of) 0OA/A is an admissible rule of HA. The next
lemma shows that this is indeed the case.

Proposition 17 The Reflection Rule holds: if -;py OA then Fpy A.
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Proof We transform a model M = (W, %, R,V) for iPH in which A is refuted
to a model M’ for iPH in which OA is refuted. We can assume that A is not
valid in the root w of M. The first idea would be to extend the model in such
a way that w' Rw for some new node w'. However, this is not always possible.
Namely, it can be the case that wRv but not w < v, for some node v. If we add
w' Rw then we should also require w < v since we have to construct a gathering
model. Therefore, we cannot guarantee that w forces the same formulas in both
models. To overcome this problem we extend M in such a way that w’' Rw"” < w
for some new nodes w’, w".

We do not spell out the construction but only sketch the idea. We start with
W U {w',w"} and require w' Rw"” < w. Then in every even step we add, in the
notation of Theorem 16, nodes v * (m, u,u'), v *x (m,u) and v * (v,u,...,uy) if
respectively x(v,u,u’), *(v',v,u) or o(v,uy,...,u,) holds. It is not difficult to
see that we will end up with a conversely well-founded, gathering Mp Vp-frame,
and that for all nodes v which are not in M, there is no u in M such that u < v.
Therefore, we can extend the valuation of M to nodes in M’ by not forcing any
propositional variable in a new node. Nodes in M force the same formulas in
both models. Hence w' |} OA. QED

It has been shown in [2] that if a c.e. extension of HA has the Disjunction
Property then so does its provability logic. We have the following.

Proposition 18 The logic iPH has the Disjunction Property.

Proof Using the completeness result for iPH, Theorem 16, this is straightfor-
ward. QED

Recall that for all arithmetical realization *, HA proves A*>B* for all its propo-
sitional admissible rules A/B (see the Introduction). Hence for propositional
formulas A, B,

(DA - OB)/A>B

is an admissible rule of the preservativity logic of HA. This rule does no longer
hold when A, B range over arithmetical formulae. Consider for example the
Rosser sentence R. Since, in HA, (OR — O.Ll) is derivable, this rule would
imply R>L. Thus by the definition of preservativity and the fact that R is a
¥ -formula, O(R — 1) is derivable, quod non. However, (0A — OB)/A>B
is an admissible rule of iPH as the next lemma shows. Note that this is not in
conflict with the possibility of iPH being the preservativity logic of HA.

Theorem 19 +;py A>B iff Fpy (0A — OB).

Proof It suffices to show the following. For any model M with root w for which
there is a node wRv such that v IF A and v If B, there is a submodel M’ such
that nodes in M above v force the same formulas in both models, and such that
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all nodes in M are either equal to w of above v. Hence w' If OB and w IF OA.
The proof is left to the reader. QED

11 Conclusions

In this paper we have given a summary of what, to the authors knowledge, is
known so far about the provability and preservativity logic of HA, and we have
presented some of our own results on this topic. In Section 2 we introduce a
modal logic iPH the main principles of which were first presented in [10]. The
logic iPH is conjectured to be the preservativity logic of HA. We have shown
that this modal logic is complete with respect to a certain well-behaved class of
frames. In the last section we have used this result to show that iPH has the
Reflection and Disjunction property, properties that hold for the preservativity
logic of HA (therefore, a logic that does not have these properties cannot be the
preservativity logic of HA).

A lot of open questions remain. We end this paper with the most important
ones: Is iPH the preservativity logic of HA? Is there a better modal completeness
result for iPH, i.e. is there a class of frames or models with respect to which iPH
is complete and which frames are easier to handle than gathering conversely
well-founded Mp Vp-frames? What is the provability logic of HA? Let iH be the
logic consisting of all formulas in the language of provability logic that are valid
in iPH (thus iPH is conservative w.r.t. these formulas over iH). Does there exist
a simple axiomatization of iH?
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