ANDRZEJ INDRZEJCZAK A Survey of Nonstandard
Sequent Calculi

Abstract. The paper is a brief survey of some sequent calculi (SC) which do not follow
strictly the shape of sequent calculus introduced by Gentzen. We propose the following
rough classification of all SC: Systems which are based on some deviations from the ordi-
nary notion of a sequent are called generalised; remaining ones are called ordinary. Among
the latter we distinguish three types according to the proportion between the number of
primitive sequents and rules. In particular, in one of these types, called Gentzen’s type, we
have a subtype of standard SC due to Gentzen. Hence by nonstandard ones we mean all
these ordinary SC where other kinds of rules are applied than those admitted in standard
Gentzen’s sequent calculi. We describe briefly some of the most interesting or important
nonstandard SC belonging to the three abovementioned types.
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1. Introduction

The notion of sequent calculus (SC) is commonly, and rightly, connected
with the name of Gerhard Gentzen. Quite automatically, we think of calculi
with structural and logical rules introducing constants either to antecedent
or to succedent of a sequent. However, one should be aware that nowadays
this term may be applied not only to such calculi like original Gentzen’s LJ,
LK or their variants, but also to a variety of calculi which use sequents in a
significantly different way than they are used in Gentzen’s like calculi. Some
of them are even older than Gentzen’s LK (or LJ) — like Hertz’s calculus
— but most were invented after Gentzen, mainly for providing more flexible
or natural systems for actual proof search than original Gentzen’s calculus
constructed rather for theoretical purposes. In this paper we survey some
of the most important or interesting proposals. The paper is based on the
10th chapter of Indrzejczak [31].

Let us define an ordinary sequent calculus (SC) as a finite collection of
(schemata) of (primitive) sequent rules of the form:

Siy.eey Sn / Spt1, n >0, where S;,i < n+ 1 denotes a schema of a sequent.
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1296 A. Indrzejczak

Sequents on the left of / are premises of the rule, whereas S, is its
conclusion. Note that n, i.e. the number of premises, may be 0 — in this
case we will say on (primitive) axiomatic sequent; in case n > 0 we will
simply say on rules. Note that every SC have a nonempty set of primitive
sequents and a nonempty set of rules’.

So far, the only restriction we put on the notion of a sequent calculus is
that rules have unique conclusions. The next restriction is connected with
the very notion of a sequent. We define it in a standard way as an ordered
pair I' = A, where I' is the antecedent and A the succedent of a sequent.
Hence we exclude from our considerations such calculi which operate on
sequents having more arguments? or being structures of different character®
or using more types of sequents in one system4.

One should also specify what kind of structures are denoted by arguments
of a sequent. We allow sequences, multisets or sets of formulae but exclude
from further considerations other kinds of structures. Hence we do consider
neither display calculi invented by Belnap [6] (see Ciabattoni, Ramanayake,
Wansing [10] in this issue) nor labelled sequent calculi of different sorts®. In
general all these systems briefly referred to in this section, and do not taken
into consideration in further sections, may be called generalised sequent

calculi (GSC).

In what follows for simplicity we will not distinguish between schemata of se-
quents/rules and their instances. Hence we will simply call a sequent/rule an infinite
set of sequents/rules covered by a schema as well as a particular instance.

2There are popular systems defined for multi-valued logics with sequents having as
many arguments as the number of truth-values of respective logic, see e.g. Rousseau [50],
Carnielli [9]. The other group covers systems for modal and temporal logics, where the
distinction is made inside antecedent and succedent to distinguish between formulae of
different modality or temporal localization, see e.g. Blamey and Humberstone [8] or
Nishimura [43]. One can also consider as a separate group systems which use one-sided
sequents (see e.g. Schiitte [54] or Tait [63]) but in all cases where formalised logic has
standard negation, these calculi may be considered as simply notational variant of cal-
culi with standard (i.e. two-sided) sequents. Note however that in the context of some
substructural logics, like Linear Logic without Permutation rules, formalizations based
on one-sided sequents tend to behave better than those based on standard sequents, e.g.
Hudelmayer and Schroeder-Heister [27] showed that the former admits cut-elimination,
whereas the latter does not.

3These include e.g. hypersequent calculi developed by Avron [5] (see the survey of
Ciabattoni, Ramanayake, Wansing [10] in this issue) or several variants of nested sequent
calculi like in: Dosen [12], Kashima [34], Stouppa [57] or Poggiolesi [45].

“The approach starting with Curry [11] and developed by Indrzejczak [28] for modal
and temporal logics.

SGeneral theory of labelled systems is presented in Gabbay [19]; for a survey of ap-
proaches developed for modal logics see Indrzejczak [30].
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The remaining group of sequent calculi, called ordinary, may be classified
according to many criteria. One can for example distinguish between systems
which use intuitionistic sequents with at most one formula in the succedent
of a sequent (many-one) and systems using classical sequents which admit
more formulae (many-many)®. Other solutions, e.g. Rieger’s [49] system
(see section 4.3.) using sequents with just one formula in both sides of a
sequent are also possible. Another important criterion is the definition of a
proof — is it a tree or a sequence of sequents. Yet another division may be
carried according to the balance between structural and logical rules in the
system (see, e.g. Poggiolesi [45]). In what follows we propose a typology
based on the proportion between the number of primitive sequents and rules
in the system. One can distinguish three types of ordinary SC:

1. Gentzen’s type based on rules with small number (usually one) of prim-
itive sequents;

2. Hertz’s type based on primitive sequents with small number of rules;

3. Mixed type.

Usually in the first type logical constants are characterised (mainly) by
rules with primitive sequents of structural character, whereas in the second
type, on the contrary, rules have structural character and logical constants
are characterised by primitive sequents. Gentzen’s original LJ or LK and
their variants applied in proof-theoretical works belong to the first type but
satisfy additional important feature which we call progressivity of logical
rules. It means that logical constants are characterised only by means of
rules of introduction to the conclusion; usually a pair introducing a constant
to an antecedent or to a succedent. All calculi of the first type with only
progressive logical rules are called standard SC. This subtype of the first
type is well known and their important properties like cut admissibility,
subformula-property e.t.c. were discussed in detail in many places, whereas
sequent calculi of different sort are relatively unknown. In what follows we
will present some nonstandard SC, i.e. calculi belonging either to the first
type but with nonprogressive rules, or belonging to the remaining two types.

5The names refer to Gentzen’s original solution where a calculus LJ with sequents of
the first sort was defined for intuitionistic logic, whereas LK with sequents of the second
sort was developed for classical logic. Of course it is to some extent arbitrary since one
can develop SC for intuitionistic logigic with many-many sequents (see e.g. Negri, von
Plato [42]), and as we will see in the next sections, most of formalizations of classical logic
use many-one sequents.
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2. Nonstandard SC of Gentzen’s type

It covers many SC where the role of primitive sequents is reduced to min-
imum. Except standard SC we may find here the following (classes of)
systems:

2.1 Sequent natural deduction of Gentzen [23];
2.1 Suppes’ [58] and Lemmon’s [39] natural deduction;

2.2 Systems of german logicians (Hermes [25], Ebbinghaus, Flum and Tho-
mas [15]);

2.2 Systems of russian logicians (Ershow, Palyutin [16], Lawrow, Maksi-
mowa [41]);

2.3 Andrews’ system [3];

2.4 Leblanc’s systems [37, 38];

2.5 Systems with rules for negated formulae [40, 56, 66];
2.6 Dosen’s structural SC [13].

2.1. Sequent Natural Deduction of Gentzen and his followers

We do not mean here the well known system of natural deduction NK (or
NJ for intuitionist logic) which was presented by Gentzen in [22] but the
system introduced in [23] which was applied in the proof of the consistency
of Peano’s arithmetic. This system is devised for classical logic but uses in-
tuitionistic sequents with sequences of formulae in antecedents. It consists of
the rules of introduction of logical constants only in the succedent; instead of
rules for introduction in the antecedent it has the rules of elimination of con-
stants in the succedent. Hence it seems as a kind of a compromise between
his system NK of natural deduction and his standard sequent system LK in
the sense that all inference rules are basically as in his NK, but items which
are operated on in the proof are not formulae but sequents. Antecedents
of the sequents do not involve any logical operations; they provide only a
record of active assumptions.

In fact, such a system was implicitly present in [22] in the proof of correct-
ness of NK. Gentzen shows there an equivalence of his NK with Hilbert’s
system via LK. One part of the proof shows how to transform every NK
proof-tree into LK proof-tree. For this aim every inference rule of NK is
rewritten with addition of all active assumptions, this way we obtain as a
by-product the system which in [23] is defined explicitly.
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The only primitive sequents are of the form ¢ = ¢, exactly as in LK.
He also applies structural rules of weakening, contraction and permutation
in antecedents — as in LJ. Logical rules are the following:

(=) BETIy T (= ~E) Loe
(= AE1) %“Dﬁfw (= AE?2) %‘DQJ
(=A) P?K:ﬁﬁzw (= VE) =X FA’,A%H:;;XH:Q@\W
V) 1550y (=v) il
op T fmemy () Fezu
=B =0 TR
I'= plz/7] o I'=3zp  ¢lz/a], A=

(=3 (= 3E)

I'= Jzo L' A= 4

Side-conditions:
1. parameter (free variable) a is not free in T".
2. parameter a is not free in I'; A and .

It is easily seen that this calculus when compared with standard SC of
Gentzen has standard rules for introduction in the succedent taken from LJ;
two-premise form of (= —) follows from the fact that L (or empty succe-
dent) is not present in the language. Instead of rules of introduction in the
antecedent we have elimination (in succedent) rules taken from Gentzen’s
Natural Deduction system NK (or NJ for intuitionistic logic). In particular,
the rules (= —), (=—), (= VE) and (= 3E) correspond to proof con-
struction rules in NK, i.e. these rules which introduce subderivations based
on additional assumptions later discharged (after deduction of suitable for-
mula). It is represented here as a subtraction of some formula (additional
assumption) from the antecedent of a sequent. all other rules correspond to
inference rules of NK (NJ) so the only operation on antecedents of premises
is their concatenation.

It is easy to note that Cut-rule is derivable in this system by means of
(=—) and (=— FE) but of course it can be proved directly as na admissible
rule of the system, independently of the special rules for implication.
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This Gentzen’s system is based on the rigid conception of natural deduc-
tion as characterising logical constants only by means of rules operating only
on succedents of sequents. The only operations admissible on antecedents
have — as we noted above — structural character. It seems that the excep-
tion to this requirement is (= 3E), but it is an analogon of (= VE) which
is natural if we understand 3 as a disjunction in finite domain.

This Sequent Natural Deduction system of Gentzen is not very practical
in its original form. The drawbacks are twofold: proof is defined as a tree of
sequents which is not very practical; all assumptions must be rewritten in
each inference step. But the latter property allows to resign from defining a
proof as a tree of sequents and use linear proofs (i.e. sequences of sequents)
which are much easier to deal with from the standpoint of actual proof
search. Moreover, in contrast to Natural Deduction systems in Jaskowski
style”, it does not have to use any bookkeeping techniques, like lines or boxes,
for showing the dependancy of formulae in the proof from their assumptions.
Also the process of rewriting of all assumptions in each inference step may
be significantly simplified since the only operations on them have structural
character. Instead of rewritting formulae we may rewrite the numbers of
lines where respective assumptions were introduced. These solution was
first introduced in Feys’ and Ladriere [17] translation of [22] into french.
It was made popular due to Suppes’ [58] and its later simplifications in
Lemmon [39], Forbes [18] and many other textbooks. Usually in all these
systems authors simplify matters by introducing sets instead of sequences of
formulae/numbers in antecedents. It makes structural rules of permutation
and contraction dispensable®.

Clearly, in order to simplify Gentzen’s system in this way we must also
change Gentzen’s (= JFE). Suppes proposed a rule of the form:

I'=3zp /T = plr/ay,.. 4]

where we have a direct elimination of 3 but it needs a skolemization since
a is a new parameter indexed by all free variables occuring in ¢. Moreover,
such a rule requires additional complications in the formulation of correct
rule for introduction of V. Much better solution was provided by Lemmon,
who used a rule:

I'= Jzp; Ayplx/al = | T,A =1,

where a is a new parameter with respect to I', A, p, 1.

"In angloamerican tradition usually called Fitch-style Natural Deduction.

8 Although one should observe that in some cases, e.g. in modal logics, it may be better
to keep sequences — see Garson [20].
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We finish this subsection with the example of a proof in Suppes’ system:

1 {1} pP—q ass.

2 {2} q—r ass.

3 {3} D ass.

4 {1,3} ¢ 1,3,(— E)
5 {1,2,3} 2,4,(— E)
6 {1,2} p—or 5 (— 1)
71} (g—r— -7 6,(— 1)

8 P—a)—={g—=r)=@—=r) 7.(=1)

One can see that the final form of this calculus is apparently Natural
Deduction performed directly on formulae, not on sequents, but it should
be treated as a transformation of original Sequent Natural Deduction of
Gentzen.”

2.2. Extended Sequent Natural Deduction of Hermes and his fol-
lowers

As we have seen the rigid Gentzen’s int-elim scheme for the rules operating
only on succedents of the sequents leads to simplifications by reduction of
antecedents to sets of numbers. On the other hand, in order to obtain more
flexible tool for actual proof search one can admit the possibility of making
logical operations also in antecedents. Such a solution was examined by
some german and russian logicians. It seems that the first system of this
sort was provided by Hermes [25]. He also uses intuitionistic sequents with
sequences of formulae in antecedents in his formalization of classical logic
with identity. As primitive sequents Hermes uses only: ¢ = @ and = 7 = 7.
Logical rules are the following:

Feo=v A-p=1Y l'=sp A=-p
(~E=) T A=70 (= ~E) ILA=7
= I'=opA
(= AE1) # (= AE2) #

'=s¢p A=y Iey= A= x
=N T A= oAy V=) TR v =

9One can treat also Natural Deduction systems for relevant logics of Anderson and
Belnap [2] as belonging to this class due to the fact that all formulae have added a set
of (numbers) of active assumptions. However in this case the additional structure of
subproofs, characteristic for standard Natural Deduction on formulae, is also saved due to
restrictions needed for reiteration rule.
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(V) e (V) 550

o DA oo e
(=vE) L35 (=Y v

(==) F,x:r;:;@cp[m/ﬂ (Subst)® 15%22’

Side-conditions:
1. x not free in I.
2. x not free in ' and .
3. T, ¢’ obtained by substitution from T, .

Although proofs in Hermes’ system are defined as linear sequences of se-
quents we use tree representation as theoretically superior in simple cases:

We can easily notice that V and 3 is characterised exactly as in Gentzen’s
LJ, whereas A and V like in Gentzen’s sequent natural deduction, with the
only difference that in all rules for quantifiers no substitution is allowed since
this operation is defined by a separate rule. — is characterised almost as in
Gentzen’s LJ, but (—=) displays — in one of the premise. — is characterised
in nonstandard way; (—F =) is a variant of proof by cases, and (= —F) is
a variant of Duns Scotus rule.

Very unusual feature of Hermes’ system is the lack of structural rules
although sequents use sequences of fromulae in antecedents. It appears that
all rules are derivable. Drivability of permutation follows from the way the
substitutivity is defined by Hermes and from the application of (Subst).
Derivability of weakening is shown below:

'se Y=
Iy = oAy
LY=o

Although Modus Ponens is not a primitive rule of a system cut-rule is

=7
(= AE)

simply derivable:
¢ —p=-¢p
Ap=19 e =4
A=y

(= ~E)

(—E =)
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One can observe that both rules for — are strong enough to simulate cut and
to allow also the proof of Modus Ponens as derivable rule. Hermes in fact
shows derivability of many rules in order to increase the flexibility of proof
search in his system. For example, he introduces as derivable the following
rules for A:
Lo = X LoNy = x
A=) YT X AE =) LY =X
=) ToAe=x ( ) Lo =X
Very similar system for classical logic with =, v, 3 and linear proofs con-
tains [15]. The following differences should be noticed:

1. All two-premise rules have the same antecedents, i.e. context-sharing.'°

2. The preceding property makes necessary the addition of weakening
as a primitive rule since it is not longer derivable (see the proof in Hermes’
system where the rule for A was context-free), but it is necessary for unifying
antecedents of sequents which we want to use as premises for application of
two-premise rules. In Ebbinghaus, Flum and Thomas’ system we have one
structural rule which allows contraction, permutation and weakening on the
antecedent of any sequent. The only primitive sequent has the form I' = ¢,
where p € T

3. Rules for negation are similar; (-E =) (called the rule of prof by
cases) is the same as in Hermes (but with unified antecedents), (= —FE)
(called the rule of contradiction) has a slightly different form:

(~E =) F,cp:>1€1:>1;,b—|go:>¢) (= —E) F,—|¢:><§:>F12}—|w:>—|<p

Hermes’ rule (= —F) (with unified antecedents) is derivable as the sec-
ond rule of contradiction, similarly as Cut (called the chain rule). In the first
proof it suffices to add —1) to antecedents of both premises by weakening,
and then apply (= —F); the proof of derivability of Cut goes as in Hermes.

4. The remaining rules (for V,3 and = ) are like in Hermes’ system but
without separate rule of substitution; the effect of this operation is involved
in suitable rules for quantifiers — as in Gentzen’s system.

Quite similar systems of sequent natural deduction are also popular form
of textbook presentation of logic in Russia, e.g. Ershow, Palyutin [16] or
Lawrow, Maksimowa [41]. In the latter a propositional part of classical logic
is characterised almost identical as in Gentzen’s system from subsection 2.1,

10 Althouhg we do not consider in this paper systems for logics weaker than intuitionistic
one could also use in this context the name additive rules, in contrast to multiplicative,
i.e. context free rules, preferred by Hermes.
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in the former system with two-premise rules having the same antecedents.
In both systems — is characterised by different pair of rules:

_ I'—yp= _ I'=p TI's —w
(—E =) = (= —E) =

The extension to first-order logic is made differently in both systems.
Ershow, Palyutin [16] apply standard Gentzen’s rules from LJ; in fact they
introduce also a lot of derivable rules for propositional part which intro-
duce or eliminate logical constants in antecedents. Lawrow, Maksimowa [41]
characterize 3 as in LJ, but V like in sequent natural deduction, i.e. by intro-
duction and elimination in succedent only. In both approaches tree format
for proofs is saved.

2.3. Andrews’ system

It is a system for classical logic of quite different character from all discussed
above. Andrews uses intuitionistic sequents with sequences in antecedents,
proofs are linear and all many-premise rules have the same antecedents. The
set of primitive rules comprises:

1. In the class of structural rules we have one rule which allows for making
permutation, contraction and weakening in the antecedent. It is only one
primitive sequent of the form I' = ¢, where ¢ € T, as in Ebbinghaus, Flum’s
system.

2. Connectives are characterised by means of three logical rules which
correspond to proof construction rules in ordinary natural deduction system.
These are: (=—), (= VE) (with the same antecedents) and for —:

IN=p=1

Instead of separate rules which are counterparts of inference rules from
natural deduction, Andrews uses one rule:

where 1 A ... A @, — 1 is any classical tautology'!.
3. The characterization of quantifiers is based on rules of elimination
similar to those in Gentzen system (see section 2.1.), but with (= 3JE)

' Similar solutions are used by many authors of popular natural deduction systems, e.g.
Quine [48].
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having the same antecedents in both premises. The rules of introduction
have a generalised form:

I'=¢Volz/aVx
I'=syYVvVzeVyx

I'= ¢ Volz/T]V X
I'=yVvdzeVy

(= VG) (= 3G)
Clearly, (= VG) must satisfy the condition of a being new; also in both
rules we admit that ¢ or x is not present. Additionaly, in the set of prim-
itive rules there is a rule covering the effect of four De Morgan’s rules for
quantifiers, and a rule of change of any sequent for its alphabetic variant.
It is easily seen that the system is redundant. Int-elim schema for logical
rules is kept only for quantifiers; in propositional part only these rules are
present which correspond to proof construction rules in Natural Deduction.

2.4. Leblanc’s system

Leblanc [37, 38] introduced a variant of Gentzen’s LK but on intuitionistic
sequents, which may be seen as a kind of sequent natural deduction but with
generalised rules of elimination. The differences with Gentzen’s system are
the following;:

1. All many-premise rules have the same antecedents.

2. In (= V) and (= JE) there is no substitution of a new parameter
a for x, but x must satisfy the condition of being absent in I' (and % in
(= JE)) as in Hermes’ system. Both rules have the following form:

I's e =3z T,o=19
=Y =g (= 3E) =
3. Rules for = and V are like in Gentzen’s system, but with (= —) and
(= VE) with the same antecedents). In the remaining cases we have the
following rules of elimination:

(= vE) L=Y20 F:F;Tsz[w/y];‘w (= AE) F:>30A¢F:>F>é%w:>x

' p—¢ TI's(p—x)—e

(=— F) =

Specific form of rules of elimination for —, A i V is based on the schema of
elimination rules for V and 3. Introduction of such rules allows for proving
an interesting property which is a weaker version of subformula property.
For any propositional sequent S which is clasically provable we can find a
proof in which every constant occuring in any sequent of this proof occurs
also in S. This result does not hold for first-order system. Let us note that
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the characterization of = by means of a rule of elimination of double negation
is not sufficient for obtaining the characterization of classical implication by
means of Modus Ponens (like in Gentzen’s system). In Leblanc’s system the
replacement of his (=— E) by Modus Ponens gives intuitionistic implica-
tion. Of course if we want to obtain a full system for intuitionistic logic we
must also weaken elimination rules for —; instead of double elimination rule
we must use:

I'= I'= -

(= —E) = 7 2

It is worth mentioning that interesting application of such generalised
elimination rules but in standard natural deduction is provided by Negri
and von Plato [42]. Let us note that in this context every elimination rule
is a proof construction rule since we do not break every compound formula
directly but by means of subproofs initiated with respective subformulae.
Von Plato [44] has shown that such a solution allows much simpler proof of
normalization theorem for natural deduction system.

2.5. Systems with rules for negated formulae

Smullyan [56] introduced a variant of SC called symmetric which was par-
ticularly useful for proving interpolation theorems. It is similar to Gentzen’s
standard SC with respect to the shape of rules; there are only introduction
rules which are divided into antecedent- and succedent-operating. But there
are no rules which involve a transfer of any formula from one side of a se-
quent into the other. Consequently negation has a special treatment and
Gentzen’s rules for implication are modified. There are no standard intro-
duction rules for negation, instead we have a pair of rules for introduction
of negated complex formulae of any kind (hence also two rules for introduc-
tion of double negation). Except usual axioms with contexts there are also
sequents of the form: I',,—p = A and I' = A, ¢, —p. Rules for A and V
are standard (context sharing in case of two-premises, and with both com-
ponents of introduced formula in premises). For — we have the following
(symmetric) rules:

I'= A -, L-p=A T, ¢=A
R N A R W

For negated formulae we have the following rules:

F:A)"@7ﬁ¢
L= A -(pAY)

N-p=A T v=A

(= -A) L=(pAY) = A

(A=)
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F,_@O,_\w?A F:>A7_'90 F:>A7_'w

V=) v sa OV TTEA GV

ﬁ Lo, — = A _ F=Ae¢ ' A9
o2 e e s BT TS Ao 0)
(- =) Ne=A (= ——) = Ap

Formalization of first-order logic is obtained by addition of eight rules.
(= V) and (3 =) are standard Gentzen’ s rules; the remaining ones are:

I'\Vzp, plz/7] = A I'= A, 3z, plr/7]
(V=) Ve = A (=3 I'= A dzp

I Az—p = A = A, Jz—p
(=v =) I, =Vep = A (= =) I'= A, =Vzp

[ Ve—p = A I'= A Ve
(=3=) [,—3zp = A (=3 I'= A —dzp

This system has no primitive structural rules (including cut), all logical
rules are invertible and it satisfies strong generalised subformula-property. It
is generalised in the sense that all rules are closed on subformulae and their
single negations; it is strong in the sense that all formulae in the antecedent
are built from formulae occurring in the antecedent only, and similarly for
formulae in the succedent.

Widniewski [66] (and [40] with Leszczynska-Jasion and Urbanski) ex-
tracted a similar sequent system for classical logic from the deduction system
of generalised character provided for the system of the logic of questions. In
contrast to Smullyan’s system it is not symmetric because it is defined on in-
tuitionistic sequents but also no special rules for negation are offered in order
to obtain classical logic. In fact sequents are composed of finite sequences of
formulae in antecedents but we will use sets as in Smullyan’s solution. There
are only logical introduction rules which add complex formulae or their nega-
tions to antecedent or succedent of a sequent. The system G* for classical
propositional logic consists of axioms of the form I', o = ¢ or I', p, ~p = ¥
and standard Gentzen (intuitionistic) rules (= A), (A =), (V =) and (=—)
with the same contexts in both premises. For (= V) and (—=>) we have the
following;:

F7_'Q0:>77Z)
I'=spVvy

FL-o=x TIYv=x

=) Lo—v=x

(—=)
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For negated formulae we have the following rules:

= e onm R
v=) FF,;?si’Ji)iXx (=) - ?;wﬂ(sorﬁb)w
e R oo Tl
(==) F,F;fwiicx (=) Fr:ifcp

Strengthening to first-order logic is obtained by addition of eleven rules.
(= V) and (3 =) are standard Gentzen’ s introduction rules. The remaining
two are:

[\Vrp, olr/1] = X [, Vo = plz/7]
(V=) T,Vzp = x (=3) I'= dxp

Additionaly there are four DeMorgan rules, as in Smullyan’s system, and
four rules for addition of vacuous quantifier to a formula. The system is well
suited for automatic proof-search since it is cut-free and satisfies generalised
subformula-property. Moreover, it shows how to obtain a formulation of clas-
sical logic on intuitionistic sequents without introducing any special rules.
One can conclude with the remark that the idea of using special rules for
introduction of negated formulae appeared useful in formalization of some
nonclassical logics with special kinds of negation, but it is beyond the scope
of this paper.

2.6. Structural system of DoSen

Dosen [13] proposed a structural version of LK in the language without nega-
tion but with L. In this system the set of structural rules is not eliminable.
Every constant is characterised by means of only one, but double-line (i.e.
invertible) rule:

o, I'= A, Y ' Ao T AW
&) T=ae—v W TT=580r0

o, '=A P, I'=A
V) —voI=Aa

In each case in addition to the rule of introduction we have also a rule of
elimination if we read the rule upside down. Every rule is then a counterpart
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of suitable equivalence characterising respective constant on the ground of
theory of Scott’s consequence relations (see [55] or [4]). The remaining rules
for introduction are easily derivable by means of cut.

Dosen’s system serves as an exemplification of his theory of criteria of
logicality. The starting point of analysis of logical constants is the conviction
that logic is the science of formal proofs. Formal proof is a proof of structural
character, i.e. where only structural rules were applied'?. An expression is
logical iff it is analysable in purely structural terms. His rules provide such
an analysis in the sense that on the one side we have only structural sequents,
i.e. with no constant displayed. According to DoSen, in order to claim that
an expression is a logical constant it is necessary to find such a double-
valid rule which after adding to structural rules allows for obtaining a full
characterisation of this constant. Note that many expressions commonly
claimed to be logical do not satisfy this criterion of logicality; for example
modal constants. But one can find more stisfying solutions on the ground
of generalised formalisations briefly mentioned in the introduction (see e.g.
Wansing [64, 65] or Poggiolesi [45].)

It is worth mentioning that similar idea appeared earlier in Popper (e.g.
[46, 47]), but it was not so explicitly articulated and connected with rather
unsatisfying conception of proof-theoretical semantics. Popper’s project was
criticised by Kleene, Curry and many others because of its inconistency. But,
as was convincingly shown by Schroeder-Heister [51] (see also [53], Popper’s
works contain an interesting proposal for criteria of being a logical constant.
Popper tried to characterize constants by means of inferential definitions
which yield double-valid rules characterising constants of the form:

o, X = ¢ 0, ¥ = X
=) y=o=0 W GAg=x

P =x Y=x 0, ¥ = X
V) =T =x ) o=

3. Structural type of Hertz’s

Systems of the first type represent a rule-based solution, where one or two
types of primitive sequents are sufficient to start a proof. Quite a contrary
solution was proposed by Hertz [26]. In this approach rules have purely
structural character and all logical content is contained in primitive sequents.

121t is in a sense a development of Hertz’s program which will be discussed in the next
section.
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That’s why, this type of SC may be called purely structural.'?

Hertz introduced the notion of a sequent (of intuitionistic type), sequent
rule, tree representation of proofs and started the program developed later
by Gentzen.'* But it should be noted that Hertz did not present any specific
system for concrete logic. His approach was abstract; he defined rather a
schema of the system in which the only rules have purely structural charac-
ter. Except rules of contraction, permutation and weakening in antecedent,
Hertz used also the following rule of syllogism which is a kind of a cut rule:

=1 ... n=0n  @1,.0n A=
Iy, .., I, A=

Gentzen in his earlier work [21] developed to some extent theory of Hertz.
In particular, he presented purely structural criteria which must be satisfied
by any SC of this type with independent set of axiomatic sequents. Also he
replaced Hertz’s rule of syllogism with Cut which is its particular instance
with n = 1.

The approach of Hertz to characterization of concrete logics did not find
application, except one significant example which we describe below. But
his approach is commonly used as a way of defining theories on the ground
of rule-based (i.e. of the first type, usually standard) formalization of logic.

3.1. Suszko’s system

It seems that the only concrete realization of Hertz’s idea with respect to
specific logics was due to Suszko although he did not mention Hertz but
rather refers to some ideas of Ajdukiewicz [1].1% In 40ties Suszko proposed
in his Ph.D. thesis [61] (see also [60] and [62]) the original SC operating
on intuitionistic sequents with sequences in the antecedents. In order to
understand properly his motivations one should note that in his system se-
quents are seen as expressing inference rules and neither antecedent (a list of
premises) nor succedent (a conclusion) may be empty. His attempts resulted
from dissatisfaction with the earlier systems of Gentzen and Jaskowski. The
problem he posed was called by him the problem of logic without axioms and
may be expressed as follows: Is it possible to build a calculus for classical
logic in which all the logical axioms are dispensed with? Instead of logical
axioms only proper inference rules must be assumed as primitive. Theses of

13But it should be distinguished from the sense of structurality involved in DoSen’s
proposal.

One can find a detailed overview of Hertz’ system in Schroeder-Heister [52].

'5This subsection is based on Indrzejczak [29].
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logic (including axioms) may be deduced by means of these rules from arbi-
trary formulae. It is a way of expressing the idea that analytical sentences
(= logical theses) are implied by any sentences.

In Suszko’s opinion all nonaxiomatic systems proposed so far comprises
some rules which are not proper. But what is a proper inference rule?
According to Suszko’s view, a rule is proper if it is represented by a schema,
where all premises and conclusion are schemata of contingent formulae only.
He claims that, e.g. proof construction rules comprising Deduction Theorem
are not proper in this sense because a conclusion of its application is an
implicational thesis. The same applies to other rules of this sort like Indirect
Proof or Proof by Cases. Suszko is referring here to Ajdukiewicz’s view from
[1] and treats such rules as examples of axiomatic postulates. It seems that
the objection against such rules is exagerated since schemata of them do not
exhibit schemata of theses in conclusion, moreover not all applications of
them lead to theses (e.g. if not all assumptions are discharged). Anyway,
Suszko rejected such kind of rules from his system, hence it is certainly not
a system of natural deduction in ordinary sense.

In [60] Suszko presented only adequate formalization of classical propo-
sitional logic in the language with implication and negation, comprising the
following seven sequents:

1.1.1. o = Yoy

1.1.2. (p—=Y)—x = PYv—ox

113, o—=@W—-x) = (p—¢)—(p—X)

1.1.4. p—=1 = x—¢) = (=7 —>K—v)
1.1.5. Yo=Y = Y

1.16. (=) —x = -p—x

1.1.7. o=, ~p >y =

In [61] the rest of the rules are supplied. For other propositional constants
we have the following sequents:

1.2.1. p—=% = PAx—Y

1.2.2. =% = XANp—=1

123, p—=W—=x)y—=®—=0 = ¢—(— @ —xAJ))
1.3.1. (p—=1)—=x = (pe—t)—x

1.3.2. (p—=v)—=x = @) —Xx

133. o= W —=x),7—=(Kx—=v) = ¢o—(— <)
1.4.1. p—=Y = @e—=PVy

1.4.2. p—=Y = e—=xVY

143. o= W—=x),7—=E—=x) = ¢—=(—@Vi—yx)
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Alternatively, instead of sequents 1.2.1. — 1.4.3., Suszko considers a set
of 8 sequents which are also sufficient to capture the (classical) meaning of
A, V, <

1.2.1". p—=W—=x) = eANY—x
1.2.2", pAY—=x = o— (P —=x)
131 o=@ —=x,p—>KX—=%) = ¢—=@ex)
1.3.2". p—=Weox) = =W —x)
1.3.3". p—=Weox) = =KX=
1.4.17. o=, x—Y = pVx—Y
1.4.2". oV —x = p—ox
1.4.3". eV —>x = Y—x

The rules for quantifiers:
2.1. plz/a] = Vzo
221. Vz(p—1v) = ¢— Vo
222, V(v —¢) = Tz —
2.3.1. o=V = o —Ylx/T]
2.3.2. Jzp - = plx/T] =P

where in schemata 2.2.1. and 2.2.2 ¢ has no occurence of x. Schema 2.1.
shows that = in Suszko’s system does not correspond to the same relation
of deducibility as in Gentzen’s system.

Finally for identity we have two sequents (We omit a rule for definite de-
scriptions; a full description of the system may be found in Indrzejczak [29]):

31. ¢ = Fz(x=a)

32. v = T1=T9— p[11//T)
where 7; represents any term and ¢ in 3.1. is any formula. Also // in schema
3.2. means that any replacement is made not a substitution.

In order to derive other sequents from primitive ones Suszko uses several
forms (actually 6) of the rule of substitution from Hilbert system but applied
on the whole sequent, and 4 structural rules taken from Gentzen’s LJ; i.e.
weakening, permutation, contraction (in antecedents) and cut.

Suszko did not pay an attention to the form of representation of proof
in his system. In what follows for compactness we display proofs in linear
format since, in contrast to Gentzen’s system, trees in Suszko’s system tend
to use quite long sequents already as leaves and it is hard to put them in
the page.

It is an interesting feature of this system that only sequents with non-
empty antecedent may be deduced from primitive sequents of the system
by means of these structural rules, again, in contrast to Gentzen’s system,
where theses are sequents of the form = . Suszko’s sequents naturally



A Survey of Nonstandard Sequent Calculi 1313

represent inference rules but in what way can we derive theses? After all his
system is devised for classical logic not for purely inferential logics like e.g.
Kleene’s K3. Theses of classical logics are derivable as so called absolute
sequents of the form ¢ = 1, where ¢ is an atomic formula not occuring
as a subformula of ¥. Let us illustrate a proof of a thesis (i.e. an absolute
sequent):

1. p=p=>p@—p—((p—q¢g—®—0q) 1.1.4.

2. p—=pp—=p—(r—=¢9—@P—q¢)=>pP—9—pP—q 115

3. p—=pp—=p=>@{m—9q —{@—q) 1,2, cut

4. p—p=@pP—q —(—q 3, contraction
5. p=>p—p 1.1.1

6. p=>pP—q9—pP—9q 4,5, cut

7. poa—p—ad=>rp—((p—q9—q commutation
8. p=2p—((p—q9 —q 6,7, cut

9. pp—((p—9 —a=m@—a9—q 1.1.5.

10. pp=(—q —q 8,9, cut

1. p=>{pP—q9 —q 10, contraction
12. (p—q) —qg=>q—q 1.1.2.

13. p=qg—yq 11,12, cut

In line 7. we have used derived sequent to slightly shorten the proof.
Note, by the way, that a proof of ¢ = ¢ is straightforward in Suszko’s system
(one cut on suitable instances of 1.1.1. and 1.1.5.), but we cannot apply
Deduction Theorem to obtain an absolute sequent from resulting sequent.

In practice, Suszko’s system treated as a kind of ordinary SC has a
serious drawback concerning proof display. It may be partly overcome if we
apply linear format but still proofs tend to be not only quite lengthy but
also operate on often long sequents. It may be simplified a bit if we define a
proof not as a linear sequence of sequents, but a linear sequence of formulae,
where the first lines contain elements of the antecedent (of a proved sequent)
and the last line is a succedent. Hence primitive sequents are not items in
proof but rather descriptions of primitive inference rules on formulae, as in
ordinary Natural Deduction on formulae. The proof of p = ¢ — ¢ displayed
above may be rewritten in a slightly more compact and readable way:

1. p assumed antecedent
2. p—=p 1,1.1.1.

3. (p—p) —((p—q — (p—4q)) 2,114

4 (p—a9)— -9 2,3,1.1.5.

5 p—(p—q) —q 4, commutation

6. (p—q) —q 1,5,1.1.5.

7. qg—q 6,1.1.2.
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In justification column we only refer to the number of primitive or a name
of derivable sequent, and lines where its antecedents are displayed. The ap-
plication of cut, contraction e.t.c. are implicit. This form of displaying
proofs makes his system more menageable (shorter proofs made of shorter
lines) and obtained system is more in natural deduction spirit. But it is not
a natural deduction system; there are no subordinate proofs and no rules for
discharging assumptions which is essential in this type of systems. It rather
makes his system in some respects similar to systems of linear reasoning
implicit in Herbrand’s procedure.

By the end of [61] Suszko made some remarks concerning formalization
of some nonclassical propositional logics.

1. A system comprising of only sequents 1.1.1. — 1.1.5. provides a formal-
ization of positive propositional logic.
2. Addition of Peirce Law:

(=) =9 = ¢

yields implicational classical logic.
3. Replacement of 1.1.7. in propositional part (1.1.1. — 1.4.3.) by any of:

= = (e ) -
p—=1Y = (p— ) —p

provides a formalization of intuitionistic propositional logic.
4. Finally, if in this system we replace also 1.1.6. by:

(=)= x = —-p—x

it yields a formalization of minimal propositional logic of Kolmogorov,
Johansson.

Suszko himself was not satisfied with his solution because the project of
total elimination of axioms in favor of proper inference rules was not fully
realised. Namely sequent 3.1. is an absolute sequent expressing cryptoax-
iomatic rule. Hence although it holds for his system that if a sentence is
derivable from any sentence, then it is analytic (i.e. a thesis), then the
converse does not hold, at least when identity is concerned. But Suszko
was mistaken in this respect. One may use e.g. sequents corresponding to
Kalish/Montague [33] rules for identity:

Va(z =7 —¢(@) = (1)
o(t) = Ve(z=7— p(x))
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These sequents express proper rules in the sense of Suszko and are suf-
ficient to obtain a complete system for first-order logic with identity. So in
fact for Suszko’s system with these rules replacing 3.1. and 3.2. it holds as
well, that if a sentence is analytic, then it is derivable from any sentence.

4. Mixed type

Between the extrema of type one and two we can find a plethora of SC
which use freely primitive sequents and rules to gain more flexibility in proof
search. There is a great many possible combinations with some constants
characterised only by means of rules and other only by means of sequents,
or the same constants partly characterised by rules and partly by sequents.
One can find considerations on these matters in Bernays [7], Popper [46] and
many other logicians. Below we will illustrate the point with some examples.

In fact, the first solution of this kind is already in Gentzen [22], where
he noticed that many rules of LK may be replaced with primitive sequents:

e =Y, Tp
® Y, P =
* NP =
* PN =1
* VY= PAY
* p= Vi
e h=pVy
* YV =1
* p =Y, 0=
o Vrp = ¢[x/a
o vlx/al = Jzp
This list provides the basis for total elimination of rules for =, A, V; there
remain only three logical rules: (=—), (= V) and (3 =). Structural rules
and axiomatic sequent remain with no changes. Let LK* denotes the variant

of LK, where all logical rules (except three abovementioned) were replaced
with suitable primitive sequents. One can prove that:

|—LKF2>Aiﬁ‘|—LK*F:>A.

Clearly Cut is not eliminable in LK* since Modus Ponens is present only
in weak form, i.e. as a sequent representing its inferential form, not in
strong form, i.e. as a sequent rule (like in Gentzen’s system described in
section 2.1.).
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4.1. Kleene and sequential representation of standard Natural
Deduction

In his well known textbook [35] (also [36]) Kleene introduces Hilbert sys-
tem as basic but soon proves a lot of secondary rules of introduction and
elimination which together provide adequate formalization of classical logic.
In contrast to Gentzen’s system and to most other described above, Kleene
uses intuitonistic sequents but with antecedent as sets of formulae. A and
— is characterised as in LK*, i.e. by means of 3 sequents for A, and one
sequent representing inferential version of Modus Ponens and one rule repre-
senting Deduction Theorem. For V he also uses two sequents but elimination
cannot be represented by sequent ¢ V ¢ = 1, x (two formulae in succedent
are not allowed) hence he uses a rule (V =) with the same antecedents.
For negation he applies two sequents: ¢,—¢ = 9, =—¢ = ¢ and a rule
o= ¢;T ¢ = -1 /' = —¢. For quantifiers he uses two sequents and
two rules; exactly as in LK*.

It is easily provable that if we add to Kleene’s set of sequents and rules
three elements, namely: sequent ¢ = ¢, rule of weakening in antecedent,
and cut, we obtain adequate characterization of classical logic. Permutation
and contraction are not needed since antecedents of sequents are sets. Cut
is not eliminable, exactly for the same reason as in LK*.

Such a system is very close to standard system NK of Natural Deduc-
tion as defined by Gentzen. The difference is that in the latter we operate
(by means of inference rules) on formulae in the proof, whereas in Kleene’s
— if precisely formalised — we operate directly on sequents (representing
inference rules) by means of sequent rules (representing prof construction
rules of natural deduction). Hence sequents correspond to inference rules of
standard natural deduction, and sequent rules correspond to proof construc-
tion rules of standard natural deduction. These correspondence is exact in
case of A,V and — (with the only difference that in Kleene’s system (V =)
has the same antecedents, whereas in Gentzen’s natural deduction (VE) is
context-free). If we want to obtain a system where the correspondence is
full we must make the following changes:

1. In case of negation we must use: ¢,—¢ = L and L = ¢ instead
w, ¢ = 1, and keep == = ¢ for classical logic. Instead of Kleene’s rule
we must use rule: I';o = 1L / T' = —p. These changes follows from the
fact that Kleene does not use L. Omne can also introduce a sequent rule
corresponding to (—E) which makes a sequent —=—¢ = ¢ dispensable.

2. In case of quantifiers instead of (3 =) one can use the counterpart of
(3E) of the form: I' = Jzxp; A, plz/a] = ¢ / I', A = 9 with side condition
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to the effect that a is not in ¢, and I', A. (VD) is formulated as inference
rule in Gentzen’s natural deduction but with global side condition referring
to active assumption, hence it is naturally represented as a sequent rule
(= V). Both sequents from LK* correspond to (VE) and (3D).

This way we obtain another form of sequent Natural Deduction but sig-
nificantly different from the Gentzen’s system from section 2.1. Both systems
operate on sequents (although in Suppes’ variant this feature seems to be
obscured) not on formulae like standard systems of Natural Deduction!®.
But in Gentzen’s system from section 2.1. all constants are characterised
by means of rules and, when compared with standard Natural Deduction,
there is no difference between inference and proof construction rules. In the
present system, constants are characterised either by sequents or by rules,
and as a result we have a strict correspondence between sequents and in-
ference rules of standard Natural Deduction on the one hand, and between
sequent rules and proof construction rules of standard Natural Deduction.

4.2. Hasenjaeger’s system

Hasenjaeger [24] contains SC defined on intuitionistic sequents with se-
quences in antecedents for classical propositional logic. Except structural
rules on antecedents and Cut, only — is characterised by means of rules:
(=—) and its converse instead of (—=>); as we know (see subsection 2.5. on
Dosen’s system) it yields adequate characterisation of intuitionistic implica-
tion, and after addition of suitable characterization of classical negation it
suffices to obtain classical implication too.

Remaining connectives are characterised by means of primitive sequents:
A as in LK* similarly V in succedent. A sequent characterising V in an-
tecedent must be different because only one formula in succedent is allowed.
We have a sequent of the form:

=X = x, eV =X
For negation we have also different characterization:

® v, =1
b 90—’@0,_‘80—>¢Z>¢

The first sequent is the same as in LK* but arbitrary ¢ is added since
Hasenjaeger does not admit empty succedents. The second sequent replaces
= ¢, 7 because more formulae are not admitted in succedents.

5T mean here NK of Gentzen [22] and the system of Jagkowski.
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In this system the number of rules is reduced which makes it more similar
to systems belonging to the second type. In fact, we can go further in
this direction — we can introduce a sequent representing inferential Modus
Ponens instead of the converse of (==—); such a solution is in the system of
Surma [59] (but his selection of primitive sequents is slightly different).

It is easy to prove the adequacy of Hasenjaeger’s system; it suffices to
show its equivalence with LK*. In the latter one can easily deduce both
sequents for = and V which replace Gentzen’s sequents with two formulae
in succedents. It gives a system strong enough to cover intuitionistic propo-
sitional logic (because of structural restriction on sequents). Hence it is
sufficient to prove a law of excluded middle, here is the proof:

@Y = eV p
() —m8M8M8M8M8
- = @V g = — oV p ©— PV P, — PV o= oV g
(=) —48M8M8M8MM— (Cut)
= p — oV e o — oV op =V
(Cut)

= @V e

4.3. Rieger’s system

The original SC was provided by Rieger [49]. He uses sequents which admit
exactly one formula on both sides of a sequent. His set of primitive sequents
comprises:
* p=¢
o=@V
p=1%Ve
Ay =@
YAp=p
e AWV X)= (@A) V(e AX)
(V) A (VX)) =9V ([ AX)
PN =Y
Y =pVop
PVY ==Y
p—=Y="pVY
Vap = plz/a]

vlr/a] = Jxp



A Survey of Nonstandard Sequent Calculi 1319

Additionaly we have the following rules:

(TR) p=v% Y=x

=X
X=¢ X=9 p=x Y=x
(=) X= AP (V=) Vi =x
=9 555 CRONE

side conditions:
1. x is not free in .

Proof is defined as the sequence of such sequents. Similarly as in Suszko’s
system a proof of a sequent with empty antecedent is not possible. Since
Rieger is interested in proofs of theorems in elementary theories he admits
that ¢ is a thesis of theory T iff a sequent A = ¢ is provable, where A is
a conjunction of some instances of axioms from T. In contrast to Suszko’s
solution, in Rieger’s system one can prove deduction theorem of the form:
p = ¢ iff x = ¢ — 2, where x is arbitrary formula.

The decision that sequents of the system are restricted this way leads to
some complications in proofs and in characterisation of constants in rules.
For example, Rieger needs separate sequents to express some distribution
laws (their converses are provable) for completeness. But this decision is
neither arbitrary nor artificial from the standpoint of Rieger’s purposes. His
work is concerned mainly with algebraic aspects of classical logic and such
sequents and rules more directly express these features. Rieger introduces
also sequents of the form ¢ < 9 for direct dealing with identities in algebraic
structures. Similar solution is applied in Dunn and Hardegree [14], where
SC for equivalential logics are considered.

5. Conclusion

We have focused on nonstandard systems designed for classical logic and only
mentioned in passing some solutions for nonclassical logics. In fact, most of
them belong rather to category of generalised sequent calculi but some of
them, although developed in the context of mainstream study of standard
SC (cut-elimination matters, e.t.c.), could be also classified as nonstandard.
One may take as examples many formalizations of modal logic like GL or
S4.3. where rules proposed for introduction of [ in the succedent are far
from being standard in the sense of Gentzen.
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The results reported in this paper were realised within a project financed

by the National Science Centre, Poland (decision no. DEC-2011/03/B/HS1/
04366).

References

(1]

AJDUKIEWICZ, K., Sprache und Sinn, Erkenntniss IV:100-138, 1934.

ANDERSON, A.R., and N.D. BELNAP, Entailment: the Logic of Relewance and Ne-
cessity, vol. I, Princeton University Press, Princeton 1975.

ANDREWS, P.B., An Introduction to Mathematical Logic and Type Theory: to Truth
through Proof, Harcourt Academic Press, Orlando 1986.

AVRON, A.; Simple Consequence Relations, Information and Computation 92:105—
139, 1991.

AVRON, A., The Method of Hypersequents in the Proof Theory of Propositional Non-
Classical Logics, in W. Hodges et al. (eds.), Logic: From Foundations to Applications,
Oxford Science Publication, Oxford, 1996, pp. 1-32.

BELNAP, N.D., Display Logic, Journal of Philosophical Logic 11:375-417, 1982.
BERNAYS, P., Betrachtungen zum Sequenzen-Kalkul, in A. T. Tymieniecka (ed.), Con-
tributions to Logic and Methodology in honor of J. M. Bochenski, North-Holland,
Amsterdam 1965, pp. 1-44.

BLAMEY, S., and L. HUMBERSTONE, A Perspective on Modal Sequent Logic, Publica-
tions of the Research Institute for Mathematical Sciences, Kyoto University 27:763—
782, 1991.

CARrNIELLI, W. A., On Sequents and Tableaux for Many-valued Logics, Journal of
Non-Classical Logic 8(1):59-76, 1991.

CIABATTONI, A., R. RAMANAYAKE, and H. WANSING, Hypersequent and Display
Calculi — a unified pespective, Studia Logica, this issue.

CURRY, H.B., Foundations of Mathematical Logic, McGraw-Hill, New York 1963.
DoSEN, K., Sequent-systems for Modal Logic, Journal of Symbolic Logic 50:149-159,
1985.

DoSEN, K., Logical constants as punctuation marks, Notre Dame Journal of Formal
Logic 30:362-381, 1989.

DunN, J.M., and G.M. HARDEGREE, Algebraic Methods in Philosophical Logic,
Clarendon, Oxford 2001.

EBBINGHAUS, H.D., J. FLuM, and W. THOMAS, Mathematical Logic, Springer, Berlin
1984.

ErsHow, Y. L., and E. A. PALYUTIN, Mathematical Logic, MIR, Moscow 1984.
FEYs, R., and J. LADRIERE, Supplementary notes, in Recherches sur la deduction
logique, french translation of Gentzen, Press Univ. de France, Paris 1955.

FORBES, G., Modern Logic, New York 2001.

GABBAY, D., LDS - Labelled Deductive Systems, Clarendon Press, Oxford 1996.
GARSON, J.W. Modal Logic for Philosophers, Cambridge University Press, Cambridge
2006.

GENTZEN, G., Uber die Existenz unabhiingiger Axiomensysteme zu unendlichen
Satzsystemen, Mathematische Annalen 107:329-350, 1932.



A Survey of Nonstandard Sequent Calculi 1321

[22]
[23]
[24]

[25]
[26]

[27]

GENTZEN, G., Untersuchungen {iiber das Logische Schliessen, Mathematische
Zeitschrift 39:176-210 and 39:405-431, 1934.

GENTZEN, G., Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische An-
nalen 112:493-565, 1936.

HASENJAEGER, G., Introduction to the Basic Concepts and Problems of Modern Logic,
Reidel, Dordrecht 1972.

HEeRMES, H., Finfihrung in die Mathematische Logik, Teubner, Stuttgart 1963.
HEerTZ, P., Uber Axiomensysteme fiir beliebige Satzsysteme, Mathematische Annalen
101:457-514, 1929.

HUDELMAYER, J., and P. SCHROEDER-HEISTER, Classical Lambek Calculus, in
P. Baumgartner, R. Hiahnle, and J. Possega (eds.), Theorem Proving with Ana-
lytic Tableaux and Related Methods. 4th International Workshop, TABLEAUX’95
(St. Goar, May 7-10, 1995), Springer LNAI, Bd. 918, 1995, pp. 247-262.
INDRZEJCZAK, A., Generalised Sequent Calculus for Propositional Modal Logics, Log-
ica Trianguli 1:15-31, 1997.

INDRZEJCZAK, A., Suszko’s Contribution to the Theory of Nonaxiomatic Proof Sys-
tems, Bulletin of the Section of logic 38(3-4):151-162, 20009.

INDRZEJCZAK, A., Natural Deduction, Hybrid Systems and Modal Logics, Springer
2010.

INDRZEJCZAK, A., Rachunki sekwentowe w logice klasycznej, Wyd. UL, Lédz 2013.
JASKOWSKI, S., On the Rules of Suppositions in Formal Logic Studia Logica 1:5-32,
1934.

KavisH, D., and R. MONTAGUE, Logic, Techniques of Formal Reasoning, Harcourt,
Brace and World, New York 1964.

KasHivA, R., Cut-free sequent calculi for some tense logics, Studia Logica 53:119-135,
1994.

KLEENE, S. C., Introduction to Metamathematics, North Holland, Amsterdam 1952.
KLEENE, S. C., Mathematical Logic, Willey, New York 1967.

LEBLANC, H., Proof routines for the propositional calculus, Notre Dame Journal of
Formal Logic 4(2):81-104, 1963.

LEBLANC, H., Two separation theorems for natural deduction, Notre Dame Journal
of Formal Logic 7(2):81-104, 1966.

LeEmMON, E. J.; Beginning Logic, Nelson, London 1965.

LESZCZYNSKA-JASION, D., M. URBANSKI, and A. WISNIEWSKI, Socratic Trees, Studia
Logica 101(5):959-986, 2013.

Lawrow, I. A, and L. L. MAKSIMOWA, Zadania z teorii mnogosci, logiki matematycz-
nej i teorii algorytmow, PWN, Warszawa 2004.

NEGRI, S., and J. von PLATO, Structural Proof Theory, Cambridge University Press,
Cambridge 2001.

NisHIMURA, H., A Study of Some Tense Logics by Gentzen’s Sequential Method,
Publications of the Research Institute for Mathematical Sciences, Kyoto University
16:343-353, 1980.

VON PrLATO, J., Natural deduction with general elimination rules, Archiv for Mathe-
matical Logic 40:541-567.

Pocaiorest, F., Gentzen Calculi for Modal Propositional Logic, Springer 2011.



1322 A. Indrzejczak

>
-

[N
o

at

e
o

[51]

[52]

PorPER, K., Logic without assumptions, Proceedings of the Aristotelian Society
47:251-292, 1947.

PoprPER, K., New foundations for Logic, Mind 56:1947.

QUINE, W. Van O., Methods of Logic, Colt, New York 1950.

RIEGER, L., Algebraic Methods of Mathematical Logic, Academia, Prague 1967.
Rousseau, G., Sequents in Many Valued Logic, Fundamenta Mathematicae
LX(1):22-23, 1967.

SCHROEDER-HEISTER, P., Popper’s theory of deductive inference and the concept of
a logical constant, History and Philosophy of Logic 5:79-110, 1984.
SCHROEDER-HEISTER, P., Resolution and the origins of structural reasoning: early
proof-theoretic ideas of Hertz and Gentzen, The Bulletin of Symbolic Logic 8(2):246—
265, 2002.

SCHROEDER-HEISTER, P., Popper’s structuralist theory of logic, in 1. Jarvie, K. Mil-
ford, D. Miller (eds.), Karl Popper: A Centenary Assesment, vol I11: Science, Ashgate
Publishing: Aldershot 2006, pp. 17-36.

ScHUTTE, K., Proof Theory, Springer, Berlin 1977.

ScoTT, D., Rules and derived rules, in S. Stenlund (ed.), Logical Theory and Seman-
tical Analysis, 1974, pp. 147-161.

SMULLYAN, R., First-Order Logic, Springer 1968.

STOUPPA P., A deep inference system for the modal logic S5, Studia Logica 85:199—
214, 2007.

SUPPES P.; Introduction to Logic, Van Nostrand, Princeton 1957.

SURMA, S.J., Wprowadzenie do metamatematyki T. I, Krakéw 1965.

Suszko, R., W sprawie logiki bez aksjomatéw, Kwartalnik Filozoficzny 17(3/4):199—
205, 1948.

Suszko, R., O analitycznych aksjomatach i logicznych regutach wnioskowania,
Poznariskie Towarzystwo Przyjaciél Nauk, Prace Komisji Filozoficznej, 7/5, 1949.
Suszko, R., Formalna teoria wartosci logicznych, Studia Logica 6:145-320, 1957.
Tarr, W. W., Normal Derivability in Classical Logic, in The Sintax and Semantics of
Infinitary Languages, LNM 72, 1968, pp. 204-236.

WANSING, H., Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.
WANSING, H., Sequent Systems for Modal Logics, in D. Gabbay, F. Guenthner (eds.),
Handbook of Philosophical Logic, vol IV, Reidel Publishing Company, Dordrecht 2002,
pp- 89-133.

WISNIEWSKI, A., Socratic Proofs, Journal of Philosophical Logic 33(3):299-326, 2004.

ANDRZEJ INDRZEJCZAK
Department of Logic
University of L6dz
Kopcinskiego 16/18

90-232 Lédz, Poland
indrzej@filozof.uni.lodz.pl

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s)
and the source are credited.



	A Survey of Nonstandard Sequent Calculi

	Abstract
	Introduction
	Nonstandard SC of Gentzen’s type
	Sequent Natural Deduction of Gentzen and his followers
	Extended Sequent Natural Deduction of Hermes and his followers
	Andrews’ system
	Leblanc’s system
	Systems with rules for negated formulae
	Structural system of Do˘sen

	Structural type of Hertz’s
	Suszko’s system

	Mixed type

	Kleene and sequential representation of standard Natural
Deduction
	Hasenjaeger’s system
	Rieger’s system

	Conclusion
	References


