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In now classic `Knowledge and Belief' (Hintikka [6]) Hintikka analyzed 

knowing and believing from a standpoint of many-world semantics. More 

specifically these two intellectual acts were interpreted as two logical operations, 

which are different, but closely related to each other. It is not difficult to see that 

knowing and believing respectively behave like the necessity of S4 of Lewis and 

that of DS4. (DS4 is the modal propositional logic to be obtained from S4 by 

replacing the axioms of the form • A•½A by weaker ones, namely, those having 

the form • A•½•žA, i.e.,• A•½•`• •`A.)

It is the purpose of the present paper to continue this pioneering work of 
Hintikka in the field of epistemic logic by more formally characterizing it as a bi
modal propositional logic to be designated as S4-DS4, which constitutes a bi-modal 
combination of S4 and DS4 with the necessity corresponding to S4 (i.e., knowing) 
stronger than the correspondent of DS4 (i.e., believing). (For bi-modal logics refer 
to Rubin [14], Fitting [4], Ishimoto-Fujikawa [9], Ishimoto-Watanabe [10] and 
Ono [13]. The acquaintance with these works is not assumed in what follows, 
however.)

•˜ 1 Syntactic preliminaries As is usually the case with other types of 

modal propositional logics the (well-formed) formulas (of proposed S4-DS4) to be 

designated by such meta-logical variables as A, B, ... and the like are defined as 

the smallest class containing all the propositional variables (atomic formulas) being 

closed under four logical symbols, namely, •É (disjunction), •` (negation), • l 

(stronger necessity=knowing) and • 2 (weaker necessity=believing) with the 

help of some technical symbols. The logical symbols other than these, if any, are 

defined in terms of these symbols in the well-known way.

With a view to simplifying the subsequent development we next define 

(inductively) the notion of positive and negative parts of a formula after Schiitte 

(Schiitte [15], [16], [17], [18], [19]).
Definition 1.1 The positive and negative parts of A are defined only as follows:

1.12 If B •É C is a positive part of A, then B and C are both positive parts of A,

The author greatly acknowledges the help and assistance Professor Akira Ohide of Keio 

University has given to him in connection with the work to follow.
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1.13 If •`B is a positive part of A. then B is a is a negative mart of A

1.14 If •`B is a negative part of A. then B is a positive part of A.

(Here as well as in what follows outermost parentheses will be omitted, whenever no 
ambiguity arises therefrom.)

Again following Schutte such an expression as F[A+] (G[B_]) means that the 
formula F[A+] (G[B_]) contains as a positive (negative) part thereof a specified 
occurrence of A (B). F[A+, B_], G[A_, B+] and the like are analogously understood 
subject to the condition that the specified occurrences of formulas do not overlap 
with each other.

The minimally positive (negative) parts of a formula are defined to be those 

positive (negative) parts of the formula, which do not contain properly any positive 

or negative parts of the formula. Thus atomic formulas as well as the formulas of 

the form • 1A or • 2A (A•ÉB, • 1A or • 2A) could be minimally positive (negative) 

parts of a formula.

Another notion indispensable in the sequel is the removal (Streichung) from 

a formula of its positive or negative parts. Following Schutte the result of 

removing A(B) from F[A+] (G[B_]) will be denoted by, F[ +] (G[ _]), which is pos
sibly the empty expression.

Definition 1.2 The removal A from F[A+] (G[A_]) is defined only as follows:

It is not difficult to see that the result of removing a formula from another 

constitutes a formula or the empty expression.

The removing of a formula thus defined will be illustrated as follows:
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1.21 If F[A+] is A, then F[ +] is the empty expression,

1.22 If F[A+] is Fl[A V B+] or Fl[B V A+], then F[ +] is Fl[ +] V B,

1.23 If F[A+] is Fl[•`A_], then F[ +] is Fl[ _] ,

1.24 If G[A_] is G1[-A+], then G[ _] is Gl[ +] .
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where the disjunction involving the empty expression is defined in a self
explanatory way.

We are now in a position to define (Beth) tableaux for the proposed bi-modal 

logic and with this in view we next introduce a number of reduction rules to be 
applied to a formula. (Unlike other tableau methods not a set of formulas, but a 

formula is reduced, and this will have the effect of simplifying the subsequent 
development.) Nevertheless if we disregard the complexities arising from the 
notion of positive and negative parts of a formula, such reduction rules are well

known, and we are here essentially following Smullyan [20] and Schutte [18], the 
latter being a prototype of our formalism, since it also depends upon the notion of 

positive and negative parts of a formula.
The proposed reduction rules are applied in one of the following forms:

where in the application of • 1+ or • 2+(• 2+•Œ) 0?n (O<n) and disjunction with 

more than two disjuncts are associated in any way. Further in the application of 

•  2+ or • 2+•Œ• ikAk's are • 1Ak or • 2Ak, while only for those • ikAk's with ik=

2•`Ak is adjoined to the reductum. It is also required that in the application of
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• 2+•Œ at least one • ikAk is • 2Ak and there is no formula occurring positively in the 

formula to be reduced with the form • 2A. (In such an event the reduction will be 

taken over by • 2+). We, thus, have O<m, The case m=O is covered by • l-.

It is further stipulated that in the application of • l+,• 2+ or • 2+•Œ• 1Ak and 

• ikAk's are exhaustive in the sense that there are no formulas remaining in the 

formula to be reduced with specified forms, but not involved explicitly in the 

reduction. Thus,

is not a correct application of 02+. It should be applied thus:

where C is atomic.

It is also not difficult to see that there are n ways of reducing a formula 

by • 1+(• 2+), if the formula to be reduced contains n positive occurrences of • 1B 

(• 2B).

Now a configuration is defined to be a finite set of formulas. Upon applying 

one of the reduction rules to any constituent formula of a configuration we obtain 

another configuration by replacing the formula by the result or results (in the 

case of a branching rule, i.e., •É-) of the application of the rule. A tableau is, then, 

a finite sequence of such configurations, any member configuration of which except 

the leftmost is obtained from one of the preceding configurations by the application 

of a reduction rule. A tableau is said to be closed if some member configuration 

thereof is such that every constituent formula is of the form F[A+, A_].

Given a formula A and a closed tableau beginning with (A) the tableau 
constitutes a proof of A and A is a thesis of S4-DS4 (in the tableau method).

For illustrative purposes some theses will be proved by the proposed tableau 

method:

1.31 The proof of _??_, i.e.,_??_:

1.32 The proof of _??_, i.e.,_??_:
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•˜2 Semantics We are now in a position to introduce a Kripke-type semantics 

or models of the proposed S4-DS4. The model M of S4-DS4 is a quadruple (G, R1, 

R2, •Ë to be defined on a model structure (G, R1, R2) satisfying the following 

conditions:

-139-

1.33 The proof of _??_, i.e., _??_ :

1.34 The proof _??_, i.e., _??_:

1.35 The Proof of _??_, i.e., _??_, or, _??_:

1.36 The proof of _??_, i.e., _??_:

1.37 The Proof of _??_, i.e., _??_:

1.38 The proof of _??_, i.e., _??_

:

1.39 The proof of _??_, i.e., _??_

:
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2.11 G is a non-empty set (of possible worlds),
2.12 R1 is a reflexive and transitive relation defined on G,

2.13 R2 is a transitive relation defined on G;

2.14 •Í„C‡™(„CR2‡™ •¨ „CRl‡™),

2.15 •Í„C•Î‡™„CR2‡™,

where r, d, ... and the like are meta-logical variables ranging over tie elements 

of G,

2.16 ? is a (satisfaction) relation between the elements of G and atomic 

formulas.

On the basis of 2.16 the (satisfaction) relation ? is (uniquely) extended to any 
element T of G and formulas as follows:

A formula A is valid in a model M=(G, R1, R2, ?) if for every „C?G „C?A. A 

is valid if it is valid in every model. A is, thus, not valid, namely, refutable iff there 

is a model M=(G, R1, R2, ?) and a „C?G such that r )„C_??_A, i.e., „C?•`A.

These two assertions are proved simultaneously by induction on the basis of 

Definition 1.1 for specifying the positive and negative parts of a formula.

The basis is straightforward, while induction steps are taken care of in the 

following way:

Lemma 2.32 If a formula is not valid, i.e., refutable, then the formula, which 
obtains therefrom as a result of the applciation of a reduction rule (at least one formula 
in the case of a branching rule) is also not valid.
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Suppose „C?•`F[A•ÉB_] for M=<G, R1, R2, ?> and „C?G. By Lemma 2.31 

„C =A•ÉB. Thus „C?A or „C?B by 2.21. If „C?A, then „C?•`(F[A•ÉB_]•É•`A), 

which is nothing but the refutability of F[A•É B_]•É•`A. The case that PCB is 

taken care of analogously.

Let „C?•`F[• 1A_] for M=<G, R1, R2, ?> and „C? G. By Lemma 2.31 „C? 

•  1A. In view of 2.23 and the reflexivity of R1 we have PEA. From this fol

lows „C?•`(F[• 1A_]•É•`A) and F[• 1A_]•É•`A is refutable.
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Suppose, next, „C?•` F[• 1A1-, • 1A2-,...• 1An-, [• 1B+] (with 0<n) for M=

(G, R1, R2, ? and „C?G. By Lemma 2.31 „C?• 1Al, „C?• 1A2,..., „C?• 1An, and 

„C?•`•  1B, the last of which gives rise to ‡™?•`B for a ‡™?G such that „CR1‡™ in 

view of 2.22 and 2.23. In view of 2.23 and the trasitivity of R1 from „C?1• Al, 

„C?•  1A2, .., and „C?• 1An obtain respectively ‡™?• 1A1, ‡™?• 1A2, ..., and 

‡™?1An, which together with ‡™?•`B yield in conjunction the refutability of 

•`•  1A1•É•`• 1A2•É...•É•`• 1An•ÉB. The case that n=0 is taken care of analo

gously.

The cases respectively corresponding to • 2+ and • 2+•Œ will be illustrated by 

examples:

Let us assume r,„C_??_C1•É•`• 2A1•ÉC2•É•`• 1A2•É• 2B•É•`• 2A3•ÉC3 for M=<G, 

R1, R2, ?> and „C?G with C1, C2 and C3 not of the form F[• 1A_] or F[• l2A_]. 

By Lemma 2.31 we, then, have„C ? • 2A1, „C?• 1A2, „C?• 2A3 and „C?•`• 2B, from 

the last of which obtains ‡™?•`B for a d E G such that „CR2‡™ by 2.22 and 2.24. 

In view of 2.23 and 2.24 as well as of -2.14 and the transitivity of R1 and R2 we 

have ‡™?• 2A1, ‡™?_• 1A2, ‡™?• 2A3, ‡™?A1 and ‡™?A3, which along with ‡™?•`B give 

rise to the refutability of •`• 2A1•É•`• 1A2 •É•`• 2A3 •É•`A1•É•`A3•ÉB as required.

Lastly for taking care of • 2+•Œsuppose„C _??_C1•É•` • 1A1•É•`• 2A2•É•`• 2A3•ÉC2 

for M=<G, R1, R2, ?> and „C G, where Cl and C2 are not of the form F[• 1A_], 

F[• 2A_] or F[• • 2A+]. By Lemma 2.31 we, then, have „C?• 1A1, „C?• 2A2 and 

„C?•  2A3. In view of 2.15 there is a d E G such that „CR2‡™, which in turn gives 

rise to „CR1‡™ by 2.14. In view of 2.23 and 2.24 as well as of the transitivity of 

R1 and R2 from these follow ‡™?• 1A1, ‡™?• 2A2 ‡™?• 2A3, ‡™?A2 and ‡™?A3, 

which together yield the looked for refutability of •`• 1A1•É•`2A2•É•`• 2A3•É

•` A2•É•`A3.

This completes the proof of Lemma 2.32.

Lemma 2.4 (Consistency theorem) If A is provable, then A is valid.

Suppose, if possible, that A be provable, but not valid. We, then, have a 

model M=<G, R1, R2, ?> and a „C?G such that „C?•`A. Since A is a thesis there 

is a closed tableau beginning with (A). In view of Lemma 2.32 this would mean 

that a formula of the form F[A+, A_] be refutable. But this is against Lemma 

2.31.

With a view to establishing the converse of Lemma 2.4 just proved a Hintikka 
collection of formulas will be introduced essentially following Smullyan [20]:

Definition 2.5 A Hintikka collection of formulas is a non-empty set W of 

formulas satisfying the following conditions:
For any F?W,

2.51 No formula occurs in F simultaneously as its positive and negative part,
2.52 A•ÉB is a negative part of F.
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•Ë: A is a negative part of F.

or. B is a negative part of F,
2.53 • 1A is a positive part of F.

•Ë•Î G(F R, G and A is a positive part of G),

2.54 • 1A is a negative part of F.

•Ë?A is a negative part of F,

2.55 • 2A is a positive part of F.

2.56 • 2A is a negative part of F.•Ë•ÎG F R2 G, 

where R1 and R2 are defined on W as follows:

F Rl G•Ì.{• 1A:• l A is a negative part of F}

•º{ B: B is a negative part of G},

F R2 G•Ì.{• 1A:• 1A is a negative part of F}

U {• 2A:• 2A is a negative part of F}

U [A: • 2A is a negative part of F}

•º (B: B is a negative part of G}.

Here as well as in what follows such letters as F, G, .... will be employed as 

meta-logical variables ranging over the elements of a Hintikka collection (of 
formulas), which, as will be seen presently, will play the role of possible worlds. 

 It is further stipulated that we shall identify the member formulas of a 

Hintikka collection having the same set of positive parts (and consequently 
negative parts). As is easily seen this identification is compatible with the above 
definition of two accessibility relations.

It is noticed in passing that a Hintikka collection is in existence as will be seen 

presently.

On the basis of the model structure (W, R1 R2) F?A is defined to be the occur
rence of A in F as a negative part for any F?G and atomic A. In view of 2.51 
this is consistently carried out in the sense that F?A or F_??_A, but not both for 

any F?G and atomic A. The satisfaction relation ? thus defined is, then, (uniquely 
and consistently) extended to any FEW and formula by way of 2.21-2.24.

Lemma 2.6 The model M=<W, R1, R2, ?> thus defined constitutes a model of 
S4-DS4 satisfying the following for any FEW and A:

2.61 A is a negative part of F. •ËF?A.

2.62 A is a positive part of F. •ËF_??_A, i.e., F?•`A.

The model M obviously satsifies 2.11, since a Hintikka collection is not empty 

by definition. The reflexivity of R1 is forthcoming from its definition. The 

transitivity of Rl and R2 also follows from their definitions. This is the same with 

2.14. For proving 2.15 let us assume there be a formula of the form • 2A occurring 

in F as a negative part. By 2.56 there is a G(EW) such that F R2 G. In case there 

does not occur in F such a formula, F R2 F by the definition of R2 . Lastly 2.16
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does not present any difficulties.

Now 2.61 and 2.62 are proved simultaneously by induction on the length of A, 

the basis having been taken care of by the definition of ?:

where use is made of Definition 1.1, 2.21-2.24 and the properties of a Hintikka 

collection including those of accessibility relations.

With a view to proving the completeness theorem let us assume A be not 

provable.
Given A we are reducing it by V_ or • l_. If V_ is applied, at least one of the 

results of the reduction is not provable, since in the contrary case A would be 

provable. If • l_ is applied, the result also remains not provable. Repeating 

such reductions a finite number of times we come eventually across a formula Al 

called the reduced form of A, and any application thereto of V_ or • l_ does not 

yield any essentially different formula, if we choose the same formula in the 

applications of V as before. Here two formulas are essentially the same if the 

respective sets of their positive (and consequently negative) parts are identical set

theoretically. (The member formulas of a Hintikka collection are identical if they 

are essentially the same.)

A formula with the reduced form or a reduced formula is reached after a finite 

number of reductions, since there are only a finite number of subformulas of A and 

only some of them, possibly, coupled with negation could become a disjunct of Al, 

which, however, cannot be extended indefinitely by the applications of V_ and • _,
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if we indentify essentially the same formulas. If A is not provable, so is Al, of 

course. (Given A Al is not uniquely defined in the presence, of a branching rule 
even if we identify essentially the same .formulas.)

It is noticed in passing that in the process of reduction V_ and • l_ are 

applied in any order giving rise. to essentially the same reduced formula, if a 

formula is selected properly in the annlciation of V_, which is a branching rule.

Al, which is a. reduced form of A, is, then, subject to another kind of reductions, 

namely, • 1+, • 2+ or • 2+•Œ. If Al contains n and moccurrences of • 1A's and 

•  2A's as positive parts, the reductions by. • 1+ and • 2+ respectively give rise to n 

and m formulas, which constitute the results of the reductions. If Al contains any 

occurrence of a formula of the form _DA as a negative part, Al without involving 

the formula of the same form positively is feasible to the reduction by • 2+' giving 

rise to a formula, which is the result of the reduction. The tree of reduction is, 

thus, ramified into m+n.branches if the former is the case, while it is into n+1 

branches in the latler case.

Each of these formulas, which are not provable, is again subject to the 

reductions by V_ and • l-, possibly, giving rise to a reduced formula to be 

reduced by • 1+, • 2+ or • 2+•Œ.

Such a process of reduction, however, can not be continued indefinitely and 

we come sooner or later across formulas, to which any reduction yields only the 

essentially the same formula as one of the previously obtained. This is again 

because of a finite number of subformulas contained in the formula to be reduced.

Now it is not difficult to see that the (finite) collection W of reduced formulas 
obtained in the above process of reductions constitutes a Hintikka collection of 

Formulas with essentially the same formulas identified and two accessibility 
relations between reduced formulas defined as in Definition 2.5. In fact all the 

properties to be satisfied by a Hintikka collection easily follows from the above 
construction.

Since the given A constitutes a positive part of a reduced form F(?W) of A, 
F_??_A by 2.62.

This completes the proof of the completeness of our S4-DS4 with respect to 

the semantics as introduced at the beginning of this section, namely,

Lemma 2.7 (Completeness theorem) If A is valid, then A is provable.
Combining Lemmas 2.4 and 2.7 we have,

Theorem 2.8 (Consistency and completeness theorem) A is provable iff it is 
valid.

Corollary 2.9 (Separation theorem) If a formula not involving • 2(• 1) is a thesis 

of.S4-DS4, then-it is already provable in S4 (DS4).

This is obvious, since the tableau, which constitutes a proof of-the formula , 
turns out to be one in S4 (DS4). In fact the reduction rules employed in the
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proof are those for S4 (DS4). (For such rules refer to Schute .[18] and Fitting [3].)
In view of Lemma 2.7, if a formula is refutable at all, it is already falsified by a 

finite model. From this it immediately follows that S4-DS4 has a finite model 

property being decidable. In fact, for deciding the thesishood of a given formula 
it is sufficient to reduce the formula in every possible way, and there are only a finite 

number of them.

As is expected S4-DS4 is also feasible to Gentzen-type formulation as shown 

by Uchida [21].

•˜3 Examples of refutation In this section the method of constructing a 

Hintikka collection used for the proof of completeness will be employed for 

falsifying a number of formulas. (In what follows the metalogical variables involv

ed are assumed to be atomic.)

where the Hintikka collection consists of F, G'and Hiwith F Rl F, F Rl H, H Rl H, 
H R2 H, F R2 G, F R1, G R2 G and G Rl G, and A is true (fasle) in G (H).

where the Hintikka collection consists of F-and G with F R2 G, F Rl F, F Rl G, 

G Rl G and G R2 G, and A,is false (true) in R (G):

where the Hintikka collection consists of F, G, H and I with F Rl F, F Rl G, G Rl G,
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3.1 The refutation of _??_, i.e., _??_:

3.2 The refutation of _??_, i.e., _??_:

3.31 The refutation of _??_, i e., _??_:



46 A . ISHIMOTO Vol. 5

GR2 G,F R2 H, F R1 H, H R2 H, H R1 H,G R2 I, G R1 I, I R1 I, I R2 I and 
F R1 I, and A is true (false) in H (I).

(Here as well as in what follows we shall omit the self-explanatory description of the 
EIintikka collection obtained and accessibility relation holding between its element 
formulas.)
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3.32 The refutation of _??_, i.e.,_??_:

3.41 The refutation of _??_, i.e,, _??_:

3.42 The refutation of _??_, i.e., _??_:
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3.51 The refutation of _??_, i.e., _??_:

3.52 The refutation of _??_, i.e., _??_:

3.61 The refutation of _??_, i.e., _??_:

3.62 The refutation of _??_, i.e., _??_:
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For reference we shall list up without proof all I the theses of the form • i• j

A•½• k• 1A with i, j, k and 1 being 1 or 2.

It is interesting to observe that some of the formulas of this form provable in 

bi-modal logic S4-S4 or T-T are not. necessarily the theses of S4-DS4. In fact, • 

1• 2A•½1• 1A, • 1• 12A•½• 2• 1A, • 2• 1A•½• 1• 1A and • 2• 2A•½• 1• 2A are 

theses of S4-S4, but not necessarily one in S4-DS4 as shown above. On the other 

hand, all the formulas with the forms above listed up are provable in T-T. (For this 

refer to Ishimoto-Watanabe [10] pp. 72-73.)

•˜ 4 Hiblert=type version In this section we shall be concerned with a 

Hilbert-type version of S4-DS4 and its Henkin-type completeness proof.

Since this type of formulation of modal. logic and its completeness are well

known, we shall confine ourselves to a sketch along with some preliminaries thereto. 

(For the Henkin-type completeness refer to Hintikka [7], Lemmon-Scott [11], 
Mackinson [12], Schiitte [18] and Hughes-CresswelL [8].)

The axioms of the Hilbert-type version of S4-DS4 are grouped into:

4.11 A set of axiom schemata in terms of •É and •` sufficient to yield all 

the instances of tautology with the help of detachment,
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3.63 The refutation of _??_, i.e., _??_:

4.12

4.13
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where A and B are ranging over (well-formed) formulas (of S4-DS4). (All these 

formulas were proved in •˜ 1 by the tableau method.)

The rules are detachment and necessitation for • 1, that corresponding to • 2 

being derived from this by means of 4.12 and detachment.

It is noticed in this connection that the same logical symbols as introduced in 

•˜ 1, namely, •É, •`, • l and • 2 will remain to be employed, and other logical 

symbols are defined in their terms.

Lemma 4.2 (Consistency theorem) If A is a thesis in the Hilbert-type version of 

S4-DS4, then it is valid with respect to the models as-defined in •˜2.

The proof is carried out by induction on the length of the proof of the thesis 

(in the Hilbert-type version of S4-DS4). Since the proof is easily adapted from 
those given for T-T and S4-S4 in Ishimoto-Watanabe [10] pp. 73-75, we shall 
confine ourselves to the validity of axioms of the form 4.14, which needs a 
different treatment.

With this in view let us assume that we are given a model M=<G, R1, R27 ?> 

such that „C?• 2A for a „C?G. By 2.24 we, then, have •Í‡™(„CR2‡™•Ë‡™?A). On the 

other hand, there is a d such that „CR2‡™ by 2.15. We, therefore, have A=A, 

from which follows •Î‡™(„CR2‡™ and ‡™_??_•`A) in view of 2.22. This, then, gives 

rise to not •Í‡™(„CR2‡™•Ë•`A), which is nothing but •Ë_??_• 2•`A, namely, „C?•`• 

2•`A by 2.22 and 2.24.

We are next stating without proofs some-lemmas, all of which are well-known 
in the literature and easily adapted from the case of single modality. (Consult, for 

example, Gresswell [1] and Hughes-Cresswell [8] pp. 155-156.)
Lemma 4.31 If {• 1A1, • 1A2,..., • 1An, •`• 1B} with 1?n is consistent, then 

(A1, A2, • • • , An, •`B) is consistent.

Lemma 4.32 If •`• 1B is consistent, then •`B is consistent.

Lemma 4.33 If (• 2A1, • 2A2,..., • 2An, •`B) with 1 ?n is consistent, then 

(A1, A2, • • • , An•`B) is consistent.

Lemma 4.34 If •`• 2B is consistent, then •`B is consistent. 

(Lemma 4.32 (4.34) is the case of n=0 in Lemma 4.31 (4.33).)

We are also stating a lemma, which is peculiar to S4-DS4.

Lemma 4.35 If (• 2A1, • 2A2,..., • 2An} with 1?n is consistent, then {A1, 

A2f ... ,An} is consistent.

Suppose {A1, A2, ..., An,} be not. consistent. We, then, have ?(A1•ÈA2•È ... 

•È An)•½(negation of a tautology). From this follows ?(• 2A1•ÈA• 2A2A•È ...•È• 2A• 2An)
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•½•  2(negation of a tautology) by the necessitation for • 2 and 4.16, which in turn 

gives rise to ?(• 2A1•È• 2A2•È...•È•  2An)• •½•`• 2•`(negation of a tautology), i.e., _??_

(• 2A1•È• 2A2•È...•È•  2An) •`• 2 tautology by 4.14. Since {-02 tautology by 

4.11 and the necessitation for 02, we have ?•`(• 2A1•È• 2A2•È...•È•  2An), namely, 

(• 2A1•È• 2A2•È...•È•  2An2A1, • 2A1•È• 2A2•È...•È•  2An2A2,..., • 2A1•È• 2A2•È...•È•  2An2A• 2A1•È• 2A2•È...•È•  2An) is not consistent.

We are now in a position to give another definition of a Hintikka collection, 
this time, in a way less constructive than its correspondent introduced in §2. The 

Hintikka collection here to be introduced is different from the former one in that 
the members of the collection are (necessarily maximally) consistent sets of 

formulas of S4-DS4.
Definition 4.4 A Hintikka collection is a non-empty collection of consistent sets 

G of formulas satisfying for any „C?G:

where the accesibility relations R1 and R2 are respectively defined as:

On the basis of the Hintikka collection we define a satisfaction relation = for 

any r E G and atomic formula A as A E T, which is, then, extended (uniquely and 

consistently) to any „C(?G) and formula by way of 2.21-2.24.

Lemma 4.5 The model M=(G, R1, R2, ?) thus defined on the basis of a Hintikka 

collection satisfies the following conditions:

for any „C(?G) and A. (4.51 and 4.52 are equivalent to each other.)

It is noticed that if the given Hintikka collection consists of all the maximally 
consistent sets (of formulas) as it does necessarily, then the model M constitutes a 

model of S4-DS4 with Rl and R2 satisfying 2.12-2.15. Now the Lemma is proved 
simultaneously by induction on the length of A.

The basis is straightforward from the definition of the satisfaction relation and 

the consistency of „C(?G).

Induction steps are taken care of in the following way:
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where use is made of the properties of the Hintikka collection, in particular,

which are forthcoming from 4.44, 4.45 and 4.46.

Now we construct the collection of all the maximally consistent sets of 

formulas in S4-DS4.

This non-empty collection constitutes a Hintikka collection meeting all the 

requirements for a Hintikka collection, of which 4.41-4.44 are trivially satisfied. 

4.45 (4.46), on the other hand, is taken care of by Lemma 4.31 (4.33), and the 

proofs are easily adapted from the corresponding ones given, for example, in 

Ishimoto-Watanabe [10] p. 77 for T-T and S4-S4. It is only noticed that the set 

{ B: • 1B?„C} ({B: • 2B?„C}), which plays an important role in the proof of 4.45 

(4.46), is never empty, since • 1 tautology (• 2 tautology) is a thesis of S4-DS4, 

therefore, belonging to every maximally consistent set (of formulas). We, thus, do 

not need Lemma 4.32 (4.34 for the proof of 4.45 (4.46). (Consult also Hughes

- Cresswell [8] and Cresswell [1].)

Lastly with a view to proving 4.47 let us assume that we are given a miximally 

consistent set r (of formulas). We define a set E=(B: • 2B?„C), which is not 

empty because of the thesishood of a formula of the form 0213 as above remarked. 

The set E (of formulas) thus defined is consistent. In fact, if E were not consistent, 

there would be a finite set {B1, B2,..., Bn} (1?n) with • 2B's belonging to „C, which 

is already inconsistent. In view of Lemma 4.35 from this would follow the in

consistency of {• 2B1, • 2B2,.., • 2Bn} against the consistency of „C.

The set E is, then, extended to a maximally consistent set d (of formulas),
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which is a looked-for element of G with „CR2‡™.

Now suppose A be not provable. Since (•`A) is. consistent, it is extended to 

a maximally consistent set „C (of formulas), which contains •`A as an element. By 

4.52 „C_??_A in the model of S4-DS4 defined on the basis of the Hintikka collection 

consisting of all the maximally consistent sets (of formulas).

This completes the Henkin-type proof of the completeness of the Hilbert-type 

version of S4-DS4 with respect to -the semantics as introduced in •˜2.

This in combination with the consistency theorem for the version gives rise tc 

the consistency and completeness theorem for the Hilbert-type version of S4-DS4 

with respect to the semantics. Nevertheless, if we take into consideration the 

proof of completeness as above sketched, it is strengthened to a theorem well
known in the literature with respect to normal modal logics with one modal 

operator. (cf. Cresswell [1])

Theorem 4.6 A is a thesis of S4-DS4 iff A is valid in the model defined on the 
basis of the Hintikka collection consisting of all the maximally consistent sets (of 

formulas).
As a corollary we prove the compactaness theorem for S4-DS4.

Corollary 4.61 (Compactness theorem) If E is a consistent set (of formulas), then 

there is a model (of S4-DS4) M=<G, R1, R2, ?> and a „C?E such that „C?A for every 

A?E.

The given E, which is assumed to be consistent, is extended to a maximally 

consistent set (of formulas) belonging to G, which is a constitutent of the model 

defined on the basis of the Hintikka collection of all the maximally consistent sets 

(of formulas). By 4.51, we, then, have „C?A for every A?E.

It is noticed in passing that the separation theorem (Corollary 2.9) is forth
coming, this time, semantically.

With this in view let us assume that A be a thesis of S4-DS4 without 

involving • 2(• 1). In other words A is supposed to be a formula of S4 (DS4). 

Suppose, if possible, that A be not provable in 84 (DS4). By the analogue of 

Theorem 4.6 for S4 (DS4) there is a model M=<G, R, ?> of S4 (DS4) defined on the 

basis of the Hintikka collection of all the maximally consistent. sets (of formulas) 

with A falsified in a „C(?G).

Now in terms of the model of S4 (DS4) we define a model M1=<G, Rl, R2, ?> 

such that R1=R2=R, which constitutes a model of S4-DS4. (For obtaining a 

model of S4-DS4 from that of DS4 we need to extend R1 and make it reflexive.) 

As is easily seen A would be false in the „C(?G) against our hypothesis.

This completes the model-theoretic proof of the separation theorem.

Before concluding this section it is remarked that, the equivalence of two 

versions of S4-DS4, namely, that developed in •˜1 and-its Hilbert-type correspond

ent is forthcoming right away from the consistency and completeness theorem
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separatedly proved of these two formulations of S4-DS4.

This kind of equivalence theorem, which was here demonstrated semantically, 

is usually proved by way of the so-called cut elimination theorem, which in the 

formulation as rendered in •˜1 is understood to be the eliminability of the following 

reduction rule :

where A is the cut formula of the cut application. (This form of cut could be called 
analytic cut.)

Lemma 4.7 Given a model M=<G, R1, R2, ?> of S4-DS4,

for any „C?G.

These two assertions are proved simultaneously by induction on the number of 

procedures employed for specifying A as a positive (negative) part of F[A+] (G[A_]).
The basis being straightforward we are proceeding to induction steps, which 

are taken care of as follows :

where use is made of Definition 1.2, namely, the definition of the procedures of 

removing a formula from another.

Lemma 4.8 If F[A+] and G[A_] are valid, then :F[ +] V G[ _] is also valid.
In other words the validity is preserved by the application of cut in the 

usual sense of the word.

Suppose F[A+] and G[A_] be both valid. Further, let us assume, if possible, 

F[ +] V G[ -] be not valid. This means that there would be a model M=(G, R1, 

R2, =) such that „C_??_=F[ +] •ÉG[ -] for a „C(?G). By 2.21 „C_??_F[ +] and „C_??_G[ _].

By the hypothesis „C?[A+] and „C?G[A_], which respectively give rise to 

„C? F[ +]•ÉA and „C?G[ -]•É•`A in view of Lemma 4.7 just proved. Since 

„C_??_ F[ +] and „C?•`G[ _], we have simultaneously „C?A and „C?•`A by 2.21, 

namely, PEA and PAA by 2.22, a contradiction.

Theorem 4.9 (Cut elimination theorem) If a formula is a thesis in the tableau 
method adjoined with cut, then it is already provable in the tableau method without cut.
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Suppose a formula be provable by the talbeau method involving cut. Now 
every end point of the tableau is valid being of the form F[A+, A_]. Its validity is 

forthcoming from its equivalence to that of F[ +, _] V A V -A by Lemma 4.7.
The reduction rules including cut, on the other hand, preserves the validity if 

applied in the reverse direction. The case of cut has been taken care of by Lemma 

4.8, while the remaining cases do not present any difficulties.

From this follows the validity of the given formula, which in turn yields the 

thesishood of the formula by the tableau method without cut in view of the 

completeness theorem, namely, Lemma 2.7.

This completes the proof of Theorem 4.9.

In the paper to follow we wish to generalize the results here obtained to other 

bi-modal logics. We shall also incorporate our method to modal logics originat
ing from Fitch [2], where a part of many-world semantics is integrated into 
object langauge. (For this type of logics refer to Fitting [5].)
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