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1 Introduction

What can logic contribute to cognitive science? In the early days of cogni-
tive science, logic was taken to play both a descriptive and a normative role
in theories of intelligent behavior. Descriptively, human beings were taken
to be fundamentally logical, or rational. Normatively, logic was taken to
define rational behavior and thus to provide a starting point for the artifi-
cial reproduction of intelligence. Both positions were soon challenged. As
it turns out, however, logic continues to be at the forefront of conceptual
tools in cognitive science. Rather than defeating the relevance of logic, the
challenges posed by cognitive science have inspired logicians to enrich the
repertoire of logical tools for analyzing reason, computation, and commu-
nication. After a brief survey of the wide array of roles played by logic
in cognitive science, we will examine the role of non-monotonic logics and
complexity theory in more detail.

Classical logic provides the groundwork for the abstract theory of com-
putation, which in turn was used by Alan Turing (1950) to define the chal-
lenge of human level artificial intelligence. Turing proposed that the true
test of machine intelligence is indistinguishability from human intelligence
and suggested a concrete method for determining if this criterion is satisfied.
A human judge sits in front of two terminals, one allows him to communi-
cate with a computer and the other one with a human being. The judge
can type whatever text he chooses into the terminals. His task is to use the
answers he receives to decide which terminal is connected to a human and
which to a machine. If the judge cannot tell the difference, the computer
has passed the Turing test. The Loebner Prize for artificial intelligence is an
annual competition which awards cash prizes to the computers which come
closest to passing the Turing test.
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Turing’s test is a natural extension of the view that the human mind is
a computational device. It assumes the Church-Turing thesis, which states
that all computation (in the intuitive sense of a mechanical procedure for
solving problems) is formally equivalent to Turing computation (computa-
tion by a Turing machine). This is a conceptual claim which cannot be
formally proved. However, all attempts so far to explicate computability
(many of them independently motivated) have turned out to define exactly
the same class of problems. For instance, definitions via abstract machines
(random access machines, quantum computers, cellular automata, genetic
algorithms), formal systems (the lambda calculus, Post rewriting systems),
and particular classes of function (recursive functions) are all formally equiv-
alent to the definition of Turing machine computability. These results pro-
vide compelling support for the claim that all computation is equivalent to
Turing computation (see e.g. Cooper, 2003, or his paper in this volume for
more details).

If the Church-Turing thesis is correct, then all computations performed
by the human brain could, in theory, be reproduced on any device equivalent
to a Turing machine, e.g. a modern computer (modulo sufficient time, mem-
ory, and processing power). The artificial reproduction of intelligence should
be easy, then: all we need to do is analyze the function being computed and
program it into our computer. However, as it turns out, things are not so
simple. A straightforward analysis of the steps needed to perform a complex
task works well for reproducing intelligent behavior within narrowly defined
environments, such as the game of chess. Reasoning about complex general
domains has turned out to be very difficult to reproduce, however, as will
be discussed in more detail below.

One strategy for simplifying the problem is to focus, not on intelligence
tout court, but rather some more narrowly defined skill which contributes
to human reasoning. Language, for example, plays a crucial role in human
cognition, yet the transparency of its combinatorial structure makes it a
natural target for formal models. Since we reason with language, analy-
sis of semantic structure can often lead to insights into reasoning strate-
gies. For example, van Lambalgen and Hamm (2004) begin with an algo-
rithmic conception of meaning (Suppes, 1982; Moschovakis, 2006) and ex-
tend this to an analysis of temporal reasoning. Likewise, studies of the
semantics (Clark, 1976; Moxey and Sanford, 1993; Peters and Westerst̊ahl,
2006) and pragmatics (Geurts, 2010) of quantifiers have contributed to our
understanding of reasoning about quantities, especially as expressed in syllo-
gisms (Geurts, 2003; Johnson-Laird, 2008). When supplemented with com-
putational analysis, these logical models can deliver concrete psychological
(Szymanik and Zajenkowski, 2010; Gierasimczuk and Szymanik, 2009) and
even neuroanatomical (Szymanik, 2007; Clark and Grossman, 2007) predic-
tions.

The power of logical methods in cognitive science is not limited to
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modeling language, however. Logic has motivated models of neural be-
havior, both historically (the classic work of McCulloch and Pitts, 1943)
and today (e.g. Sandler and Tsitolovsky, 2008). At a more abstract level
of cognitive organization, logic can analyze constraints on concept learning
(e.g. Feldman, 2000) and the acquisition of a Theory of Mind in children
(Verbrugge and Mol, 2008; Flobbe et al., 2008). After concepts have been
acquired, modal and epistemic logics can provide models of knowledge rep-
resentation (van Harmelen et al., 2008) and of higher-order epistemic rea-
soning and social cognition (Verbrugge, 2009). So, logic has emerged as a
powerful modeling tool at every level of cognitive abstraction. It consti-
tutes one of the common languages with which researchers in the cognitive
sciences can communicate across disciplinary boundaries.1

In fact, the very success of logic in analyzing intelligent behavior has
motivated questions at the interface between experimental and theoretical
approaches to understanding cognition. For example, a much repeated ex-
periment, the Wason (1968) selection task, seems to indicate that humans
are very poor at applying even simple rules of reasoning such as modus tol-
lens. Furthermore, Cheng et al. (1986) suggests they may continue to be
poor even when they have taken an introductory logic class! Does this im-
ply that humans are not fundamentally rational? Or that our neural wiring
is somehow qualitatively different from the logical structure which can be
found in any computational device simulating the brain? What is the rela-
tion here between the brain’s computational processes and the logic which
governs them?

One theoretical response to challenges such as these is to abandon the
logical paradigm in favor of neural networks, computational models inspired
by the physiology of the brain. Although the 1980’s and ’90’s saw fierce de-
bate between supporters of the neural network, or connectionist, paradigm
and those of the logical, or symbolic, paradigm, recent results indicate that
at a deep formal level the two types of model are computationally equivalent.
In particular, a large class of neural network models can be interpreted as
performing calculations in accordance with the rules of non-monotonic logic.
Computational equivalence does not imply practical equivalence, however.
Here again the resources of classical logic, in the form of complexity the-
ory, can provide insight. We argue that choice of connectionist or symbolic
paradigm should not influence the analysis of cognitive tractability. There-
fore, at the computational level, task analysis in both paradigms should
converge.

In the following section, we briefly survey the development of non-
monotonic logics within artificial intelligence, including both successes and

1 For more references on the interface between logic and cognition, see also the 2007

special issue of Topoi on “Logic and Cognition”, edited by Johan van Benthem and Helen

and Wilfrid Hodges, and the 2008 special issue of Studia Logica on “Psychologism in

Logic?”, edited by Hannes Leitgeb.
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stumbling blocks. Next, we will examine the application of recent results
on the relationship between non-monotonic logics and neural networks to
the philosophical debate between connectionist and symbolic paradigms in
cognitive science. Section 4 introduces the basic principles and results of
complexity theory, while Section 5 demonstrates how they can be used to
analyze the computational plausibility of cognitive models. Here we intro-
duce the concept of tractability: a tractable problem is one which can be
solved efficiently. Computational complexity theory implies that precisely
the same problems are tractable for both connectionist and symbolic models.
Strong assumptions must be made about contingent features of the model
(number of parallel channels for computation) or the environment (e.g. sta-
tistical regularities) in order for any differences in computational power to
emerge. Therefore, there is no difference between symbolic and connectionist
models at the level of what they can accomplish in principle; furthermore,
even when analyzing cognition in practice (e.g. in an experimental setting),
tractability concerns can guide the interpretation of results.

2 Non-monotonic Logic and Human Reasoning

A function f is said to be monotonic if n ≤ m implies f(n) ≤ f(m); essen-
tially, as the input grows, the output grows as well. Reasoning in classical
logic is monotonic because adding new premises always allows you to gen-
erate more conclusions. Let T and T ′ represent consistent sets of sentences
and let F (T ) denote the deductive closure of T (i.e. the set of all sentences
which follow from T by some specified (classical) inferential rules). Then,
for all classical logics, T ⊆ T ′ implies F (T ) ⊆ F (T ′).

Typically, a non-monotonic logic supplements an underlying classical
logic with a new, non-monotonic connective and a set of inference rules
which govern it. The rules describe a logic of defeasible inference, infer-
ences which are usually safe, but which may be defeated by additional
information. For example, from the fact that this is a bird, I can usu-
ally conclude that this can fly. This inference can be defeated, however,
if I learn that this is a penguin. Symbolically, we want our system to
ensure that Bird(x) ⇒ Fly(x), but Bird(x) ∧ Penguin(x) 6⇒ Fly(x).
Incidentally, this example also demonstrates why such a system is non-
monotonic, since {Bird(x)} ⊂ {Bird(x), P enguin(x)} yet F ({Bird(x)}) 6⊂
F ({Bird(x), P enguin(x)}). Non-monotonic rules of inference go by a va-
riety of names, including circumscription (McCarthy, 1980), negation as
failure (Clark, 1978), and default reasoning (Reiter, 1980).

Kraus et al. (1990) provide a unified approach to a hierarchy of non-
monotonic logics of varying strengths. They distinguish each logic in this
hierarchy in terms of the inference rules satisfied by their respective non-
monotonic connectives. Consider, for example, the rule Loop:
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α0 ⇒ α1, α1 ⇒ α2, . . . , αk−1 ⇒ αk, αk ⇒ α0

α0 ⇒ αk

(Loop)

It should be obvious that a connective ⇒ which satisfies Loop need not
be as strong as the material conditional of classical logic. The material
conditional satisfies transitivity (A → B and B → C imply A → C), and
Loop is an immediate consequence of transitivity (while the converse is not
true). However, Loop is not satisfied in the weakest system considered by
Kraus et al., which they call C for cumulative reasoning. The system CL, or
cumulative reasoning with Loop, is an example of a non-monotonic reasoning
system which is strictly weaker than classical logic, yet stronger than the
weakest systems of non-monotonic reasoning.

It is unsurprising that non-monotonic logics should turn out to be useful
in cognitive science. As early as 1980, John McCarthy argued that “humans
use . . . ‘non-monotonic’ reasoning and . . . it is required for intelligent behav-
ior” (McCarthy, 1980, p. 28). McCarthy’s investigation of non-monotonic
reasoning was motivated by the failure of A.I. to extend its success in limited
domains (such as chess) to the “common sense” world in which humans rea-
son so effectively. In a complex domain, humans are able to reason swiftly
and effectively about both those features of the world which change and

those which do not when some event occurs. The problem of how to keep
track of those features of the world which do not change is called the “Frame
Problem” (McCarthy and Hayes, 1969).

The Frame Problem comes in both a narrow and a broad version (see
discussion in Dennett, 1984). The broad version concerns the potential
relevance of any piece of information in memory for effective inference.
Philosophers of cognitive science have worried about this broad problem
since at least Fodor (1983). The narrow problem, however, concerns keep-
ing track of stability in a changing world. This problem is effectively solved
by non-monotonic logic; for a complete history and detailed treatment, see
Shanahan (1997).

But how do human beings solve the Frame Problem? If we employ the
same methods that worked in artificial intelligence, then our high-level rea-
soning should rest upon a substratum of simple logical procedures. However,
when asked to perform very simple logical tasks, humans do surprisingly
poorly. An elegant and compelling illustration of this can be found in the
Wason Selection Task (Wason, 1968; Wason and Shapiro, 1971). The orig-
inal Wason selection task is very simple. Subjects are shown four cards
and told that all cards have numbers on one side and letters on the other.
The faces visible to the subject read D, K, 3, and 7. The subject is then
told “Every card which has a D on one side has a three on the other” and
asked which cards they need to turn over to verify this rule. From a classi-
cal standpoint, the claim has the basic structure of a material conditional,
D → 3, and the correct answer is to turn over cards D and 7. However, the
most popular answers (in order of decreasing popularity) are (1) D and 3;

5



(2) D; (3) D, 3, and 7; (4) D and 7. The classically correct answer ranks
fourth, while an instance of affirming the consequent (i.e. judging that 3 is
relevant for determining if the rule is correct) ranks first. Wason’s robust
and easily reproducible results seem to show that most people are poor at
modus tollens and engage in fallacious reasoning on even very simple tasks.
Are we really this bad at logic?

As it turns out, the story is more complex than this. The original se-
lection task involved an abstract domain of numbers and letters. When the
problem is rephrased in terms of certain types of domain with which subjects
are familiar, reasoning suddenly improves. For example, Griggs and Cox
(1982) demonstrate that if cards have ages on one side and types of drink
on the other, subjects perform near perfectly (i.e. in accordance with the
classical recommendation) when the task is to determine which cards to turn
over to ensure that the rule “if a person is drinking beer, then that person
is over 19 years old” is satisfied. This study builds upon earlier work by
Johnson-Laird et al. (1972), demonstrating a similar phenomenon when the
task involves postal regulations.

Johnson-Laird et al. (1972) and Griggs and Cox (1982) conclude that
humans are better at logical reasoning in domains with which they are fa-
miliar. Since the original Wason task involves an abstract domain of letters
and numbers, subjects are confused and fail to reason correctly. Cosmides
(1989) and Cosmides and Tooby (1992) expand on these results and argue
that they tell us something about cognitive architecture. In particular, Cos-
mides and Tooby conjecture that questions about postal regulations, drink-
ing laws, etc. trigger a “cheater detection module”. This module is hard
wired to reason effectively, but in the domain-general case (when cheating
may not be involved), we have no innate tendency to behave logically.

The most recent work on the logical analysis of the Wason selection task
is a collaboration between psychologist Keith Stenning and logician Michiel
van Lambalgen (2008). They point out that Wason’s assertion that there is
only one correct answer to the task is too quick, as it assumes the question
is interpreted as stating a material conditional. Subjects who interpret the
question as stating some other kind of dependency between D’s and 3’s
than that captured by the material conditional are not necessarily making
an error. The key here is in figuring out the relevant difference between
versions of the task on which subjects perform in accordance with classical
rules and versions (such as the original) on which they do not. Is it because
the latter are abstract and the former concrete? Because the former rules
are deontic and the latter are not? Stenning and van Lambalgen’s novel
suggestion here is that the crucial difference is in whether the subject sees the
task as merely checking satisfaction of instances or as actually determining
the truth of a rule. In the case of familiar deontic rules, their truth is not
at issue, only whether or not they are being satisfied. The deontic nature of
these rules means that turning cards over cannot falsify them (i.e. underage
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drinking is still wrong, even if one discovers that it occurs), and this strictly
limits interpretation of the task to checking the rule has been satisfied. In
contrast, the original version of the task may be interpreted as involving
either a descriptive or a prescriptive rule, greatly increasing the cognitive
burden on the subject.

The ultimate analysis of the Wason selection task by Stenning and van
Lambalgen is too sophisticated to give here. In broad outline, they first
distinguish the interpretation step from the processing step in solving a se-
lection task. One must first interpret the question being asked, only then
can one compute a solution. Second, on the processing side, they argue
that non-monotonic logic provides an appropriate model for analyzing sub-
jects’ behavior on this and related tasks. What level of mental processing
corresponds to symbolic non-monotonic inference here? The answer of Lam-
balgen and Stenning may be surprising to the philosopher, as they prove a
formal equivalence between symbolic and neural network models.

3 Symbolic vs. Connectionist Paradigms

In the late 1980’s and early ’90’s, there were a sequence of heated debates
between those advocating a symbolic and those advocating a connection-
ist (i.e. neural network based) approach to cognitive science. Perhaps the
most famous of these is that initiated by Fodor and Pylyshyn (1988), which
argued that (i) mental representations exhibit systematicity; (ii) represen-
tations in neural networks do not exhibit systematicity; therefore (iii) the
appropriate formalism for modeling cognition is symbolic (not connection-
ist). Systematicity here is just the claim that changes in the meaning of
a representation correspond systematically to changes in its internal struc-
ture (e.g. from my ability to represent “John loves Mary”, it follows that
I can also represent “Mary loves John”). Fodor and Pylyshyn (1988) claim
that the only case in which representations in a neural network do exhibit
systematicity is when the network is a mere implementation of a symbolic
system (although they do not indicate how such implementational networks
avoid their general critique, see Chalmers, 1990).

In the ensuing debate, much discussion focused on the special repre-
sentational properties of neural networks; in particular, their use of “dis-
tributed”, or “subsymbolic”, representations. Smolensky (1987, 1988, 1991),
van Gelder (1990, 1991), Clark (1993), and many others all emphasize the
importance of acknowledging the distinctive properties of distributed rep-
resentations in understanding the difference between neural networks and
symbolic systems. Yet it is difficult to put one’s finger on what the essential
feature of a distributed representation is which makes it qualitatively differ-
ent from a symbolic representation. Since the 1990’s, hybrid models have
risen to prominence (e.g. the ACT-R architecture of Anderson and Lebiere,
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1998, or the analysis of concepts in Gärdenfors, 2000). These hybrid mod-
els combine neural networks (for learning) and symbolic manipulation (for
high-level problem solving). Although pragmatically satisfying, the hybrid
approach avoids rather than resolves any questions about the essential dif-
ference between symbolic and distributed representations.

The close relationship between classical logic and symbolic computation
by Turing machines is well known (see e.g. Immerman, 1999, or the paper
by Ramanujam in this issue). But what about subsymbolic computation
by neural networks over distributed representations? With logic, we can
show an essential equivalence between a logical system and neural networks
if we can prove a representation theorem. Given the class of all models of
a system, a representation theorem shows that every model is isomorphic
to a member of a distinguished subset. For example, it is easy to see that
some particular non-monotonic theories may be represented by neural net-
works. Consider the system discussed above for reasoning about birds: 2
input nodes (one for Bird(x) and one for Penguin(x)) and an output node
(for Fly(x)) are all we need to model this system with a simple neural net-
work. So long as there is an excitatory connection from Bird(x) to Fly(x)
and an even stronger inhibitory connection from Penguin(x) to Fly(x), this
network will produce the same conclusions from the same premises as our
non-monotonic theory. But this is just a specific case; a representation the-
orem for non-monotonic logics in neural networks would show us that for
every non-monotonic theory, there is some neural network which computes
the same conclusions. Such a theorem would demonstrate a deep computa-
tional equivalence between non-monotonic logics and neural networks.

As it turns out, representation theorems of this form have been given
by several logicians coming from a variety of backgrounds and motivations.
Hölldobler and collaborators prove a representation theorem for logic pro-
grams, demonstrating that for any logic program P , a three layer, feed
forward network can be found which computes P (Hölldobler and Kalinke,
1994; Hitzler et al., 2004). Pinkas (1995) provides similar results for a wider
class of neural networks and penalty logic. (Penalty logic is a non-monotonic
logic which weights conditionals with positive integers representing the
“penalty” if that conditional is violated. Reasoning in penalty logic involves
identifying the set of propositions which minimizes the overall penalty for a
set of these weighted conditionals.) Hölldobler and Pinkas are both working
within the artificial intelligence community and, consequently, their results
are focussed on practical applications, with an emphasis on algorithms for
performing the translation from symbolic to connectionist system (and, in
the case of Pinkas, vice versa).

Stenning and van Lambalgen (2008) extend the results of Hölldobler in
two directions. First, they consider logic programs with negation as de-
fault (a true non-monotonic logic); second, their representation theorem is
informed by their psychological analysis of the Wason selection task and
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related phenomena. Unlike the logicians working within A.I., Stenning and
van Lambalgen explicitly address the neural (and psychological) plausibility
of the neural networks in their representation theorem.

As it turns out, the most common versions of logic programming with
negation as default are at least as strong as the system CL discussed
above (Leitgeb, 2005, pp. 199–200). Furthermore, since they employ Horn
clauses, they cannot distinguish CL from some stronger non-monotonic log-
ics (Kraus et al., 1990, p. 200). What about the weaker system C discussed
by Kraus et al.? Leitgeb (2003) proves representation theorems for each
system introduced by Kraus et al. in distinguished classes of neural net-
works (see also Leitgeb, 2001). Leitgeb (2003) gives its results in terms of
inhibition nets, where an inhibition net is a spreading activation neural net-
work with binary (i.e. firing or non-firing) nodes and both excitatory and
inhibitory connections. If there is no hierarchical structure to the net, it
exhibits non-monotonic reasoning as weak as C. Leitgeb (2005) extends this
result from the particular case of inhibition nets to a much more general
dynamical systems framework. It turns out that hierarchical structure is
closely tied to the stronger logic CL in many different dynamical systems
(layered networks such as those considered by Hölldobler and Pinkas are
hierarchical, for example).

Unlike the other results discussed here, Leitgeb takes pains to ensure
his representation theorems subsume the distributed case. In particular,
he allows for a proposition letter to be interpreted as a set of nodes in a
neural network. From a philosophical standpoint, this result should raise
questions for the debate between symbolic and connectionist approaches.
Leitgeb has shown that any dynamical system performing calculations over
distributed representations may be interpreted as a symbolic system per-
forming non-monotonic reasoning. Correspondingly, it appears as if there is
no substantive difference in representational or problem-solving power be-
tween symbolic and connectionist systems. However, this is an “in principle”
result; Leitgeb does not offer algorithms for constructing interpretations or
extracting symbolic systems from trained neural nets. Even if there is no
difference in which problems symbolic and connectionist systems can repre-
sent and solve, there may be differences in how fast or efficiently they can
solve interesting classes of problems. The following two sections address
this question from a computational perspective, attempting to bridge the
gap between computational feasibility and psychological plausibility.

4 Computational Complexity and The Invariance

Thesis

With the development of programming practice it was discovered that there
are computable problems for which we do not know any efficient algorithms.
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Some problems require too much time or memory to be feasibly solved by
a realistic computational device. Computational complexity theory inves-
tigates the resources (time, memory, etc.) required for the execution of
algorithms and the inherent difficulty of computational problems (see e.g.
Papadimitriou, 1993; Arora and Barak, 2009, or the paper by Ramanujam
in this volume). This means that the theory does not deal directly with
concrete algorithmic procedures, but instead studies the abstract computa-
tional properties of queries. Given a problem, features which hold for all
possible solution algorithms can be investigated in a precise mathematical
sense. This allows us to precisely distinguish those problems which have
efficient solutions from those which do not.

This method for analyzing queries allows us to sort them into complexity
classes. In particular, we want to identify efficiently solvable problems and
draw a line between tractability and intractability. From our perspective the
most important distinction is that between problems which can be computed
in polynomial time with respect to the size of the problem, i.e. relatively
quickly, and those which are believed to have only exponential time algo-
rithmic solutions. The class of problems of the first type is called PTIME
(P for short). Problems belonging to the second are referred to as NP-hard
problems. Intuitively, a problem is NP-hard if there is no efficient algorithm
for solving it. The only way to deal with it is by using brute-force methods:
searching throughout all possible combinations of elements over a universe.
In other words, NP-hard problems lead to combinatorial explosion.

Notice that this categorization is helpful only under the assumption that
the complexity classes defined in the theory are essentially different. These
inequalities are usually extremely difficult to prove. In fact, the most fa-
mous problem in complexity theory is of this form, namely the widespread
assumption that P6=NP. This is considered one of the seven most important
open mathematical problems by the Clay Institute of Mathematics, who
have offered a $1,000,000 prize for its solution. As we said above, PTIME is
the class of problems which can be computed by deterministic Turing ma-
chines in polynomial time. Speaking precisely, NP-hard problems are prob-
lems which are at least as difficult as problems belonging to the NPTIME
(NP) class; this is the class of problems which can be computed by non-
deterministic Turing machines in polynomial time. NP-complete problems
are NP-hard problems belonging to NPTIME, hence they are intuitively the
most difficult problems among the NPTIME problems. If we could show
that any NPTIME-complete problem is PTIME computable, we would have
demonstrated that P=NP. Whether this is possible or not is still an open
question. However, the experience and practice of computational complexity
theory allow us to reasonably assume that these two classes are different.

Before we move to more general considerations, let us consider an exam-
ple. Many natural problems are computable in polynomial time, for instance
calculating the greatest common divisor of two numbers or looking some-
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thing up in a dictionary. However, we will focus here on a very important
NP-complete problem, the satisfiability problem for classical propositional
calculus (sat). The problem is to decide whether a given classical proposi-
tional formula is not a contradiction. Let ϕ be a propositional formula with
p1, . . . , pn distinct variables. Let us use the well-known algorithm based on
truth-tables to decide whether ϕ has a satisfying valuation. How big is the
truth-table for ϕ? The formula has n distinct variables occurring in it and
therefore the truth-table has 2n rows. If n = 10 there are 1,024 rows, for
n = 20 there are already 1,048,576 rows and so on. In the worst case, to
decide whether ϕ is satisfiable we have to check all rows. Hence, in such a
case, the time needed to find a solution is exponential with respect to the
number of different propositional letters of the formula. A seminal result
of computational complexity theory states that this is not a property of
the truth-table method but of the inherent complexity of the satisfiability
problem. We have the following: sat is NP-complete.

The previous paragraph tells us something about the relation between
classical logic and computability theory: even very simple logics can de-
fine extremely difficult computational problems. How about non-classical
logics; in particular, what do we know about the computational complex-
ity of reasoning with non-monotonic logics? It turns out that typically the
computational complexity of non-monotonic inferences is higher than the
complexity of the underlying monotone logic. As an example, restricting
the expressiveness of the language to Horn clauses allows for polynomial
inference as far as classical propositional logic is concerned. However, this
inference task becomes NP-hard when propositional default logic or cir-
cumscription is employed. This increase in complexity can be explained by
pointing out that semantic definitions in many non-monotonic logics (includ-
ing those discussed above) are based on fixed-point constructions or some
kind of minimality requirement (see Cadoli and Schaerf, 1993, for a survey
on the topic).

In the early days of computational complexity theory, the following thesis
was formulated independently by Alan Cobham (1965) and Jack Edmonds
(1965): The class of practically computable problems is identical to the
PTIME class, that is, the class of problems which can be computed by a
deterministic Turing machine in a number of steps bounded by a polynomial
function of the length of a query. This thesis is accepted by most computer
scientists (see e.g. Garey and Johnson, 1979). However, for the claim to
make sense, we need some additional assumptions which will return us to
the symbolic vs. connectionist debate.

As we said before, computational complexity theory is concerned with
the inherent complexity of problems independent of particular algorithmic
solutions and their implementations. The most common model of compu-
tation used in this theory is the Turing machine. However, to justify com-
putational complexity distinctions, e.g. between tractable and intractable
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problems, we need to demonstrate that they hold independent of any partic-
ular implementation. The Invariance Thesis (see e.g. van Emde Boas, 1990)
states that, given a “reasonable encoding” of the input and two “reasonable
machines”, the complexity of computation of these machines on that input
will differ by at most a polynomial amount. By “reasonable machine”, we
mean any type of deterministic Turing machine or any other realistic com-
puting machine. The situation here is very similar to that of the Church-
Turing Thesis; although we cannot prove this claim, the fact that it holds
for all known realistic models of computation provides powerful support for
it. In this case, some well known machines are ruled out; for example, non-
deterministic Turing machines and quantum computers are not realistic in
this sense. Assuming the Invariance Thesis, we get that a task is difficult if
it corresponds to a function of a high computational complexity, indepen-
dent of the computational devices we are working with, at least as long as
they are reasonable.

A natural question for cognitive science is, do neural networks fall within
the scope of the Invariance Thesis? In fact, despite popular claims to the
contrary, they do. From the computational complexity perspective the
difference between serial and parallel machines is insubstantial as far as
tractability is concerned. Although some parallel machines can compute
certain functions faster than serial Turing machines, the speed-up is never
more than a polynomial amount of time. As long as we assume that the in-
put to such a machine may grow larger than the number of parallel channels,
this speed-up rapidly becomes irrelevant. Therefore, the difference between
symbolic and connectionist computations is negligible from the tractabil-
ity perspective (see van Rooij, 2008, particularly Section 6.6, for extended
discussion).

The common belief in the Cobham-Edmonds Thesis stems from the prac-
tice of programmers. NP-hard problems often lead to algorithms which are
not practically implementable even for inputs of not very large size. As-
suming the Church-Turing Thesis, P 6= NP , and the Invariance Thesis, one
comes to the conclusion that this has to be due to some internal properties of
these problems and not to the limitations of current computing technology.

5 Applying Complexity in Cognitive Science

Accepting the Cobham-Edmonds Thesis we have to agree that problems be-
yond PTIME are computationally intractable, a restriction which applies to
both symbolic and connectionist models. How does this conclusion influence
cognitive science?

From an abstract perspective, a cognitive task is an information-
processing or computational task. In general, the aim of a cognitive task
is to transform the initial given state of the world into some desired final
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state. Therefore, cognitive tasks can be identified with functions from pos-
sible initial states of the world into possible final states of the world. Notice
that this understanding of cognitive tasks is very closely related to psy-
chological practice. First of all, experimental psychology is naturally task
oriented, because subjects are typically studied in the context of specific
experimental tasks. Furthermore, the dominant approach in cognitive psy-
chology is to view human cognition as a form of information processing (see
e.g. Sternberg, 2002).

One of the primary objectives of behavioral psychology is to explain
human cognitive tasks as understood in the abstract sense outlined here.
David Marr (1983) was the first to propose a commonly accepted general
framework for explanation in cognitive science. Any particular task com-
puted by a cognitive system must ultimately be analyzed at three levels (in
order of decreasing abstraction): (1) the computational level (the problem
solved or function computed); (2) the algorithmic level (the algorithm used
to achieve a solution); (3) the implementation level (how the algorithm is
actually implemented in neural activity). Considerations at each of these
levels may constrain answers at the others; however, Marr argues that anal-
ysis at the computational level is the most critical for achieving progress in
cognitive science (Marr, 1983, p. 27).

One of the abstract properties of tasks specified at Marr’s computa-
tional level is their complexity. Since we do not know the details of our
cognitive hardware or the precise algorithms implemented in the brain, the
inherent perspective of computational complexity theory is well-suited for a
general investigation of the plausibility of computational task analyses. For
example, conclusions from complexity analysis are invariant with respect to
the results of the philosophical debate between advocates of symbolic and
connectionist models in cognitive science. Moreover, by studying the com-
putational complexity of a problem, we can provide knowledge about the
simplest possible means of solving it. In this sense, complexity analysis lies
between Marr’s first two levels (though it should not be confused with the
level 1.5 of Peacocke, 1986).

One of the most common computational claims about cognition is a psy-
chological version of the Church-Turing Thesis: the human mind can only
deal with computable problems. In other words, cognitive tasks comprise
computable functions. Despite its widespread acceptance, the psychological
version of the Church-Turing Thesis has its critics. The first source of oppo-
sition is those who believe that cognitive systems can do more than Turing
machines. For example, learning understood as identifiability in the limit
(Gold, 1967) is not computable (see Kugel, 1986, for an extensive discussion),
yet it plausibly falls within the scope of cognitive science. Another strand of
opposition arises from concerns about practical computability. Since cogni-
tive systems are physical systems, they perform tasks under computational
resource constraints. Therefore, the functions computed by cognitive sys-
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tems need to be computable in realistic time and with the use of a realistic
amount of memory. We agree with this objection, and will consider it in
more detail.

The worry that plausible models of agents in a complex world must take
into account the limits of their computational resources is often called the
problem of bounded rationality (Simon, 1957, and many following publica-
tions). Simon argued that the limited computational resources of bounded
agents require them to solve many problems with rough heuristics rather
than exhaustive analyses of the problem space. In essence, rather than solve
the hard problem presented to him by the environment, the agent solves an
easier, more tractable problem which nevertheless produces an acceptable
solution. In order to apply this insight in cognitive science, it would be help-
ful to have a precise characterization of which class of problems can plausibly
be computed by the agent. The answer suggested by complexity theory is
to adapt the Cobham-Edmonds Thesis: The class of problems which can
be computed by a cognitive agent is approximated by the PTIME class, i.e.
bounded agents can only solve problems with polynomial time solutions. As
far as we are aware, the version of the Cobham-Edmonds Thesis for cogni-
tive science was first formulated explicitly in print by Frixione (2001) and
later dubbed the P-Cognition Thesis by van Rooij (2008). The P-Cognition
Thesis states that a cognitive task is (hard) easy if it corresponds to a(n)
(in)tractable problem.

The P-Cognition Thesis can be used to analyze which problem an agent
is plausibly solving when the world presents him with an (apparently) in-
tractable problem. For example, Levesque (1988) argues that the compu-
tational complexity of general logic problems motivates the use of Horn
clauses and other tractable formalisms to obtain psychologically realistic
models of human reasoning. Similarly, Tsotsos (1990) emphasizes that vi-
sual search in its general (bottom-up) form is NP-complete. As a conse-
quence, only visual models in which top-down information constrains vi-
sual search space are computationally plausible. In the study of catego-
rization and subset choice, computational complexity serves as a good eval-
uation of psychological models (see e.g. van Rooij et al., 2005). Recently,
Szymanik (2009) has applied computational complexity analysis to the psy-
cholinguistic study of the meaning of quantifiers in natural language (see also
Szymanik and Zajenkowski, 2010). This general strategy for analyzing cog-
nitive tasks can also be found in philosophy of mind; for example, Cherniak
(1981) argues that tractability considerations demand a philosophical anal-
ysis of the conditions required for a minimal notion of rationality.

Still, our experience shows that many researchers are skeptical about the
applicability of computational complexity in cognitive modeling. Therefore,
we conclude by addressing some common objections.

Computational complexity is defined in terms of limit behavior. In other
words, a typical question of computational complexity theory is of the form:
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As the size of the input increases, how do the running time and memory
requirements of the algorithm change? Therefore, computational complex-
ity theory, among other things, investigates the scalability of computational
problems and algorithms, i.e. it measures the rate of increase in computa-
tional resources required as a problem grows. The implicit assumption here
is that the size of the problem is unbounded. For example, models can be of
any finite size, formulae can contain any number of distinct variables, and
so on.

In general, even though computational complexity is formally defined
in terms of limit behavior, it can still be reasonably interpreted as saying
something about problem difficulty on a fixed model. Namely, if the com-
putational complexity of the problem is high, then it means that there are
no “clever” algorithms for solving it, i.e. we must perform an exhaustive
search through the entire solution space. Therefore, it is very likely that on
a given fixed model we also have to use a brute-force method, and this will
be again difficult (even for relatively small n). For example, checking sat

for a formula containing 5 variables is already quite time-consuming. More-
over, even if typical cognitive situations involve reasonably small inputs, it
would be difficult to justify any in principle bound on their size. Potentially,
inputs can grow without limit. Therefore, computational complexity may
reasonably be proposed as a difficulty measure for tasks considered at the
abstract level—a standard and usually fruitful idealization in science.

This abstract perspective can be constructively applied in experimental
contexts. For example, differences in performance (e.g. reaction time) on
an experimental task may be used to fruitfully analyze the computation the
agent is performing. We can even track the changes in heuristic a single
agent employs as the problem space changes. For example, it is known that
reaction time increases linearly when subjects are asked to count between
4 and 15 objects. Up to 3 or 4 objects the answer is immediate, so-called
subitizing. For judgments involving more than 15 objects, subjects start to
approximate: reaction time is constant and the number of incorrect answers
increases dramatically (Dehaene, 1999). Analogously, we can ask what gross
differences in reaction time on NP-hard tasks say about the nature of the
heuristics subjects employ. A particularly telling example here is the case
of chess experts. The radical increase in reaction time of chess experts over
that of novices does not necessarily indicate that they are solving the same
(NP-hard) problem of exhaustively searching the tree of possible moves,
but rather that they are solving the different (and much simpler) problem
of searching only the “good” moves available to them (Simon and Simon,
1962). The P-Cognition Thesis guides our analysis of expert behavior here,
suggesting that the algorithms experts implement for constraining search
may be PTIME in complexity.

Another criticism of the P-Cognition Thesis questions the value of worst-
case computational complexity as a measure of difficulty for cognitive pro-
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cesses. The point here is whether we really need to consider the worst-case
performance of cognitive algorithms on arbitrary inputs. It might be the case
that inputs generated by nature have some special properties which make
problems tractable on those inputs even though in principle they might be
NP-hard. The natural strategy here is to turn toward so-called average-case
complexity theory. It studies the computational complexity of problems
on randomly generated inputs. The theory is motivated by the fact that
many NP-hard problems are in fact easily computable on “most” of the
inputs. But average-case complexity theory extends and supplements the
worst-case analysis. It does not, in general, replace it. For example, if the
appropriate probability distribution over nature’s behavior is unavailable,
average-case complexity analysis simply cannot be applied. Furthermore,
it seems that the worst-case analysis is actually the right perspective from
which to analyze cognitive tractability. Average-case complexity may still
be preferred for purposes other than assessing tractability, e.g. comparing
the time-complexity of different (tractable) algorithmic-level explanations
with reaction time data obtained via experimentation (see van Rooij, 2008).

Another strategy for cognitively plausible complexity measures is to
break up each task into parameters and analyze how each of the parameters
contribute to the overall complexity. It might be the case that intractability
of some problems comes from a parameter which is usually very small no
matter how big the input. This way of thinking leads to the consideration
of parametrized complexity theory as a measure for the complexity of cog-
nitive processes. Iris van Rooij (2008) investigates this subject, proposing
the Fixed-Parameter Tractability Thesis as a refinement of the P-Cognition
Thesis.

One of the great challenges in understanding the mind as a computa-
tional device is determination of the correct complexity measures. We have
argued that computational complexity theory provides the right measure of
cognitive tractability. Furthermore, the Invariance Thesis implies that the
correct notion of tractability will not depend upon the details of one’s com-
putational model, and the P-Cognition Thesis implies that only PTIME
problems are tractable. Consequently, even if symbolic and connectionist
modelers diverge in their analyses at Marr’s algorithmic level, they should
agree on the correct analysis at the computational level. Although com-
plexity theory can be supplemented in various ways (by considering only
average-cases or by fixing parameters), these refinements do not obviate the
need for an analysis of cognitive tractability. Finally, complexity analysis
can be used to bridge the gap between abstract task analysis and empirical
data by providing testable predictions about how changes in input size or
training affect reaction times.
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6 Conclusion

We began with a brief overview of the computational perspective on cogni-
tive science. We saw that logical techniques constitute a common language
for many of the diverse fields studying cognition. One particularly important
tool here is non-monotonic logic, which has helped the artificial intelligence
community to better understand and model common sense reasoning. On
a more abstract level, a series of recent results seems to show that non-
monotonic logics and neural networks are in some deep sense equivalent.
This result is surprising given famous arguments from the philosophy of
mind that there is a fundamental difference in the representational prop-
erties of neural networks and symbolic systems. Worried that our analysis
was simply too coarse to capture this fundamental difference, we turned
to a discussion of the computational complexity of the two systems. How-
ever, the Invariance Thesis indicates that there is no in principle distinction
between neural nets and symbolic systems from a complexity perspective,
either. The distinctive features of parallel computation in neural networks
are entirely contingent (depending upon bounds on input size, or the num-
ber of available parallel channels, neither of which can be motivated at the
abstract level of computational task analysis).

Finally, we defended this abstract level of analysis as the appropriate
one for determining cognitive tractability. The P-Cognition Thesis posits
that only PTIME problems are tractable for cognitive agents. Perhaps sur-
prisingly, this very abstract claim nevertheless connects closely to empir-
ical practice. Differences in reaction time across changes in experimental
condition or training can help us detect changes in how bounded agents
interpret and solve problems in a complex world. The P-Cognition Thesis
motivates restricting our task analysis at Marr’s computational level to func-
tions computable in polynomial time. From this perspective, symbolic and
connectionist modelers should agree at the computational level, with any
disagreements emerging only at the algorithmic level. Conversely, sharp dif-
ferences in computational complexity may be taken as evidence that two
modelers are in fact analyzing distinct tasks. And it is here that the tools
of psychology must take over from those of logic, and the models under
investigation be subjected to renewed empirical tests.
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