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Abstract. Abduction is inference to the best explanation. Abduction
has long been studied intensively in a wide range of contexts, from arti-
ficial intelligence research to cognitive science. While recent advances in
large-scale knowledge acquisition warrant applying abduction with large
knowledge bases to real-life problems, as of yet no existing approach
to abduction has achieved both the efficiency and formal expressiveness
necessary to be a practical solution for large-scale reasoning on real-life
problems. The contributions of our work are the following: (i) we refor-
mulate abduction as an Integer Linear Programming (ILP) optimization
problem, providing full support for first-order predicate logic (FOPL);
(ii) we employ Cutting Plane Inference, which is an iterative optimization
strategy developed in Operations Research for making abductive reason-
ing in full-fledged FOPL tractable, showing its efficiency on a real-life
dataset; (iii) the abductive inference engine presented in this paper is
made publicly available.

Keywords: abduction, cost-based abduction, cutting plane inference,
integer linear programming

1 Introduction

Abduction is inference to the best explanation. Abduction has long been stud-
ied in a wide range of contexts. For example, abduction has been viewed as a
promising framework for describing the mechanism of human perception [1–4,
etc.]. The idea is that the declarative nature of abduction enables us to infer the
most plausible, implicitly stated information combining several types of infer-
ence, and pieces of explicitly observed information, as humans do. Hobbs et al.
[2] showed the process of natural language interpretation can reasonably be de-
scribed as abductive inference; finding the lowest-cost abductive proof provides
the solutions to a broad range of natural language pragmatics problems, such
as word sense disambiguation, anaphora, and metonymy resolution. It will be a
significant contribution for such research areas if we could provide an efficient
abductive reasoning engine which scales to large problems.

In this paper, we explore first-order predicate logic-based abduction with
large knowledge bases (KBs) for solving “real-life” problems. While the lack of
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world knowledge resources hampered applying abduction to real-life problems
in the 1980s and 1990s, a number of techniques that acquire world knowledge
resources have been developed in the last decade [5–9, etc.]. Consequently, several
researchers start applying abduction to real-life problems, exploiting large KBs.
For instance, inspired by Hobbs et al. [2], Ovchinnikova et al. [10] propose an
abduction-based natural language processing framework using forty thousands
of axioms extracted from the popular ontological resources, WordNet [5] and
FrameNet [6]. They evaluate their approach on the real-life natural language
processing task of Recognizing Textual Entailment (RTE) [11].

However, in order to apply large-scale abductive inference to real-life prob-
lems, we still need to address the following issue: how to search for the best ex-
planation efficiently. Abduction is known to be an NP-hard problem in general
[12]; this hampers the application of abduction with large knowledge resources
to real-life problems. In fact, Ovchinnikova et al. [10] report that the Mini-
TACITUS abductive reasoning system [13] could not search the entire search
space of explanations within 30 minutes in most of the RTE problems in their
experiments. In the literature, many researchers have tried to overcome abduc-
tion’s inefficiency by a range of methods from approximation [14–16, etc.] to
exact inference [17, 18, etc.]. However, most of the proposed methods are opti-
mized for propositional logic in principle. Inoue and Inui [18] provides an efficient
approach to first-order predicate logic (FOPL)-based abduction, showing supe-
rior efficiency to Mini-TACITUS system [13]; however, it does not provide full
support of FOPL (e.g. negation is not supported). In addition, as the reader
will see in Sec. 3.2 and Sec. 4, it does not scale to larger problems due to the
intractability emerging from the use of FOPL inference.

In this paper, we address this issue with the following contributions:

(i) we extend Inoue and Inui [18]’s Integer Linear Programming (ILP)-based
inference method, providing full support for FOPL including negation;

(ii) we describe how Cutting Plane Inference, an iterative optimization strategy
developed in Operations Research, can be exploited for making abductive
reasoning in full-fledged FOPL tractable, showing its efficiency by providing
evaluation on a large, real-life dataset ;

(iii) the abductive inference engine presented in this paper is made publicly avail-
able.

The structure of our paper is as follows. We start with a brief introduction of
cost-based abduction, where the quality of explanation is evaluated by some
cost function (Sec. 2.1). We then briefly describe Inoue and Inui [18]’s ILP-
based formulation of cost-based abduction (Sec. 2.2). In the next section, we
first describe how their formalization can be extended for handling negation
(Sec. 3.1). We then show how Cutting Plane Inference (CPI) enables us to apply
abductive reasoning in full-fledged FOPL with large KBs (Sec. 3.2). Finally, we
evaluate the efficiency of our CPI-based framework on a large, real-life problem
of natural language processing (Sec. 4), and give a comparison of our work with
the prior implementations of cost-based abduction (Sec. 5).
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2 Background

2.1 Cost-based abduction

Abduction is inference to the best explanation. Formally, logical abduction is
defined as follows:

– Given: Background knowledge B, and observations O, where both B and
O are sets of first-order logical formulas

– Find: A hypothesis (or explanation) H such that H ∪ B |= O, H ∪ B 6|=⊥,
where H is a set of first-order logical formulas. We say that p is hypothesized
if H ∪ B |= p, and that p is explained if (∃q) q → p ∈ B and H ∪ B |= q.

Typically, there exist several hypotheses H explaining O. We call each of them
a candidate hypothesis, and each literal in a hypothesis an elemental hypoth-
esis. Cost-based abduction (CBA) is defined as abduction which identifies the
minimum-cost explanation H∗ among a set H of candidate explanations. For-
mally, we find H∗ = arg minH∈H cost(H), where cost is a function H → R, which
is called the cost function. Several kinds of cost functions have been proposed in
prior work on cost-based abduction [1, 2, 19, 20, etc.]. For instance, Hobbs et al.
[2] use a cost function that favors a fewest elemental hypotheses and a shorter
proof path. The function is represented by the sum of costs of elemental hy-
potheses, where the cost of elemental hypothesis is in proportion to the distance
from the observations on a proof graph.

2.2 ILP-based formulation of CBA

In this section, we briefly review Inoue and Inui [18]’s ILP formulation of cost-
based abduction. The main idea is that explanation finding in CBA can be
regarded as the weighted combinatorial optimization problem of literals. They
thus formulate CBA as an ILP optimization problem, where the search space of
CBA is represented as ILP variables and constraints, and the cost function is
used as the ILP objective, in order to exploit the state-of-the-art combinatorial
optimization technology in Operations Research.

Here we give an intuitive description of their approach, using the diagram
illustrated in Figure 1. Given an abduction problem (i.e., background knowledge
B and observations O), they first create set P of potential elemental hypothe-
ses, a set of instantiated literals that are potentially included as constituents of
explanations of O (i.e. Step 1 in Figure 1). This procedure is called the search-
space generation. For enumerating potential elemental hypotheses, they apply
backward-chaining with axioms in B, and instantiate the body of axioms. For
instance, in Figure 1, we add two instantiated literals s(y), t(u) to P , which
might be the explanations of q(y) ∈ O, performing backward-chaining on q(y)
with axiom s(x)∧ t(y) → q(x). Using the set P , they represent the search space
of explanations as an ILP optimization problem as follows.
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Candidate 
hypothesis: hq(y) hr(A) hs(x) hs(y) ht(u) hr(x) sx,A sx,y sy,A ur(A),r(x) us(x),s(y) 

H1: q(y) ∧ r(A) ∧ s(x) 1 1 1 0 0 0 0 0 0 0 0 
H2: q(y) ∧ r(A) ∧ s(x) ∧ r(x) 1 1 1 1 0 1 0 0 0 0 0 
H3: q(y) ∧ r(A) ∧ s(x) ∧ r(x) ∧ x=A 1 1 1 1 0 1 1 0 0 0 1 
H4: q(y) ∧ r(A) ∧ s(x) ∧ r(x) ∧ s(y) ∧ 
       t(u) ∧ x=A ∧ x=y 1 1 1 1 1 1 1 1 1 1 1 

Set of potential elemental hypotheses:!
  P ={s(y), t(u), r(x), q(y), r(A), s(x), x=y, A=x} 

Input:!
  B: {r(x) → s(x), s(x) ∧ t(y) → q(x)} 
  O: ∃x, y q(y) ∧ r(A) ∧ s(x) 

∃x, y q(y) ∧ r(A) ∧ s(x) 

r(x)  s(y) ∧ t(u)  
y=x A=x 

Backward-chaining:!

ILP representation of search space:!
Output:!
  H*: ∃x, y q(y) ∧ r(A) ∧ s(x) ∧ r(x) ∧ x=A 

Step 2. Solve ILP optimization problem 

Step 1. Generate P 

ILP constraints:!
 C1: hq(y) = 1 
 C2: rs(x) ≤ hr(x); hs(y)=ht(u) 
 C3: 2ur(x), r(A) ≤ hr(x) + hr(A)  
 C4: ur(x), r(A) ≤ sx,A 
 C5: sx,A + sx,B ≤ 1 
 C6: sy,A  - sx,A - sx,y ≥ -1 

ILP variables:!

Fig. 1. Summary of Inoue and Inui [18]’s ILP-based approach.

Hypothesis inclusion: For each p ∈ P , ILP variables hp ∈ {0, 1} are in-
troduced to represent whether p is hypothesized (hp = 1) or not (hp = 0). For
example, H2 in Figure 1 holds hr(x) = 1, where r(x) is included in H2.

Cost of hypothesis: To calculate cost(H) of each candidate hypothesis H,
they use the cost function defined in Hobbs et al. [2]’s weighted abduction. In
weighted abduction, cost(H) is represented by the sum of the costs for p ∈ P
such that p is hypothesized (i.e., hp = 1) but not explained. They thus introduce
another ILP variable r ∈ {0, 1} for representing whether p is explained (rp = 1)
or not (rp = 0). The final objective function of the ILP problem is given by:
min. cost(H) =

∑
p∈{p|p∈P,hp=1,rp=0} cost(p), where cost(p) is the cost of a

literal p. The cost of a literal is determined by the total unreliability of backward-
inferences that are used for abducing the literal. This optimization amounts
to Step 2 in Figure 1. They optimize this objective with the six types of ILP
constraints as shown in Figure 1. In the rest of this section, we describe only
two of them, which are necessary for the readers to follow the discussion below
due to spatial limitations.

To handle first-order predicate logic, variable substitution must be taken
into account to control the unification of elemental hypotheses. For representing
the status of unification, they introduce another class of variables up,q ∈ {0, 1}
for each p, q ∈ P , which takes 1 if p is unified with q. Concerning variable
substitution, another type of ILP variables s are introduced, where sx,y = 1 if x
is substituted for y, 0 otherwise. s is symmetric (i.e., sx,y = sy,x). In Figure 1,
ur(x),r(A) and sx,A are introduced. In H3, the variables ur(x),r(A), sx,A are set to
1 because r(x) is unified with r(A), and x = A is assumed. Note that unification
of r(x) with r(A) is allowed only if x are substituted with A. In addition, the
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substitution relation must be transitive (e.g. y = A must hold if x = y and
x = A hold). For keeping those consistency, they impose two ILP constraints:

Constraint 41: Two literals q(x1, x2, ..., xn) ≡ q(x) and q(y1, y2, ..., yn) ≡
q(y) are allowed to be unified (i.e., uq(x),q(y) = 1) only if all variable substi-
tutions x/y involved in the unification are activated (i.e., sxi,yi

= 1 for all
i ∈ {1, 2, ..., n}). This can be expressed as:

n · uq(x),q(y) ≤
n∑

i=1

sxi,yi (1)

In Figure 1, the constraint ur(x),r(A) ≤ sx,A is generated since x needs to be
substituted for A when r(x) and r(A) are unified.

Constraint 6: s is transitive; namely sx,z must be 1 if sx,y = 1 and sy,z = 1.
This can be expressed as the following constraints2:

sx,z − sx,y − sy,z ≥ −1 (2)
−sx,z + sx,y − sy,z ≥ −1 (3)
−sx,z − sx,y + sy,z ≥ −1 (4)

They generate O(n3) transitivity constraints, where n is the number of logical
terms. As the reader will see in Sec. 4, this makes inference intractable in large-
scale inference. We propose how this drawback can be overcome by exploiting
Cutting Plane Inference in Sec. 3.2.

3 Full-fledged first-order predicate logic abduction with
cutting plane inference

In this section, we first present an extended formulation of Inoue and Inui [18]
over full fledged first-order predicate logic. We then describe how to apply Cut-
ting Plane Inference to best-explanation finding, for avoiding the intractability
that arises from the extension and generation of transitivity constraints.

3.1 Handling negation for supporting full-fledged FOPL

The ILP formulation described in Sec. 2.2 does not provide full support for
FOPL; it cannot represent negation. As a background knowledge, they accept
only Horn clauses as axioms, and positive literals as observations. However,
the capability of handling negations is crucial for a wide range of abductive
reasoning. For example, in abduction-based natural language interpretation, one
can imagine that it needs to handle negated expressions, such as “I don’t know.”
1 The numbers of constraints correspond to the numbers presented in [18].
2 Inoue and Inui [18] introduce the form of inequality sx,y+sy,z ≤ 2·sx,z as transitivity

constraints. However, this constraint does not appropriately represent transitivity;
thus we replace them with inequalities (2)–(4).
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In the rest of this section, we give two formulations for expressing negative
literals (e.g. ¬p) and inequality of variables (e.g. x 6= y ), for making Inoue and
Inui [18]’s framework support full FOPL. By handling negative literals, we are
able to assume the background knowledge to be a set of full-fledged first-order
logical formulae represented in the clausal normal form, i.e. a set of implicitly
skolemized disjunctive literals (e.g. {¬p(x), q(x)}, {¬p(x), q(f(x), x), r(f(x))}).
To eliminate disjunctions from a clause, we convert each clause {L1, . . . , Ln} to
a set of single literal-headed clauses of the form of ¬L1 ∧ . . . ∧ ¬Li−1 ∧ ¬Li+1 ∧
. . . ∧ ¬Ln → Li for each Li. Henceforth, we call a clause of this form an axiom,
the right hand side the head, and the left hand side the body.

First, consider the case where two literals p(x) and ¬p(y) are in set P of
potential elemental hypotheses such that p(x) and p(y) are unifiable. We want
to prohibit the two literals from being hypothesized simultaneously if x is sub-
stituted with y. One can imagine a simple inequality such as hp(x) + h¬p(y) ≤ 1,
however, it is not enough because p(x) and p(y) can be both hypothesized (i.e.
hp(x) and h¬p(y) can be 1 simultaneously) if x is not substituted for y. This
constraint can be correctly represented by incorporating the ILP variable sx,y

which represents the variable substitution of x for y:
Proposed Constraint 1: Two literals q(x1, x2, ..., xn) ≡ q(x) and ¬q(y1, y2,

..., yn) ≡ ¬q(y) cannot be both hypothesized (hq(x) = 1 and h¬q(y) = 1) if
variable substitutions xi/yi are activated (sxi,yi = 1) for all i ∈ {1, 2, ..., n}.
This can be expressed as: hq(x) + h¬q(y) +

∑n
i=1 sxi,yi ≤ 1 + n. Note that the

case where x = y reduces to: hq(x) + h¬q(x) ≤ 1. This type of constraint grows
in O(nm) for each predicate p, where n is the number of positive instantiation
of p in P , and m is the number of negative instantiation of p in P .

The important question here is how to find the pair q(x) and ¬q(y). In order
to find potential contradictions, one can perform forward reasoning. However,
the problem is how to control the overall search process because chaining might
be repeated infinitely. Terminating the search at a certain depth could miss
potential contradictions. Given q(x) and r(x) as potential elemental hypotheses,
for example, we may fail to find that ¬q(x) could be derived from r(x) in several
forward-chaining steps. This is a long-standing problem in logic-based reasoning.
One can address this problem by adopting some heuristics such as A* search.

We now describe how the inequality of variables, where two variables are
prohibited to unify due to some constraints, can be formulated. This kind of
constraint is also important for abductive inference. For example, imagine natu-
ral language interpretation systems. Given the sentence “A girl sent a present to
another girl”, it is desirable to express that the two girls must not be identical.
Such a constraint can be expressed straightforwardly in the ILP formulation:

Proposed Constraint 2: For each pair of (existentially quantified) variables
x and y in set P of potential elemental hypotheses that must not be identical
(i.e. x 6= y), introduce the following equality:

sx,y = 0. (5)

In our experiments, we use the six types of constraints described in Sec. 2.2
and two constraints newly introduced above.
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Algorithm 1 CPI4CBA(Background Knowledge B, Observation O)
1: (Ψ, I)← createBaseILP(B, O)
2: repeat
3: S ← solveILP(Ψ, I); V ← {}
4: for (x, y) ∈ unifiedTerms(S) do
5: for z ∈ termsUnifiableWith(x)∪ termsUnifiableWith(y) do
6: if (sx,z = 0 and sy,z = 1) or (sx,z = 1 or sy,z = 0) then
7: V ← V ∪ {−sx,y − sx,z + sy,z ≥ −1,−sx,y + sx,z − sy,z ≥ −1}
8: end if
9: end for

10: end for
11: I ← I ∪ V
12: until V 6= φ

3.2 Cutting plane inference for CBA

The major drawback of the ILP formulation is that it needs to generate O(n3)
transitivity constraints, where n is the number of logical terms, because we
perform inference over FOPL-based representation. That makes inference in-
tractable (see Sec. 4 for empirical evidence) because it generates an ILP opti-
mization problem that has quite a large number of constraints. Moreover, han-
dling negation quadratically increases Proposed Constraint 1.

How do we overcome this drawback? The idea is that “all the transitivity
constraints may not be violated all at once; so we gradually optimize and add
transitivity constraints if violated in an iterative manner.” More formally, we
propose to apply Cutting Plane Inference (CPI) to the CBA problems. CPI is
an exact inference optimization technique that is originally developed for solv-
ing large linear programming (LP) problems in Operations Research [21]. CPI
has been successfully applied to a wide range of constrained optimization prob-
lems where constraints are very large [22–25, etc.], from probabilistic deductive
inference problems [23] to machine learning problems [24]. To the best of our
knowledge, however, our work is the first successful work to apply CPI to abduc-
tive reasoning tasks. In principle, CPI solves optimization problem in an iterative
manner as follows: it solves an optimization problem without constraints, and
then adds violated constraints to the optimization problem. When the iteration
terminates, it guarantees solutions to be optimal. The proposed algorithm, called
CPI4CBA, is also an exact inference framework.

How do we apply the technique of CPI to cost-based abduction problems?
Intuitively, we iterate the following two steps: (i) solving an abduction problem
without enforcing transitivity on logical atomic terms, and (ii) generating transi-
tivity constraints dynamically when transitiveness of unification is violated (e.g.
x = y∧y = z∧z 6= x). The iteration terminates if there is no violated unification
transitivity. The pseudo-code is given in Algorithm 1. In line 1, we first create an
ILP optimization problem described in Sec. 2.2 and Sec. 3.1 but without transi-
tivity constraints (i.e. Constraint 6), where Ψ denotes a set of ILP variables, and
I denotes a set of ILP constraints. In line 2–12, we repeat: checking consistency
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of unification transitiveness, adding constraints for violated transitiveness, and
re-optimizing. In line 3, we find the solution S for the current ILP optimization
problem. Then, for each pair (x, y) of logical atomic terms unified in the solution
S (line 4), find the logical term z which is unifiable with x or y (line 5). If the
transitive relation x, y with respect to z is violated (i.e. sx,z = 0 ∧ sy,z = 1 or
sx,z = 1 ∧ sy,z = 0), then we generate constraints for preventing this violation,
and keep it in set V of constraints (line 6–8). Finally, we again perform an ILP
optimization with newly generated constraints (line 11 and 3). The iteration
ends when there is no violated transitiveness (line 12).

The key advantages of CPI4CBA is that it can reduce the time of search-
space generation, and it is also expected to reduce the time of ILP optimization.
CPI4CBA does not generate all the transitivity constraints before optimiza-
tion, which saves the time for search-space generation. In addition, optimization
problems that we solve would become smaller than the original problem in most
cases, because not all the transitivity constraints may not be necessary to be
considered. In the worst case, we need to solve the optimization problem that is
same as the original one; but in most cases we found out that we do not need
to. We will show its empirical evidence through large-scale evaluation in Sec. 4.

4 Runtime Evaluation

How much does CPI improve the runtime of ILP-based reasoner? Does CPI
scale to larger real-life problems? To answer these questions, we evaluated the
CPI4CBA algorithm in two settings: (i) STORY, the task of plan recogni-
tion, and (ii) RTE, the popular, knowledge-intensive, real-life natural language
processing task of Recognizing Textual Entailment (RTE). While most of the
existing abductive reasoning systems are evaluated on rather small, and/or arti-
ficial datasets [26–28, etc.], our evaluation takes a real-life, much larger datasets
(see Sec. 4.1). In our experiments, we compare our system with: (i) Inoue and
Inui’s formulation [18], and (ii) the systems [26, 28, 29] based on Markov Logic
Networks (MLNs) [30]. For our experiments, we have used a 12-Core Opteron
6174 (2.2GHz) 128 GB RAM machine. We used Gurobi Optimizer3, which is an
efficient ILP solver. It is commercial but an academic license is freely available.

4.1 Settings

STORY: For this setting, we have used Ng and Mooney [31]’s story under-
standing dataset, which is widely used for evaluation of abductive plan recogni-
tion systems [26–28]. In this task, we need to abductively infer the top-level
plans of characters from actions which are represented by the logical forms
(e.g. getting off(Getoff16)∧agent get off(Getoff16,Fred16)∧name(Fred16,Fred)). The
dataset consists of 50 plan recognition problems and 107 background Horn

3 http://www.gurobi.com/
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clauses (e.g. go step(r, g) ∧ going(g) → robbing(r)). The dataset contains on av-
erage 12.6 literals in observed logical forms. To make the predicates represent-
ing top-level plans (e.g. shopping, robbing) disjoint, we generated 73 disjoint-
ness axiom by using the formulation4 described in Sec. 3.1. Note that in In-
oue and Inui [18]’s evaluation, disjointness constraints are not used. Regard-
ing a cost function, we followed Hobbs et al. [2]’s weighted abduction theory.
For each axiom, we have set the sum of the axiom weights equal to 1.2 (e.g.
inst shopping(s)0.6 ∧ store(t, s)0.6 → shopping place(t) ).

RTE: For observations (input), we employed the second challenge of RTE
dataset5. In the task of RTE, we need to correctly determine whether one text
(called text, or T) entails another (called hypothesis, or H) or not. The dataset
consists of development set and test set, each of which includes 800 natural lan-
guage text-hypothesis pairs. We have used all of the 800 texts from test set. We
have converted texts into logical forms presented in [32] using the Boxer semantic
parser [33]. The number of literals in observations is 29.6 literals on average. For
background knowledge, we have extracted 289,655 axioms6 from WordNet 3.0 [5],
and 7,558 axioms from FrameNet 1.5 [6] following [10]. In principle, the WordNet
knowledge base contains several kinds of lexical relations between words, such
as IS-A, ontological relations (e.g. dog(x) → animal(x)). FrameNet knowledge
bases contain lexeme-to-frame mappings, frame-frame relations, etc. For exam-
ple, the mapping from surface realization “give to” to a frame “Giving” is given
by: Giving(e1, x1, x2, x3)

1.3 ∧ donor(e1, x1)
0.1 ∧recipient(e1, x2)

0.2 ∧ theme(e1, x3)
0.1

→ give(e1, x1, x3) ∧ to(e2, e1, x2) . We again followed Hobbs et al. [2]’s weighted
abduction theory for calculating the cost of hypothesis. We calculated the costs
by following Ovchinnikova et al. [10] in this setting.

4.2 Results and discussion

The reasoner was given a 2-minute time limit for each inference step (i.e. search-
space generation and ILP optimization). In Table 1, we show the results of each
setting for two inference method in Table 1: (i) IAICBA: the inference method
without CPI (i.e. Inoue and Inui [18]’s formulation with proposed constraints
1 and 2), and (ii) CPI4CBA: inference method with CPI (i.e. our proposal).
In order to investigate the relation between the size of search space and the
runtime, we show the results for each depth, which we used for limiting the
length of backward-chaining. In the “Generation” column, we show the runtime
that is taken for search-space generation in seconds averaged over all problems
whose search-space generation is finished within 2 minutes. In the parenthesis,
we show the percentage of those problems. In the column “ILP inf”, we show
the runtime of ILP optimization averaged on only problems such that both
4 For example, we generate hrobbing(x) + hshopping(y) + sx,y ≤ 2.
5 http://pascallin.ecs.soton.ac.uk/Challenges/RTE2/
6 Extracted relations are: word-to-synset mapping, hypernym-hyponym, cause-effect,

entailment, derivational, instance-of relations.
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Setting Method Depth Generation [sec.] ILP inf [sec.] # of ILP cnstr

STORY

IAICBA

1 0.02 (100.0 %) 0.60 (100.0 %) 3,708
2 0.12 (100.0 %) 5.34 (100.0 %) 23,543
3 0.33 (100.0 %) 8.11 (100.0 %) 50,667
∞ 0.35 (100.0 %) 9.00 (100.0 %) 61,122

CPI4CBA

1 0.01 (100.0 %) 0.34 (100.0 %) 784 (∆ 451)
2 0.07 (100.0 %) 4.15 (100.0 %) 7,393 (∆ 922)
3 0.16 (100.0 %) 3.36 (100.0 %) 16,959 (∆ 495)
∞ 0.22 (100.0 %) 5.95 (100.0 %) 24,759 (∆ 522)

RTE

IAICBA

1 0.01 (100.0 %) 0.25 (99.7 %) 1,104
2 0.08 (100.0 %) 2.15 (98.1 %) 5,185
3 0.56 (99.9 %) 5.66 (93.0 %) 16,992
∞ 4.78 (90.7 %) 15.40 (60.7 %) 36,773

CPI4CBA

1 0.01 (100.0 %) 0.05 (100.0 %) 269 (∆ 62)
2 0.04 (100.0 %) 0.35 (99.6 %) 1,228 (∆ 151)
3 0.09 (100.0 %) 1.66 (99.0 %) 2,705 (∆ 216)
∞ 0.84 (98.4 %) 11.73 (76.9 %) 10,060 (∆ 137)

Table 1. The results of averaged inference time in STORY and RTE.

search-space generation and ILP optimization are finished within 2 minutes, as
well as the percentage of those problems (e.g. 80 % means “for 80 % of all the
problems, search-space generation was finished within 2 minutes, and so was ILP
inference.”). In the “# of ILP cnstr” column, we show the averaged number of
generated ILP constraints. Concerning CPI4CBA, the number denotes the total
number of constraints considered in the end, including the constraints added by
CPI. The number marked by ∆ indicates the number of constraints that are
added during CPI (i.e. how many times line 7 in Algorithm 1 executed).

Overall, the runtimes in both search-space generation and ILP inference are
dramatically improved from IAICBA to CPI4CBA in both settings, as shown
in Table 1. In addition, CPI4CBA can find optimal solutions in ILP inference
for more than 76 % of the problems, even for depth ∞. This indicates that
CPI4CBA scales to larger problems. From the results of IAICBA in RTE set-
tings, we can see the significant bottleneck of Inoue and Inui [18]’s formulation
in large-scale reasoning: the time of search-space generation. The search-space
generation could be done within 2 minutes for only 90.7 % of the problems.
CPI4CBA successfully overcomes this bottleneck. CPI4CBA is clearly advan-
tageous in the search-space generation because it is not necessary to generate
transitivity constraints, an operation that grows cubically before optimization.

In addition, CPI4CBA reduces the time of ILP inference significantly. In
ILP inference, CPI did not guarantee the reduction of inference time in theory;
however, as shown in Table 1, we found that the number of ILP constraints
actually used is much less than the original problem. CPI4CBA successfully
reduces the complexity of the ILP optimization problems in practice. This is
also supported by the fact that CPI4CBA keeps 76.9% in “ILP inf” for Depth
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= ∞ because it solves very large ILP optimization problems that fail to be
generated in IAICBA.

Finally, we compare our results with other existing systems. Overall, the
presented reasoner is dramatically faster than the other systems. First, we im-
mediately see that the proposed method is more efficient than Inoue and Inui
[18]’s formulation (i.e. IAICBA). Regarding the MLN-based systems [26, 28, 29],
our results are comparable, or more efficient than the existing systems. For the
STORY setting, Singla and Mooney [28] report the results of two systems with
an exact inference technique using CPI for MLNs [23]: (i) Kate and Mooney [26]’s
approach: 2.93 seconds, and (ii) Singla and Mooney [28]’s approach: 0.93 sec-
onds7. MLN-based approaches seem to be reasonably efficient for small datasets.
However, it does not scale to larger problems; for the RTE setting, Blythe et
al. [29] report that only 28 from 100 selected RTE-2 problems could be run to
completion. The processing time was 7.5 minutes on average [personal communi-
cation]. On the other hand, our method solves 76.9% of all the problems, where
suboptimal solutions are still available for the rest of 21.5%, and it takes only
0.84 seconds for search-space generation, and 11.73 seconds for ILP inference.

5 Related work

A number of methods attempting to efficiently find the best explanation have
been proposed [17, 15, 34, 35, 16, 18, etc.]; however, most of them focus on im-
proving the inefficiency of propositional logic-based abduction. Although propo-
sitionalization techniques are available for applying these methods to FOPL
abduction, it will lead to an exponential growth of ground instances. Hence they
would not scale to larger problems for FOPL abduction with large KBs.

Recently, Markov Logic Networks (MLNs) [30] are used for emulating ab-
duction [26, 29, 28, etc.]. They provide full support of first-order predicate logic;
however, MLN-based approaches require special procedures to convert abduc-
tion problems into deduction problems because of the deductive nature of MLNs.
The pioneering work of MLN-based abduction [26] converts background ax-
ioms by (i) reversing implication and (ii) constructing axioms representing mu-
tual exclusiveness of explanation (e.g. the set of background knowledge ax-
ioms {p1 → q, p2 → q, p3 → q} is converted into the following MLN formulae:
q → p1 ∨ p2 ∨ p3, q → ¬p1 ∨¬p2, q → ¬p1 ∨¬p3 etc.). MLN-based approaches suffer
from the inefficiency of inference due to the increase of converted axioms.

One important work for FOPL abduction is Inoue and Inui [18]’s approach
formulating first-order predicate logic abduction as an ILP optimization prob-
lem. However, as mentioned in Sec. 1 and Sec. 2.2, this formulation has two
significant drawbacks for large-scale reasoning on real-life problems: (i) the com-
binatorial growth of transitivity constraints which arises from support for FOPL
(see Sec. 3.2), (ii) negation is not supported.
7 This is the result of MLN-HC in [28]. MLN-HCAM cannot be directly compared

with our results, since the search space is different from our experiments because
they unify some assumptions in advance to reduce the search space.
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6 Conclusion

We have proposed an ILP-based formulation for cost-based abduction in full-
fledged first-order predicate logic, extending Inoue and Inui [18]’s formulation.
Compared to prior work, our method is more expressive and efficient. Although
full-fledged FOPL reasoning is computationally expensive, our proposed opti-
mization strategy CPI brings us to a significant boosting of the efficiency of the
reasoner. We have evaluated our method on two datasets, including real-life prob-
lems (i.e. RTE dataset with axioms generated from WordNet and FrameNet).
Our evaluation revealed that our inference method CPI4CBA was highly effi-
cient than other existing systems. In future work, we will develop methods for
automatic tuning of costs of elemental hypotheses. Specifically, we plan to rep-
resent the cost function as a weighted linear feature function, and then apply
a standard linear training algorithm such as perceptrons. Also, we will evaluate
the abduction-based framework in terms of the prediction accuracy on real-life
tasks. We intend to apply abduction to co-reference resolution, the task of identi-
fying referential relations in natural language texts, as a first step. The abductive
inference engine presented in this paper is made publicly available.
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