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Abstract We show that �1
3-absoluteness for Sacks forcing is equivalent to the non-

existence of a �1
2 Bernstein set. We also show that Sacks forcing is the weakest forcing

notion among all of the preorders that add a new real with respect to �1
3 forcing abso-

luteness.
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1 Introduction

Absoluteness is one of the central notions in set theory, which is the unchangingness
of the truth-values of statements between two models of set theory. Forcing absolute-
ness is the absoluteness between ground models and their generic extensions, which
plays an important role in many areas in set theory. In this paper, we focus on forcing
absoluteness of projective statements (or statements in second-order arithmetic). (For
the precise definition of this forcing absoluteness, see Definition 2.14.)

Forcing absoluteness has close connections with regularity properties in descrip-
tive set theory. For example, �1

3 statements are absolute between V and its generic
extensions by Cohen forcing iff every �1

2 set of reals has the Baire property iff for any
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680 D. Ikegami

real r there is a Cohen real over L[r ]. The same kind of equivalence holds for random
forcing and Lebesgue measurability.1

There is also a relation between forcing absoluteness for other forcings and these
regularity properties for �1

2 sets of reals, e.g., �1
3 statements are absolute between V

and its generic extensions by Hechler forcing iff every �1
2 set of reals has the Baire

property iff for any real r , the set of all Cohen reals over L[r ] is comeager. There is
also an analogue for amoeba forcing and Lebesgue measurability.2

Sometimes, the regularity property for all �1
2 sets of reals is equivalent to that for

all �1
2 sets of reals. The Ramsey property is a typical example and it is connected

to forcing absoluteness for Mathias forcing: �1
3 statements are absolute between V

and its generic extensions by Mathias forcing iff every �1
2 (or �1

2) set of reals has the
Ramsey property iff for any real r , there is a Ramsey real over L[r ] (or the set of all
reals Ramsey over L[r ] is co-Ramsey).3

In this paper, we show that Sacks forcing is this kind of forcing. As a corollary, we
see that Sacks forcing is the weakest forcing notion among all of the preorders that
add a new real with respect to �1

3 forcing absoluteness. More precisely,

Theorem 3.1 Let S be Sacks forcing.

1. The following are equivalent:
(a) �1

3-S-absoluteness holds.
(b) There is no �1

2 Bernstein set.

(c) There is no �1
2 Bernstein set.

(d) For any real r , there is a real x such that x is not in L[r ].
2. Suppose that P is a preorder which adds a new real (i.e. there is a P-generic filter

G over V such that there is a real in V [G] but not in V ). Then �1
3-P-absoluteness

implies �1
3-S-absoluteness.

Note that the equivalence of (b), (c), and (d) of 1 in Theorem 3.1 was already proved
by Brendle and Löwe [5] (Theorem 7.1, p. 1321).

Bernstein sets are typical counter examples for every regularity property. Hence,
we could say that the property not being a Bernstein set is the weakest regularity prop-
erty (for the definition of Bernstein sets, see Definition 2.3). There is a corresponding
regularity property to not being a Bernstein set so-called Sacks measurability (for the
definition, see Definition 2.5). In the proof of Theorem 3.4 (we will state later), we
use Sacks measurability to prove forcing absoluteness rather than the non-existence
of Bernstein sets.

1 The direction from forcing absoluteness to the regularity properties was proved by Bagaria [1] and the
converse was proved by Woodin [20]. The equivalence between the regularity properties and the transcen-
dence properties for L was proved by Judah and Shelah [10]. For the entire proofs, see Theorem 9.2.12
(p. 456) and Theorem 9.2.1 (p. 452) in Bartoszyński and Judah [2].
2 The equivalence between forcing absoluteness and the regularity properties was proved by Judah [9] and
the equivalence between the regularity properties and the transcendence properties for L was proved by
Solovay [19]. For the entire proofs, see Theorem 9.3.8 (p. 460) and Theorem 9.3.1 (p. 457) in Bartoszyński
and Judah [2].
3 The equivalence between forcing absoluteness and the regularity property was proved by Halbeisen and
Judah [7] (Theorem 4.1, p. 187). The other equivalences were proved by Judah and Shelah [10] (2.7 Theorem
and 2.8 Theorem, p. 219).
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Projective absoluteness for Sacks forcing 681

It is a natural question whether these equivalences hold for higher level forcing
absoluteness and the regularity properties for more complex projective classes. For
the direction from forcing absoluteness to the regularity properties, several results have
been established, e.g., if D is Hechler forcing and �1

4-D-absoluteness holds, then every
�1

3 set of reals has the Baire property. Furthermore, for any n ≥ 4, if �1
n+1-D-abso-

luteness and �1
n+1-D ∗ D-correctness hold, then every �1

n set of reals has the Baire
property. Here, forcing correctness is a slightly stronger condition than forcing abso-
luteness (for the definition, see Definition 2.14). There is also an analogue for amoeba
forcing and Lebesgue measurability and there are some partial results for Mathias forc-
ing and the Ramsey property.4 (This generalization does not work for Cohen forcing
and the Baire property and for random forcing and Lebesgue measurability.5)

However, it is still open whether these regularity properties follow from only forc-
ing absoluteness for arbitrary projective classes. We will show that this is the case for
Sacks forcing:

Theorem 3.3 Let n be a natural number with n ≥ 1. If �1
n+1-S-absoluteness holds,

then there is no �1
n Bernstein set.

We do not know if we can replace �1
n by �1

n above.
For the reverse direction (from the regularity properties to forcing absoluteness),

there is a little known as negative results with only assuming ZFC. For example, the
Baire property for every projective set does not imply �1

4 forcing absoluteness for
Hechler forcing because the consistency strength of the former statement is just ZFC
(7.17 Conclusion (p. 43) in Shelah [17]) but that of the latter is inaccessible (Theo-
rem 9.5.6 (p. 477) in Bartoszyński and Judah [2]). For the same reason, the Ramsey
property for every �1

3 set of reals does not imply �1
4 forcing absoluteness for Mathias

forcing (Theorem 5.2 (p. 188) in Halbeisen and Judah [7]).
But, if we assume the uniformization property for suitable projective classes, we

can get positive results: e.g., if n ≥ 1,�1
2n−1 has the uniformization property and

every �1
2n set of reals has the Baire property, then �1

2n+1 forcing absoluteness for
Cohen forcing holds.6 (For the definition of the uniformization property, see Defini-
tion 2.20.) Here we only assume the uniformization property for odd level projective
classes because �1

2 does not have the uniformization property and these assumptions
are true under suitable large cardinals assumptions or projective determinacy. (For the
details, see Remark 2.22, Theorem 2.23, and Theorem 2.24.)

We will prove that this is also true for Sacks forcing:

4 Lebesgue measurability for all �1
3 sets of reals from �1

4 absoluteness for amoeba forcing was proved by
Brendle [3]. For the proofs for Lebesgue measurability and the Baire property, see Theorem 9.5.5, Theo-
rem 9.5.6 (p. 476–477) and Theorem 9.6.3 (p. 479) in Bartoszyński and Judah [2]. For the Ramsey property,
see Theorem 5.3 (p. 189), Corollary 6.1 (p. 191), and Corollary 6.5 (p.192) in Halbeisen and Judah [7].
5 More precisely, it is consistent with ZFC that every projective statement is absolute between V and its
generic extensions by Cohen forcing but there is a �1

2 set of reals without the Baire property. The same
holds for random forcing and Lebesgue measurability.
6 The same holds for random forcing and Lebesgue measurability. For the proofs, see Lemma 2 (p. 367)
in Woodin [20].
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682 D. Ikegami

Theorem 3.4 Let n be a natural number with n ≥ 1. Assume that �1
2n−1 has the

uniformization property. If there is no �1
2n Bernstein set, then �1

2n+1-S-absoluteness
holds.

This paper consists of three sections. In the second section we will look at the basic
concepts and the facts for our results. In the last section we will prove our results.

2 Basic concepts and facts

From now on, we will work in ZFC. We assume that readers are familiar with the
elementary theories of forcing and descriptive set theory. (For basic definitions we
will not mention, see Jech [8] and Moschovakis [15].) Also when we call something
a real, it is an element of Cantor space ω2. (Usually, we mean an element of Baire
space ωω by a real. But for simplicity, we will work on Cantor space and there are no
essential differences in the following arguments.)

Notation 2.1 For s in <ω2, put

Ns = {x ∈ ω2 | s ⊆ x}.

{Ns | s ∈ <ω2} forms a basis for the topology of Cantor space.

Definition 2.2 Let X be a set and T be a non-empty tree on X .

1. For nodes s, t of T, s, t are incompatible in T if there is no node u of T such that
s, t are subsequences of u.

2. The tree T is perfect if for any node t of T , there are two nodes u, v of T such
that t is a subsequence of u, v and u, v are incompatible in T .

3. Define [T ] as follows:

[T ] def= {x ∈ ωX | (∀n ∈ ω) x � n ∈ T .}.

4. When there are at least two nodes in T which are incompatible, let stem(T ) denote
the maximal node t0 of T such that for any node t of T , either t0 ⊆ t or t ⊆ t0
holds.

Definition 2.3 (Bernstein sets)

1. A set of reals P is perfect if there is a perfect tree S on 2 such that P = [S].
2. A set of reals P is a Bernstein set if neither P nor ω2\P contains a perfect subset

of Cantor space.

Remark 2.4 If P is a Bernstein set, then P does not satisfy the Baire property and the
Lebesgue measurability.

Definition 2.5 (Sacks measurability)

1. A set of reals P is Sacks null if for any perfect tree S, there is a perfect tree S′
such that S′ ⊆ S and [S′] ∩ P = ∅.
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Projective absoluteness for Sacks forcing 683

2. A set of reals P is of Sacks measure one if for any perfect tree S, there is a perfect
tree S′ such that S′ ⊆ S and [S′] ⊆ P .

3. A set of reals P is Sacks measurable if for any perfect tree S, there is a perfect
tree S′ such that S′ ⊆ S and either [S′] ∩ P = ∅ or [S′] ⊆ P holds.

As we mentioned in Sect. 1, Sacks measurability coincides with the property of not
being a Bernstein set in the following sense:

Remark 2.6 Let n be a natural number with n ≥ 1 and � denote one of the following
pointclasses, �1

n,�
1
n , or �1

n . Then the following are equivalent:

1. Every set of reals in � is Sacks measurable.
2. No sets of reals in � are Bernstein sets.

Proof See Lemma 2.1 (p. 1310) in Brendle and Löwe [5]. �
Note that typical regularity properties can be expressed in the analogous way to the

definition of Sacks measurability as follows:

Remark 2.7 1. A set of reals P has the Baire property iff for any s in <ω2, there
exists an s′ in <ω2 such that s′ ⊇ s and either Ns′ ∩ P or Ns′ \P is meager.

2. A set of reals P is Lebesgue measurable iff for any Borel subset B of ω2 with a
positive Lebesgue measure, there exists a Borel subset B ′ of ω2 with a positive
Lebesgue measure such that B ′ ⊆ B and either B ′ ∩ P or B ′\P is null.

We will refer to the following fact, which is a part of Theorem 3.1:

Theorem 2.8 [5, Theorem 7.1, p. 1321] The following are equivalent:

1. There is no �1
2 Bernstein set.

2. There is no �1
2 Bernstein set.

3. For any real r , there is a real x such that x is not in L[r ].
Let us review the definition and the basic properties of Sacks forcing:

Definition 2.9 (Sacks forcing) Sacks forcing S is defined in the following way:

S
def= {S | S is a perfect tree on 2}.

For S1, S2 in S, S1 ≤ S2 if S1 ⊆ S2.

Remark 2.10 Suppose that G is an S-generic filter over V . Put

s =
⋃

{stem(S) | S ∈ G}.

Then, by the genericity of G, s is a real. Such a real is called a Sacks real over V .
On the other hand, G is reconstructed from s and V because

G = {S ∈ S ∩ V | s ∈ [S]}.

Therefore, there is a canonical correspondence between Sacks reals over V and
S-generic filters over V . From now on, we identify Sacks reals over V with S-generic
filters over V in the above way.
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684 D. Ikegami

The following property is known as the minimality of Sacks forcing:

Theorem 2.11 (Sacks [16]) Suppose that s is a Sacks real over V . Then, in V [s], for
any set X such that X is not in V and X ⊆ V, V [X ] = V [s].
Proof The proof can be found in Lemma 28 (p. 18) in Geschke and Quickert [6]. �

We will need the following further properties of Sacks forcing:

Theorem 2.12 (Sacks [16]) Suppose that s is a Sacks real over V . Then, in V [s],
every real s′ which is not in V is also a Sacks real over V .

Proof The proof can be found in Lemma 27 and the discussion after it (p. 16–17) in
Geschke and Quickert [6]. �

Theorem 2.13 (Brendle [4] (Theorem 4, p. 110)) Suppose that s is a Sacks real over
V . Then, in V [s], the set

{s′ | s′ is a Sacks real over V .}

is of Sacks measure one.

Now we come to the forcing absoluteness which is the main subject of this paper:

Definition 2.14 (Forcing absoluteness) Let n be a natural number with n ≥ 1,P be a
preorder, and � be �1

n or �1
n .

1. By �-P-absoluteness, we mean the following statement:
If G is a P-generic filter over V , then for any �-formula φ and any real x in V ,

V � φ(x) iff V [G] � φ(x).

2. By �-P-correctness, we mean the following statement:
If G is a P-generic filter over V , then for any �-formula φ and any real x in V [G],

V [x] � φ(x) iff V [G] � φ(x).

Remark 2.15 Let n be a natural number with n ≥ 1 and P be a preorder.

1. �1
n-P-absoluteness is equivalent to �1

n-P-absoluteness. The same holds for forc-
ing correctness.

2. �1
n-P-correctness implies �1

n-P-absoluteness.

The following remark shows us why we need only forcing absoluteness for Sacks
forcing to prove the non-existence of Bernstein sets:

Remark 2.16 Let n be a natural number with n ≥ 1. By the minimality of Sacks
forcing, �1

n-S-correctness is equivalent to �1
n-S-absoluteness.

The following result is a basic tool in descriptive set theory, called “Shoenfield
absoluteness”:
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Theorem 2.17 (Shoenfield [18]) Suppose M is a transitive model of ZF+DC con-
taining ωV

1 . Then every �1
2-formula is absolute between M and V .

Proof The proof can be found in Theorem 25.20 (p. 490) in Jech [8]. �

Remark 2.18 By Theorem 2.17, we have �1
2-P-correctness for any preorder P.

In the proof of Shoenfield absoluteness, he constructed an absolute tree called
“Shoenfield tree” for each �1

2 statement, which itself is important in descriptive set
theory:

Theorem 2.19 (Shoenfield [18]) For any real a and a �1
2(a) set P, there is a tree

T on 2 × ω1 in L[a] such that P = p[T ], where p[T ] is the image of [T ] via the
projection π : ω2 × ω1 → ω2.

Proof The proof can be found in Theorem 25.20 (p. 490) in Jech [8]. �

Now we introduce the uniformization property for proving Theorem 3.4:

Definition 2.20 (Uniformization) Let � be a subset of P(ω2 × ω2). Then � has the
uniformization property if for any relation P in �, there is a function f from ω2 into
itself in � (as a graph) such that f ⊆ P (as a graph) and the domain of f is the same
as that of P .

This definition allows us to replace relations by functions while keeping the com-
plexity of sets, which is often useful in descriptive set theory.

The following is a classical result on the uniformization property:

Theorem 2.21 (Kondo [11]) The pointclasses �1
1 and �1

2 have the uniformization
property.

Proof The proof can be found in 4E.4 (p. 235) in Moschovakis [15]. �

Remark 2.22 Let � be a projective pointclass. If � has the uniformization property,
then the dual class of � (i.e. the set of complements of sets in �) does not have the uni-
formization property. In particular, �1

1 and �1
2 do not have the uniformization property

as we mentioned in Sect. 1.

The following results are the justification of our assumption on the uniformization
property in Theorem 3.4:

Theorem 2.23 (Moschovakis [14]) Suppose that projective determinacy holds. Then
for any natural number n with n ≥ 1,�1

2n−1 and �1
2n have the uniformization prop-

erty.

Proof For the proof, see 6C (p. 310–317) in Moschovakis [15]. �

Theorem 2.24 (Martin and Steel [13] (Corollary, p. 91)) Suppose that there are infi-
nitary many Woodin cardinals. Then projective determinacy holds.
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3 Proofs of theorems

Theorem 3.1 1. The following are equivalent:
(a) �1

3-S-absoluteness holds.
(b) There is no �1

2 Bernstein set.
(c) There is no �1

2 Bernstein set.

(d) For any real r , there is a real x such that x is not in L[r ].
2. Suppose that P is a preorder which adds a new real (i.e. there is a P-generic filter

G over V such that there is a real in V [G] but not in V ). Then �1
3-P-absoluteness

implies �1
3-S-absoluteness.

Remark 3.2 We cannot replace (d) above by the statement “For any real r , there is a
Sacks real s over L[r ]”. For example, if we add ω1 many Cohen reals to L, in that
model, there is no projective Bernstein set (or even no Bernstein sets in L(R)) but
there is no Sacks real over L.

Proof 1. By Theorem 2.8, it suffices to show that (a) ⇔ (d).
First, we show that (a) ⇒ (d).
Take any real r . Since Sacks forcing adds a new real (namely a Sacks real),

�P “(∃x ∈ ω2) x /∈ L[ř ]”.

Since the reals in L[r ] is a �1
2(r) set of reals, the above statement is equivalent to a

�1
3-formula with a parameter r . By �1

3-P-absoluteness, it also holds in V . Hence we
obtained (d).

Next, we show that (d) ⇒ (a).
Suppose that �1

3-S-absoluteness fails and we will derive a contradiction.
Then there are a Sacks real s over V , a �1

3-formula φ and a real r in V , such that
φ(r) is not absolute between V and V [s]. By Shoenfield absoluteness (Theorem 2.17),
every �1

3-formula is upward absolute. Hence

V [s] � φ(r), but V � φ(r).

Let θ be the �1
1-formula such that φ ≡ ∃1α1∀1α2θ(α1, α2, r). Then, there is a real

s′ such that for any real y, θ(s′, y, r). Since V � φ(r), by Shoenfield absoluteness,
s′ is not in V . Therefore, by Theorem 2.11 and Theorem 2.12, V [s′] = V [s] and s′
is also a Sacks real over V . Hence in V [s′], for any real y, θ(s′, y, r). By the forcing
theorem, there is an S such that

S � “
(∀y ∈ ω2

)
θ(ṡ, y, ř)”, (∗)

where ṡ is a canonical name for a Sacks real.
Now we go back to V . Let P = {(x, y) | x ∈ [S] and ¬θ(x, y, r)}. Then dom(P) =

[S] and P is a �1
1(r, S) set of reals. By Theorem 2.19, we can take a Shoenfield tree

T on 2 × 2 × ω1 in L[r, S] such that P = p[T ].
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The idea of proving forcing absoluteness is to approximate this P by a simple set
(in this case, a closed set) with a perfect set domain so that we can lift ¬θ up to a
generic extension of V by using Shoenfield absoluteness to contradict (∗).

The following lemma, which is an analogue of 8G.1 in Moschovakis [15] due to
Mansfield [12], is essential for that purpose.

Lemma 1 There is a tree T ′ on 2 × 2 and a perfect tree S′ on 2 with S′ ≤ S such that
[T ′] ⊆ P and dom([T ′]) = [S′].
Proof of Lemma By exactly the same argument as 8G.1 (p. 534) in Moschovakis [15],
we can construct such T ′ and S′ unless p[T ] = P is a subset of L[r, S]. But this is
not possible because it would imply [S] = dom(P) is also a subset of L[r, S], which
would contradict (d), for every real can be coded by a real in [S] and S. ��

To derive a contradiction, take a Sacks real s′′ over V with s′′ in [S′]. Since [T ′] ⊆
P = {(x, y) | x ∈ [S] and ¬θ(x, y, r)} and [S′] = dom([T ′]), the following state-
ments hold in V :

∀x∀y
(
(x, y) ∈ [T ′] → ¬θ(x, y, r)

)
,

∀x ∈ [S′] ∃y
(
(x, y) ∈ [T ′]).

Since the first statement is equivalent to a �1
1-formula with parameters T ′, r and the

second statement is equivalent to a �1
2-formula with parameters S′, T ′, by Shoenfield

absoluteness, the above statements also hold in V [s′′]. Since s′′ is in [S′],

V [s′′] � “
(∃y ∈ ω2

) ¬θ(s′′, y, r)”,

which contradicts (∗).
2. Suppose that P is a preorder which adds a new real. By (d) ⇒ (a) in (1), it suffices

to show (d). But we can carry out exactly the same argument as in the proof of (a) ⇒
(d) by replacing S by P. �

Theorem 3.3 Let n be a natural number with n ≥ 1. If �1
n+1-S-absoluteness holds,

then there is no �1
n Bernstein set.

Proof Take any �1
n set of reals P . We will show that P is not Bernstein, i.e. there

exists a perfect tree S on 2 such that either [S] ∩ P = ∅ or [S] ⊆ P holds.
Take a �1

n-formula φ, a �1
n-formula ψ , and a real r such that

∀x ∈ ω2 (φ(x, r) ↔ ψ(x, r)), (∗∗)

P = {x ∈ ω2 | φ(x , r)}.

Note that (∗∗) is equivalent to a �1
n+1-formula with a parameter r . Hence, by

�1
n+1-S-absoluteness, (∗∗) holds in V [s] for any Sacks real s over V .
Take any Sacks real s over V . The following claim is essential:

Claim 1 Let� be a formula of the language of set theory. If V [s] � �(s), then there
is a perfect tree S on 2 in V [s] such that for any real x in [S] ∩ V [s], V [s] � �(x).
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688 D. Ikegami

Proof of Claim1 By the forcing theorem, there is an S′ in S∩V such that S′ �S �(ṡ).
By Theorem 2.13, there is a perfect tree S on 2 in V [s] with S ⊆ S′ such that

for any real s′ in [S] ∩ V [s], s′ is a Sacks real over V . Then by Theorem 2.11 and
S′ � �(ṡ), V [s′] = V [s] and V [s′] � �(s′) for any real s′ in [S] ∩ V [s]. Hence for
any real x in [S] ∩ V [s], V [s] � �(x). ��

Suppose that V [s] � φ(s, r). Then by Claim 1, there exists a perfect tree S on 2
in V [s], such that for any real x in [S] ∩ V [s], V [s] � φ(x, r) On the other hand,
suppose that V [s] � ¬φ(s, r). Then by Claim 1, there exists a perfect tree S on 2 in
V [s], for any real x in [S] ∩ V [s], V [s] � ¬φ(x, r).

Hence in V [s],

“There is a perfect tree S on 2 such that

either (∀x ∈ [S]) φ(x, r) or (∀x ∈ [S]) ¬φ(x, r) holds.”

By (∗∗) in V [s], the above statement is equivalent to

“There is a perfect tree S on 2 such that

either (∀x ∈ [S]) ψ(x, r) or (∀x ∈ [S]) ¬φ(x, r) holds.”

This is equivalent to a �1
n+1-formula with a parameter r . Therefore, by �1

n+1-S-
absoluteness, the above statement also holds in V .

Since P = {x ∈ ω2 | φ(x, r)}, there exists a perfect tree S on 2 such that either
[S] ⊆ P or [S] ∩ P = ∅ holds. This is what we desired. �

Theorem 3.4 Let n be a natural number with n ≥ 1. Assume that �1
2n−1 has the

uniformization property. If there is no �1
2n Bernstein set, then �1

2n+1-S-absoluteness
holds.

Proof We will show that for any k ≤ 2n + 1,�1
k-S-absoluteness holds by induction

on k. By Remark 2.18, we may assume k ≥ 3.
Suppose that �1

k-S-absoluteness fails and we will derive a contradiction.
By exactly the same argument as in the proof of (d) ⇒ (a) in Theorem 3.1 with

replacing Shoenfield absoluteness by �1
k−1-S-absoluteness ensured by induction

hypothesis, we will get a �1
k−2-formula θ , an S ∈ S, and a real r such that

V � “ (∀x ∈ [S]) (∃y ∈ ω2
) ¬θ(x, y, r)”, but

S � “
(∀y ∈ ω2

)
θ(ṡ, y, ř)”. (∗ ∗ ∗)

Since {(x, y) | x ∈ [S] and ¬θ(x, y, r)} is a �1
k−2 set, k − 2 ≤ 2n − 1, and �1

2n−1
has the uniformization property, there is a �1

2n−1 function f : [S] → ω2 which uni-
formizes the set, in particular, for any real x in [S],¬θ(x, f (x), r) holds in V .

The idea is the same as in the proof of (d) ⇒ (a) in Theorem 3.1. This time, we will
approximate f by some continuous function whose domain is a perfect subset.

The following claim provides us a local approximation of f via simple sets where
we use Sacks measurability instead of the non-existence of Bernstein sets. For that, we
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need that f is not just a relation but a function so the uniformization property played
an essential role.

Claim 2 For any i ∈ ω, the set

Di = {S′ ≤ S | (∃m ∈ 2) (∀x ∈ [S′]) f (x)(i) = m}

is dense below S.

Proof of Claim2 Suppose not. Then there are a natural number i and an S′ ≤ S such
that for any S′′ ≤ S′ and for m ∈ 2, there is a real x in [S′′] such that f (x)(i) �= m.
For each m ∈ 2, put Pm = {x ∈ [S] | f (x)(i) = m}. Then, since f is a �1

2n−1 subset,
Pm is a �1

2n set of reals for each m ∈ 2. By Sacks measurability for every �1
2n set

ensured by Remark 2.6, Pm is Sacks measurable for each m ∈ 2. Hence we can find
an S′′ ≤ S′ such that [S′′] ∩ Pm = ∅ for each m ∈ 2.

Pick any element x0 in [S′′]. Then by the condition of S′′, x0 is not in Pm for each
m ∈ 2, namely f (x0)(i) �= m, which is absurd. ��

Now we are going to amalgamate these local approximations to produce a contin-
uous function with a perfect set domain which is a subset of f . By Claim 2, we can
construct 〈St ∈ S | t ∈ <ω2〉 and 〈m(t) ∈ 2 | t ∈ <ω2〉 such that

1. S∅ ⊆ S,
2. for any t1, t2 in <ω2 with t1 ⊆ t2, St1 ⊇ St2 ,
3. for any t in <ω2, [St� 〈0〉] ∩ [St� 〈1〉] = ∅,
4. for any t in <ω2 and any x in [St ], f (x)(lh(t)) = m(t),
5. for any t in <ω2, lh(stem(St )) ≥ lh(t),

by induction on lh(t), where lh(t) is the length of t .
Put

C =
⋂

i∈ω

⋃

t∈i 2

[St ].

Then, by the fusion argument, C is a perfect set and C ⊆ [S]. Now define g : C → ω2
as follows:

g(x)(i) = m if m = m(tx,i )

where tx,i is the unique t such that lh(t) = n and x ∈ [St ]. It is easy to check that g is
continuous and a subset of f .

Since g is continuous, g is closed. Hence there are a perfect tree S′ on 2 and a
tree T on 2 × 2 such that C = [S′] and g = [T ]. The rest is exactly the same as
in the proof of (d) ⇒ (a) in Theorem 3.1 by replacing Shoenfield absoluteness by
�1

k−1-S-absoluteness. �

Remark 3.5 When n = 1, this argument gives another proof for (b) ⇒ (a) of 1 in
Theorem 3.1 by Theorem 2.21.
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