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All physicists agree that the problem of physics consists in trac-
ing the phenomena of nature back to the simple laws of me-
chanics. But there is not the same agreement as to what these
simple laws are. To most physicists they are simply Newton’s
laws of motion. But in reality these latter laws only obtain their
inner significance and their physical meaning through the tacit
assumption that the forces of which the speak are of a simple
nature and possess simple properties. But we have here no cer-
tainty as to what is simple and permissible, and what is not: it
is just here that we no longer find any general agreement. Hence
there arise actual differences of opinion as to whether this or that
assumption is in accordance with the usual system of mechanics,
or not. (Heinrich Hertz)

1 Introduction

Historically, Erwin Schrödinger arrived at his wave mechanics via HJ the-
ory. As shown by Joas and Lehrer in detail [15], what guided Schrödinger
throughout was the ‘optical-mechanical analogy’—the theoretical relation-
ship between wave and particle motion found in William Rowan Hamilton’s
work. The analogy provided the final jigsaw piece in his general project
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to extend classical mechanics and more specifically, to provide a non ad hoc
theoretical explanation for quantised energy levels of the hydrogen atom and
Bose-Einstein statistics.1 As we know, Schrödinger completed the ‘optical-
mechanical analogy’ by providing a wave equation for de Broglie’s matter
waves. In simple terms, point particle mechanics is seen as the short wave-
length limit of ‘wave mechanics’, analogous to the eikonal approximation in
geometrical optics.2 In Schrödinger’s interpretation, his theory is wave me-
chanics proper—an generalsation of classical point particle mechanics to the
motion of the mechanical waves. The physical picture for Schrödinger is that
the wave nature of matter is fundamental, and the particle picture emerges
only as an approximation, arising as part of the wave picture. This con-
stitutes the first line of approach to understand the conceptual relationship
between Schrödinger mechanics3 and HJ theory and is well known within
the literature.4 I shall denote this the wave approach.

Another presentation is provided by de Broglie-Bohm theory. Here, I
focus on Peter R. Holland’s interpretation of the theory as a casual inter-
pretation [14]. As shown by David Bohm [1], Schrödinger equation can
be seen as a HJ like equation coupled with a continuity equation, using
ψ = ρ1/2eiS/~:

∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= 0 (1)

∂S

∂t
+

1

2m

(
∂S
∂qi

)2

+ V (qi) +Q = 0 (2)

with an extra term in the HJ like equation:

Q = − ~2

2mρ1/2
∂2ρ1/2

∂q2i
(3)

called the quantum potential. Hence Schrödinger mechanics can be recast
as equations (1) and (2), plus a further equation of motion

p =
∂S
∂qi

(4)

for the physical system described by (1) and (2).5 As Holland pointed out, in
this approach Schrödinger mechanics can be seen as a natural development

1See Joas and Lehrer [15], pp.342-346.
2In reality the relationship is much less straight forward. See Holland [14], pp.238-239.
3From now on, I call Schrödinger’s theory ‘Schrödinger mechanics’, to make a clear

distinction between the mathematical framework, and his interpretation of it.
4See for example Yourgrau and Mandalstam [25], pp.116-127 and Butterfield [4].
5If one is to be precise, (1) and (2) are only equivalent to Schrödinger equation if an

extra quantisation condition is imposed on S. See [23].
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of classical HJ theory by permitting ‘internal potentials’ in the Hamiltonian,
namely, higher order derivatives of S or ρ. In other words, the key difference
between ‘classical’ and ‘quantum’ lies in the importance of the quantum
potential in describing motion. Thus it should be regarded as a new theory
of motion.6

Further, in this approach a commitment is made on the nature of ψ. The
is based on de broglie’s idea that both ‘wave’ and ‘particle’ are objectively
real.7This means that both are considered as part of what consists the real
physical system described by the theory. Thus de Broglie-Bohm theory is
also a new theory of matter.8 The statistical nature of ψ in this physical
picture is only secondary. From this perspective, Schrödinger mechanics is
essentially a new theory of matter and motion, formulated using the HJ
language. I shall denote this perspective the wave-particle approach.

The above two approaches are well known attempts that provide a con-
ceptual interpretation behind the mathematical connections between HJ
theory and Schrödinger’s theory. There is however a lesser known third
approach which arises out of viewing the very same relationship in a dif-
ferent light. It is not quite unknown because it is based on Schrödinger’s
first communication on wave mechanics.9 Since this approach is centered
upon the variational principle found in Schrödinger’s first paper, I shall
denote this approach the variational approach. This approach has been
abandoned by Schrödinger in favour of the more intuitive picture of wave
mechanics. As Wessels pointed out, it might be that the variational principle
was merely a device to gain acceptance for the then still largely unfamiliar
wave equations.10 Nevertheless, historically it should be made clear that the
variational principle was not the center of Schrödinger’s thought, but the
wave equations.

However, this does not make it less interesting to ask: can the variational
approach stand alone, without the wave interpretation? The present paper
is an attempt to sketch the details of the variational approach, along with
some philosophical justifications behind its plausibility. Since this approach
is much less well developed than the other two, the considerations here will
only be of a preliminary kind. Without referring to terms of a wave theory,

6See Holland [14], pp.61-65.
7For the history of the development of this idea, see Bacciagaluppi and Valentini [22]

and de Broglie [8, 9, 10].
8[14], p.63.
9See Erwin Schrödinger, Quantisation as a Problem of Proper Value, Part I, Annalen

der Physik (4), Vol. 79, pp. 361-376, 1926.
10See Wessels [24], pp.330-333.
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I will restrict myself to investigate into the conceptual relationship between
the two theories. Let me clarify on the meaning of this task.

The model of a physical theory in this paper is the Hertzian one. A phys-
ical theory forms a picture (or image) of the world with abstract concepts
(or symbols of external objects). Concept are components of a picture. A
theory is basically a picture with its own set of abstract concepts, not neces-
sarily having any connection to the empirical world a priori. There is only
one requirement on a theory: a fundamental connection can be established
between empirical observations and the picture, such that the consequences
of the picture will allow us to anticipate the consequence in reality.11 And
“it is not necessary that they should be in conformity with the things in
any other respect whatever”. This forms the basic conception of physical
theories here, which I shall call minimalistic realism.

With this in mind, the central question studied in this paper is the fol-
lowing: how do abstract concepts in HJ theory relate to those in Schrödinger
mechanics? I want to focus especially on the relationship between S and the
wavefunction ψ. Is there any sense in which there is a continuity between
the two concepts? Each concept in a physical theory functions as part of
the picture it presents. Do they retain their significance in one picture as
in the other? If not, what is the difference? Thus my aim is to present
the variational approach mentioned above as a fresh attempt to address this
central question.

The paper consists of three main sections. First, I will study an inter-
pretation of classical HJ theory that underlies the variational approach. An
attempt is made to describe the physical picture presented and presupposed
by HJ equation, with a special focus on the meaning of the S function. Then
I will study the possibility of equipping HJ theory with a classical statistical
framework and the physical picture it presents. Second, some motivations
are given for extending this physical picture and formalism to Schrödinger
mechanics. This is emphatically not a ‘derivation’ of Schrödinger’s theory.
In fact, the emphasis here is that Schrödinger mechanics is conceptually dis-
tinct from any form of classical theories. Finally, light will then be shed on
the central question set out above.

The contributions of this work are twofold. First, I argue the importance
of seeing the concept ‘motion’ as an abstract concept in Schrödinger mechan-
ics, due to its changed empirical status in subatomic ‘quantum’ phenomena.
However, the more important contribution here lies in the observation that

11Thus for example, in Hertz’s book the single connection he requires, is through the
fundamental law of motion.
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the role the ‘quantum state’ plays in Schrödinger mechanics is conceptually
analogous to the role of motion, not the physical state, in classical mechanics.
This is the most important insight arising out of the variational approach.

2 Hammilton-Jacobi theory

2.1 Formalism

In general, HJ theory denotes a mathematical theory in the calculus of vari-
ation [19]. However, in this section I shall denote by HJ theory the specific
application of this method in classical mechanics, especially in solving the
problem of dynamics. The method to achieve this is normally known as
Jacobi’s method. It consists of two steps: first finding a single function
S(qi, t; ai, A) that depends on n+1 arbitrary algebraically independent con-
stants (a1, ...an, A) by solving the HJ equation

∂S
∂t

+H = 0 (5)

for a system with a Hamiltonian

H = T + V =
1

2m

(
∂S
∂qi

)2

+ V (qi) (6)

where i = 1, ...n, n is the number of degrees of freedom. Because S does
not appear explicitly in the HJ equation, one of the constants will be an
additive constant. Thus we have:

S = S(qi, t; ai) +A (7)

Second, to solve for the motion, i.e finding qi = qi(t), we can use Jacobi’s
law of motion:

∂S
∂ai

= bi (8)

Now solve for: qi = qi(t; aj , bk), for i, j, k = 1, ...3n by algebraic rearrange-
ment. The setting of these constants, for the moment, are entirely arbitrary.
However, by identifying the ai’s and bi’s with key physical quantities in the
problem, for example the initial positions and momenta of the system, we
can recover the form of the well known solutions in classical mechanics. For
example, consider a free particle in 1 dimension. It can be shown that

S =
1

2
m

(q − q0)2

t− t0
(9)
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satisfies the HJ equation. If we take q0 as a1, then Jacobi’s law of motion

∂S
∂a1

=
∂S
∂q0

= −mq − q0
t− t0

= b1 (10)

should give us q = q(t) after rearrangement. If we write b1 = p0, i.e. the
initial momentum, we have:

q(t) = q0 −
p0
m

(t− t0) (11)

which gives the motion of a free particle in terms of the initial momentum.
However, if we take t0 as a1, then

∂S
∂a1

=
∂S
∂t0

=
1

2
m

(q − q0)2

(t− t0)2
= b1 (12)

which again, gives qi = qi(t). If we write b1 = E, i.e. the energy, we have:

q(t) = q0 +

√
2E

m
(t− t0) (13)

which given the motion of a free particle in terms of the energy.
HJ equation is a partial differential equation which means there are in-

finitely many solutions. The importance of Jacobi’s method is that it pro-
vides a way to find the set of S that are actually relevant to the problem
of motion. Using the above procedure, actual motion can be constructed
using the solutions of the HJ equation. This way, HJ equation can be seen
as a theory of motion in classical mechanics. I will now turn to discuss the
conceptual significance of HJ theory now.

2.2 Conceptual Interpretation

2.2.1 Levels of the dynamical problem

In what sense does HJ theory solve the problem of motion? Here, it is impor-
tant to point out that HJ theory is radically different from the perspective
of Newtonian or variational mechanics in dealing with dynamics. In these
approaches, the theory describes dynamics of a physical system by provid-
ing its trajectory via an equation of motion. The initial data is specified in
order to determine the unique motion of the system. HJ theory, however,
provides a much more general solution to the problem of dynamics. This is
because in solving for S, dynamics is provided at a level before any equation
of motion is even derived. It is true that the equation of motion is contained
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when we have solved for S via Jacobi’s law of motion. However, this dis-
tinction is important when we get to Schrödinger mechanics because there,
the challenge is to find a physical theory that describes the observations in
subatomic physics with a dynamical framework, without committing to a
particular equation of motion or exact dynamics. Thus we can already see
HJ theory is particular well suited for constructing a theory of subatomic
physic. So for the moment, let us distinguish different conceptual levels of
a dynamical problem by the following schema:12

Level Significance

1 Determination of general dynamics

2a Determination of equation of motion

2b Specification of initial data

3 Determination of exact motion (trajectory)

Within this schema, the determination of S via the HJ equation is at level
1. Arriving at an equation of motion is at level 2a. S together with the
specification of the integration constants is at level 2b. At level 3, the whole
path of motion qi = qi(t) is determined.

With the above schema, we can understand better the conceptual rela-
tionship between HJ theory and other formulations of classical mechanics.
The critical difference lies in the extend of ‘determination’ at level 1. In HJ
theory, the general dynamics for a physical system with a given Hamilto-
nian H is completely determined. It is general, in the sense of without the
restriction to consider a particular equation of motion/trajectory. In other
formulations of mechanics an equation of motion is the central equation and
thus the description is restricted to a particular trajectory, and therefore at
level 2a.13

Further, this schema shows us that there are different ‘levels’ of determi-
nation in dynamics. The important consequence is that the physical picture
presupposed at each level is different. In HJ theory, for example, we have a
framework for specifying dynamics in a general sense, without committing
to follow a particular single trajectory. Thus at level 1a, the picture there is
not of an individual physical system with a trajectory and an initial state.
These only come at subsequent levels. By separating the determination of

12My approach here is different, but I hope, complementary, to the insightful discussion
in Butterfield [5].

13Albeit particular not in the sense of exact, because no restriction is placed on the
choice of initial data. Particular means that it follows one potential trajectory, rather
than many potential trajectories. The latter is true of the action principle, for example,
where many virtual trajectories are considered.
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dynamics into a few levels, we can see more clearly the appropriate physical
picture presupposed by each level.

2.2.2 The physical meaning of S and the Hamilton-Jacobi equa-
tion

The central question then is the following: what is the conceptual signif-
icance of the HJ equation? In other words, what is the physical problem
posed, and the physical picture presupposed by the equation? The HJ equa-
tion is an equation for the function S, which is a function on configuration
space and so there is not an obvious physical interpretation of S.14 There are
three different approaches to answer this question. The first approach is the
historical one, namely, that HJ theory presents a picture to unify wave and
particle motion. The second approach is a common one found in textbooks,
namely, that HJ theory is concerned with generating functions for canonical
transformations. The third approach is a less common one, which can be
found in Butterfield [5], Cook [6, 7], Holland [14] and Landauer [17]: HJ
theory refers to an ensemble of fictitious particles on fictitious trajectories.

In the first picture, the physical problem posed for the HJ equation
is to find the ‘guiding’ wave fronts for particle motion. This can only be
understood if we set this approach within the context of Hamilton’s work.
Hamilton was initially concerned with geometrical optics. For Hamilton, his
task was to find a single mathematical function such that all the paths for
light in a given environment can be derived from this single function. Let
us denote this function Hamilton’s characteristic function SH. The physical
significance of this function was to describe the family of surfaces in Malus’
theorem—“that for any bundle of light rays emitted from a point, there
will be a family of surfaces so that all light rays are orthogonal to these
surfaces.”15 Thus the HJ equation solves for a function which characterises
a family of surfaces. Jacobi’s law of motion can then be used to find the
particle/ray trajectory from this one single function, given the necessary
initial data. This is the picture that led to Schrödinger’s wave interpretation
of his theory.

In the second picture, the physical problem posed for the HJ equation is

14It is often noted that S is the action in mechanics textbooks. This is true only to
the extend that the action is one of the solution that works in the HJ method. However,
HJ method is not restricted to using the action as the only possible means to solve the
problem of motion.

15See Joas and Lehrer [15], p.340. For more details, see Butterfield [4].
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to find out the generating functions for canonical transformations.16 Recall
the physical significance of canonical transformations is that they produce
the true motions connecting two physical states. The generating function
for canonical transformations thus can be seen as generator of mechanical
paths connecting an initial state (qi, pi) to a final state (Qi, Pi). The prob-
lem of motion in HJ theory can then be phrased as the following: given a
system with a Hamiltonian H, what is the generating function S that gives
rise of canonical transformations? The answer is that S must satisfy the
HJ equation. This picture is connected with Dirac’s well known work on
transformation theory in quantum mechanics by treating the commutators
as the quantum mechanical equivalent of the Poisson brackets.

However, a third picture is possible. In this picture, the problem posed
for the HJ equation is to find the dynamics of a physical system at level
1 in the above schema. It refers to an ensemble of fictitious particles on
potential actual trajectories. I shall call this an Hamilton-Jacobi ensemble,
to distinguish it from any other concepts of ensemble in SM. Conceptually,
this means that HJ theory treats the whole configuration space as points on
potential actual trajectories. Solving the HJ equation for S gives rise to all
the actual dynamical possibilities associated with each point in configuration
space for a given H. How does this work?

First, notice that the HJ equation solves for a field S such that it provides
the dynamics for each point qi in configuration space, if it happens to be
found in the state qi. S provides a field on configuration space where the
dynamics can be derived readily through ∂S

∂qi
at each point.

However, the general solution for the equation does not commit to de-
scribe any particular particle trajectories with a particular set of initial data.
This occurs only at level 2. Further, HJ equation contains as many constants
of integration as there are degrees of freedom, and these can be chosen arbi-
trarily, as shown previously. The specification of these constants occur also
only at level 2. Thus solving the HJ equation provides dynamics in the most
general sense (level 1): if a particle happens to be found in the state qi, its
dynamics at that point is ∂S

∂qi
.

This is rather significant because as seen in the above way, HJ theory
should be regarded as a framework for dynamics. HJ theory is a dynamical
framework serving as a background for further determination of the solution
to the problem of motion. For example, the solution for the free particle
trajectory found in the previous section can be seen conceptually as consist
of two steps. First, as an application of HJ theory as a general dynamical

16See Lanzcos [16],pp.216-239 and Holland [14], pp.29-33.
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framework by finding a S that satisfies the HJ equation. Second, by spec-
ifying the integration constants as initial momentum/Energy, we arrive at
the exact for of the actual motion. Conceptually speaking, only when the
second step is taken have we turned from an ensemble of fictitious particles
on potential actual trajectories, to a specific actual particle on a definite
trajectory.

2.3 HJ theory with a statistical framework

With the third picture in mind, there is an obvious possibility of equip-
ping HJ theory with a statistical framework. If HJ equation refers to an
ensemble of fictitious particles on possible actual trajectories, then just as
in statistical mechanics (SM), we can equip the ensemble with a probability
distribution.17

However, we must be really careful here. What is the physical signifi-
cance of the HJ ensemble? It is very similar to the notion of a Gibbsian en-
semble. This means that the members of the ensemble are strictly fictitious,
i.e. they have no real empirical reality attached to them. The connection to
empirical reality is done through the statistical averages over the ensemble,
as in the case of Gibbsian SM.

2.3.1 Conceptual Foundation

In classical mechanics, a specification of the system’s state is given by (qi, pi).
Given the state, as well as the Hamiltonian of the system H, one can solve
the HJ equation and obtain S, which completely solves the possible motion
of the system. Now classical SM applies to situations where a specification
of the exact state of the system is not possible. It allows one to take into
account the lack of knowledge we have about the system and consequently
make statistical predictions during experiments. In classical SM, one usually
uses the notion of a phase space, which is a 2n dimensional space where each
point (qi, pi) corresponds to a possible state one can find the representative
point. Here, n is the degrees of freedom in the physical system under con-
sideration. This is convenient because in phase space one can assume each
point evolves according to Hamilton’s equations, and so given an ensemble
of states, i.e. a region of phase space, we can assume each member of the
ensemble evolves according to the same dynamics. As a consequence, the
probability distribution over phase space, F (qi, pi, t) which assigns proba-
bility of finding a representative point to be in a particular state, evolves

17I follow Tolman [21] here on the conception and presentation of classical SM.
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according to Liouville equation:

dF (qi, pi, t)

dt
= 0 (14)

which follows from Hamiltonian mechanics. The important observation to
make is that any allowed distribution must satisfy Liouville equation, which
is an implication of Hamiltonian dynamics. In classical SM, the dynamics
of the state is entirely independent of the specification of initial distribu-
tion. In other words, different distributions will consist of states that evolve
according to the same dynamics. As we will see, this marks the critical
difference between classical SM and Schrödinger mechanics.

2.3.2 Formalism

Now we can consider equipping a classical statistical framework in config-
uration space for the HJ picture sketched in the previous section. Recall
S refers to an ensemble of fictitious particles. We can equip a statistical
framework on this picture via the following question: what is the probabil-
ity of qi being the configuration of the representative point? In other words,
what is the probability of qi being found on the motion of the representative
system?

Notice that the above question is formulated at level 1. This means that
no assumption is yet made about the actual trajectory of the representative
point. The only question is that the representative point has actual motion
in principle. From the context of the question formulated, it is intuitive
that the actual motion in principle should have an effect on the probability
distribution. This can be seen later in the presence of ∂S

∂qi
in the continuity

equation.
With the above question in mind, we can formulate a classical statistical

framework in the following way. A state in configuration space is specified
by qi. The number of states N in the ensemble is given by:

N =

∫
...

∫
ρ(qi; t)dq1...dqn (15)

where n is the degree of freedom and ρ(qi; t) is the probability distribution
on the ensemble. Now

ρ(qi; t)

N
=

ρ(qi; t)∫
...
∫
ρ(qi; t)dq1...dqn

(16)
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is the probability per unit volume in configuration space for the represen-
tative point to be found at qi at time t. If we apply the normalisation
condition: ∫

...

∫
ρ(qi; t)dq1...dqn = 1 (17)

then ρ = ρ(qi; t) gives directly the probability per unit volume in configura-
tion of finding the representative point at qi at time t. This is convenient and
from now on we will assume this is always imposed. Now any mechanical
quantity F (qi; t) has a mean value over the ensemble of states given by:

〈F 〉 =

∫
...

∫
F (qi; t)dq1...dqn (18)

This defines the average value for any mechanical quantities over the en-
semble. It is averaged over all the possible states. The evolution of the
probability distribution is given by the continuity equation:

∂ρ

∂t
+∇ ·

(
ρ
∇S
m

)
= 0 (19)

which can be shown through some elementary considerations.18 Thus for
a given classical mechanical system with dynamics characterised by S, the
distribution ρ used to equip a statistical framework for a HJ ensemble must
satisfy the continuity equation. We shall call the above framework statistical
HJ theory.

As shown by Cook [7] and Holland [14], statistical HJ theory can be
beautifully summarised by a variational principle

δ

∫
dq1...dqn

{
ρ

[(
∂S
∂t

+H
(
qi,

∂S
∂qi

))]}
= 0 (20)

by treating −ρ and S as conjugate variables. The HJ equation and the
continuity equation are then derived as the Euler-Lagrange equation for the
variational principle. As we will see, it is precisely this variational principle
which provides a physical motivation behind the variational approach in
Schrödinger’s first communication.19

18See [14], pp.46-47
19This connection is observed by Joas and Lehrer [15], p.346:“In the text corresponding

to this item, Schrödinger starts from the Hamiltonian partial differential equation and
reinterprets it as a variational principle which indeed leads him to the (nonrelativistic)
wave equation.”
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3 Extending the picture

3.1 An arbitrary change of variable or a generalised frame-
work for statistical HJ theory?

We will now provide some motivations to see Schrödinger mechanics as a
statistical HJ theory. In the spirit of HJ theory, the main physical content in
statistical HJ theory should be specified by 1 single function only. Denoting
this function by ψ, consider the following change of variable:

S = Klnψ ψ = exp(S/K), ψ ∈ R (21)

where K is a constant with the dimension of action. This is necessary since
ψ must be dimensionless inside the logarithm. Notice that this is the famous
ad hoc looking transformation introduced by Schrödinger in his first paper
on wave mechanics. With this change of variable, we have the following
identities:

∂S
∂qi

=
K

ψ

∂ψ

∂qi
,

∂S
∂t

=
K

ψ

∂ψ

∂t
(22)

∂ψ

∂qi
=
ψ

K

∂S
∂qi

,
∂ψ

∂t
=
ψ

K

∂S
∂t

(23)

Substituting back into the HJ equation, we have:

H
(
qi,

K

ψ

∂ψ

∂qi

)
= E (24)

which becomes:
K2

2m

(
∂ψ

∂qi

)
+ V (qi)ψ

2 = Eψ2 (25)

Now if we transform the only the derivatives back to S, the equation has a
very suggestive form:

1

2m

(
∂S
∂qi

)2

(ψ2) + V (qi)(ψ
2)− E(ψ2) = 0 (26)

The left hand side looks like the integrand of the variational principle above,
if we identify ρ = ψ2.20 Recall that the content of statistical HJ theory can
be summarised by the variational principle. Thus the famous ‘arbitrary’
looking transformation can be motivated by the following requirement: to

20Recall in HJ theory, E = − ∂S
∂t

, and H = 1
2m

(
∂S
∂qi

)2

+ V (qi).
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look for a single function to describe all the physical content in statistical
HJ theory.21 This is the starting point of the variational approach.

So far, the transformation is obviously inadequate for this requirement
since we have two real functions S and ρ but only 1 real function ψ. In
order to express all the physical information in statistical HJ theory by one
single function, ψ must be complex. Combining with the above heuristic
motivation, we have the following definition:

ψ = ρ1/2exp(S/K), ψ ∈ C (27)

which amounts to the polar representation of a complex variable if and only
if K = ±i~, ~ ∈ R.22 We choose K = −i~ from now on.

With this definition, it seems now we have a single function that carries
both the dynamics and the probability distribution. Let us investigate what
this change entails. For convenience, let R = ρ1/2. Consider

lnψ = ln(Rexp(iS/~)) (28)

which becomes:
lnψ = lnR+ iS/~ (29)

So the expression for S is given by:

S = i~lnR− i~lnψ (30)

Recall the expression for momentum in HJ theory is ∂S
∂qi

. Using the expres-
sion for S above, we get:

∂S
∂qi

=
i~
R

∂R

∂qi
− i~
ψ

∂ψ

∂qi
=
i~
2

∂lnR2

∂qi
− i~
ψ

∂ψ

∂qi
(31)

We can see that unlike in the previous case where ψ is real, by making ψ
complex the transformation is not just a change of variable. It modified the
expression for the momentum by introducing a new R derivative term. This
means that part of the theory that describes the dynamics has significantly
changed, where it could be dependent on the specification of the probability
distribution. Further, it is not even straight forward to think of ∂S

∂qi
as an

21What is demonstrated in this section is by no means equivalent to explaining the
exact physical meaning of the transformation. However, it does provide some motivations
behind the variational approach.

22~ here is merely a ‘suggestive’ constant. The empirical content of the theory is entirely
justified by experimental verification, including the value of ~.
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expression for momentum now, since the first term is certainly complex and
so ∂S

∂qi
is in general a complex expression.23

Further, if we consider:

S − i~lnR = S ′ = −i~lnψ, S ′ ∈ C (32)

then the transformation can be seen as a change of complex variable S ′ to
ψ. By considering the introduction of ψ into statistical HJ framework in
the perspective of S ′ we obtain an important insight. This new framework
can be cast as a HJ framework, albeit with the complex S ′ as defined above,
instead of the real S in classical HJ theory. Thus if we replace all the S
by S ′ we obtain a new framework, characterised by the use of a complex
variable in the old familiar language of the last section. The key, however,
is to notice that the meaning of expressions in this new framework such
as ∂S′

∂qi
is certainly not equivalent to ∂S

∂qi
, which can be interpreted simply as

momentum. This is due to the fact that the familiar looking expression ∂S′
∂qi

is now in general complex.

3.2 Schrödinger mechanics

3.2.1 From classical statistical mechanics to Schrödinger mechan-
ics

I will now discuss the physical significance of Schrödinger mechanics in the
variational approach. Recall that in classical HJ theory, dynamics of indi-
vidual states is equivalent for different statistical ensembles chosen. This is
justified by the fact that dynamics is an empirical law since the motion of
planets and macroscopic objects are considered as observed directly. Thus
the law of motion is taken as the only ‘empirical law’ of nature in classical
mechanics, as Hertz observed [13]. Rightfully, ‘classical’ statistical ensemble
considers a collection of systems where their dynamics is taken as governed
by the empirical laws of classical mechanics. This is seen by the fact that
HJ equation is independent of ρ, and so the dynamics is solely determined
by S.

However, at subatomic level trajectories are not observed directly in ex-
periment and thus should be regarded as an abstract concept in the theory,

23Unless the extra term vanish, which amounts to some ‘recovery’ of the classical version
of statistical HJ theory. There are two ways to recover a classical statistical theory from

this framework: i) ~→ 0, ii) ∂lnR2

∂qi
= 0. But as Holland pointed out ( [14], p.219), ~→ 0

is a difficult statement to interpret, since against what scale or in what precise physical
circumstances should we regard ~ as small?

15



in the Hertzian sense. Only localisation of particles (e.g. electrons, photons)
are observed directly, as pointed out by de Broglie [10]. Further, what is
obtained from the early quantum experiments are the position/energy distri-
butions and discrete energy ‘levels’. The correct distribution of localisation
is what is required of the theory to describe at subatomic level, not the
trajectories. This motivates the central key assumption behind Schrödinger
mechanics, namely that states in an ensemble need not be governed by an
universal dynamics.

Schrödinger mechanics can be seen as an implementation of this change
of view. A convenient schema is provided by the above generalised statistical
HJ theory. A dramatic consequence follows, namely that the determination
of dynamics is not the central empirical problem in the theory. Instead,
determination of ψ becomes the non-trivial empirical problem in the the-
ory, since it is now impossible to determine the dynamics for states in the
ensemble first, and then assign a distribution on the ensemble. The major
change in Schrödinger mechanics amounts to this lost of independence for
dynamics as a concept, and hence the non-trivial usefulness of using 1 single
function in statistical HJ theory. With this in mind, we are now ready to
elucidate the physical meaning of standard features in the theory.

3.2.2 Schrödinger Densities—‘Operators’

The relevant physical quantities in Schrödinger mechanics are introduced as
follows. As in any statistical theory, in general the quantities with empirical
significance are not the local values, but averages over an ensemble of dy-
namical states. Nevertheless, the local values are abstract concepts used to
formulate averages. So we must first define densities for dynamical variables.

The density for a physical quantity is defined by the local value multiplied
by the distribution of states in a HJ ensemble. Thus the densities dA is
defined as:

dA = Aρ = A|ψ|2 (33)

For example, the local energy density is given by:

dE = |ψ(qi, Qi, t)|2
(
−∂S

′

∂t

)
= ψ∗

(
i~
∂

∂t

)
ψ (34)

and finally the local momentum density:

dpi = |ψ(qi, Qi, t)|2
(
∂S ′

∂qi

)
= ψ∗

(
−i~ ∂

∂qi

)
ψ (35)
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Now we can use these basic quantities to form more complicated quantities.
For example, the local kinetic energy density is given by:

dT = |ψ(qi, Qi, t)|2
1

2m

n∑
i=1

(
∂S ′

∂qi

)2

=
~2

2m

n∑
i=1

∣∣∣∣∂ψ∂qi
∣∣∣∣2 (36)

and the local Hamiltonian density are given by:

dH = |ψ(qi, Qi, t)|2H
(
qi,

∂S ′

∂qi

)
=

~2

2m

n∑
i=1

∣∣∣∣∂ψ∂qi
∣∣∣∣2 + V (qi)|ψ|2 (37)

We interpret these densities as densities over the HJ ensemble. They are
not physical densities, unlike for example particle densities in a gas. They
are fictitious densities used to compute physical quantities, namely the sta-
tistical averages. But they are not probability densities.24

As we can see, the form of the energy and momentum densities resembles
the mysterious ‘operators’ !25 From this perspective, we can see a clear phys-
ical meaning behind the operators, in relation to the language of statistical
HJ theory.26

3.2.3 Averages over a HJ ensembles—‘Expectation values’

With the local densities, we can now define averages or mean values for
physical quantities. The average of a physical quantity over a HJ ensemble
is defined by integrating the local densities over all the possible states. Thus
we have:

〈A〉 =

∫
dAdq1...dqi (38)

For example, the average momentum is given by:

〈pi〉 =

∫
dpidq1...dqi =

∫
ψ∗
(
−i~ ∂

∂qi

)
ψdq1...dqi =

∫
ψ∗P̂iψdq1...dqi = 〈P̂i〉

(39)
which is the expectation value of the momentum operator! We can see that
the expectation value of operators are found to have empirical significance

24As Cook noted, these densities are not in general probability distributions, since they
can be negative and do not necessarily obey the Kolmogorov axioms. See [7], pp.135-136.

25The introduction of the Hamiltonian operator is less obvious. As we can see, the
Hamiltonian operators do not enter the theory via having the exact form as the Hamil-
tonian density. I will not go into the details here but see [7], pp.154-158 for an extended
discussions.

26For a detailed discussion, see [6], p.81-88.
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in the standard formalism, precisely because they are the physical averages
in a statistical HJ framework. In a statistical theory, these are the obvious
quantities with empirical significance.

3.2.4 Schrödinger’s Variational Principle—Schrödinger equation

We now require a law to select all the possible ψ allowed in the theory. This
law can be treated as the sole physical hypothesis in Schrödinger mechanics,
which requires empirical verification. We have already seen that classical
statistical HJ theory can be derived from a variational principle. The phys-
ical meaning of the variational principle is further clarified by noting that it
is equivalent to: ∫

dq1...dqidE =

∫
dq1...dqidH (40)

where in the classical theory, ρ = R2, dE = −ρ∂S
∂t , dH = ρ

(
(∇S)2
2m + V

)
.

Thus the physical content of the statistical HJ theory is equivalent (up to
boundary conditions) to asserting the following:

The average energy is equivalent to the average Hamiltonian over
the HJ ensemble.

I shall call this Schrödinger’s variational principle, since this is exactly the
same principle he proposed in the first communication to replace the quan-
tisation conditions.

In Schrödinger mechanics, we still have the same principle but instead
of S, we have S ′ instead:

δ

∫
dq1...dqi

{[
ρ

(
∂S ′

∂t
+H(qi,∇S ′)

)]}
= 0 (41)

Now using the transformation between S ′ and ψ, we can rewrite the varia-
tional principle in terms of ψ and ψ∗. Vary with respect to ψ∗ (or ψ), we
obtain the Schrödinger equation for ψ (or ψ∗):27

i~
∂ψ

∂t
=
−~2

2m
∇2ψ + V ψ (42)

Schrödinger’s variational principle is the only constraint on ψ.28 Now the
physical problem in this generalised dynamical framework becomes solving

27For the full derivation, see [6], p.63-68.
28Notice that this is not strictly true, if one considers the single-valuedness of ψ, the

behaviour on the boundaries...etc as extra constraints.
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for ψ, instead of ρ and S separately. Thus solving for ψ seems to amount
to solving for possible HJ ensembles that will occur in nature. Moreover,
in general, these ensembles have states evolving according to non-classical
motions.

4 Elucidations

4.1 HJ theory as a common language

4.1.1 What is the ‘momentum’?

We are now in a position to discuss how the variational approach answers
the central question raised at the beginning of the paper, namely, what
is the conceptual relationship between the abstract concepts in HJ theory
and Schrödinger mechanics. We can see that HJ theory is a framework
for dynamics both in classical mechanics and Schrödinger mechanics. The
major continuity between classical and Schrödinger mechanics lies within
the presence of a common language.

However, this continuity is actually more confusing than it seems. Con-
sider the expression for momentum averages over a HJ ensemble:

〈pi〉 =

∫
dpidq1...dqi =

∫
ψ∗
(
−i~ ∂

∂qi

)
ψdq1...dqi =

∫
ψ∗P̂iψdq1...dqi = 〈P̂i〉

(43)
This is one of the many clarifications from this perspective. We have a
well motivated explanation as to why operators can be introduced into QM.
They are the densities for a dynamical variable in a HJ ensemble. Notice
though that this explanation works, only if the substitution for ψ is possible
in dpi . However, the substitution for ψ comes from:

∂S ′

∂qi
(44)

not
∂S
∂qi

=
−i~
ψ

∂ψ

∂qi
+
i~
R

∂R

∂qi
(45)

As we can see, in general there is a second term dependent onR in ∂S
∂qi

. So the
quantity dpi should not really be interpreted as a ‘momentum’ density, and∫
dpidq1...dqi be interpreted as ‘average momentum’, unless we are willing

to call the derivative of the complex variable S ′ a ‘momentum’.
The issue here is whether there is a meaningful candidate for momentum

in Schrödigner mechanics. De Broglie-Bohm theory indeed realised that ∂S
∂qi
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is such a candidate. However, from our detailed study of the HJ framework,
in general this is not actually the natural ‘momentum’. If we follow through
the construction of Schrödinger mechanics, the natural expression is ∂S′

∂qi
.

How does de Broglie-Bohm theory work?
The reason it works is the following. Consider the local momentum

density in classical HJ theory:

dpi = R2 ∂S
∂qi

(46)

This quantity, in the generalised framework, becomes:

R2 ∂S
∂qi

= ψ∗
(
−i~ ∂

∂qi

)
ψ +

i~
2

∂R2

∂qi
(47)

If we consider the average ‘momentum’ by integrating, we have

〈pi〉 =

∫
R2 ∂S

∂qi
dq1...dqi =

∫
dq1...dqn

∫ [
ψ∗
(
−i~ ∂

∂qi

)
ψ +

i~
2

∂R2

∂qi

]
dqi

(48)
Now the second term vanishes, if we impose that R2 = ρ vanishes at the
boundary: ∫

dq1...dqn

∫
i~
2

∂R2

∂qi
dqi = const×

[
R2
]
→ 0 (49)

Hence,

〈pi〉 =

∫
R2 ∂S

∂qi
dq1...dqi =

∫
dq1...dqn

∫
ψ∗
(
−i~ ∂

∂qi

)
ψ = 〈P̂i〉 (50)

Thus, the so called de broglie-Bohm ‘momentum’ is the correct momentum,
only when considered at the level of the averages.29

We can see that although a HJ framework is used in Schrödinger me-
chanics, its physical meaning at the ground level has changed significantly.
At the level of local values, it is not possible to say that there is a physically
meaningful ‘momentum’ in the generalised framework, sketched in section
3. The ‘momentum’ averages are physically meaningful, and they are con-
structed by using the ‘right’ kind of expressions, such as ∂S′

∂qi
. But since in

general these quantities are complex, it is difficult to interpret the actual
physical meanings of their values.

29I believe this is connected to Basil Hiley’s observation that Bohm’s momentum is
identical to the ‘weak value’, which is an averaged quantity not a local value (Through
private communication).
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4.1.2 Analogy between ‘motion’ and ‘quantum state’

It seems that there are two options regarding the meaning of the HJ frame-
work in Schrödinger mechanics. First, the HJ framework functions in a
similar way as in classical mechanics, although at the level of the averages.
The explanation for quantum phenomena is given through a commitment
to provide an underlying physical picture at the level of motion for physical
phenomena. This amounts to de Broglie-Bohm theory’s perspective. Sec-
ond, the HJ framework functions as a way to write down a theory whereby
the empirical data obtained from quantum phenomena can be explained in
a way, without committing to an underlying physical picture at the level of
motion.

The main fruit arises from the variational approach is that an interpre-
tation taking the second option can be constructed with conceptual clarity.
The main idea can be summarised as follows: The dynamics of a physical
system, if relegated from the status of an empirical law, is not a necessary
part of a physical picture. Instead, the empirical law in Schrödinger mechan-
ics concerns the ‘quantum state’, ψ. Thus the ‘quantum state’ as a concept
has an analogous role to motion in classical mechanics, in the physical pic-
ture behind an explanation of quantum phenomena. It is in this sense that
the ‘quantum state’ is said to correspond to reality.

In classical mechanics, the form of motion is governed by an empirical law
of nature. This means that for every physical system, the description of its
motion is a result of its subjection under an empirical law. The physical state
of a system, however, is completely described by (qi, pi). This is because only
these quantities are contingent upon the system under consideration alone.

One might question: are not the forms of motion contingent upon the
system under consideration too? A free particle travels in straight line,
whereas a particle in a simple harmonic potential displays periodic motion.
Here, it is useful to notice that this contingency is not what the notion
physical state attempts to capture primarily. The notion of a physical state
attempts to capture the system’s ‘internal’ property, i.e. what can be said
to be ‘intrinsically’ dependent on the system without considerations of other
factors, for example the empirical law they are subjected to. The motion,
though differs from system to system, is contingent upon the empirical law
of motion and thus the concept should not be seen as part of the physical
state. More precisely, it is the evolution of the physical state in time.

Now if the classical law of motion is not considered as an empirical law
anymore, then the conceptual significance of motion must change. In that
hypothetical scenario, there are two options: i) replace the classical law of
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motion by another law of motion, and verifies the new law empirically in
relevant domains (de Broglie-Bohm theory), ii) give up the possibility of a
law of motion being an empirical law. In the second scenario, dynamics as
a concept altogether will lose its independence and universal applicability.
For example, in classical SM, every member in an ensemble must evolve
according to the same law of dynamics. This is not necessary if we are to
construct a SM type theory for a domain where there is no known empirical
law governing the form of motion for all systems.

In the variational approach, the physical picture presupposes the second
scenario. This is manifested in the fact that S alone is not sufficient to de-
termine the dynamics. The dynamics is not determined by the HJ equation
solely. By giving up the law of motion as an empirical law, there are two
options regarding the role of motion in a physical picture: i)relegate motion
to some role in the physical explanation (view taken here), ii) abandon the
role of motion in the physical explanation of a phenomena.

It seems that the variational approach suggests option (i). The very
presence of a HJ ensemble in the variational approach cannot make any
sense unless a physical picture is presupposed where motion is assumed to
exist for members of the ensemble, albeit in a non-classical form and further,
only meaningful at the level of averages. Otherwise, quantities such as ∂S

∂qi
are entirely meaningless. The fact that Schrödinger’s variational principle
retains its form in Schrödinger mechanics suggests that dynamics, and hence
motion, play a part in the consideration. However, conceptually both ρ and
S are clearly subsidiary to ψ in this framework. Motivated by the idea
to look for a single function for the statistical HJ framework, ψ is given a
primary role in the physical picture, in place of motion. But this does not
mean that there are no role for ρ and S, and hence option (i).

But what kind of physical picture is provided by making ψ primary, in
place of motion? Clearly a new empirical law is needed to replace the law
of motion as the central law in a physical theory. A very tempting answer
arises, if Schrödinger mechanics is interpreted literally as a statistical HJ
theory. It follows that ψ are the HJ ensembles that are selected by an
empirical law of nature. Recall that in statistical HJ theory, ψ is a single
function capturing all the possible HJ ensembles that satisfy the following
criteria:

1. Possess a probability distribution ρ over it, which satisfies the conti-
nuity equation.

2. Members in an ensemble has dynamics governed by S, which satisfies
the HJ equation.
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Thus solving for ψ in a statistical HJ theory really amounts to capturing all
the possibilities in a statistical HJ theory, in the same way S captures all the
dynamical possibilities in HJ theory. Now as we have argued, using ψ in a
statistical HJ context is not merely a re-writing of the process of solving the
HJ equation and the continuity equation separately. Conceptually, solving
for ψ takes priority. Further, just as S captures the empirical law of motion
in classical HJ theory, ψ should be regarded as capturing an analogous
empirical law in the statistical HJ theory. Now what is subjected to this
analogous law? If the motion of individual physical systems is the subject
of the empirical law of motion, then the HJ ensembles should be regarded
as the subject of this analogous empirical law. This can be summarised as
follows:

Law captured by HJ equation Schrödinger equation

Single function S ψ

What subjects to the law motion HJ ensemble

Physical State (qi, pi) (qi)

A definitive conclusion from the above comparison seems to be that if we
take Schrödigner mechanics as a statistical HJ theory seriously, the central
concept of the theory should be the HJ ensembles. Just as classical HJ
theory is concerned with the determination of motion at the most general
level, Schrödinger mechanics is likewise concerned with the determination
of HJ ensembles at the most general level.

Further, while S itself refers to all the dynamical possibilities, ψ itself
also refers to all the possible HJ ensembles which can occur in nature. Re-
call the crucial point: S itself do not refer to reality, until specification of
the integration constants have been chosen suitably. Likewise, ψ itself also
do not refer to reality, until specification of the so-called ‘measurement’ is
given. Thus the analogy here seems to lead to the following: specifying the
integration constants in HJ theory, is conceptually analogous to selecting a
basis in QM which results in the ‘collapse’.

To see this more clearly, let us consider the case in HJ theory again.
Before we specify the integration constants, we merely have the S functions
which contain all the actual dynamical possibilities. Now, by specifying the
meaning of the integration constants, we made a connection with reality,
in that a certain possibility contained in S is being chosen by supplying
empirical data, i.e. initial position/momentum/energy...etc. This results in
a description of actual motion, i.e. qi(t). In other words, we have ‘collapse’
all the dynamical possibilities contained in S, to one actual form of motion.
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In the same way, the most general solution to Schrödinger equation, namely,
the linear superposition of all the solutions, is analogous to S. When we
perform a ‘measurement’, we have specify empirical data into the theory, and
thus it is equivalent to having a certain possibility being chosen. Obviously,
this results in ψ taking one of the eigenstates. In this sense, the reality of ψ
‘enters’ only after a specific possibility is chosen.

Finally, the fact that ψ refers to a HJ ensemble and yet can be real
after ‘measurement’ is paradoxical. Recall that HJ ensemble is an ensemble
of fictitious particles on fictitious trajectories. In Schrödinger mechanics,
this aspect of a HJ ensemble remains the same, even though classical law
of motion is not in operation anymore. Thus it seems that if ψ is what is
subjected to the empirical law in Schrödinger mechanics, the implication is
that HJ ensemble as a whole, can be real, even though its parts are fictitious
given that there are no possibilities to observe a subatomic particle directly.

I have now sketched an answer for the central question given by the
variational approach. The answer essentially rests upon the assumption
that the empirical status of motion has changed in subatomic contexts. I
will now turn to discuss possible justifications of this assumption.

4.2 Empirical status of ‘motion’ in Schrödinger mechanics

Recall that in classical mechanics, the law of motion is the central empirical
law in the theory. This means that in classical HJ theory, the validity
of the framework is justified by the fact that it produces true motion—
trajectories—observed in nature. Further, in such a deterministic dynamics,
a physical state of a system is provided by (qi, pi) and its future evolution
completely determined by the specification of the initial state (q0, p0). Thus
the empirical state of a classical system is given by its configuration and
momentum, and the empirical law in classical mechanics is a law of motion.
How much do these concepts retain its empirical status?

As mentioned before, in the early ‘quantum’ experiments only positions
can be considered as directly observable. For a subatomic system, we have
no direct empirical observation of its motion in space and time. All that
we have is a range of initial and final positions. Thus the relevant physical
state of the system is not a point in phase space, but in configuration space.
Let me justify this further.

In classical mechanics, motion and hence the momentum of a physical
system is regarded as directly observable. This means that we can verify
the prediction of the theory by observing the configuration and momentum
of the physical system directly in experiments. In cases where this is not
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possible, i.e. trajectories are not observed directly, it is obvious that the
role of momentum in the physical description of the experiment must differ
than that in classical mechanics. Notice that I emphasise on the differ-
ence between direct and indirect observation. This is because for example
in experiments like the photoelectric effect or Compton scattering, we can
still ‘observe’ the momentum of a quanta indirectly. By this I mean some-
thing like deducing the quantised momentum via the spectrograph or the
photoelectric current. However, by no means this is equivalent to directly
observing the trajectory of a particle.30 Thus for the very least, momentum
cannot have the same empirical status as in classical physics. This is the
reason for distinguishing between the empirical status of configuration qi
and momentum pi in Schrd̈inger mechanics.

To justify this further, notice that in the early experimental foundations
there are a few types of physical phenomena.31 The first class of phenom-
ena have distributions as its empirical data, i.e. energy distribution, position
distribution...etc. In this category we can think of the blackbody radiation.
The second class of phenomena have ‘interference patterns’ as its empirical
data. The third class of phenomena have empirical data given by spectro-
graphs. We can think of the absorption/emission spectra of hydrogen and
Compton scattering.

Now clearly none of these experiments have the motion of the physi-
cal system as its empirical data. For example in the case of the double
slit experiment, a pattern on the screen made up of many localisations is
obtained from the experiment and require an explanation. However, the
double slit experiment involves no empirical observation of the motion of an
electron/photon. Thus the distribution of particle on the screen as a con-
cept can have a direct correspondence with empirical observations, whereas
the concept ‘motion of particles’ cannot. Similarly in atomic spectra ex-
periments, the empirical data that requires explanation is the series of lines
on a spectrograph. The point is that in no early quantum phenomena, the
motion of the system under description is said to be observed, in the same
sense as the motion of, say, planets or pendulums are said to be observed in
classical mechanics.

As a consequence, this justifies the reduction of the ‘state’ from (qi, pi)
to qi only, and thus explain why the sample space in Schrödinger mechanics

30We will not go into the discussion about whether there exists new possible definition
of the concept of trajectory in quantum mechanics, which enables us to continue to re-
gard momentum as observed directly. We are only showing how the empirical status of
momentum must be different to that in classical mechanics.

31For more details, see for example [11], chapter 1.
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should be the configuration space, not the phase space.32 The classical law
of motion should not treated as an a priori empirical law of nature anymore,
as in the case of classical SM. This is equivalent to stating that for subatomic
physical systems involved in quantum experiments, we cannot preconceive
the form of motion they obey. This does not mean the momentum is entirely
meaningless. The local momentum ∂S

∂qi
can be used as a ‘momentum’ of a

system at the level of averages, and the momentum density dp are used to
determine the correct physical averages in Schrödinger mechanics. Never-
theless, the asymmetry between qi and pi in Schrödinger mechanics is thus
a well motivated one, at least at an empirical level. And finally, all these
considerations will hold as long as an ‘observation of motion of a subatomic
particle’ is not empirically possible. However, if it is possible to characterise
what an observation of a subatomic particle’s motion consists of, then this
would decidedly vindicate attempts to re-introduce the an empirical law of
‘motion’ back into the physical explanation.

5 Conclusion

To conclude, there are certainly substantial motivations behind the varia-
tional approach based on the starting point in Schrödinger’s first communi-
cation. These motivations are established by seeing Schrödinger mechanics
as a statistical HJ theory. However, although there seems to be points of
analogies between the two theories, the differences are often radical at the
conceptual level. The only conclusive result seems to be that ψ must be
interpreted as what is subjected to the empirical law of the theory, since it
occupies a conceptual position similar, but not identical, to that of S in clas-
sical HJ theory. To see what this entails would require further comparisons
between the two functions, especially on the exact analytic discontinuities
and similarities. Finally, further investigation is needed to study the validity
of the surprising conclusion that ψ refers to a real HJ ensemble, whose parts
are fictitious. This is both a philosophical interesting, and potentially theo-
retically fruitful construct in physics. Afterall, all the empirical evidence we
have for the existence of the hydrogen atom points to its ‘energy levels’ and
fine structures. These can be regarded as the property of an ensemble as a
whole. What could it not be explained by the concept of a real ensemble of
fictitious electrons?

32This might shed light to why forcing quantum mechanics onto phase space, for example
the Wigner-Moyal approach, produces undesirable feature like negative probabilities.
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