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Suppose that in a jurisdiction there are 2,000,001 white voters and 1,000,000 black vot-
ers, all of whom enjoy equally weighted votes. The question of white supremacy is rou-
tinely put to a majority- rule plebiscite. In each such plebiscite, all white voters vote yes 
for white supremacy and all black voters vote no. This has been going on as long as any-
one can remember, and it will continue for as long as anyone can foresee. This is a par-
adigm of a persistent minority, to which, intuitively, each black voter has an objection.

What is their objection? One answer is that black voters don't get their preferences 
satisfied. Another answer is that black voters are oppressed by the eventuating policies 
of white supremacy. Yet another answer considers the white majority as a group. As a 
group, they have greater power to determine the outcome than have the blacks as a group. 
Indeed, the white majority as a group is always decisive. In the last plebiscite, all the whites 
voted for white supremacy and it passed; and if all the whites had voted against, it would 
have failed. By contrast, the black minority as a group is never decisive. They voted against 
and it passed; and if any assemblage of them had voted yes, it would still have passed.

It seems more difficult, however, to say that members of the minority as individ-
uals have less voting power or power to determine the outcome than members of the 
majority as individuals. Accordingly, some say they may be unlucky, but are no less 
powerful than members of the majority, as power is not the same as prospects for 
success.1 Recently, however, Arash Abizadeh has argued ingeniously that members 

 1Brian Barry, “Is it better to be powerful or lucky? Part 2,” Political Studies, 28 (1980), 338– 52; Keith Dowding, Rational 
Choice and Political Power: The Original Text with Two New Chapters (Bristol: Bristol University Press, 2019), p. 62; 
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of persistent minorities are in fact less powerful than members of persistent majori-
ties, provided further background conditions are met.2 Abizadeh argues that the bad 
luck diagnosis ignores “the power of numbers”:

This is the agential social power enjoyed by one who finds herself 
among others disposed to act in concert with her to effect the realiza-
tion of her intentions, preferences, or objectives, even if she has no 
power over them. It is the power enjoyed by members of a persistent 
majority under majoritarian decision- making: if over a broad range of 
issues over time, conditional on a voter supporting an alternative, a ma-
jority would also support it, then he has greater decision- making power 
than a voter for whom there is no such correlation of voting intentions— 
even if he exercises no power over the persistent majority.3

In this article, we raise a number of doubts about Abizadeh's suggestion that the 
power- of- numbers thesis can vindicate the thought that members of the minority as 
individuals have less voting power and thereby account for their objection to belonging 
to a persistent minority. Perhaps the most serious doubt is that while Abizadeh correctly 
holds that voting power must be assessed in part by counterfactualizing on votes— by 
asking what would have happened if a voter had voted otherwise than he in fact did— he 
does not counterfactualize in the right way.

I |  A POST E R IOR I VOT I NG POW E R

We cannot vindicate the thought that members of the minority have less voting 
power if we assume an a priori measure of voting power that abstracts from informa-
tion about the distribution of political preferences and its causes. An example is the 
Banzhaf (or Penrose– Banzhaf) measure of voting power, according to which a voter's 
power is her probability of casting a decisive vote if all other voters vote indepen-
dently and with equal probability for either alternative.4 (A voter's vote in favor of (or 
against) a measure is decisive if the measure passes (fails), but would have failed 

 2Arash Abizadeh, “The power of numbers: on agential power- with- others without power- over- others,” Philosophy and 
Public Affairs, 49 (2021), 290– 318; Arash Abizadeh, “Counter- majoritarian democracy: persistent minorities, 
federalism, and the power of numbers,” American Political Science Review, 115 (2021), 742– 56.
 3Abizadeh, “The power of numbers.” p. 291.
 4 L. S. Penrose, “The elementary statistics of majority voting,” Journal of the Royal Statistical Society, 109 (1946), 53– 7; 
John F. Banzhaf, “Weighted voting doesn't work: a mathematical analysis,” Rutgers Law Review, 19 (1965), 317– 43; John 
F. Banzhaf, “Multi- member electoral districts. do they violate the ‘one man, one vote’ principle?”, Yale Law Journal, 75 
(1966), 1309– 38; Harry Brighouse, “Egalitarianism and equal availability of political influence,” Journal of Political 
Philosophy, 4 (1996), 118– 41, at pp. 119, 139; Morriss, Power, pp. 154– 66; Niko Kolodny, “Rule over none ii: social 
equality and the justification of democracy,” Philosophy and Public Affairs, 42 (2014), 287– 336, at pp. 320– 2. See Dan 
Felsenthal and Moshé Machover, The Measurement of Voting Power: Theory and Practice, Problems and Paradoxes 
(Cheltenham: Edward Elgar, 1998), for technical discussion of the Penrose– Banzhaf measure and other measures of 
voting power.
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(passed) if the voter had instead voted against (in favor).) An a priori measure of vot-
ing power will not register any differences between members of the persistent mi-
nority and anyone else, because it ignores, by construction, the facts about the 
distribution of preferences and its causes, in virtue of which some voters qualify as 
members of a persistent minority.

Abizadeh therefore seeks to vindicate the power- of- numbers thesis with an a 
posteriori measure: power is calculated on the basis of, rather than in abstraction 
from, information about how social structure influences the distribution of political 
preferences. This measure of power also differs from the Penrose– Banzhaf measure 
in making voting power a function of the degree to which the voter can expect her 
actions to be “efficacious,” where even non- decisive, redundant votes for the winning 
alternative count as partially efficacious.

So let us consider voting power in the a posteriori context, in which we take into 
account information about how voters are likely to vote. The information on the 
basis of which power is measured may be more or less predictive of voting behavior. 
At the limit, knowledge of a person's structural position, together with knowledge of 
how they will vote, fully predicts how everyone else will vote. For the sake of sim-
plicity, we start by assuming that such fully predictive information is available and 
is the appropriate basis for measuring voting power. This assumption is obviously 
unrealistic, but it simplifies the discussion by relieving us of the need to calculate 
probabilities, and it is an innocent simplification because it does not prejudice the 
assessment of the power- of- numbers thesis. It would be bizarre to argue that a mem-
ber of a persistent minority has an objection only when there is genuine uncertainty 
about the future distribution of votes, but not when the future distribution, and her 
status as a political minority, is certain. We will, in any case, relax this assumption 
in due course.

We assume, in particular, that the relevant information perfectly predicts the sce-
nario described above: in every plebiscite, the 2,000,001 white voters are certain to 
vote in favor of white supremacy and the 1,000,000 black voters are certain to vote 
against. Our question is whether a given white voter can be said to have significantly 
more power than a given black voter when voting power is measured on the basis of 
this information.

II | THE POWER OF NUMBERS

In this situation, everyone's probability of casting a decisive vote is zero. Thus, if a 
voter's power corresponds to the probability of casting a decisive vote (an assumption 
behind the Penrose– Banzhaf measure), then every voter, white or black, has the same 
amount of power.

What if, following Abizadeh, we grant that a member of the winning side can 
enjoy partial efficacy, even if they are not decisive? When everyone casts equally 
weighted votes, as will be true in all our examples, we can assume the degree of par-
tial efficacy is a function of the size of the winning coalition (relative to the size of 
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the electorate). At one end of the spectrum is the case of someone who votes for the 
winning side along with every other member of the electorate; their vote has some 
partial efficacy, but not as much as it would have if the relative size of the winning 
coalition were smaller. At the other end is the case of the fully decisive voter who 
votes for the winning side and is part of a minimal decisive coalition (for example, a 
bare majority under simple majority rule).

In our example, when a white voter votes with the winning coalition, in favor 
of white supremacy, then his vote has some partial efficacy, namely the degree 
of partial efficacy that corresponds to voting with 2,000,000 other voters, in 
an electorate of 3,000,001 voters, for the winning alternative. If the white voter 
were to vote against white supremacy, the efficacy of his vote would be zero. If a 
black voter were to vote with the winning coalition, in favor of white supremacy, 
then her vote would have some partial efficacy, namely the degree of partial ef-
ficacy that corresponds to voting with 2,000,001 other voters, in an electorate of 
3,000,001 voters, for the winning alternative. When the black voter votes against 
white supremacy, the efficacy of her vote would be zero. Their partial efficacy 
scores are virtually identical.

These claims rest on the tacit assumption that if a voter were to vote differently 
from how they will actually vote, everyone else would still vote the same as they are 
going to vote in actual fact. One must reject this assumption if one wishes to argue 
for the power- of- numbers thesis.

Some might object to the tacit assumption on the following grounds. Given our 
stipulations about the case, all white voters are certain to vote in the same way. So, it 
follows that if a given white voter were to vote against white supremacy rather than 
for, then all other white voters would also vote against, too. But that does not follow. 
Suppose newspapers A and B always report the same events; when the scandal 
breaks, they are each certain to report it. It does not follow that if A were to refrain 
from reporting the scandal, then B would refrain as well. Probabilistic dependence 
does not imply counterfactual dependence.5

One would reject the tacit assumption with good reason if one voter's decision 
about how to vote causally influenced other voters' decisions. But let us assume that 
no one's vote has any causal influence over anyone else's vote. If you like, assume 
everyone votes secretly and simultaneously. The power- of- numbers thesis is not sup-
posed to rest on voters' abilities to influence each other.

A different reason one might reject the assumption is if one thought that mea-
surements of voting power ought to reflect counterfactualizing not only the voter's 
action, but also the past events that causally influence the voter's action as well as 
other voters' behavior. One might reason as follows. The example assumes that all 
white voters always vote as a block and all black voters always vote as a block. This 

 5Put more abstractly, Pr(A|B) = p and Pr(A|¬B) = q does not imply that if B were to occur, then A would occur 
with probability p, and if B were not occur, then A would occur with probability q.
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pattern of correlation can only hold in virtue of underlying social- structural causes 
that have one (fully determining) impact on white voters' preferences and an oppo-
site (fully determining) effect on black voters' preferences. If a given white voter were 
to vote against the proposed ballot measure, it would have to be because the underly-
ing social- structural influences caused him and all other white voters to be opposed. 
Thus if a given white voter were to vote against, they would find themselves on the 
winning side and would enjoy some partial efficacy, just as they enjoy some partial 
efficacy when they vote in favor; by contrast, if a given black voter were to vote in 
favor, she would still be on the losing side and her vote would still be inefficacious, 
just as her actual vote against is inefficacious. Thus the white voter enjoys greater 
power than the black voter.

This reasoning involves “backtracking” counterfactuals: the assumption is 
that when one counterfactualizes over a white voter's action and looks for the 
closest possible world in which he voted no, one should include worlds with differ-
ent histories up until the time of that vote.6 This allows one to say that the white 
voter would be in the majority even if he were to vote against the proposal, pro-
vided that the closest possible world in which he votes no is a world with a differ-
ent history, one in which some common cause led all the other whites to prefer no 
and so to vote no as well.

In the next section, we will argue that the counterfactuals that enter into the 
measurement of power should not be interpreted in a way that permits backtrack-
ing.7 But even if we allow backtracking counterfactuals, it may not help the power- 
of- numbers thesis. Suppose that the closest world in which a given white voter 
votes no is a world in which the normal link between social- structural causes and 
political preferences is broken for him alone, but not for other white voters (he 
regularly converses about racial justice with a colleague, and the closest possible 
world in which he votes against white supremacy is one in which these conversa-
tions induce a moral epiphany, severing the causal link that continues to make 
other white voters' political preferences a deterministic function of their position 
in the racial hierarchy). Then the crucial counterfactual would be false: if he were 
to vote against white supremacy, the other whites would still vote in favor, and his 
situation is not appreciably different from the situation of any black voter. Nor 
would it help much if the closest world is one in which he and, say, a thousand 
others had racial justice epiphanies.

One worry about the power- of- numbers thesis is that, offhand, it's not clear 
why the closest possible world in which a given white voter votes no (even among 
those worlds with different histories) is one in which the social- structural causes 

 6David Lewis, “Counterfactual dependence and time's arrow,” Nous, 13 (1979), 455– 76.
 7For discussions of the counterfactuals that enter into the analysis of power, see Alvin Goldman, “Toward a theory of 
social power,” Philosophical Studies, 23 (1972), 221– 68, at p. 232; and Morriss, Power, pp. 71– 9, 216– 21. To our 
knowledge, no previous authors take up questions about backtracking counterfactuals in the analysis of power, 
although Morriss's discussion of counterfactuals is relevant.
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that influence all other white voters' preferences are different. So even if we permit 
backtracking, it is not clear why, in our example, it would be true that if a given 
white voter were to vote against white supremacy, then all other white voters (or at 
least a subset that constitutes a majority) would also vote no. Another worry about 
the power- of- numbers thesis, as a diagnosis of our intuitive objection to a para-
digm case of a persistent minority, is that the intuitive objection does not seem to 
 depend on which of these backtracking counterfactuals is correct, but the power- 
of- numbers thesis does.

III | REJECTING BACKTRACKING COUNTERFACTUALS

In any event, this backtracking counterfactual isn't the relevant conditional for as-
sessing agential power generally or voting power in particular. If we are measuring 
the power of a given white voter on the day of the election, we should ask what would 
happen if he were to vote no, holding fixed the actual history of the world up until the 
time he votes. The following cases illustrate the importance of excluding backtrack-
ing from the analysis of agential power.

Jones sometimes prays for rain after eating breakfast. To be precise, he prays on all 
and only those mornings when, while eating breakfast and reading the newspaper, he 
notices that the weather forecast predicts rain. Thus, conditional on praying for rain 
in the morning, the probability that it will rain in the afternoon is high. And condi-
tional on not praying, the probability that it will rain is low (because, conditional on 
not praying, there was no rain in the forecast, and forecasting the weather in his area 
of southern California is not hard). Jones does not have the power to make it rain, of 
course. We can explain this fact with normal, non- backtracking counterfactuals, but 
not with backtracking counterfactuals. On any given morning when Jones prays, the 
probability of rain is high, but would remain high even if he were not to pray for rain; 
and on any given morning when he does not pray, the probability of rain is low, but 
would remain low even if he were to pray. If agential power is measured with back-
tracking counterfactuals, however, Jones does have the power to make it rain. With 
backtracking, we have: on any given morning, if Jones were to pray, then (it would be 
because rain was in the forecast and so) it would probably rain, and if he were not to 
pray, then (it would be because rain was not in the forecast and so) it would probably 
not rain.

Backtracking counterfactuals are no more plausible a basis for ascriptions of 
power when we move from the single- agent example to a voting situation. A 
boss threatens to fire anyone who votes for a proposal to unionize. As a result, 
each worker knows that if she votes for the proposal to unionize and it fails, she 
will lose her job; otherwise she will keep it. Needless to say, no one sticks her 
neck out for the union. It seems false to say, and a cruel joke in the mouth of the 
boss, that each worker has the power to effect, with the others, the passage of 
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the unionization proposal.8 And yet it is plausibly true if we assess a worker's 
power using backtracking counterfactuals. The closest world in which she votes 
for the union might be one in which the boss never made the threat and no one 
faces the prospect of losing their job for voting for it, in which case everyone 
else would also vote for the union and the unionization proposal would pass. 
Thus if she were to vote in favor of the unionization proposal, then— 
backtracking and counterfactualizing the boss's past behavior— it would pass, 
in which case she would have effected, with others, the passage of the 
proposal.

Or suppose an American football coach is deciding whether to go for a touch-
down on fourth down or instead have his kicker kick a field goal. One consid-
eration when he makes such decisions is the wind: if the wind is too strong, the 
kicker will not have the power to make the field goal, and so in such circum-
stances the coach decides to go for the touchdown. Suppose in actual fact the 
winds are strong, so he decides to go for the touchdown. After they fail, his crit-
ics say: “Coach made the wrong call. The kicker did have the power to make a 
field goal. In the closest possible world in which he kicked, he kicked because 
coach told him to, and coach told him to because the wind conditions were fa-
vorable, and since they were favorable, kicker made the field goal.” We have taken 
Monday- morning quarterbacking to a whole new level.

IV | PARTIALLY PREDICTIVE INFORMATION

We have so far considered an example in which the measurement of voting 
power is made on the basis of information that is fully predictive of everyone's 
voting behavior. Under this assumption, the differences in voting power between 
an individual member of the persistent majority and an individual member 
of the persistent minority were negligible. If one relaxes this assumption and 
measures power instead on the basis of information that is only partially pre-
dictive of the distribution of votes, there are cases in which members of a struc-
tural minority have more power in expectation than members of a structural 
majority— provided, again, that one does not measure power with backtracking 
counterfactuals.

Voter 1 belongs to a structural minority, voters 2, 3, 4, and 5 to a structural major-
ity. For each plebiscite t, there is a social- structural variable St   that influences the 
voting behavior of all five voters. Either St = 0   or St = 1. If  St = 1, then the probabil-
ity that voters 1, 2, and 3 will support the measure and voters 4 and 5 will oppose it 

 8We are not claiming here that the individual worker does not really enjoy the power to vote for the unionization 
proposal because the boss can retaliate, nor are we denying that the workers as a group have the power to effect the 
passage of the proposal. We are denying that an individual worker has the power to effect, with the others, the passage 
of the unionization proposal, and pointing out that this false claim would be true if backtracking counterfactuals were 
used in the analysis of voting power.
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is p; and the probability that voter 1 supports it, but voters 2, 3, 4, and 5 oppose it is 
1 − p. If  St = 0, then the probability that voters 1, 2, and 3 will oppose the measure 
and voters 4 and 5 will support it is p; and the probability that voter 1 opposes it, but 
voters 2, 3, 4, and 5 support it is 1 − p.9 Assume 0 < p < 1∕2. Most of the time (a 
fraction 1 − p > 1∕2 of the time), voter 1 finds herself in the minority and voters 2, 3, 
4, and 5 find themselves in the majority.

We now show that if p > 3∕23, then in any given plebiscite, voter 1 has more 
power than voter 5, despite the fact that voter 5 has numbers on his side. This con-
clusion holds for every plebiscite t, whatever the history preceding the plebiscite and, 
in particular, whatever the realized value of St . The argument for the conclusion ab-
stracts from all facts about the voters' situation other than (1) the voting rule and (2) 
the social structure and probabilistic dependence that it induces in voting behavior.

Our argument uses the measure of partial efficacy proposed by Abizadeh.10 
According to this measure, in an electorate of five voters, where everyone casts 
equally weighted votes, a vote for the winning alternative has an efficacy score of 1 if 
it is one of three votes cast for the winning alternative, a score of 3/4 if it is one of four 
votes cast for the winning alternative, and an efficacy score of 3/5 if it is one of five 
votes cast for the winning alternative. A vote cast for the losing alternative has no 
efficacy. Perhaps a different measure of efficacy could be proposed. But so long as the 
measure holds that a successful voter's efficacy is a function f (x) of the fraction x of 
the electorate voting for the winning alternative, and (in the 5- voter case) the func-
tion satisfies 0 < f (5∕5) < f (4∕5) < f (3∕5), one can construct an example similar 
to the one below (see Appendix).

Choose any plebiscite t. Either voter 1 supports the measure or opposes it. 
Assume, without loss of generality, that voter 1 supports the measure. This im-
plies St = 1. Thus the probability that voters 2 and 3 also support it, while voters 
4 and 5 oppose it is p, and the probability that voters 2, 3, 4, and 5 all oppose it is 
1 − p. Thus,

(1) If voter 1 were to vote for the measure, her vote would be fully decisive 
with probability p and inefficacious with probability 1 − p. Expected efficacy: 
1p + 0(1 − p) = p.

 9The case is described with deliberate abstraction so as to avoid the impression that our conclusion depends on 
anything other than the assumed voting rule and the social- structural influences on voters' preferences. But if one 
would like a more concrete story to accompany it, one can imagine that the structural categories are racial categories 
(voter 1 is a racial minority), and one can think of St as a description of whether passing the measure on the ballot 
would materially benefit voter 1 at the expense of voters 4 and 5 (St = 1), or whether rejecting the measure would 
materially benefit voter 1 at the expense of voters 4 and 5 (St = 0). Voters 4 and 5 always have preferences opposed to 
voter 1's, while voters 2 and 3 usually side with voters 4 and 5 when, as usually happens (with probability 1 − p), the 
policy question has been framed in racialized terms, but sometimes (with probability p) side with voter 1 if it has been 
framed in non- racialized terms.
 10Arash Abizadeh, “A recursive measure of voting power with partial decisiveness or efficacy,” Journal of Politics, 84 
(2022), 1652– 66.
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(2)  If voter 1 were to vote against the measure, her vote would be fully deci-
sive with probability p and would have a partial efficacy score of 3/5 (a mem-
ber of a five- voter supermajority) with probability 1 − p. Expected efficacy:    
1p + 3∕5(1 − p) = 3∕5 + 2∕5p.

The critical assumption here is that each counterfactual must be assessed without 
backtracking. Conditional on its being the case that voter 1 supports the measure, 
voters 4 and 5 are sure to vote against, and voters 2 and 3 will vote for the measure 
with probability p and vote against it with probability 1 − p. This describes the way 
in which the other voters' behavior is probabilistically dependent on voter 1's behav-
ior. But it does not imply counterfactual dependence (unless one allows for back-
tracking counterfactuals). Their voting behavior is counterfactually independent of 
what voter 1 chooses to do, so even if voter 1 were to vote against the measure, it 
would still be the case that voters 4 and 5 are sure to vote against and voters 2 and 3 
vote in favor with probability p.11

Now turn to voter 5. As we assumed (without loss of generality) that voter 1 
supports the measure, it follows that voters 4 and 5 oppose it, and, with proba-
bility 1 − p , voters 2 and 3 also oppose it, and with probability p, voters 2 and 3 
support it. Thus,

(3)  If voter 5 were to vote for the measure, his vote would have a partial efficacy 
score of 3/4 (he would belong to the four- voter supermajority comprising 1, 
2, 3, and himself) with probability p, and his vote would be inefficacious 
with probability 1 − p. Expected efficacy: 3∕4p + 0(1 − p) = 3∕4p.

(4)  If voter 5 were to vote against the measure, his vote would have a partial efficacy 
score of 3/4 (he would belong to the four- voter supermajority comprising 2, 3, 4, 
and himself) with probability 1 − p, and his vote would be inefficacious with prob-
ability p. Expected efficacy:  0p + 3∕4(1 − p) = 3∕4(1 − p).

Again, the critical assumption is that the behavior of the other voters is counter-
factually independent of what voter 5 chooses to do.

Now notice that for any nonzero value of p, voter 1's action of voting yes has a 
greater expected efficacy than voter 5's action of voting yes. And voter 1's action 
of voting no has a greater expected efficacy than voter 5's action of voting no so 
long as 3∕5 + 2∕5p > 3∕4(1 − p), which is equivalent to  p > 3∕23. Thus, pro-
vided p > 3∕23, each of voter 1's actions is more efficacious in expectation than the 

 11 See n. 5, above. That Pr(A|B) = 0 and Pr(A|¬B) = 1 does not imply that if B were not to occur, then A would occur 
(here A = “voters 4 and 5 vote in favor” and B = “voter 1 votes in favor”). The probability that Jones has diabetes, 
conditional on its being the case that he injects himself with insulin every day, is high; the probability that he has 
diabetes, conditional on its not being the case that he injects himself with insulin every day, is low. It does not follow 
that if Jones were, counterfactually, to refrain from injecting himself with insulin, then the probability that he would 
have diabetes would be low. He has diabetes, and he will have it whether he injects himself with insulin or not. Plug in 
A = “it rains” and B = “Jones does not pray for rain” for another intuition primer.
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corresponding action of voter 5, so voter 1 must be deemed more powerful than voter 
5. But voter 1 belongs to a structural minority and voter 5 to a structural majority. 
Voter 1 is in the minority, and voter 5 is in the majority, a fraction 1 − p > 1∕2 of 
the time, due to their positions in the social structure and its influence on voting 
behavior.

We assumed without loss of generality that we were dealing with a plebiscite 
in which voter 1 supports the measure. But we would have reached the same con-
clusion if we had instead assumed that voter 1 opposed it. Thus, our conclusion 
does not depend on the actual history leading up to the plebiscite (in particular 
on the actual realization of the social- structural variable St). It relied only on the 
assumption that plebiscites are decided by simple majority rule and that the social 
structural variable St induces probabilistic dependence in voting behavior in the 
manner described.

The intuition for the result is simple. Voter 1 can have a higher probability of 
being in the minority than voter 5, even though she also has a higher probability of 
casting a decisive vote. If the latter probability is sufficiently high (in our example, if 
p > 3∕23), the conclusion will be that voter 1 is more powerful. The critical assump-
tion is that we assess counterfactual suppositions about voter 1's actions without 
counterfactualizing the features of her history (the realized value of St) that fix the 
probability distribution over other voters' behavior and thereby fix the probability 
that her vote will be decisive.

V | COMPENSATING POLITICAL ECCENTRICS

In several places, Abizadeh cautions us that we cannot define persistent majorities or 
minorities in terms of the voters' policy preferences:

The problem is that appealing directly to the content of other voters' 
preferences, but not the power- assessee's, is insufficient for explaining 
the inequality faced by a persistent- minority member: if the persistent- 
majority and persistent- minority groups are defined in terms of 
members' substantive preferences, then counterfactualizing over the 
power- assessee's preferences implies abstracting from her membership 
of the persistent minority. Her power inequality would consequently 
fail to register.

… A persistent minority must therefore be defined and picked out in 
terms of its members' position in other social structures— such as lan-
guage, ethnicity, race, class, or geography— which position induces a 
correlation in preferences.12

 12Abizadeh, “Counter- majoritarian democracy,” p. 750.
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This claim about how persistent minorities must be defined is important, because it 
is all that Abizadeh invokes to avoid the result that the power of numbers thesis “ab-
surdly requires compensating political eccentrics on democratic- equality grounds.” It is 
his explanation for why “If libertarians or Bolsheviks are persistently outnumbered, 
democratic equality does not call for formal- procedural inequalities to compensate 
them.”13

What exactly is the problem with defining “persistent minority” in terms of 
actual preferences? The worry seems to be that, so defined, there is something in-
coherent about asking “what if the persistent minority had different preferences?”, 
just as there might seem to be something incoherent about asking, “what if every 
student in the class got a grade better than the median grade?”. But neither ques-
tion is incoherent provided we take “the persistent minority” and “the median 
student” to be “rigid designators,” rather than terms whose referents vary across 
possible worlds. If, in the actual world, the median grade is a B, then the second 
question is asking what if every student in the class got better than a B. And if you 
are the one person who, in actual fact, belongs to the minority in every election, 
then the first question is asking what would happen if you had different prefer-
ences and voted differently.

The justification for defining “persistent minority” in terms of structural posi-
tion cannot be that this is the only definition that permits a coherent formulation 
of counterfactual statements about the preferences and actions of the persistent mi-
nority. We can intelligibly ask what would happen if a libertarian or Bolshevik, who 
in actual fact persistently finds himself in the minority, were counterfactually to 
vote differently from how he will actually vote, and compare that with what would 
happen if someone who in actual fact is in the mainstream were to vote differently 
from how she will actually vote. If the answer— in virtue of backtracking counter-
factuals— is that the Bolshevik would still be in the minority, and the mainstream 
voter would still be in the majority, then the power- of- numbers thesis implies there 
is an inequality in power.

If one rejects the use of backtracking counterfactuals to answer this question, 
then the libertarian and the Bolshevik will have no less power than anyone else, 
at least not in virtue of being persistently outnumbered. But the argument for 
the power- of- numbers thesis needs backtracking counterfactuals, so the question 
is whether there is any justification for excluding them when the question con-
cerns libertarians and Bolsheviks, but including them when it concerns structural 
minorities.

Backtracking counterfactuals need not be any less plausible in these other “non- 
structural” cases. Suppose there are 1,000,000 voters who consistently vote in what-
ever way the Bolshevik party leaders advocate, and 2,000,001 voters who consistently 
vote against whatever the Bolshevik party leaders advocate. Take any election, and 

 13Ibid., p. 754.
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assume (without loss of generality) that the pro- Bolshevik voters are all going to vote 
yes, the anti- Bolshevik 2,000,001 all no. If a pro- Bolshevik were to vote no, it could 
only be because the party vanguard had instructed them to vote no, in which case all 
the anti- Bolshevik voters would vote yes, and our voter would still be in the minority. 
That judgment is no less reasonable than the judgment that if a black voter were to 
vote no, in a society polarized along racial lines, it could only be because of social- 
structural conditions that induce all white voters to vote yes, such that the black voter 
would still be in the minority. We have argued that backtracking counterfactuals 
should be excluded from analyses of power in all cases, but if there were any justifi-
cation for including them in the case of structural minorities, it is unclear why the 
justification would not carry over to non- structural minorities. And then one gets 
the absurd conclusion that the power- of- numbers thesis, if it justifies compensating 
the power deficits of racial or religious minorities, also justifies compensating liber-
tarians and Bolsheviks.

It is also perhaps worth noting here that once backtracking counterfactuals are 
admitted, the majority or minority need not be persistent in order for there to be 
power- of- numbers inequalities. Imagine a one- hit- wonder at the momentary apex 
of their popularity. Wonder's fans, for a day, form a majority. A vote is taken on that 
day whether to declare the day Wonder- appreciation- day. Wonder's fans will vote for 
whatever Wonder decides. If Wonder says yes, then the fans will vote yes; if Wonder, 
in modesty, says no, then the fans will vote no. Each of the fans in the majority enjoys 
power of numbers that each nonfan does not. But none of this will persist.

VI | ABSTRACTING VERSUS COUNT ERF ACT UAL IZING

Even if an agent's power should not in general be assessed on the basis of backtrack-
ing counterfactuals, could there nonetheless be a justification for incorporating 
them into a specific kind of voting power measure? We anticipate an erroneous ar-
gument for doing so that proceeds from the reasonable assumption that the desired 
measure of voting power ought to abstract from features of a voter's actual situation, 
such as the actual history preceding the vote, and draws the errant conclusion that 
voting power ought to be assessed by counterfactualizing these features of the voter's 
situation.

The assumption that a measure of voting power ought to abstract from certain 
features of a voter's situation is reasonable. The Penrose– Banzhaf measure, for exam-
ple, only purports to register the power a voter enjoys in virtue of the voting rule.14 
That is why it abstracts from all other features of a voter's situation (such as how the 

 14Dan Felsenthal and Moshé Machover, “Myths and meaning of voting power: comments on a symposium,” Journal of 
Theoretical Politics, 13 (2001), 81– 97, at p. 90; Felsenthal and Machover, The Measurement of Voting Power, pp. 20– 1; 
Laruelle and Valenciano, “Assessing success and decisiveness in voting situations,” p. 183. Dan Felsenthal, Dennis 
Leech, Christian List, and Moshé Machover, “In defence of voting power analysis: responses to Albert,” European 
Union Politics, 4 (2003), 473– 97, at p. 476.
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voter can expect other voters to behave) that are plausibly relevant to a comprehensive 
assessment of agential power. Analogously, if a measure only aims to capture the 
power a voter enjoys in virtue of (1) the voting rule and (2) their position in the social 
structure, then it ought to abstract from the voter's actual circumstances.

We anticipate an erroneous argument that illicitly infers from this reasonable as-
sumption the mistaken conclusion that the measure of voting power must “counter-
factualize” the voter's circumstances. The mistaken reasoning might go something 
like the following:

One cannot say what would happen if the voter were to vote yes, unless 
one makes some assumption or other about her circumstances, but one's 
conclusion should not be sensitive to what her circumstances actually 
are. So one must ask, “if she were to vote yes, what would her circum-
stances probably be, in virtue of the history that would have preceded 
her decision to vote yes?”. One then considers all these probable circum-
stances, her efficacy in each, and weights these scores by the probability 
with which such circumstances would have occurred in virtue of the 
history that would have preceded a decision to vote yes. That is, one uses 
backtracking counterfactuals to compute the probabilities of different 
configurations of votes for the other voters.

The second proposition does not follow from the first, however. There is a logical gap 
between the reasonable supposition that a measure of voting power ought to abstract 
from a voter's actual circumstances and the conclusion that it ought to do so by asking 
backtracking counterfactual questions. To see that the conclusion does not follow, it suf-
fices to establish the existence of a measure that abstracts from the voter's actual circum-
stances, but eschews backtracking counterfactuals. Consider the following approach.

For each of the possible circumstances the voter might find herself in, compute 
the power she would have in those circumstances with normal, non- backtracking 
counterfactuals in just the way we did for the paradigm case and the example in 
Section IV. For example, there is the scenario in which a worker is voting on 
whether to unionize, and her boss has issued a threat to her and all the other 
workers; and the scenario in which they are voting, but the boss has not issued a 
threat. In the example from Section IV, there is the scenario in which St = 1 and 
another scenario in which St = 0. Compute the voter's power in each of these sce-
narios (just as we have already done for the first of these two scenarios in Section 
IV).15 Now average over the measurements of the voter's power taken in all these 

 15Because we want the measure of power to make its determinations on the basis of (1) the voting rule and (2) the 
underlying social structure and the probabilistic dependence it induces among voters' preferences, we want to hold these 
two features of the voter's situation constant as we consider the different possible circumstances she is in. That is, each 
of the possible scenarios that one considers as part of this computation should be a scenario in which the underlying 
social structure and voting rule are the same; the scenarios are individuated along other dimensions (e.g., the content of 
the proposal they are voting on and whether the boss has issued a threat, or the value of the variable St).
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possible circumstances, weighting according to the probability of each circum-
stance. The result does not depend on which of the possible scenarios is the actual 
one. The power- of- numbers thesis will still fail to hold if one considers it a thesis 
about “aggregate” voting power in this sense, rather than a thesis about voting 
power in a particular circumstance. Since no voter derives special power from 
having numbers on her side in any particular circumstance, no special aggregate 
power will emerge when one computes a weighted average of her power across the 
possible circumstances.

Abstracting is not the same as counterfactualizing. One can measure 
power in a way that abstracts from a voter's actual circumstances and their 
history— in a way that makes measurements of power independent of a vot-
er's actual circumstances and history— without counterfactualizing them. 
Because the use of backtracking counterfactuals in the measurement of vot-
ing power does not follow from the (reasonable) assumption that a voting 
power measure should abstract from the voter's circumstances, a proponent 
of the power- of- numbers thesis must find some other argument for it. We are 
not sure what it could be.

VII | IS A POSTERIORI POWER THE CURRENCY OF POLITICAL 
EQUALITY?

Provided that a posteriori power is measured using standard, non- backtracking 
counterfactuals, facts about who has more or less of it will not closely track mem-
bership in structural minorities and majorities. In our paradigm case, members of 
structural minorities and majorities have all but equal a posteriori power. In the case 
from Section IV, members of structural minorities have greater a posteriori power 
than members of majorities.

In so far as this article's argument underscores the vagaries of a posteriori power 
distributions, it may make one skeptical that democracy could require equality in 
this dimension, or even an approximation to equality. Once we move from a priori to 
a posteriori measures of voting power, there is no reason to expect an equal scheme of 
basic political rights to produce an equal distribution of (a posteriori) voting power. 
Just the opposite. Almost all political institutions, except those that have been cal-
ibrated to the actual social- structural conditions just so, will produce asymmetries 
in a posteriori voting power. And when the social- structural conditions underlying 
the distribution of preferences change, political institutions will also need to change 
if they are to preserve equality.

Moreover, the kind of changes in social- structural conditions that could un-
dermine equal a posteriori voting power are not normally considered threats to 
democratic equality. So- called swing voters will enjoy more a posteriori voting 
power than voters who are reliably on one side of a partisan divide. But even 
when this voting behavior ref lects structural causes— the ways in which race, 
class, and other social- structural identity categories pull some citizens towards 
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one party, some towards the other, and leave some conf licted and open to ap-
peals from both parties— the fact that the rigidly partisan voter has less a pos-
teriori voting power than the swing voter is not plausibly considered a breach of 
democratic principles.

One weird implication of the view is that some citizens could violate political 
equality, as though they were denying someone an equally weighted vote, merely by 
“freeing” themselves of social- structural influences and thereby altering the proba-
bility distribution of preferences in a way that reduces their efficacy. As a simple il-
lustration, suppose an electorate of three voters, 1, 2, and 3, faces a series of binary 
votes, and due to social- structural causes they always vote as a block and with equal 
probability for either alternative. Whether one uses backtracking counterfactuals or 
not, everyone has equal a posteriori power.16

But now imagine that voter 1 “frees” himself of the causal inf luence of the 
background social structure and comes to vote independently of voters 2 and 3, 
who still vote as a block, and everyone still votes with equal probability for either 
alternative. Now voter 1 has less power than either of the other two. Each of his 
actions has an expected efficacy of 1/6: if he were to vote yes, then with probabil-
ity 1/2, the block would vote yes and his efficacy would be 1/3; and with probabil-
ity 1/2, the block would vote no and his efficacy would be zero. The expected 
efficacy of voting no is calculated analogously and also comes out to 1/6.17 But 
each of voter 2's actions has an expected efficacy of 2/3, assuming we use back-
tracking counterfactuals in the calculation:18 if she were to vote yes, then with 
probability 1/2, voters 1 and 3 would each vote yes, in which case her efficacy is 
1/3; and with probability 1/2, voter 1 would vote no, but 3 would vote yes, in 
which case her efficacy is 1. Thus her expected efficacy of voting yes is 
1/6 + 1/2 = 2/3. The expected efficacy of voting no is calculated analogously and 
also comes out to 2/3.

Some might find this result counterintuitive, because they do not think one can 
become less powerful in virtue of increasing one's ability to form political opinions 
independently of social- structural influences. But that is not our point. Our point is 
 16With backtracking counterfactuals, we would say that for each voter, each of his actions would have a partial efficacy 
of 1/3, with probability 1— because if he were to vote yes, the other two voters would also vote yes, and if he were to vote 
no, they would also vote no— so, for each voter, each action has an expected partial efficacy of 1/3. Without backtracking 
counterfactuals, we would say that for each voter, one of his actions (whichever one is the action he will actually 
choose) will have an efficacy of 1/3 with probability 1, thus an expected efficacy of 1/3, while the other would have zero 
efficacy (because if he voted differently from the other two, his action would be inefficacious). Either way we go with 
the counterfactuals, no power inequalities exist.
 17 These calculations come out the same with or without backtracking, because the assumption of voter 1's probabilistic 
independence from voters 2 and 3 renders the point moot. The calculations for voter 2 in the next sentence assume 
backtracking, but if we excluded backtracking, we would still get the conclusion that voter 2 has more power. Without 
backtracking, we would say that whichever action voter 2 will actually choose has an expected efficacy of 2/3 
(calculated as in the main text). The other, counterfactual action, which differs from voter 3's with certainty, has an 
expected efficacy of 1/2: with probability 1/2, it agrees with voter 1's, but differs from 3's, and is therefore decisive; and 
with probability 1/2, it differs from both 1's and 3's and has no efficacy. Thus each of her actions has greater expected 
efficacy (either 2/3 or 1/2) than either of voter 1's (1/6).
 18 See n. 17 above.
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rather that if one has reasons to try to preserve political equality, but political equality 
is understood in terms of equal a posteriori voting power, then the value of political 
equality gives voter 1 reasons not to cultivate an ability to form political opinions 
independently of social- structural influences. That implication seems strange.

These considerations make us doubt that a posteriori voting power is the currency 
of democratic equality.

VIII | CONCLUSION

The power- of- numbers thesis is supposed to vindicate the intuition that a member of 
a persistent minority has a complaint against majoritarian democracy. If the thesis is 
true, then majoritarian democracy does not in general respect a principle of demo-
cratic equality, and the member of the persistent minority can ground their objection 
by appeal to this principle. We have noted several grounds for doubts about the power- 
of- numbers thesis, most importantly its reliance on backtracking counterfactuals.

Supposing one accepts our critique of the power- of- numbers thesis, how else might 
one try to ground the objection? We noted several alternatives at the outset. One is that 
the real objection is not to an inequality in voting power, but instead to an inequality in 
the satisfaction of preferences: namely, that black voters' preferences go unsatisfied vote 
after vote, whereas white voters' preferences are reliably satisfied. Another alternative is 
that, again, the real objection is not to an inequality in voting power, but instead to the 
substantive inequality that results from the policies voted into effect: that black voters are 
subordinated by a regime of white supremacy. A final alternative recognizes an inequal-
ity in voting power, but at the level of groups rather than individuals. Even if no individ-
ual member of the structural minority has appreciably less power than any individual 
member of the structural majority, the latter group has more power than the former. 
Perhaps the distribution of power across social groups takes on normative significance— 
above and beyond the distribution of power across individuals— in societies with histo-
ries of group- based injustice.19 We do not have space in this article, however, to develop 
these suggestions and evaluate their merits. Those are tasks for other work.
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A PPE N DI X 

Here we explain why the argument from Section IV generalizes to any reasonable 
measure of partial efficacy. We restrict attention to the five- voter example for the 
sake of simplicity.

Let fk refer to the efficacy of a voter who votes for the winning alternative when a 
total of k voters do so, in an electorate of five voters. In the main text, we adopted 
Abizadeh's proposed measure of partial efficacy, according to which f5 =

3

5
, f4 =

4

5
, 

and f3 = 1. We now relax this assumption and assume merely that 0 < f5 < f4 < f3. 
The argument from Section IV goes through so long as the measure of partial effi-
cacy satisfies these inequalities. Substituting these terms for particular numerical 
values that were assumed in Section IV, and reasoning about the example in the same 
way (in particular, with normal, non- backtracking counterfactuals), we have:

• If voter 1 were to vote for the measure, her efficacy would be f3 with probability p 
and inefficacious with probability 1 − p. Expected efficacy: pf3.

• If voter 1 were to vote against the measure, her vote would be fully decisive with 
probability p and would have a partial efficacy score of f5 (a member of a five- voter 
supermajority) with probability 1 − p. Expected efficacy: pf3 +

(
1 − p

)
f5.

• If voter 5 were to vote for the measure, his vote would have a partial efficacy score 
of f4 (he would belong to the four- voter supermajority comprising 1, 2, 3, and him-
self) with probability p, and his vote would be inefficacious with probability 1 − p . 
Expected efficacy: pf4.

• If voter 5 were to vote against the measure, his vote would have a partial efficacy 
score of f4 (he would belong to the four- voter supermajority comprising 2, 3, 4, and 
himself) with probability 1 − p, and his vote would be inefficacious with probabil-
ity p. Expected efficacy: 

(
1 − p

)
f4.

https://doi.org/10.1111/jopp.12307
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Thus voter 1's action of voting yes is more efficacious than voter 5's action of vot-
ing yes for any nonzero value of p, because f3 > f4 by assumption. Voter 1's action of 
voting no is more efficacious than voter 5's action of voting no if and only if

which is equivalent to

Our assumptions ensure that the right- hand side is a number strictly greater than 
0 and strictly less than 1/2. So if p is greater than this threshold, but less than 1/2, 
voter 1 is more powerful than voter 5— each of voter 1's actions has greater expected 
efficacy than the corresponding action for voter 5— even though voter 1 is more 
often than not in the minority and voter 5 is more often than not in the majority, due 
to the structural causal influences on their and other voters' preferences.
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pf3 +
(
1 − p

)
f5 >

(
1 − p

)
f4,

p >
f4 − f5

f3 + f4 − f5
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