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Abstract

This paper is a sequel to the papers [4, 6] in which an alternative skolem-
ization method called ekolemization was introduced that, when applied to
the strong existential quantifiers in a formula, is sound and complete for
constructive theories. Based on that method an analogue of Herbrand’s
theorem was proved to hold as well. In this paper we extend the method
to universal quantifiers and show that for theories satisfying the witness
property the method is sound and complete for all formulas. We prove
a Herbrand theorem and, as an example, apply the method to several
constructive theories. We show that for the theories with a decidable
quantifier-free fragment, also the strong existential quantifier fragment is
decidable.

Keywords: Skolemization, eskolemization, Herbrand’s theorem, constructive theories,

intuitionistic logic, decidability.

1 Introduction

Skolemization occurs at many places in mathematics and computer science. In-
deed, proofs of universal statements that start with the sentence “Let c be an
arbitrary element” implicitly use that proving ∀xAx is the same as proving
Ac for an arbitrary element c. In computer science skolemization is a pow-
erful method when used in combination with Herbrand’s theorem. Together
they provide a correspondence between predicate and propositional logic, and
in this way they are useful in, for example, automated theorem proving, or the
investigation of the decidability or the length of proofs of a theory.
Skolemization seems to be a method that is particularly useful in a classical
setting, since for many nonclassical theories the method is no longer complete,
although it is sound in many cases. That is, for As being the skolemization of
A, we often have

` A ⇒ ` As,

but not
` As ⇒ ` A.

∗University Utrecht, The Netherlands, Rosalie.Iemhoff@phil.uu.nl

1



This, of course, does not exclude the possibility that there are other ways to
replace the strong quantifiers in a formula and obtain an equiderivable formula
in which all quantifiers are weak. In this paper we present such a method.
The failure of skolemization in nonclassical theories is not related to the fact
that in classical logic skolemization is applied to prenex formulas, while in many
nonclassical theories formulas do not have such an equivalent form. For this
problem can be overcome by skolemizing on the spot: instead of first putting
a formula in prenex normal form, one directly skolemizes the strong quantifiers
in the formula, that is, the positive occurrences of universal quantifiers and the
negative occurrences of existential quantifiers. For classical theories, also this
generalization of skolemization is sound and complete, but for many nonclassical
theories it still is not.
In [4] an alternative skolemization method called eskolemization has been in-
troduced that for existential quantifiers is sound and complete with respect to
intuitionistic existence logic IQCE, which is intuitionistic logic IQC extended
by an existence predicate E (the e in the name of the method refers to that).
This translation replaces strong existential quantifiers ∃xAx by Ec ∧ Ac, and
strong universal quantifiers ∀xAx by Ec → Ac, where c is a fresh constant not
occurring in A. If the strong quantifiers occur in the scope of weak quantifiers,
functions instead of constants are used, in the same way as in skolemization.
This method is sound for intuitionistic existence logic, and in [4] it has been
shown that for strong existential quantifiers it is also complete:

`IQCE A ⇔ `IQCE A∃,

where A∃ denotes the result of eskolemizing only the strong existential quanti-
fiers in A. Since for formulas A not containing E we also have

`IQC A ⇔ `IQCE A,

this method can be viewed as an alternative skolemization method for pure
intuitionistic logic as well, since it implies

`IQC A ⇔ `IQCE A∃.

That eskolemization is not complete for all formulas follows from the fact that

6`IQCE ∀x¬¬Ax → ¬¬∀xAx `IQCE ∀x¬¬Ax → ¬¬(Ec → Ac),

as ∀x¬¬Ax → ¬¬(Ec → Ac) is the eskolemization of ∀x¬¬Ax → ¬¬∀xAx.
In a later paper [5] the same authors presented another method to remove
strong quantifiers from formulas, and showed that it is sound and complete
for constructive theories in the same way as eskolemization is, but then for
all formulas. Under this translation, (·)o, strong quantifiers are replaced by
expressions that besides the existence predicate contain an order relation as well.
The method, called orderization, is sound and complete for the corresponding
logic IQCO, which is intuitionistic existence logic extended by an order relation:

`IQCO A ⇔ `IQCO Ao.
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Since also for this logic derivability in IQC equals derivability in IQCO, at least
for formulas not containing the new symbols, orderization could be viewed as
an alternative skolemization method for IQC that applies to all formulas:

`IQC A ⇔ `IQCO Ao.

It follows easily that these results also apply to theories over these logics.
In this paper we return to the eskolemization method and try to see in how far
it can be applied in full. We introduce a property, the witness property, which
implies the completeness of eskolemization, not only when applied to existential
quantifiers, but also when applied to universal ones. That is, for theories T
satisfying the witness property, we show that for all formulas A:

T `IQC A ⇔ T `IQCE A ⇔ T `IQCE Ae,

where Ae denotes the eskolemization of A. We connect the result with an a
analogue of the Herbrand theorem for universal constructive theories, and show
that there exists a propositional formula A′, which is the result of replacing the
weak quantifiers by term instantiations, such that

T `IQC A ⇔ T `IQCE Ae ⇔ T `IQCE A′.

Thus, like for classical logic, we obtain a correspondence between a constructive
theory and its propositional fragment. At the end of the paper we apply the
results to several theories, and obtain the above equivalences for theories such
as, for example, the theory of equality, monadic predicates, apartness, and linear
orders. Using a theorem by Craig Smoryński, we conclude that for the function-
free versions with decidable predicates of the first two theories, the fragment in
which all quantifiers are strong existential, is decidable.
There are other answers to the failure of skolemization in nonclassical settings.
Especially for modal logic, intuitionistic logic, and other fuzzy logics, several
results have been obtained. In modal logic analogues of skolemization and
Herbrand’s theorem are presented in [12]. As in eskolemization, the language
is extended and, using this extra expressive power, a method to remove strong
quantifiers from formulas is introduced that is sound and complete and allows
for a Herbrand-like theorem.
In the context of fuzzy logics, one of the first questions that was addressed is for
which fragments skolemization is complete, and whether there is a corresponding
Herbrand theorem. For intuitionistic logic a large class of formulas belongs to
this fragment, and satisfies a Herbrand theorem [15, 16, 17]. For Gödel logic it
is proved in [1, 2, 10] that this fragment at least contains all formulas in prenex
normal form, and that also the Herbrand theorem holds for prenex formulas.
As is shown in [8], Gödel logic is in fact the only fuzzy logic with a Herbrand
theorem for its prenex fragment. For fuzzy logics for which even that does
not hold, there is the notion of approximate Herbrand theorem that could be
used instead. This approach first occurred in [20], for  Lukasiewicz logic, and
has recently been extended to other fuzzy logics based on continuous t-norms,
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such as Basic logic and Product logic [9]. Thus the search for alternatives to
skolemization and Herbrand theorems continues, and who knows what surprising
new solutions the future has in store for us.
The paper is build up as follows. In Section 2 we introduce sequent calculi LJE
and LJEL for existence logic, and in Section 3 we discuss theories over this logic
and state a cut-elimination theorem. In Section 4 we recall the Kripke semantics
for existence logic. In Section 5 we introduce the eskolemization method, which
in Section 6 is shown to be sound and complete for theories over existence
logic. In Section 6.3 we discuss the implications of these results for questions
of decidability, and in Section 7 we prove the Herbrand theorems. The paper
finishes with Section 8, in which we apply the results to several constructive
theories.
I thank Matthias Baaz and Norbert Preining for pleasant and interesting dis-
cussions during a much enjoyed visit to Vienna.

2 The proof system

We work with two languages, L and Le. L can be any language for predicate
logic not containing E, that contains at least one constant. Le can be any lan-
guage for predicate logic that contains L and a unary predicate E, the existence
predicate, and, for every arity, infinitely many functions of that arity. Unless
explicitly stated otherwise, formulas and theories are in Le, where it is assumed
that there are always infinitely many functions of every arity that do not occur
in the axioms of a theory, so that we have enough functions to use as skolem
functions. As we will see in the definition of the proof system and the seman-
tics, given the existence predicate, terms, including variables, typically range
over existing as well as non-existing objects, while the quantifiers range over
existing objects only.
Sequents are expressions of the form Γ ⇒ ∆, where Γ and ∆ range over finite sets
of formulas. The interpretation I(Γ ⇒ ∆) of a sequent Γ ⇒ ∆ is

∧
Γ →

∨
∆.

Positive and negative occurrences of formulas in sequents are inductively defined
as follows. Given a sequent S = (Γ ⇒ ∆), all formulas in ∆ occur positively in
S, and all formulas in Γ occur negatively in S. If A∧B, A∨B, ∀xAx or ∃xAx
occurs positively (negatively) in S, then A occurs positively (negatively) in S. If
A → B occurs positively (negatively) is S, then B occurs positively (negatively)
in S and A occurs negatively (positively) in S. The strong quantifiers in a
sequent are the positive occurrences of universal quantifiers and the negative
occurrences of existential quantifiers. The weak quantifiers are the quantifiers
that are not strong.

2.1 The calculus LJE

In this section we define the sequent calculus LJE, an analogue of LJ that includes
the existence predicate E and formalizes the intuition that Et means t exists. A
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single-succedent version of the calculus has been introduced in [3]. The system
has no rules for weakening and contraction, which, however, are admissible. A
proof system for existence logic was first introduced by Scott in [21], but then
in a Hilbert style formulation.

Ax Γ, P ⇒ P, ∆ (P atomic) L⊥ Γ,⊥ ⇒ ∆

Γ, A, B ⇒ ∆
L∧ Γ, A ∧B ⇒ ∆

Γ ⇒ A, ∆ Γ ⇒ B, ∆
R∧ Γ ⇒ A ∧B, ∆

Γ, A ⇒ ∆ Γ, B ⇒ ∆
L∨ Γ, A ∨B ⇒ ∆

Γ ⇒ A,B, ∆
R∨ Γ ⇒ A ∨B, ∆

Γ, A → B ⇒ A, ∆ Γ, B ⇒ ∆
L→ Γ, A → B ⇒ ∆

Γ, A ⇒ B
R→ Γ ⇒ A → B, ∆

Γ,∀xAx,At ⇒ ∆ Γ,∀xAx ⇒ Et, ∆
L∀ Γ,∀xAx ⇒ ∆

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y], ∆

Γ, Ay,Ey ⇒ ∆
L∃ ∗

Γ,∃xA[x/y] ⇒ ∆
Γ ⇒ At,∃xAx, ∆ Γ ⇒ Et,∃xAx, ∆

R∃ Γ ⇒ ∃xAx, ∆

Γ ⇒ A, ∆ Γ, A ⇒ ∆
Cut Γ ⇒ ∆

Here (∗) denotes the condition that y does not occur free in Γ and ∆.
We let LJEex and LJdec be, respectively, the systems LJE and LJ extended by
the following rules, where P ranges over atomic formulas different from E:

Γ, P ⇒ ∆
Γ ⇒ ¬P, ∆

Γ ⇒ P, ∆
Γ,¬P ⇒ ∆

The reason for using “ex” in the context of LJE and “dec” in the context of LJ
is that via the superscript we want to express whether we are in existence logic
or in regular logic, the “ex” standing for both ex istence and excluded middle,
and the “dec” obviously standing for decidability (of atomic formulas).

2.2 The calculus LJEL

In the calculus LJE no existence of any term is assumed. This implies, for
example, that one cannot derive ⇒ ∃xEx, or ∀xPx ⇒ Pt, although one can
derive ∀xPx,Et ⇒ Pt. This, of course, is undesirable, but as we will see, it
is crucial in eskolemization that not all terms do exist, that is, that not for all
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terms t, Et is derivable. This is the reason for working with two languages: all
terms of the language L exist, while the terms in Le\L do not. That is, we add
the following set of axioms to LJE:

AxL ≡def {Γ ⇒ Et, ∆ | t is a closed term in L and Γ and ∆ are multisets}.

LJEL is LJE extended by AxL, and LJEex
L is defined similarly. We write `, `ex,

`LJ, and `dec for derivability in respectively LJEL, LJEex
L , LJ and LJdec.

Recall that L contains at least one constant. Therefore AxL contains at least
one sequent. We therefore have

`⇒ ∃xEx ∧ ∀xEx.

In [3] single-succedent versions of LJE and LJEL have been introduced that
satisfy a similar kind of cut-elimination as LJE and LJEL, Theorem 1. Also,
these systems are well-behaved in the sense that they have interpolation and
the Beth property, and a decidable quantifier-free fragment, and thus so have
LJE and LJEL.

3 Theories

The theories we consider are in Le and defined over the logic LJEL, unless
explicitly stated otherwise. If a theory is said to be in L we consider it as
a theory over LJ. We assume that every theory is axiomatized over one of
the logics by a set of sequents, that is, the theories do not contain additional
rules. Since every theory is equivalent to such a theory, this does not exclude
any theories, but just facilitates the arguments below. All theories that we
will consider are closed in the sense that the free variables in the axioms are
considered to be universally quantified, or equivalently, that we may substitute
any term for them. Of course, in the context of LJ these terms belong to L,
while in the context of LJE they belong to Le and have to exist, as quantifiers
range over existing objects only. This implies that we have to change the axioms
slightly if we consider a theory over LJ as a theory over LJE. We explain how.
The axioms of T that are not part of the underlying logic are the non-logical
axioms of T . Given a theory in L, T dec is the theory in which the logic LJ is
replaced by LJdec, and T e is the result of replacing the logic LJ by LJEL, and
the non-logical axioms Γ ⇒ ∆ of T by Ex̄, Γ ⇒ ∆, where x̄ are all the free
variables in Γ ⇒ ∆. If we replace LJ by LJEex

L instead of LJEL, we call the
resulting theory T ex. Note that hence T e `ex equals T ex `.
Thus under these conventions, in going from T to T e or T ex, an axiom of the
form ⇒ Bx is replaced by Ex ⇒ Bx, and stands for ⇒ ∀xBx. This is the
reason for adding Ex̄ to the antecedents of the axioms: the quantifier ∀ ranges
over existing objects, and if we did not add Ex̄, we could derive Bt also for
terms t that do not exist.
A theory is atomic if it is axiomatized by sequents in which only atomic formulas
occur. A strong quantifier theory is axiomatized by sequents without weak
quantifiers.
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It is easy to see that the following lemma holds.

Lemma 1 [3] If a theory T and a closed sequent S are in L, then

T `LJ S if and only if T e ` S T `dec S if and only if T e `ex S.

3.1 Fragments

The L-fragment is the set of sequents that are in L. The quantifier-free fragment
of a theory consists of all quantifier-free sequents in the language of the theory.
In the strong quantifier fragment (sq) the sequents do not contain weak quan-
tifiers. In the strong existential weak quantifier fragment (sewq) the sequents
do not contain strong universal quantifiers. The strong existential quantifier
fragment (seq) is the intersection of the sq and the sewq fragment. In the no
nesting of strong quantifiers in the scope of weak quantifiers fragment (nnswq)
the sequents do not contain strong quantifiers that are in the scope of weak
quantifiers.

3.2 Cut-elimination

The cut-hull of a theory is the set of all sequents that have a derivation in T in
which all inferences are cuts or axioms of T (including the axioms of LJEL). It
is not difficult to prove the following theorem, but we do not need it in what
follows, and therefore state it without proof.

Theorem 1 For every atomic theory T , every sequent derivable in T has a
proof in T in which the conclusion of every cut belongs to the cut-hull of T .

4 Models

The completeness proof below is of a semantical nature and makes use of Kripke
models for the logic LJEL. In this section we describe these models, which are
very close to regular Kripke models. The only difference lies in the definition of
the forcing of quantifiers, that in this case uses the existence predicate. Because
of the existence predicate, we can without loss of generality assume that the
models have constant domains: since quantifiers are assumed to range over
existing objects, k 
 Ed will replace d ∈ Dk.
A classical existence model is a classical model for Le defined in the usual
way, with the additional requirement that the interpretation of the existence
predicate is nonempty. To fix notation we spell out the definition. The model
consists of a pair (D, I), where D is a set and I a map on Le such that

I(E) is a nonempty unary predicate on D,

for every n-ary predicate P in Le, I(P ) is an n-ary predicate on D,
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for every n-ary function f in Le, I(f) is an n-ary function from Dn to D
(constants are 0-ary functions).

I is extended to the interpretation of formulas in the standard way. For terms
ti, I(t1, . . . , tn) is short for I(t1), . . . , I(tn). d̄ ∈ D means that di ∈ D for all di

in the sequence d̄.
A Kripke existence model is a quadruple K = (W,4, D, I), where (W,4) is a
rooted frame, D a nonempty set, the domain, and I a collection {Ik | k ∈ W},
such that the (D, Ik) are classical existence models satisfying the persistency
requirements, which means that for terms t̄(x̄) and elements d̄ ∈ D:

k 4 l ⇒
(
(D, Ik) |= P (t̄(d̄)) ⇒ (D, Il) |= P (t̄(d̄))

)
,

k 4 l ⇒ Ik(t̄(d̄)) = Il(t̄(d̄)).

In particular, Ik(t) = Il(t) for all closed terms t, since frames are rooted.
Given a Kripke existence model K = (W,4, D, I), the existence forcing relation
is defined as follows. For predicates P (t̄(x̄)) in Le (including E), where x̄ are
the free variables in the terms t̄, we define for d̄ ∈ D:

K, k 
 P (t̄(d̄)) ≡def (D, Ik) |= P (t̄(d̄)).

We extend 
 in the usual way for connectives, but differently for the quantifiers:

k 6
 ⊥
k 
 A ∧B ⇔ k 
 A and k 
 B
k 
 A ∨B ⇔ k 
 A or k 
 B
k 
 A → B ⇔ ∀l < k : l 
 A implies l 
 B
k 
 ∃xA(x) ⇔ ∃d ∈ D k 
 Ed ∧A(d)
k 
 ∀xA(x) ⇔ ∀d ∈ D : k 
 Ed → A(d).

Note that
k 
 ∀xA(x) ⇔ ∀l < k∀d ∈ D l 
 Ed → Ad.

A formula A(x̄) is forced in K, K 
 A(x̄), if for all ā ∈ D, A(ā) is forced at all
nodes. A sequent Γ ⇒ ∆ is forced, when

∧
Γ →

∨
∆ is. K is an L-model when

it forces all sequents in AxL.
K is a tree if its frame is a tree. It is a well-founded if its frame has no infi-
nite descending chains, and conversely well-founded if its frame has no infinite
ascending chains. Finite models are obviously conversely well-founded and well-
founded.

Theorem 2 [4] For all theories T and all closed sequents S: T ` S if and only
if K 
 S for all L-models K based on frames that are well-founded trees that
force T .

Since T ex can be viewed as a theory over LJE containing the axioms⇒ ∀x̄(P (x̄)∨
¬P (x̄)), for all atomic formulas P (x̄), the previous theorem implies the following
theorem.
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Theorem 3 For all theories T and all closed sequents S: T `ex S if and only
if K 
 S for all L-models K based on frames that are well-founded trees that
force T ex.

4.1 Correspondence

There is a natural correspondence between Kripke models K in the usual sense,
for L, and Kripke existence model Ke for Le. K and Ke only differ in their
domains and the language of which they are a model: if the Dk are the domains
of K, then the domain of Ke is

⋃
Dk, and Ke is a model for Le, while K is a

model for L. The existence predicate and the domains of K are connected in
the following way:

Ke, k 
 Ed ⇔ d ∈ Dk.

The interpretation of K is extended to Le by interpreting all functions in Le\L
as the identity, and all predicates in Le\L, except E, as empty. The following
lemma is easy to prove.

Lemma 2 For all closed sequents S in L: K, k 
 S ⇔ Ke, k 
 S.

Proof It suffices to show by induction that K, k 
 Γ ⇒ ∆ if and only if
Ke, k 
 Et̄, Γ ⇒ ∆, where t̄ are all terms that occur in Γ ⇒ ∆. ♥
A similar correspondence between Kripke models with and without constant
domains can be found in the paper [13] by Dick de Jongh.

4.2 The witness property

In this section we introduce a property of models such that for any theory which
models satisfy that property, eskolemization is sound and complete.
Given a formula Ax, an existence Kripke model has the A-witness property if it
is a well-founded tree and the following holds:

k 6
 ∀xAx ⇒
∃d∃l < k

(
l 6
 Ad and l 
 Ed ∧ (Ad → ∀xAx)

)
.

If the model satisfies this property for all formulas A it has the witness property.
A theory has the (A-)witness property if it is sound and complete with respect
to a class of models that satisfy the (A-)witness property.
The name of the property corresponds to the fact that Ad functions as a witness
of ∀xAx along any branch through l: Ed → Ad is forced exactly where ∀xAx is
forced. The well-foundedness implies that there is a witness of formulas of the
form ∃xAx too: if it is forced along a branch there is a lowest node where it is
forced, say that Ed∧Ad is forced there. Then along the branch ∃xAx is forced
exactly where Ed ∧Ad is forced.
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The following model is an example of a model of the A-witness property:

k2 
 Ed ∧Ad ∧ ∀xAx k3 
 Ed ∧ ¬Ad ∧ ¬∀xAx

k1 
 Ed ∧ (Ad → ∀xAx)

jjUUUUUUUUUUUUUUUUU

44hhhhhhhhhhhhhhhhhh

k0 6
 ∀xAx

OO

The following two models are typical examples of models that do not satisfy the
A-witness property. They have domain {d0, d1, . . . }, and Edi is forced at all
nodes. In the left model ¬∀xA(x) is forced, and in the right model ¬¬∀xA(x).
We write A(di) at the first node where it is forced.

...

k2 
 A(d1)

OO

k1 
 A(d0)

OO

k0

OO

k 
 ∀xA(x)

...

OO

k2 
 A(d1)

OO

k1 
 A(d0)

OO

k0

OO

In the introduction we saw that the double negation shift ,

∀x¬¬Ax ⇒ ¬¬∀xAx,

is a counter example to the completeness of eskolemization, since it is not deriv-
able in intuitionistic existence logic while its eskolemized version,

∀x¬¬Ax ⇒ ¬¬(Ec → Ac),

clearly is. Since, as we will see, eskolemization is complete for theories with the
witness property, it follows that such theories should prove the double negation
shift, which indeed they do:

Lemma 3 Every theory with the witness property derives the double negation
shift.
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Proof It suffices to show that every model K satisfying the witness property is
a model of the double negation shift. We therefore assume that k in K forces
∀x¬¬Ax, and show that for all l < k there exists a node m < l that forces
∀xAx. Let l < k. If l forces ∀xAx we are done. Therefore assume it does
not. By the witness property there exists a node m < l that, for some d, forces
Ed∧(Ad → ∀xAx) and not Ad. Since k forces ∀x¬¬Ax, it follows that m forces
¬¬Ad, and whence also ¬¬∀xAx. Thus there is a node above m, and whence
above l, that forces ∀xAx, which is what we had to show. ♥
That the converse of this lemma does not hold is illustrated by the right most
model above, which, if considered as a model for the language which only pred-
icates are E and A, is a model of the double negation shift, but does not satisfy
the witness property. Since intuitionistic logic does not derive the double nega-
tion shift, it does not have the witness property. We do, however, have the
following.

Lemma 4 Every tree model that is well-founded and conversely well-founded
has the witness property. In particular every finite model does. Thus theories
with the finite model property satisfy the witness property.

5 Eskolemization

In this section we recall the eskolemization procedure introduced in [4]. The
first strong quantifier in A is the first strong quantifier occurrence in A when
reading A from left to right. Q denotes either ∀ or ∃.
The eskolem sequence of a formula A is a sequence of formulas A = A1, . . . , An =
Ae such that An does not contain any strong quantifiers and Ai+1 is the result
of replacing the first strong quantifier QxB(x) in Ai by

Ef(y1, . . . , yn) → B
(
f(y1, . . . , yn)

)
if Q = ∀

and by
Ef(y1, . . . , yn) ∧B

(
f(y1, . . . , yn)

)
if Q = ∃,

where f ∈ Le\L does not occur in Ai, and the weak quantifiers in the scope of
which QxB(x) occurs are exactly Qy1, . . . , Qyn. If we work in the context of
a theory T , it is also assumed that the skolem functions f do not occur in the
axioms of T . The notion is extended to sequents in the straightforward way: if
S = (Γ ⇒ ∆) and

(
I(Γ ⇒ ∆)

)e = I(Γ′ ⇒ ∆′), then Se ≡def (Γ′ ⇒ ∆′). This
transformation (·)e on formulas and sequents is called existence skolemization,
or eskolemization for short.
Note that if QxB(x) is not in the scope of weak quantifiers, then f is a constant.
Also note that in eskolemization occurrences of formulas are replaced rather
than formulas. For example, if S is the sequent ∃xBx ∧ ∃xBx ⇒ , then Se is
Ec ∧ Bc ∧ Ed ∧ Bd ⇒ and not Ec ∧ Bc ∧ Ec ∧ Bc ⇒ . Note that given S, Se

is unique up to renaming of the skolem functions. Therefore we speak of the
eskolemization of a sequent.
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Observe that classical skolemization is existence skolemization without the ex-
istence predicate, that is, without “Ef(y1, . . . , yn) →” and “Ef(y1, . . . , yn)∧”.
Clearly, `LJE A ⇒ Ae. Hence also

` S ⇒ ` Se.

Here follow some examples of eskolemization, where P and Q are unary predi-
cates, and c, d, and f belong to Le\L:

S = ∃xPx ⇒ ∀xQx Se = Ec ∧ Pc ⇒ Ed → Qd

S = ∀x∃yR(x, y) ⇒ Se = ∀x(Efx ∧R(x, fx)) ⇒

Using the completeness result in [4] it can be shown that

6` ∀x(Ax ∨B) ⇒ (∀xAx ∨B) 6` ∀x(Ax ∨B) ⇒ ((Ec → Ac) ∨B)
6` ¬¬∃xAx → ∃x¬¬Ax 6` ¬¬(Ec → Ac) → ∃x¬¬Ax.

Thus although these sequents are counterexamples to the completeness of skolem-
ization, since IQC derives ∀x(Ax ∨B) ⇒ (Ac ∨B) and ¬¬Ac → ∃x¬¬Ax, they
are no longer so for eskolemization. That eskolemization is still not complete
with respect to all formulas is illustrated by the double negation shift, which
was discussed in the section on the witness property. As mentioned in the intro-
duction, in [5] an alternative skolemization method has been developed which
applies to all constructive theories, and therefore covers more theories than the
ones discussed in this paper.

6 Completeness

In this section we prove the completeness of eskolemization with respect to theo-
ries that satisfy the witness property. The theorem follows from the two lemma’s
below, Lemma 5 and 6, which treat the existential and universal quantifier sep-
arately. They say that for S′ being the result of replacing a strong existential
quantifier ∃xA(x) is S by Ef(ȳ)∧Af(ȳ), or a strong universal quantifier ∀xA(x)
by Ef(ȳ) → Af(ȳ), it holds that

T ` S ⇔ T ` S′. (1)

Lemma 5, treating the existential quantifier, has been proved before, first via
semantics [4], then via proof theory [6]. Here we present a somewhat different
semantical proof, because in this form it resembles the universal case. Also,
the proof for the existential quantifier is simpler, and might help the reader to
understand the proof for the universal quantifier better.
We first sketch the idea of the proof before we proceed with the technical details.
The direction from left to right of (1) is straightforward. For the other direction
we assume that f is a constant c, the general case will be treated in the proofs
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and is similar. We consider a countermodel K to S, and from this construct
a countermodel K ′ to S′. K ′ has the same nodes as K and its domain D′

consists of all closed terms in D ∪ Le, where D is the domain of K. Terms
are interpreted as themselves in K ′. To make K ′ into a countermodel to S′ we
define the forcing in K ′ in such a way that Ec ∧ Ac is forced in K ′ at exactly
those nodes where ∃xAx is forced in K, or, in the universal case, Ec → Ac is
forced in K ′ at exactly those nodes where ∀xAx is forced in K. If the forcing
of other formulas remains unchanged in going from K to K ′, K ′ will indeed be
a countermodel to S′.
Thus it suffices to show how to define the forcing in K ′ such that the properties
above are satisfied. For this we introduce for every node k an element ck in
D ∪ {c}, which will correspond to c in the forcing at k in K ′. In the case of
the existential quantifier we consider the lowest nodes k where ∃xA(x) is forced,
and pick an element e ∈ D such that Ee ∧ A(e) is forced at k, and put cl = e
for all nodes l < k. In the case of the universal quantifier we consider the lowest
nodes k where, for some e ∈ D, Ae is not forced while Ee and (Ae → ∀xAx)
are, and put cl = e for all nodes l < k. In both cases, for all nodes l not yet
treated, we put cl = c. Note that in the latter case cl 6∈ D, while in the former
case cl ∈ D. That such nodes k and elements e exist follows from the fact that
we will deal with models that satisfy the witness property.
When we treat all branches in this way, we have defined ck for all k in K. Given
a term d in D ∪ Le, dk denotes the term in which c is replaced by ck, and d̄k is
short for (d1)k, . . . , (dn)k. The forcing of atomic formulas on elements in D′ is
defined as follows.

∀d̄ ∈ D′ :
{

K ′, k 
 P (d̄) ⇔ K, k 
 P (d̄k) if d̄k ∈ D
K ′, k 6
 P (d̄) otherwise.

Thus at the nodes where ck = c, all atomic formulas containing c are not forced
at that node. At the other nodes, the forcing is inherited from K, where c is
replaced by ck. It will be shown in the completeness proofs that c has the desired
properties: Ec ∧ A(c), or Ec → A(c), is forced in K ′ exactly where ∃xA(x), or
∀xA(x), is forced in K.
In the case we deal with an n-ary skolem function f instead of a constant, we
have to choose elements corresponding to f(d̄), at every node in the model and
for all d̄ ∈ D′. We therefore construct a map w : W × (D′)n → D′, where W is
the set of nodes of the model, and let f(d̄) correspond to w〈k, d̄〉 in the forcing
at k in K ′. Thus w〈k, d̄〉 replaces ck. This completes the sketch of the proof.
We continue with the technical details.

6.1 Companions

Since the construction of the model K ′ given an n-ary function f , a model K,
and a map w : W × (D′)n → D′, is similar in the case of the existential and
the universal quantifier, we treat this construction separately in this section.
The set of closed terms in (D ∪Le)\{f} is denoted by C. The model K ′ we are
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going to define is called the f-companion of K. In the completeness proof we
will construct w is such a way that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉. (2)

The domain D′ of K ′ is the set of closed terms in D ∪ Le, and its frame is the
frame of K. In K ′, terms are interpreted as themselves. To define the forcing of
atomic formulas we inductively define the following translation dk on D′, where
k ∈ W :

dk =


d if d ∈ D
Ik(d) if d is a constant in Le

Ik(g(ēk)) if d = g(ē), ēk ∈ C, and g 6= f
w〈k, ēk〉 if d = f(ē) and ēk ∈ C
f(c̄) if d = g(ē) for some g ∈ Le, and ēk 6∈ C.

Here c̄ denotes some fixed sequence of n elements in D′. Recall that d̄k denotes
(d1)k, . . . , (dn)k. Observe that if d does not contain f , dk ∈ C. The forcing of
atomic formulas P (x̄), including E, is defined in the following way.

∀d̄ ∈ D′ :
{

K ′, k 
 P (d̄) ⇔ K, k 
 P (d̄k) if d̄k ∈ C
K ′, k 6
 P (d̄) otherwise.

The upwards persistency requirement for atomic formulas, and whence for all
formulas, is satisfied, because (2) implies

k 4 l ∧ dk ∈ C ⇒ dk = dl, (3)

That the upwards persistency requirement is also satisfied for terms follows from
the fact that terms are interpreted as themselves in K ′. Also note that

K ′, k 
 Ed ⇔ dk ∈ C ∧K, k 
 Edk. (4)

This model K ′, the f -companion of K, is the main ingredient in the following
two lemma’s, which together form the completeness proof.

6.2 The completeness proof

Lemma 5 If T is a theory and S a closed sequent, ∃xAx is an occurrence of a
strong existential quantifier in S, and S′ is the result of replacing this occurrence
by Ef(ȳ) ∧ Af(ȳ), where ȳ are the variables of all the weak quantifiers in the
scope of which ∃xAx occurs, and f ∈ Le\L does not occur in S, then

T ` S ⇔ T ` S′.

Proof The only non trivial part is to show that T 6` S implies T 6` S′. Since
this is a semantical proof, it is more convenient to consider sentences rather
than sequents. Therefore let C = I(S), and C ′ = I(S′), and suppose there is
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an L-model K of T that refutes C. By Theorem 2 we can assume that K is
a well-founded tree. We will define a map w : W × (D′)n → D′ such that the
corresponding f -companion K ′ refutes C ′. We assume that ȳ consists of one
variable, the general case being similar. Thus A = A(x, y). The set of closed
terms in (D ∪ Le)\{f} is denoted by C.
w will be defined in stages, wi : W ×D′

i → D′, where D′
i are the terms of depth

i in D′, and w =
⋃

wi, that is, for d ∈ D′
i, w〈k, d〉 = wi〈k, d〉. For d ∈ D′

i, we
define di

k as in the definition of the f -companion, but then relativized to the wi:
for d a constant in D ∪ Le,

d0
k =

{
d if d ∈ D
Ik(d) if d is a constant in Le,

and given wi and d ∈ D′
i+1, di+1

k is defined as follows, where d̄j
k is short for

(d1)j
k, . . . , (dn)j

k:

di+1
k =

 Ik(g(ēi
k)) if d = g(ē), ēi

k ∈ C, and g 6= f
wi〈k, e〉 if d = f(e) and ei

k ∈ C
f(a) if d = g(ē) for some g ∈ Le, and ēi

k 6∈ C

Here a denotes some fixed element in D′, and as we will see, it is immaterial
which element of D′ it is. Note that for all d ∈ D′

0, d0
k is defined, and if wi

is defined, then so is di+1
k for all d ∈ D′

i+1. This implies that the following
inductive definition of the wi is well-defined. For i ≥ 0, d ∈ D′

i, wi is defined as
follows:
(a) Consider the lowest nodes k in K for which di

k ∈ C and ∃xA(x, di
k) is forced

at k in K. This means that for no node l below one these k’s, di
l ∈ C and l

forces ∃xA(x, di
l). For all these lowest nodes k we pick an element ck ∈ D for

which k forces Eck ∧ A(ck, di
k) and put wi〈l, d〉 = ck for all l < k. Note that

because K is well-founded, along every branch such a node k exists unless for
all nodes l along the branch either di

l 6∈ C or l 6
 ∃xA(x, di
l).

(b) For all k and d ∈ D′
i for which wi〈k, d〉 is not defined in (a), put wi〈k, d〉 =

f(d).
Note that wi is indeed a map: for all k and d ∈ D′

i, wi〈k, d〉 is not defined twice,
as K is a tree.
The case that f has larger arity than 1 is similar to the case we consider here. For
the case that f is a constant, the definition of w0 has to be changed accordingly.
This has been explained in the proof sketch above.
It is easy to show with induction on i that for d ∈ D′

i, dk, as defined in the
definition of f -companion, equals di

k. In the following observations we use that
in the definition of wi, in (a) we have wi〈k, d〉 ∈ D ⊆ C, and in (b) we have
wi〈k, d〉 6∈ C. It is easy to prove by induction on the wi that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉.

Hence (3). Recall that (4) holds too.
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To complete the theorem it suffices to show that K ′, k 
 C ′ ⇔ K, k 
 C and
that K ′ is a model of T . We first show that for all formulas B,

∀d̄k ∈ C : K ′, k 
 B(d̄) ⇔ K, k 
 B(d̄k). (5)

We prove this by formula induction on B.
If B is a predicate, the definition of the forcing of atomic formulas in K ′ applies.
Conjunction, disjunction and implication are straightforward. Note that for
implication we use (3). We treat the quantifiers, where we suppress the d̄.
∀ ⇒: If K, k 6
 ∀zB(z), then there is some l < k and e ∈ D such that K, l 
 Ee
and K, l 6
 B(e). Since e ∈ D, el = e and thus el ∈ C. Therefore K ′, l 
 Ee and
K ′, l 6
 B(e) by the induction hypothesis. Hence K ′, k 6
 ∀zB(x).
⇐: If K ′, k 6
 ∀zB(z), then there is some l < k and e ∈ D′ such that K ′, l 
 Ee
and K ′, l 6
 B(e). Hence el ∈ C by (4). Thus K, l 
 Eel and K, l 6
 B(el) by
the induction hypothesis. Hence K, k 6
 ∀zB(x).
∃ This follows from the induction hypothesis in the same way as for the universal
quantifier. This proves (5). From this it follows that K ′ is a model of T .
It remains to show that

∀ek ∈ C : K ′, k 
 Ef(e) ∧A(f(e), e) ⇔ K, k 
 ∃xA(x, ek). (6)

For together with (5) a straightforward induction on subformulas of C that are
not subformulas of A(x, y), shows that K ′, k 
 C ′ ⇔ K, k 
 C. The proof of
(6) runs as follows.
⇒: Suppose K ′, k 
 Ef(e)∧A(f(e), e). K ′, k 
 Ef(e) implies f(e)k ∈ C by (4).
Thus by (5) K, k 
 Ef(e)k∧A(f(e)k, ek), which implies that K, k 
 ∃xA(x, ek).
⇐: Suppose K, k 
 ∃xA(x, ek). By the definition of w there exists a lowest node
l 4 k for which el ∈ C, and for which for some c ∈ D, K, l 
 Ec ∧ A(c, el), and
w〈m, e〉 = c for all m < l. Note that since el ∈ C and l 4 k, ek = el. Hence
K, k 
 Ec∧A(c, ek). Since el ∈ C and l 4 k, we have f(e)k = f(e)l = w〈l, e〉 = c,
and thus K ′, k 
 Ef(e) ∧A(f(e), e) by (5). ♥

Lemma 6 If a theory T satisfies the A-witness property, and S is a closed
sequent, and ∀xAx is an occurrence of a strong universal quantifier in S, and
S′ is the result of replacing this occurrence by Ef(ȳ) → Af(ȳ), where ȳ are
the variables of all the weak quantifiers in the scope of which ∀xAx occurs, and
f ∈ Le\L does not occur in S, then

T ` S ⇔ T ` S′.

Proof The proof is similar to the proof of the previous lemma, except that
the countermodel K that we consider now is a model which has the A-witness
property. Recall that this implies that it is a well-founded tree. Again we
assume that f is a unary function. The only difference lies in the definition of
the wi and the proof of (6). In the definition of the wi only the case (a) differs,
which is replaced by the following:
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(a) Consider the lowest nodes k in K for which di
k ∈ C, and for some c ∈ D,

k forces Ec and A(c, di
k) → ∀xA(x, di

k) but not A(c, di
k). This means that for

no node l below one of the k’s there is a e ∈ D such that l forces Ee and
A(e, di

l) → ∀xA(x, di
l) but not A(e, di

l). For all these lowest nodes k we pick
an element ck ∈ D such that k forces Eck and A(ck, di

k) → ∀xA(x, di
k) but not

A(ck, di
k), and put wi〈l, d〉 = ck for all l < k.

That wi is indeed a map, that is, for all k and d ∈ D′
i, wi〈k, d〉 is not defined

twice, is not difficult to see.
It is easy to show with induction on i that for d ∈ D′

i, dk, as defined in the
definition of f -companion, equals di

k, and that

k 4 l ∧ w〈k, d̄〉 ∈ C ⇒ w〈k, d̄〉 = w〈l, d̄〉.

To complete the theorem it suffices to show that K ′, k 
 C ′ ⇔ K, k 
 C and
that K ′ is a model of T . As in the proof of the existential quantifier, it suffices
to show that

∀d̄k ∈ C : K ′, k 
 B(d̄) ⇔ K, k 
 B(d̄k), (7)

and that

∀ek ∈ C : K ′, k 6
 Ef(e) → A(f(e), e) ⇔ K, k 6
 ∀xA(x, ek). (8)

The proof of (7) is the same as the proof of (5) in the previous lemma. Like in
the existential case, (7) implies that K ′ is a model of T , and together with (8)
it implies K ′, k 
 C ′ ⇔ K, k 
 C.
Thus it remains to show (8).
⇒: Let l < k be such that K ′, l 
 Ef(e) and K ′, l 6
 A(f(e), e). Since ek ∈ C,
el = ek by (3). Also, l 
 Ef(e) implies f(e)l ∈ C by (4). Thus by the
induction hypothesis K, l 
 Ef(e)l and K, l 6
 A(f(e)l, el), which implies that
K, k 6
 ∀xA(x, ek).
⇐: Suppose K, k 6
 ∀xA(x, ek). By the witness property there exists a node
m < k such that for some b ∈ D, m forces Eb and A(b, ek) → ∀xA(x, ek), but
not A(b, ek). Note that ek = em ∈ C. Because K is a well-founded tree, there is
a smallest such node l 4 m, for which el ∈ C, and which forces Ec and A(c, el) →
∀xA(x, el), but not A(c, el), for some c ∈ D. The definition of w implies that for
some c with this property, w〈n, e〉 = c for all n < l. Thus f(e)l = c ∈ C. Hence
by (7), K ′, l 
 Ef(e) and K ′, l 6
 A(f(e), e). Thus K ′, l 6
 Ef(e) → A(f(e), e).
We have to show that K ′, k 6
 Ef(e) → A(f(e), e). We distinguish the cases
k 4 l and l ≺ k. The first case is immediate. If l ≺ k, then K ′, k 
 Ef(e). From
el = ek it follows that K, k 
 A(c, ek) → ∀xA(x, ek). Since K, k 6
 ∀xA(x, ek),
also K, k 6
 A(c, ek). Since f(e)k = f(e)l = c, K ′, k 6
 A(f(e), e) by (7). Hence
K ′, k 6
 Ef(e) → A(f(e), e). ♥

Theorem 4 For every theory T with the witness property, and every closed
sequent S:

T ` S ⇔ T ` Se.
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Theorem 5 For every theory T and every closed sequent S in the sewq frag-
ment:

T ` S ⇔ T ` Se.

Proof By Lemma 5. ♥

Corollary 1 For every theory T with the finite model property, and every
closed sequent S:

T ` S ⇔ T ` Se.

Proof By Lemma 4. ♥

Corollary 2 For every theory T in L for which T e has the witness property,
and every closed sequent S in L:

T `LJ S ⇔ T e ` S ⇔ T e ` Se.

Proof By Lemma 1. ♥
Note that the theorems above include theories of the form T ex or T dec, that is,
which logic is LJEex

L or LJdec.

6.3 Decidability

Theorem 6 The sq fragment of every theory with a decidable quantifier-free
fragment and the witness property is decidable.

Proof By Theorem 4. ♥
It follows from the above theorem and Lemma 1 that for a theory T in L with
a decidable quantifier-free fragment, for which T e has the witness property, the
L-fragment is decidable.

Theorem 7 The seq (L-)fragment of every theory (in L) with a decidable
quantifier-free fragment is decidable.

Proof By Theorem 5. ♥

7 Herbrand’s Theorem

In the context of intuitionistic logic there is a natural analogue of Herbrand’s
theorem. We define an analogue of the notion of ∧∨-expansion from [11] for
the setting of existence logic. Given a theory T and a sequent S, let H(T , S)
be the Herbrand universe of (T , S), which consists of all terms generated by
the constants and functions occurring in S or in (the axioms of) T , that is,
H(T , S) =

⋃
Hi(T , S), where

H0(T , S) ≡def {t | t is a constant in S or T }
Hi+1(T , S) Hi(T , S) ∪ {f(t̄) | t̄ ∈ Hi(T , S) and f in S or in T }.
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Note that terms in T include all terms in L, as theories contain the logic LJEL,
in which axioms all closed terms in L occur. Given a theory T , a sequent S′

is an ∧∨-expansion of a sequent S if every positive occurrence of an existential
quantifier QxA(x) in S is replaced by

∨n
i=1 Esi ∧ A(si) for some terms si ∈

H(T , S), and every negative occurrence of a universal quantifier QxA(x) is
replaced by

∧n
i=1(Eti → A(ti)) for some terms ti ∈ H(T , S). It is not difficult

to prove the following analogue of Herbrand’s theorem.

Theorem 8 For every strong quantifier theory T and for every sequent S there
exists an ∧∨-expansion S′ of it such that

T ` S ⇔ T ` S′.

Theorem 9 For every strong quantifier theory T that has the witness property
and for every S, there exists an ∧∨-expansion S′ of Se such that

T ` S ⇔ T ` Se ⇔ T ` S′.

Theorem 10 For every strong quantifier theory T and for every S in the sewq
fragment, there exists an ∧∨-expansion S′ of Se such that

T ` S ⇔ T ` Se ⇔ T ` S′.

Note that the theorems above include theories of the form T ex.

Corollary 3 For every strong quantifier theory T and for every S in L in the
sewq fragment, there exists an ∧∨-expansion S′ of Se such that

T `LJ S ⇔ T e ` Se ⇔ T e ` S′.

If T e also has the witness property this holds for all sequents S in L.

8 Applications

Theorem 10 and Corollary 3 apply to many constructive theories, such as, for
example, the theory of groups and the theory of apartness as given in [25],
and several order theories discussed in [19], since all these theories are strong
quantifier theories. Theorem 9 applies, for example, to all strong quantifier
theories with the finite model property. Still, for several theories that do not
have the witness property the same result can be obtained. We conclude this
paper by giving some typical examples of such theories.

8.1 Predicate logic

Theorem 10 implies the following partial Herbrand theorem for intuitionistic
predicate logic.
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Theorem 11 For every S in the sewq L-fragment there exists an ∧∨-expansion
S′ of Se such that

`LJ S ⇔ ` S ⇔ ` Se ⇔ ` S′.

As observed above, LJ does not have the witness property, and the double
negation shift is a counter example to the full completeness of eskolemization
for intuitionistic logic.
Theorem 7 implies the following.

Theorem 12 The seq fragments of LJ, LJE and LJEL are decidable.

8.2 Equality

Let iEq be the theory of intuitionistic equality without functions given by the
following axioms, over the logic LJ:

Axeq ≡def ⇒ t = t,
t = s ⇒ s = t,
r = s, s = t ⇒ r = t

Thus iEqe is LJEL extended by the following axioms:

Axeq ≡def Γ, Et ⇒ t = t, ∆
Γ, Et, Es, t = s ⇒ s = t, ∆
Γ, Et, Es, Er, r = s, s = t ⇒ r = t, ∆

Because the theory iEqe contains the predicate E it should also contain the
axiom Et,Es, t = s ⇒ Es, which is the translation of the axiom t = s, P t ⇒ Ps
that holds in equality logic in the presence of predicates P . Since, however,
this sequent is already derivable in LJEL we do not have to include it in the
axioms. We have to add the side formulas Γ and ∆ because LJE does not
contain weakening.
Theorem 10 implies the following.

Theorem 13 For every S in the sewq L-fragment, there exists an ∧∨-expansion
S′ of Se such that

iEq `LJ S ⇔ iEqe ` S ⇔ iEqe ` Se ⇔ iEqe ` S′.

Theorem 7 implies the following.

Theorem 14 The seq fragment of iEq is decidable.

For iEqdec and iEqex we obtain a full version of Herbrand’s theorem by using
the following theorem by Craig Smoryński that shows that every formula is
equivalent to a formula in the nnswq fragment that contains no strong universal
quantifiers. Note that in the eskolemization of such formulas no functions occur.
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Theorem 15 [23] In iEqdec every sequent S in L is equivalent to a sequent of
the form ⇒

∨n
i=1 Ai ∧ Bi, where the Ai are conjunctions of atomic formulas

and their negations, and the Bi are propositional combinations of the formula
∃x(x = x), denoted by E1, and the formulas

En ∃x1 . . . xn

∧
i 6=j

xi 6= xj (n > 1).

⇒
∨n

i=1 Ai ∧Bi is the normal form of S and denoted by Snf .

Corollary 4 For every S in L there exists an ∧∨-expansion S′ of Se
nf such that

iEqdec ` S ⇔ iEqex ` S ⇔ iEqex ` Se ⇔ iEqex ` S′.

8.3 Monadic predicates

In the same way as for equality we can derive Herbrand theorems for the in-
tuitionistic theory of monadic predicates without functions, iMP, again using a
theorem by Smoryński. Let Pi range over the predicates in the language.

Theorem 16 For every S in the sewq fragment and in L, there exists an ∧∨-
expansion S′ of Se such that

iMP ` S ⇔ iMPe ` S ⇔ iMPe ` Se ⇔ iMPe ` S′.

Theorem 17 The seq fragment of iMP is decidable.

Theorem 18 [23] In iMPdec every sequent S in L is equivalent to a sequent
⇒

∨n
i=1 Ai ∧ Bi, where the Ai are conjunctions of atomic formulas and their

negations, and the Bi are propositional combinations of the formulas

∃x(
m∧

i=1

Pi(x) ∧
n∧

j=1

¬Pj(x).

⇒
∨n

i=1 Ai ∧Bi is the normal form of S and denoted by Snf .

Corollary 5 For every S in L there exists an ∧∨-expansion S′ of Se
nf such that

iMPdec ` S ⇔ iMPex ` S ⇔ iMPex ` Se ⇔ iMPex ` S′.

Smoryński uses Theorem 15 and Theorem 18 to prove that iEqdec and iMPdec

are decidable, but we do not see how to obtain this as an easy corollary from
our Herbrand theorems for these logics.
Similar theorems as the ones discussed above could be obtained for other the-
ories. The theories treated here are just some typical examples of the possible
applications of eskolemization.
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