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Abstract: Answer Set Programming (ASP) is a logic programming based, truly declara-
tive formalism for general purpose problem solving. Its declarative nature allows users to 
solve problems by defining what the solutions are instead of how to find them. Complete 
lack of an imperative component in ASP makes creation of end user applications or in-
tegration with other systems demanding. External tools that can process and interpret 
the output of ASP solvers are needed. To address this issue in the case of simple appli-
cations with an input – output interaction loop we introduce a framework for iterative 
logic applications. Such applications consist of a core logic program that is used to eva-
luate user actions w.r.t. their current state and to derive a new state of the application. 
We take care to define the framework in a way that allows it to be used also with other 
formalism, especially SAT solvers. We also present a web based implementation of such 
framework for ASP. 
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1. Introduction 

 The aim of this work is to present Logic Programming (LP) and spe-
cifically Answer Set Programming (ASP) as a formalism for practical appli-
cations that can react to user input and provide appropriate output. 
 Logic programming presents a robust problem solving and knowledge 
modelling tool. Rooted in classical logic, it provides an expressive and con-
cise language. Answer set programming, as a truly declarative extension of 
LP, provides a strong formalism for general purpose problem solving. 
 The declarative nature of ASP allows users to solve problems by defin-
ing what the solutions are instead of how to find them. Efficient solver imple-
mentations make it possible to use such approach for an expanding range of 
applications. 
 Complete lack of an imperative component in ASP means that creation 
of non-trivial end user applications or integration with other systems re-
quires external tools that can process and interpret the output of ASP 
solvers. Creating and maintaining such support systems can easily be more 
demanding than creating the logic programs themselves. 
 To address this issue in the case of simple applications with no external 
interaction except for a contained input – output interaction loop we in-
troduce a framework for iterative logic applications. Such applications con-
sist of a core logic program that is used to evaluate user actions w.r.t. their 
current state and to derive a new state of the application. We take care to 
define the framework in a way that allows it to be used also with other 
formalism, especially SAT solvers. 
 We also present an implementation of such framework for ASP. A web 
based system is used to present the application state to the user and allow 
him to select actions to be executed. A range of ASP solvers can then be 
utilized to compute answer sets of the corresponding logic program, which 
are then used to create a new application state. XSLT stylesheets are used 
as a declarative way to define how the application state is presented to the 
user. 
 This article is organized as follows: in Section 2 we give a brief overview 
of logic programming and define logic programs and answer sets; in Section 
3 we present Answer Set Programming as a fully declarative approach to 
problem solving and also describe selected ASP solver implementations; in 
Section 4 we introduce the framework for interactive logic applications and 
describe its implementation in Section 5. 
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2. Logic Programming 

 In 1965 Robinson introduced resolution (Robinson 1965) as a method 
of automated theorem proving that started an era of logic related software. 
Later, Kowalski and Colmeraurer realized, that logic can be used as a pro-
gramming language (Lloyd 1987). Implication a,b ⇒ c can be understood in 
two ways: (i) declaratively – if a and b have been computed, also c is com-
puted, and (ii) imperatively – in order to compute c we need to first com-
pute a and b. Collection of implications without negation (more precisely 
definite clauses), called rules, is understood as a logic program, and resolu-
tion is used to answer queries to the program. Programming language 
PROLOG was born. 
 The original goal of PROLOG was to be a declarative programming 
language. However, in effort to provide an effective implementation it di-
verged from that goal (Sterling – Shapiro 1986). PROLOG is sensitive to 
an order: (i) of the rules in a program, (ii) of the literals in a rule. Later, 
PROLOG was extended in order to allow the use of negative information. 
Special type of negation, called negation as failure, was allowed in the condi-
tional part of the rule. Semantics of the negation was given procedurally: 
answer to not a is true, if the resolution procedure’s answer to a is false. 
 Over time several attempts to give logic programs a declarative seman-
tics appeared. A model-theoretic characterization of semantics of a logic 
program can be found in (Lloyd 1987). Different approaches to declarative 
semantics of negation of failure appeared: stratified programs (Apt – Blair – 
Walker 1988), compilation of logic programs with negation into classical 
logic (Clark 1977), well-founded models (Gelder – Ross – Schlipf 1988). 
Finally, stable model semantics (Gelfond – Lifschitz 1988), using reduction 
to logic programs without negation, was defined. In 1991 it was extended 
to allow for disjunction and classical negation. Answer set semantics (Gelfond 
– Lifschitz 1991) was born. 
 In what follows we provide modified version of the definitions of answer 
set semantics from (Baral 2003). 

2.1. Syntax 

 In this subsection we present the syntax of logic programming. 

Definition 1 (Alphabet). An alphabet of a logic program consists of symbols di-
vided into six classes: 
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• variables, 
• object constants, 
• function symbols, 
• predicate symbols, 
• connectives “¬ ”, “←”, “not”, “or” and comma symbol, and 
• punctuation symbols “(”, “)”. 

 Each function and predicate symbol is associated with a natural number, 
called arity. 
 We will follow the convention that object constants, function symbols 
and predicate symbols start with lowercase, and variables start with upper-
case letters. 

Definition 2 (Term). A term is inductively defined as follows: 
• A variable is a term. 
• An object constant is a term. 
• If t1, . . . , tn are terms and f is an n-ary function symbol, then 

f( t1, . . . , tn) is a term. 

Definition 3 (Atom). An atom is an expression of the form p(t1, . . . , tn) where 
t1, . . . , tn are terms and p is an n-ary predicate symbol. 

Definition 4 (Literal). A literal is an expression of the form a or ¬a, where a is 
an atom. 

Definition 5 (Rule). A rule is an expression of the form 

    l0  or . . .  or lk  ← lk+ 1 , . . . , lm, not lm+ 1, . . . , not ln (1) 

where 0 ≤ k ≤  m ≤  n ∊ ℕ and each l is a literal. 
 A rule with n = 0 is called fact. 

Notation 1. Let r be a rule of the form 1. Then 
• l0 or . . .  or lk is called the head of the rule r, and we use head(r) to de-

note the set {l0,…,lk}, 
• lk+1, . . . , lm, not lm+ 1, . . . , not ln is called the body of r and we denote it 

by body(r), 
• lk + 1, . . . , lm is called the positive body of r, and we use body+(r) to de-

note the set {lk+1, . . . , lm} , 
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• not lm+ 1, . . . , not ln is called the negative body of r, and we use body–(r) 
to denote the set {lm+1, . . . , ln}. 

 Logic programming uses two kinds of negation: 

• explicit negation ¬a meaning that an agent believes a is false, 
• default negation not a meaning that an agent does not believe a is 

true, but it does not necessary mean the agent believes a is false. 

 Moreover, logic programming uses the connective “or” which differs 
from the connective “ ∨ ”  from the classical logic. Informally, a or b means 
an agent believes a is true or believes b is true, as opposed to a is true or b is 
true. In the classical logic, a ∨ ¬a is entailed by each theory. On the other 
hand, a or ¬a is not entailed by each logic program (Gelfond – Kahl 2012). 

Definition 6 (Language). A language given by an alphabet consists of all the 
rules constructed from the symbols of the alphabet. 

Definition 7 (Logic program). A logic program over a language is a finite set 
of rules. 

Definition 8 (Ground term, atom, literal, rule). A term (atom, literal, rule) is 
called ground iff it does not contain variables. 

 In logic programming, a rule with variables is viewed as a shorthand for 
all its ground instances, i.e. all rules obtained by replacing the variables by 
ground terms. 

Definition 9 (Grounding). Let ℒ  be a language, and r be a rule. 
 The grounding of r in ℒ ,  denoted as ground(r,ℒ )  is the set of all the rules 
obtained from r by all possible substitutions of ground terms from ℒ  for the 
variables in r. 
 Let P be a logic program. Then grounding of P in ℒ  is ground(P,ℒ )  = 
⋃r∊P ground(r,ℒ ) .  

 When a logic program P is given without any explicit language, we as-
sume the implicit language containing exactly the symbols from the pro-
gram P. We denote this language by ℒP. Then ground(P) denotes 
ground(P,ℒP). 
 Semantics of a logic program P is given by a semantics of ground(P). 
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2.2. Semantics 

 Answer set semantics assigns to each logic program a set of answer sets 
– alternative belief sets a rational agent might accept. Rationality is given 
by the principles (Gelfond – Kahl 2012): 

• if an agent believes in the body of a rule, it must believe in the head 
of the rule, 

• an agent does not believe in contradictions, 
• an agent believes nothing it is not forced to believe 

 In definition of answer set semantics we will work with grounded pro-
grams. Definition is divided into two parts. First, a semantics is defined for 
positive programs – programs without default negation. Then the defini-
tion is extended to the general case. 

Definition 10 (Consistency). A set S of ground literals is consistent iff it does 
not contains literals a and ¬a, where a is an atom. 

Definition 11 (Satisfaction). Let S be a set of ground literals. Let r be a rule. S 
satisfies 

• body(r) iff body+(r) ⊆ S and body–(r) ∩ S = ∅ ,  
• head(r) iff head(r) ∩ S ≠ ∅ ,  
• r iff S satisfies head(r) if it satisfies body(r). 

 S satisfies a logic program P iff S satisfies each r ∊ P. 

Definition 12 (Positive program). A logic program P is called positive iff  
body–(r) = ∅  for each r ∊ P. 

Definition 13 (Answer sets of a positive program). A consistent set of ground 
literals S is an answer set of a positive logic program P iff S is a subset-minimal 
set of literals that satisfies P, i.e. there is no subset S’ ⊂ S that satisfies P. 

 The definition of answer sets for the general case is non-constructive. 
First, a candidate for an answer set is guessed. Then it is tested, whether it is 
stable. First, the rules with unsatisfied negative bodies are removed. Since the 
rules left have satisfied negative bodies, the negative bodies are also removed. 
The resulting program is positive, and it’s semantics is already defined. The 
answer set guess is stable iff it is an answer set of the reduced program. 
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Definition 14 (Gelfond-Lifschitz reduction). Let P be a logic program and S 
be a set of literals. 
 Then, reduction of P w.r.t. S, denoted PS, is the set {head(r) ←  body+(r) : 
r ∊  P and body–(r) ∩ S = ∅ } . 

Definition 15 (Answer sets). Let P be a logic program, and S be a set of literals. 
 S is an answer set of P iff S is an answer set of PS. 

 Answer set semantics enjoys the following nice property. 

Proposition 1 (Exclusive support). Let P be a logic program, S an answer set 
of P, and l be a literal. 
 If l ∊ S, then there is a rule r ∊ P such that: 

• S satisfies body(r), and 
• head(r) \ { l} ⊈ S .  

Definition 16 (Entailment). Let P be a logic program, and l be a literal. 
 l is entailed by a program P, denoted P╞ l iff l ∊ S for each answer set S of 
P. 
 Cn(P) = {l : P╞ l} will denote the set of all the consequences of P. 

Proposition 2. Cn operator is non-monotonic, i.e. it does not hold that for each 
programs P1, P2 such that P1 ⊆ P2 we have that Cn(P1) ⊆ Cn(P2). 

Example 1. Consider the programs P1: 
  a ←  not b 
and P2: 
  a ←  not b  
  b ←  
We have that Cn(P1) = {a}  and Cn(P2) = {b}. Hence P1  ⊆  P2, but Cn(P1) 
⊈ Cn(P2). 
 A logic program is not guaranteed to have an answer set. 

Example 2. Consider the program P 
r1 : a  ←  
r2  : inc ←  not inc, a 
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S PS answer sets of PS 
∅ a ← , inc ← a {a, inc} 

{a} a ← , inc ← a {a, inc} 
{inc} a ← {a} 

{a, inc} a ← {a} 

 For each answer set candidate S we have that S is not an answer set of PS. 
Therefore P has no answer set. 
 The rule r2 works here as an integrity constraint. It causes each answer set 
candidate S such that a ∊ S to be eliminated. 

Definition 17 (Integrity constraint). An expression of the form 
     ← l1, . . . , lm, not lm+1, . . . , not ln (2) 
is called an integrity constraint. 

Notation 2. Let c be an integrity constraint of the form 2. By body+(c) we de-
note the set { l1 , . . . , lm}, and by body–(c) we denote the set { lm+ 1 , . . . , ln}. 

Definition 18 (Violation). We say that a set of literals S violates a ground in-
tegrity constraint c iff body+(c) ⊆ S, and body–(c) ∩ S = ∅. 

 An integrity constraint is used to eliminate an answer set candidate that 
violates the integrity constraint. 
 Given a logic program P, an integrity constraint c is understood as a 
shorthand for the rule inc ← not inc, body(c), where inc is a new literal pre-
sent in neither P nor c. 

3. Declarative problem solving 

 Answer set programming (Marek 1999, Niemelä 1999) has emerged as  
a declarative problem solving paradigm using logic programming under an-
swer set semantics. A logic program is written in a way, that its answer sets 
correspond to the solutions of a given problem (Figure 1). A logic program 
is usually written in a generate-and-test way – it is divided into three parts: 

• instance, encoding the problem’s instance, 
• generator, whose answer sets correspond to solution candidates, and 
• tester, that eliminates candidates that are not solutions. 
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Example 3. Consider the classical problem of putting N chess queens on the N  
N board in a way that no two queens attack each other. 
 A generator could be written as follows: 
g1 : on(X, Y) ← d(X), d(Y), not ¬on(X, Y) 
g2 : ¬on(X, Y) ← d(X), d(Y), not on(X, Y) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 d(X) means that X is a valid row/column number. on(X, Y) means that a 
queen is on the position (X, Y). 
 Together with the encoding of problem instance N = 2 

i1 : d(1)   ← 
i2 : d(2)    ← 

 it has 16 answer sets. The following sets 

S1 = {d(1), d(2), ¬ on(1, 1), ¬on(1, 2), ¬on(2, 1), ¬on(2, 2)} 
S2 = {d(1), d(2), on(1, 1), ¬on(1, 2), on(2, 1), ¬on(2, 2)} 
S3 = {d(1), d(2), on(1, 1), on(1, 2), on(2, 1), on(2, 2)} 

are three of them. 
 A tester could be written as follows: 

t1 :    ← on(X, Y1), on(X, Y2), Y ≠ Y2 
t2 :    ← on(X1, Y), on(X2, Y), X ≠ X2 
t3 :    ← on(X1, Y1), on(X2, Y2), X ≠ X2, Y ≠ Y2, 
     ∣X – X2∣ = ∣Y – Y2∣ 

Problem Class Instance Solution 

Logic Program Logic Program Answer Sets 

encode encode decode 

Figure 1: Answer Set Programming 
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t4 : hasq(X) ← on(X, Y) 
t5 :    ← d(X), not hasq(X) 

 Expressions of the form X = Y and X ≠ Y are not part of the syntax of ru-
les. They are understood as conditions for grounding. 
 The integrity constraint t1 eliminates the answer set candidates, in which two 
queens are at the same column. The integrity constraint t2 eliminates the answer 
set candidates, in which two queens are at the same row. The integrity constraint 
t3 eliminates the answer set candidates, in which two queens are at the same dia-
gonal. The integrity constraints t4, t5 check whether N queens are used. 
 The tester eliminates all the answer set candidates for the presented instance 
as the 2 – queen problem has no solution. 

 Answer set programming is well suited for constraint satisfaction prob-
lems. A constraint satisfaction problem is given by a set of variables, each 
associated with the domain, and a set of constraints. The task is to find a 
variable assignment such that all constraints are satisfied – constraints put 
conditions on variable assignment. A constraint satisfaction problem can be 
directly solved using generate-and-test approach of answer set program-
ming. Generator generates answer set candidates, where each candidate 
represents one variable assignment. Constraints of the constraint satisfac-
tion problem are then transformed into the rules and integrity constraints 
of a tester, which tests whether an assignment is a valid one. 
 Many real world problems can be understood as a constraint satisfaction 
problem, e.g. design of a computer configuration given a set of require-
ments (which can be seen as the constraints), construction of a plan of a 
given length etc. 
 Moreover answer set programming is not only restricted to constraint 
satisfaction problem. It can be easily used to solve problems from NP com-
plexity class, given a problem is defined in a guess-and-test manner: (i) 
first, a candidate is guessed, and (ii) then it is tested whether it is a solution 
to the problem. Again, generator is used to generate answer set candidates, 
each representing a problem solution candidate, and tester performs the 
test. 
 Answer set programming in not the only option for such tasks. Alter-
native approach is for example to encode a problem using propositional 
logic in a way that the models of the theory represent the problem solu-
tions. Afterwards a SAT solver is employed to compute the solutions. 
However, answer set programming has a big advantage over SAT. In a 
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logic program, we can divide a program into two parts: (i) the first one rep-
resenting an instance of the problem class, and (ii) the second, describing 
solutions of the problem class in general, without knowing an instance. On 
the other hand, when using propositional logic, we cannot separate a the-
ory in this way. Hence, in order to use both SAT solvers and modular rep-
resentation of a problem, we must use some other language and use a 
transformation to propositional logic. 

3.1. ASP solvers 

 An ASP solver is a computer program that accepts a logic program on 
its input, and provides its answer sets on its output. 
 Inspired and built upon the success of SAT solvers, many ASP solvers 
were implemented, and many optimization techniques were developed. We 
mention the most prominent ones, namely smodels (http://www.tcs.hut.fi/ 
Software/smodels/), clasp (Gebser et al. 2007), claspD (Drescher et al. 2008), 
and DLV (http://www.dlvsystem.com/dlvsystem/). Clasp and smodels do 
not allow disjunction in the heads of rules, while claspD and DLV do. The 
reason is a higher computational complexity of disjunctive logic programs 
(Baral 2003). 
 The smodels solver uses a two step computation process. First, an input 
program is processed by a parser. It parses the input program and produces 
a machine readable format usable by the smodels solver. It also performs 
grounding of the input program, whereby the variables in rules are replaced 
by ground literals. A simplification of the ground program is also perfor-
med and the result is passed to the solver. 
 Historically, lparse was the first parser that was used together with the 
smodels solver. Later, the gringo parser and clasp solver were developed. To 
provide compatibility, gringo and clasp support the input language of lparse 
and smodels. 
 On the other hand, the DLV solver works directly on programs with 
variables, and does not require an external parser. However, it does not 
support function symbols. 
 In addition to the syntax presented in Section 2.1, these solvers support 
many extensions, such as: 

• aggregates – allow for example to determine the number of literals 
satisfying certain condition, 
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• optimization statements – allow to compute only minimal answer sets 
w.r.t. a given criterion, 

• choice rules – enable to express generators in a compact and readable 
form. 

4. Interactive logic applications 

 In this section we present a framework for interactive applications based 
on logic (model based) formalisms. We start with a simple generalization of 
such formalisms and then use it to define an application, its states and (it-
erative) execution. 
 Although we are concerned mainly with logic programs, any formalism 
with a model-theoretic semantics and an appropriate implementation can 
be used to create the kind of applications we present in this work. Our only 
requirement is that the formalism defines a semantics that assigns models 
(answer sets, solutions) to programs (theories). 

Definition 19 (LP Formalism). A Logic Programming Formalism is a triple 
(P, M, Sem), where P is a (non-empty) set of possible programs, M  is a (non-
empty) set of possible models and Sem : P  → 2M  is a function that assigns sets of 
models to programs. 

 Throughout this work we consider Answer Set Programming as our in-
tended formalism, P  thus being the set of all logic programs and M  the 
set of all possible answer sets. ASP solvers provide direct means of imple-
mentation and the expressivity of logic programs allows the creation of ap-
plications with very little need of external processing. 
 Propositional logic also provides applicable formalisms with implemen-
tations in the form of SAT solvers. However, the restrictions on proposi-
tional formulae and the restrictive input formats used in SAT solvers require 
additional layers of pre- and post-processing for any meaningful applications. 
To show that it is possible to cover even such cases with our framework we 
also include a few remarks about propositional logic where relevant. 
 The goal of an interactive application is the repetitive execution and 
evaluation of user actions against the current state of the application. The 
application framework is responsible for the visualisation of the applica-
tion’s state along with the allowed actions and for the calculation of a new 
state. Because the user can choose from multiple actions, which can have 
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non-deterministic consequences, there can be various possible outcomes in 
each states. The application can thus be either linearly executed or the rela-
tionships of application states and actions can be studied in the form of an 
execution graph. 
 We start by defining the application itself. In its simplest form, the ap-
plication consists of a main program (theory), input, output and presenta-
tion function. The presentation function interprets a current state of the 
application, presents it to the user and returns his chosen action(s). The 
input function combines the main program with all this information into a 
program in the used LP Formalism. Semantics of the formalism is then 
used to find the models of this program and (if possible) one of them is se-
lected. The output function is used to convert such resultant model into a 
new application state. 

Definition 20 (Interactive application). Let (P , M ,  Sem) be an LP For-
malism, let P A  be a set of application programs. An interactive application 
over (P , M ,  Sem) is a tuple 

A = (P, S , A , In, Out, User, s0) 
where 

1. P ∊ PA represents the main application program, 
2. S is a non-empty set of possible application states, 
3. A is a set of possible user actions, 
4. In : PA  S  2A → P is an input transformation, 
5. Out : M → S is an output transformation, 
6. User : S  ℕ → 2A is a function that represents user input at a specific 

time. 

Definition 21 (Application Instance). An application instance is a tuple (A, s) 
where A = (P, S , A , In, Out, User, s0) is an application and s ∊ S is a state. We 
say that (A, s) is an instance of A with an actual state s. 

 To abstract from the structure of the programs as much as possible, we 
delegate all responsibility for state and action transformations and their in-
corporation into the main program to the input transformation function. 
In the case of logic programming, as well as many other formalisms, this can 
be easily reduced to the transformation of the application state into a logic 
program (InS) where the input transformation itself can then be given as 
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In = P ∪ InS(s) ∪ User(s, i). 

However even in the case of logic programming the more general definition 
of In allows some interesting possibilities that we talk about in section 6. 
 Also, because we do not require P to actually be a program from P ,  
this allows us to easily do various kinds of preprocessing on P. To imple-
ment propositional logic based applications through the use of SAT 
solvers, P can be a set of formulae schemes that are appropriately translated 
into a set of propositional formulae by In based on the actual state of the 
application. 
 To obtain the next state when executing an application we simply apply 
the semantics to the results of the input transformation In. Because we al-
low the semantics to assign multiple models to a program (representing 
possible outcomes of user’s actions), we arbitrarily select a single one of 
them. This model is then transformed into the application’s new state us-
ing the Out transformation. 

Definition 22 (Application Iteration). Let (A, si ) be an application instance at 
time i ∊ ℕ. The next state of the instance is 

si+1 = Out (Sel (Sem (In (P, si, User (si, i))))) 

where Sel : 2M → M is a selection function that selects an arbitrary model from a 
set of models or returns a special (i.e. empty) model if the set is empty. 

Example 4. Let us consider a simple two player game: each player has a switch. 
At every step each player can either flip his switch or leave it as it is. The first 
player wins when exactly one of the switches is turned off. 
 We can formulate this game as an interactive application (over logic pro-
grams) in which the user plays against the computer: 

  S = 2{on(u), on(c)} 
  A = {flip(u), pass(u)} 
 
  User(s, i) =  
 
  In(P, s, a) = P ∪ s ∪ {a} 
  Out(M) = {on(X)│next(X) ∊ M}  
  s0 = ∅ 

{flip(u)} 
{pass(u)} 
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 Possible application states are subsets of {on(u), on(c)}, where on(u) (on(c)) 
represents that the switch belonging to the user (computer player) is turned on. 
There are two possible actions for the users: flip it (flip(u)) or leave it be 
(pass(u)). The User function presents the current application state to the users 
and returns one of these actions based on his choice. 
 The input transformation adds the current state and user’s action to the pro-
gram as facts. The output transformation creates a new state based on the pres-
ence of the predicate next in the selected answer set. 
 The main (logic) program P of the application is formulated as follows: 

  flip(c) ← not pass(c) 
  pass(c) ← not flip(c) 
  next(X) ← on(X), not flip(X) 
  next(X) ← not on(X), flip(X) 

 The first two rules generate two answer sets that correspond to the respective 
moves of the computer player. The last two rules evaluate the results of the ac-
tions. 

4.1. Application analysis 

 In addition to simple execution of applications our framework allows 
another option: a formal way to define and study the interaction of appli-
cation states and user actions. Transitional properties of a specific appli-
cation can be visualized through a graph representing the relations between 
application states and actions. Various properties of such graph or its sub-
part can then be studied. 

Definition 23 (Execution graph). Let A = (P, S , A , In, Out, User, s0) be an 
application. A (complete) execution graph for A is a graph GA  = (V, E) with  
V = S ∪ P and a set of labeled edges E such that 

  (s, Q, a) ∊ E iff In(P, s, a) = Q  
  (Q, s, M) ∊ E iff M ∊ Sem(Q) ∧ Out(M) = s 

Example 5. Let us consider the application (game) from example 4. Figure 2 
depicts the complete execution graph for this application. Circled vertices repre-
sent states while the rest represent actual programs (without the main program 
P) with u and c instead of on(u) and on(c) respectively. flip(u) and pass(u) are 
also abbreviated as f(u) and p(u). Each vertex representing a state has two outgo-
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ing edges: each for one of the user’s actions. Each vertex representing a program 
has also two outgoing edges representing the two possible answer sets generated by 
the first two rules of P that encode the computer moves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A complete execution graph is a tool that allows theoretical study of an 
application. When working with actual applications it often makes more 
sense to consider only a finite subset of the execution graph accessible from 
the initial state. This can represent the so far explored options of the appli-
cation execution. 

Definition 24 (Partial execution graph). A partial execution graph (V’ , E’ ) 
for an application A is a connected sub-graph of the (complete) execution graph 
for A such that 

• (V ’ , E’ ) contains s0, 
• for each vertex v ∊ V ’ there is a (oriented) path from s0 to v, 
• for each vertex v ∊ P  it contains all its outgoing edges from the execution 

graph. 
 A trace for an instance (A, S) is a path h0, h1, . . . , hn in a partial execution 
graph for A such that h0 = s0 and hn = s. 

u 

c 

∅ u, c 

u, p(u) 

u, c, p(u) 

u, c, f(u) 

c, f(u) 

u, f(u) 

f(u) 

p(u) 

c, p(u) 

Figure 2: The execution graph for application from example 5 
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5. Implementation 

 The interactive application framework described in the previous section 
was implemented as a Python web application (ILPA. A system for interac-
tive logic applications. http://dai.fmph. uniba.sk/~siska/ilpa/). It allows us-
ers to create applications composed from logic programs, to define input 
and output transformations and to create user interfaces (presentation 
functions) using XSLT stylesheets. 
 The implementation is based on a configurable backend that allows the 
usage of various LP implementations such as SMODELS (http://www.tc-
s.hut.fi/Software/smodels/), DLV (http://www.dlvsystem.com/dlvsystem/) 
or clasp (Gebser et al. 2007). The system also implements basic preprocess-
ing options as well as a simple modularization framework (Šiška 2011). 
 Application states are represented as sets of atoms and usually serialized 
as a XML document. A configurable framework of atom filters and transla-
tions can be used to define input and output transformations, however the 
input transformation only translates the state into a set of facts and then 
simply joins them with the main program and user actions (passed as is 
from the presentation function). A XSLT transformation can be used as 
general-purpose filter that allows greater flexibility when translating states. 
 The presentation function is implemented as a XSTL template that 
transforms the state (represented as a XML document) into HTML code 
that is presented to the user. Special hyperlinks can be generated, that are 
then interpreted as user’s actions. 
 Users can edit logic programs and XSLT stylesheets stored on the 
server, as well as define applications and create and execute their instances. 
In addition to simple linear execution of an application, the user can also 
explore the (expanding) partial execution graph of an instance. 

6. Conclusion 

 We presented Answer Set Programming as a very potent formalism for 
general purpose problem solving. Its declarative nature allows users to 
search for solutions be defining what they are instead of how to find them. 
Various efficient solver implementations provide the means to use ASP in 
an expanding range of applications. 
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 To reduce the amount of additional software and tools required when 
integrating ASP solutions into other applications we introduced a frame-
work for iterative, logic based applications that can use LP as their main 
(and only) language. We defined an interactive application, its instance and 
execution step (iteration). We presented our implementation of this 
framework that allows users to create their own application and to run 
them using a web based interface. 
 In order not to restrict this framework only to logic programs and the 
answer set semantics, we assumed a generalized formalism with a model-
theoretic semantics as the fundamental building block of the framework. 
Together with flexible definitions of input and output transformations this 
allows the use of various other formalism such as SAT solvers for proposi-
tion logic. 
 The flexibility of the input transformation allows also the creation of 
applications that actually modify the executed program on the fly. The in-
put transformation can introduce new rules into the final program based on 
current application state or even remove rules from the main program. 
This can lead to the creation of evolving applications that change their be-
haviour based on the history of actions. It would be interesting to further 
study such approach and to compare it with similar work such as Evolving 
Logic Programming (Alferes et al. 2002). 
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