

University of New Mexico

A Study on Neutrosophic Frontier and Neutrosophic Semi-frontier in Neutrosophic Topological Spaces

P. Iswarya¹ and Dr. K. Bageerathi²

¹ Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, India E mail ID : iswaryap3@gmail.com

²Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, India E mail ID : sivarathi_2006@yahoo.in

ABSTRACT. In this paper neutrosophic frontier and neutrosophic semi-frontier in neutrosophic topology are introduced and several of their properties, characterizations and examples are established.

MATHEMATICS SUBJECT CLASSIFICATION (2010): 03E72

KEYWORDS : Neutrosophic frontier and Neutrosophic semi-frontier.

I. INTRODUCTION

Theory of Fuzzy sets [21], Theory of Intuitionistic fuzzy sets [2], Theory of Neutrosophic sets [10] and the theory of Interval Neutrosophic sets [13] can be considered as tools for dealing with uncertainties. However, all of these theories have their own difficulties which are pointed out in [10]. In 1965, Zadeh [21] introduced fuzzy set theory as a mathematical tool for dealing with uncertainties where each element had a degree of membership. The Intuitionistic fuzzy set was introduced by Atanassov [2] in 1983 as a generalization of fuzzy set, where besides the degree of membership and the degree of non-membership of each element. The neutrosophic set was introduced by Smarandache [10] and explained, neutrosophic set is a generalization of Intuitionistic fuzzy set. In 2012, Salama, Alblowi [18], introduced the concept of Neutrosophic topological spaces. They introduced neutrosophic topological space as a generalization of Intuitionistic fuzzy topological space and a Neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree of non-membership of each element.

The concepts of neutrosophic semi-open sets, neutrosophic semi-closed sets, neutrosophic semi-interior and neutrosophic semi-closure in neutrosophic topological spaces were introduced by P. Iswarya and Dr. K. Bageerathi [12] in 2016. Frontier and semifrontier in intuitionistic fuzzy topological spaces were introduced by Athar Kharal [4] in 2014. In this paper, we are extending the above concepts to neutrosophic topological spaces. We study some of the basic properties of neutrosophic frontier and neutrosophic semi-frontier in neutrosophic topological spaces with examples. Properties of neutrosophic semi-interior, neutrosophic semi-closure, neutrosophic frontier and neutrosophic semi-frontier have been obtained in neutrosophic product related spaces.

II. NEUTROSOPHIC FRONTIER

In this section, the concepts of the neutrosophic frontier in neutrosophic topological space are introduced and also discussed their characterizations with some related examples.

Definition 2.1 Let α , β , $\lambda \in [0, 1]$ and $\alpha + \beta + \lambda \le 1$. A neutrosophic point [*NP* for short] $x_{(\alpha,\beta,\lambda)}$ of X is a *NS* of X which is defined by

 $x_{(\alpha,\beta,\lambda)} = \begin{cases} (\alpha,\beta,\lambda), \ y = x \\ (0,0,1), \ y \neq x \end{cases}.$

In this case, *x* is called the support of $x_{(\alpha,\beta,\lambda)}$ and α , β and λ are called the value, intermediate value and the non-value of $x_{(\alpha,\beta,\lambda)}$, respectively. A *NP* $x_{(\alpha,\beta,\lambda)}$ is said to belong to a *NS* $A = \langle \mu_A, \sigma_A, \gamma_A \rangle$ in X, denoted by $x_{(\alpha,\beta,\lambda)} \in A$ if $\alpha \leq \mu_A(x)$, $\beta \leq \sigma_A(x)$ and $\lambda \geq \gamma_A(x)$. Clearly a neutrosophic point can be represented by an ordered triple of neutrosophic points as follows : $x_{(\alpha,\beta,\lambda)} = (x_{\alpha}, x_{\beta}, C(x_{C(\lambda)}))$. A class of all *NPs* in X is denoted as *NP* (X).

Definition 2.2 Let X be a *NTS* and let $A \in NS$ (X). Then $x_{(\alpha,\beta,\lambda)} \in NP$ (X) is called a neutrosophic frontier point [*NFP* for short] of A if $x_{(\alpha,\beta,\lambda)} \in$ *NCl* (A) \cap *NCl* (C (A)). The intersection of all the *NFPs* of A is called a neutrosophic frontier of A and is denoted by *NFr* (A). That is, *NFr* (A) = *NCl* (A) \cap *NCl* (C (A)).

P. Iswarya, Dr. K. Bageerathi. A Study on Neutrosophic Frontier and Neutrosophic Semi-frontier in Neutrosophic Topological Spaces

Proposition 2.3 For each $A \in NS(X)$, $A \cup NFr(A) \subseteq NCl(A)$.

Proof : Let A be the NS in the neutrosophic topological space X. Then by Definition 2.2,

$$A \cup NFr(A) = A \cup (NCl(A) \cap NCl(C(A)))$$

= $(A \cup NCl(A)) \cap (A \cup NCl(C(A)))$
 $\subseteq NCl(A) \cap NCl(C(A))$
 $\subseteq NCl(A)$
Hence $A \cup NFr(A) \subseteq NCl(A)$.

From the above proposition, the inclusion cannot be replaced by an equality as shown by the following example.

Example 2.4 Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, C,$ D, 1_N }. Then (X, τ) is a neutrosophic topological space. The neutrosophic closed sets are C (τ) = { 1_N, E, F, G, H, 0_N } where $A = \langle (0.5, 1, 0.1), (0.9, 0.2, 0.5) \rangle,$ $B = \langle (0.2, 0.5, 0.9), (0, 0.5, 1) \rangle,$ $C = \langle (0.5, 1, 0.1), (0.9, 0.5, 0.5) \rangle,$ $D = \langle (0.2, 0.5, 0.9), (0, 0.2, 1) \rangle,$ $E = \langle (0.1, 0, 0.5), (0.5, 0.8, 0.9) \rangle,$ $F = \langle (0.9, 0.5, 0.2), (1, 0.5, 0) \rangle$ $G = \langle (0.1, 0, 0.5), (0.5, 0.5, 0.9) \rangle$ and $H = \langle (0.9, 0.5, 0.2), (1, 0.8, 0) \rangle.$ Here $NCl(A) = 1_N$ and NCl(C(A)) = NCl(E) = E. Then by Definition 2.2, NFr(A) = E. Also $A \cup NFr(A) = \langle (0.5, 1, 0.1), (0.9, 0.8, 0.5) \rangle \subseteq$ $1_{\rm N}$. Therefore *NCl* (*A*) = $1_{\rm N} \not\subseteq \langle (0.5, 1, 0.1), (0.9, 0.8, 0.8) \rangle$ 0.5) >.

Theorem 2.5 For a *NS A* in the *NTS X*, *NFr* (*A*) = *NFr* (C (*A*)). **Proof** : Let *A* be the *NS* in the neutrosophic topological space *X*. Then by Definition 2.2, *NFr* (*A*) = *NCl* (*A*) \cap *NCl* (*C* (*A*)) = *NCl* (C (*A*)) \cap *NCl* (*C*) = *NCl* (C (*A*)) \cap *NCl* (*C*) Again by Definition 2.2, = *NFr* (C (*A*)) Hence *NFr* (*A*) = *NFr* (C (*A*)).

Theorem 2.6 If a *NS A* is a *NCS*, then *NFr* (*A*) \subseteq *A*. **Proof**: Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 2.2, *NFr* (*A*) = *NCl* (*A*) \cap *NCl* (C (*A*)) \subseteq *NCl* (*A*) By Definition 4.4 (a) [18], = AHence *NFr* (*A*) \subseteq *A*, if *A* is *NCS* in X.

The converse of the above theorem needs not be true as shown by the following example.

Example 2.7 From Example 2.4, *NFr* (C) = G \subseteq C. But C \notin C (τ).

Theorem 2.8 If a NS A is NOS, then NFr (A) \subseteq C (A).

Proof: Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 4.3 [18], *A* is *NOS* implies C (*A*) is *NCS* in X. By Theorem 2.6, *NFr* (C (*A*)) \subseteq C (*A*) and by Theorem 2.5, we get *NFr* (*A*) \subseteq C (*A*).

The converse of the above theorem is not true as shown by the following example.

Example 2.9 From Example 2.4, *NFr* (G) = G \subseteq C (G) = C. But G $\notin \tau$.

Theorem 2.10 For a *NS A* in the *NTS X*, C (*NFr* (*A*)) = *NInt* (*A*) \cup *NInt* (C (*A*)). **Proof :** Let *A* be the *NS* in the neutrosophic topological space *X*. Then by Definition 2.2, C (*NFr* (*A*)) = C (*NCl* (*A*) \cap *NCl* (C (*A*))) By Proposition 3.2 (1) [18] , = C (*NCl* (*A*)) \cup C (*NCl* (C (*A*))) By Proposition 4.2 (b) [18] , = *NInt* (C (*A*)) \cup *NInt* (*A*) Hence C (*NFr* (*A*)) = *NInt* (*A*) \cup *NInt* (C (*A*)).

Theorem 2.11 Let $A \subseteq B$ and $B \in NC$ (X) (resp., $B \in NO$ (X)). Then $NFr(A) \subseteq B$ (resp., $NFr(A) \subseteq C(B)$), where NC(X) (resp., NO(X)) denotes the class of neutrosophic closed (resp., neutrosophic open) sets in X. **Proof :** By Proposition 1.18 (d) [12], $A \subseteq B$,

Theorem 2.12 Let *A* be the *NS* in the *NTS* X. Then *NFr* (*A*) = *NCl* (*A*) – *NInt* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. By Proposition 4.2 (b) [18] , C (NCl (C (A))) = NInt (A) and by Definition 2.2, *NFr* (*A*) = *NCl* (*A*) \cap *NCl* (*C* (*A*)) = NCl (A) - C (NCl (C (A)))by using $A - B = A \cap C (B)$ By Proposition 4.2 (b) [18] , = NCl (A) - NInt (A)Hence *NFr* (*A*) = *NCl* (*A*) – *NInt* (*A*). **Theorem 2.13** For a *NS A* in the *NTS X*, *NFr* (*NInt* (*A*)) \subseteq *NFr* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space *X*. Then by Definition 2.2, *NFr* (*NInt* (*A*)) = *NCl* (*NInt* (*A*)) \cap *NCl* (*C* (*NInt* (*A*))) By Proposition 4.2 (a) [18], = NCl (*NInt* (*A*)) \cap *NCl* (*NCl* (*C* (*A*))) By Definition 4.4 (b) [18], = NCl (*NInt* (*A*)) \cap *NCl* (*C* (*A*)) By Definition 4.4 (a) [18], $\subseteq NCl$ (*A*) \cap *NCl* (*C* (*A*)) Again by Definition 2.2, = NFr (*A*) Hence *NFr* (*NInt* (*A*)) \subseteq *NFr* (*A*).

The converse of the above theorem is not true as shown by the following example.

Example 2.14 Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, C,$ D, 1_N }. Then (X, τ) is a neutrosophic topological space. The neutrosophic closed sets are C (τ) = { 1_N, E, F, G, H, 0_N } where $A = \langle (0.5, 0.6, 0.7), (0.1, 0.9, 0.4) \rangle,$ $B = \langle (0.3, 0.9, 0.2), (0.4, 0.1, 0.6) \rangle,$ $C = \langle (0.5, 0.9, 0.2), (0.4, 0.9, 0.4) \rangle,$ $D = \langle (0.3, 0.6, 0.7), (0.1, 0.1, 0.6) \rangle,$ $E = \langle (0.7, 0.4, 0.5), (0.4, 0.1, 0.1) \rangle,$ $F = \langle (0.2, 0.1, 0.3), (0.6, 0.9, 0.4) \rangle,$ $G = \langle (0.2, 0.1, 0.5), (0.4, 0.1, 0.4) \rangle$ and $H = \langle (0.7, 0.4, 0.3), (0.6, 0.9, 0.1) \rangle.$ Define $A_1 = \langle (0.4, 0.2, 0.8), (0.4, 0.5, 0.1) \rangle$. Then $C(A_1) = \langle (0.8, 0.8, 0.4), (0.1, 0.5, 0.4) \rangle.$ Therefore by Definition 2.2, NFr (A₁) = H $\not\subseteq$ 0_N = NFr (NInt (A_1)).

Theorem 2.15 For a *NS A* in the *NTS* X, *NFr* (*NCl* (*A*)) \subseteq *NFr* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 2.2, *NFr* (*NCl* (*A*)) = *NCl* (*NCl* (*A*)) \cap *NCl* (*C* (*NCl* (*A*))) By Proposition 1.18 (f) [12] and 4.2 (b) [18], = NCl (*A*) \cap *NCl* (*NInt* (*C* (*A*))) By Proposition 1.18 (a) [12], \subseteq *NCl* (*A*) \cap *NCl* (*C* (*A*)) Again by Definition 2.2, = NFr (*A*) Hence *NFr* (*NCl* (*A*)) \subseteq *NFr* (*A*).

The converse of the above theorem is not true as shown by the following example.

Example 2.16 From Example 2.14, let $A_2 = \langle (0.7, 0.9, 0.2), (0.5, 0.9, 0.3) \rangle$.

Then C (A₂) = $\langle (0.2, 0.1, 0.7), (0.3, 0.1, 0.5) \rangle$. Then by Definition 2.2, *NFr* (A₂) = G. Therefore *NFr* (A₂) = G $\notin 0_N = NFr$ (*NCl* (A₂)).

Theorem 2.17 Let *A* be the *NS* in the *NTS* X. Then *NInt* (*A*) \subseteq *A* – *NFr* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. Now by Definition 2.2, *A* – *NFr* (*A*) = *A* – (*NCl* (*A*) \cap *NCl* (*C* (*A*))) = (*A* – *NCl* (*A*)) \cup (*A* – *NCl* (*C* (*A*))) = *A* – *NCl* (*C* (*A*)) \supseteq *NInt* (*A*). Hence *NInt* (*A*) \subseteq *A* – *NFr* (*A*).

Example 2.18 From Example 2.14, $A_1 - NFr(A_1) = \langle (0.3, 0.2, 0.8), (0.1, 0.1, 0.6) \rangle$. Therefore $A_1 - NFr(A_1) = \langle (0.3, 0.2, 0.8), (0.1, 0.1, 0.6) \rangle \nsubseteq 0_N = NInt(A_1)$.

Remark 2.19 In general topology, the following conditions are hold :

 $NFr(A) \cap NInt(A) = 0_N,$

 $NInt(A) \cup NFr(A) = NCl(A),$

NInt (*A*) \cup *NInt* (C (*A*)) \cup *NFr* (*A*) = 1_N.

But the neutrosophic topology, we give counter-examples to show that the conditions of the above remark may not be hold in general.

Example 2.20 From Example 2.14, $NFr(A_2) \cap NInt(A_2) = G \cap C = G \neq 0_N.$

NInt $(A_2) \cup NFr(A_2) = C \cup G = C \neq 1_N = NCl(A_2).$

 $\begin{aligned} \textit{NInt} (A_2) \cup \textit{NInt} (C (A_2)) \cup \textit{NFr} (A_2) = C \cup 0_N \cup G \\ = C \neq 1_N. \end{aligned}$

Theorem 2.21 Let *A* and *B* be the two *NSs* in the *NTS* X. Then $NFr(A \cup B) \subset NFr(A) \cup NFr(B)$. **Proof**: Let A and B be the two NSs in the NTS X. Then by Definition 2.2, $NFr(A \cup B) = NCl(A \cup B) \cap NCl(C(A \cup B))$ By Proposition 3.2 (2) [18], $= NCl (A \cup B) \cap NCl (C (A) \cap C (B))$ by Proposition 1.18 (h) and (o) [12], $\subseteq (NCl(A) \cup NCl(B)) \cap (NCl(C(A)) \cap NCl(C(B)))$ $= [(NCl(A) \cup NCl(B)) \cap NCl(C(A))]$ \cap [(*NCl*(*A*) \cup *NCl*(*B*)) \cap *NCl*(C(*B*))] $= [(NCl(A) \cap NCl(C(A))) \cup (NCl(B) \cap NCl(C(A)))]$ $\cap [(NCl(A) \cap NCl(C(B))) \cup (NCl(B) \cap NCl(C(B)))]$ Again by Definition 2.2, $= [NFr(A) \cup (NCl(B) \cap NCl(C(A)))]$ \cap [(NCl (A) \cap NCl (C (B))) \cup NFr(B)] $= (NFr(A) \cup NFr(B)) \cap [(NCl(B) \cap NCl(C(A)))]$ \cup (*NCl* (*A*) \cap *NCl* (C (*B*)))]

 $\subseteq NFr(A) \cup NFr(B).$ Hence $NFr(A \cup B) \subseteq NFr(A) \cup NFr(B).$

The converse of the above theorem needs not be true as shown by the following example.

Example 2.22 By Example 2.14, we define $A_1 = \langle (0.2, 0, 0.5), (0.4, 0.1, 0.1) \rangle$, $A_2 = \langle (0.7, 0.9, 0.2), (0.5, 0.9, 0.3) \rangle$, $A_1 \cup A_2 = A_3 = \langle (0.7, 0.9, 0.2), (0.5, 0.9, 0.1) \rangle$ and $A_1 \cap A_2 = A_4 = \langle (0.2, 0, 0.5), (0.4, 0.1, 0.3) \rangle$. Then $C (A_1) = \langle (0.5, 1, 0.2), (0.1, 0.9, 0.4) \rangle$, $C (A_2) = \langle (0.2, 0.1, 0.7), (0.3, 0.1, 0.5) \rangle$, $C (A_3) = \langle (0.2, 0.1, 0.7), (0.1, 0.1, 0.5) \rangle$ and $C (A_4) = \langle (0.5, 1, 0.2), (0.3, 0.9, 0.4) \rangle$. Therefore *NFr* (A_1) \cup *NFr* (A_2) = E \cup G = E \nsubseteq G = *NFr* (A_3) = *NFr* ($A_1 \cup A_2$).

Note 2.23 The following example shows that $NFr(A \cap B) \notin NFr(A) \cap NFr(B)$ and $NFr(A) \cap NFr(B) \notin NFr(A \cap B)$.

Example 2.24 From Example 2.22, *NFr* ($A_1 \cap A_2$) = *NFr* (A_4) = E \nsubseteq G = *NFr* (A_1) \cap *NFr* (A_2). From Example 2.14, We define $B_1 = \langle (0.4, 0.5, 0.1), (0.2, 0.9, 0.5) \rangle$, $B_2 = \langle (0.5, 0.2, 0.9), (0.8, 0.4, 0.7) \rangle$, $B_1 \cup B_2 = B_3 = \langle (0.5, 0.5, 0.1), (0.8, 0.9, 0.5) \rangle$ and $B_1 \cap B_2 = B_4 = \langle (0.4, 0.2, 0.9), (0.2, 0.4, 0.7) \rangle$. Then C (B_1) = $\langle (0.1, 0.5, 0.4), (0.5, 0.1, 0.2) \rangle$, C (B_2) = $\langle (0.9, 0.8, 0.5), (0.7, 0.6, 0.8) \rangle$, C (B_4) = $\langle (0.9, 0.8, 0.4), (0.7, 0.6, 0.2) \rangle$. Therefore *NFr* (B_1) \cap *NFr* (B_2) = $1_N \cap 1_N = 1_N \nsubseteq$ H = *NFr* (B_4) = *NFr* ($B_1 \cap B_2$).

Theorem 2.25 For any NSs A and B in the NTS X, $NFr(A \cap B) \subset (NFr(A) \cap NCl(B)) \cup (NFr(B) \cap$ NCl(A)). **Proof**: Let A and B be the two NSs in the NTS X. Then by Definition 2.2, $NFr(A \cap B) = NCl(A \cap B) \cap NCl(C(A \cap B))$ By Proposition 3.2 (1) [18], $= NCl (A \cap B) \cap NCl (C (A) \cup C (B))$ By Proposition 1.18 (n) and (h) [12], \subset (NCl (A) \cap NCl (B)) \cap (NCl (C(A)) \cup NCl (C (B))) $= [(NCl(A) \cap NCl(B)) \cap NCl(C(A))]$ \cup [(*NCl*(*A*) \cap *NCl*(*B*)) \cap *NCl*(*C*(*B*))] Again by Definition 2.2, $= (NFr(A) \cap NCl(B)) \cup (NFr(B) \cap NCl(A))$ Hence $NFr (A \cap B) \subseteq (NFr (A) \cap NCl (B)) \cup$ $(NFr(B) \cap NCl(A)).$

The converse of the above theorem needs not be true as shown by the following example.

Example 2.26 From Example 2.24, (*NFr* (B₁) \cap *NCl* (B₂)) \cup (*NFr* (B₂) \cap *NCl* (B₁)) = $(1_N \cap 1_N) \cup (1_N \cap 1_N) = 1_N \cup 1_N = 1_N \nsubseteq H = NFr$ (B₁ \cap B₂).

Corollary 2.27 For any *NSs A* and *B* in the *NTS X*, *NFr* $(A \cap B) \subseteq NFr(A) \cup NFr(B)$. **Proof**: Let *A* and *B* be the two *NSs* in the *NTS X*. Then by Definition 2.2, *NFr* $(A \cap B) = NCl(A \cap B) \cap NCl(C(A \cap B))$ By Proposition 3.2 (1) [18], $= NCl(A \cap B) \cap NCl(C(A) \cup C(B))$ By Proposition 1.18 (n) and (h) [12], $\subseteq (NCl(A) \cap NCl(B)) \cap (NCl(C(A)) \cup NCl(C(B)))$ $= (NCl(A) \cap NCl(B) \cap NCl(C(A))) \cup NCl(C(B)))$ $= (NCl(A) \cap NCl(B) \cap NCl(C(A)))$ $\cup (NCl(A) \cap NCl(B) \cap NCl(C(B)))$ Again by Definition 2.2, $= (NFr(A) \cap NCl(B)) \cup (NCl(A) \cap NFr(B))$ $\subseteq NFr(A) \cup NFr(B)$ Hence $NFr(A \cap B) \subseteq NFr(A) \cup NFr(B)$.

The equality in the above corollary may not hold as seen in the following example.

Example 2.28 From Example 2.24, $NFr(B_1) \cup NFr(B_2) = 1_N \cup 1_N = 1_N \nsubseteq H = NFr(B_4)$ $= NFr(B_1 \cap B_2).$

Theorem 2.29 For any NS A in the NTS X, (1) $NFr(NFr(A)) \subseteq NFr(A)$, (2) $NFr(NFr(A)) \subseteq NFr(NFr(A))$. **Proof**: (1) Let A be the NS in the neutrosophic topological space X. Then by Definition 2.2, $NFr(NFr(A)) = NCl(NFr(A)) \cap NCl(C(NFr(A)))$ Again by Definition 2.2, $= NCl (NCl (A) \cap NCl (C (A))) \cap$ $NCl (C (NCl (A) \cap NCl (C (A))))$ By Proposition 1.18 (f) [12] and by 4.2 (b) [18], \subset (*NCl* (*NCl* (*A*)) \cap *NCl* (*NCl* (C (*A*)))) \cap NCl (NInt (C (A)) \cup NInt (A)) By Proposition 1.18 (f) [12], = (*NCl* (*A*) \cap *NCl* (C (*A*))) \cap (*NCl* (*NInt* (C (*A*))) \cup NCl (NInt (A)) \subseteq NCl (A) \cap NCl (C (A)) By Definition 2.2, = NFr(A)Therefore $NFr(NFr(A)) \subseteq NFr(A)$. (2) By Definition 2.2,

 $NFr (NFr (NFr (A))) = NCl (NFr (NFr (A))) \cap NCl (C (NFr (NFr (A))))$

By Proposition 1.18 (f) [12], $\subseteq (NFr (NFr (A))) \cap NCl (C (NFr (NFr (A))))$ $\subseteq NFr (NFr (A)).$ Hence $NFr (NFr (NFr (A))) \subseteq NFr (NFr (A)).$

Remark 2.30 From the above theorem, the converse of (1) needs not be true as shown by the following example and no counter-example could be found to establish the irreversibility of inequality in (2).

Example 2.31 Let $X = \{a, b\}$ and $\tau = \{0_N, A, B, 1_N\}$. Then (X, τ) is a neutrosophic topological space. The neutrosophic closed sets are C $(\tau) = \{1_N, C, D, 0_N\}$ where

$$\begin{split} &A = \langle (0.8, 0.4, 0.5), (0.4, 0.6, 0.7) \rangle, \\ &B = \langle (0.4, 0.2, 0.9), (0.1, 0.4, 0.9) \rangle, \\ &C = \langle (0.5, 0.6, 0.8), (0.7, 0.4, 0.4) \rangle \text{ and} \\ &D = \langle (0.9, 0.8, 0.4), (0.9, 0.6, 0.1) \rangle. \text{ Define} \\ &A_1 = \langle (0.6, 0.7, 0.8), (0.5, 0.4, 0.5) \rangle. \text{ Then} \\ &C (A_1) = \langle (0.8, 0.3, 0.6), (0.5, 0.6, 0.5) \rangle. \\ &\text{Therefore by Definition 2.2, NFr } (A_1) = D \nsubseteq C = NFr (NFr (A_1)). \end{split}$$

Theorem 2.32 Let A, B, C and D be the NSs in the NTS X. Then $(A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)$.

Proof : Let *A*, *B*, *C* and *D* be the *NSs* in the *NTS* X. Then by Definition 2.2 [12],

 $\mu_{(A \cap B) \times (C \cap D)}(x, y)$

 $= \min \{ \mu_{(A \cap B)}(x), \mu_{(C \cap D)}(y) \}$

= min { min { $\mu_A(x)$, $\mu_B(x)$ }, min { $\mu_C(y)$, $\mu_D(y)$ } }

= min { min { $\mu_A(x)$, $\mu_D(y)$ }, min { $\mu_B(x)$, $\mu_C(y)$ } } = min { $\mu_{(A \times D)}(x, y)$, $\mu_{(B \times C)}(x, y)$ }.

Thus $\mu_{(A \times D)}(x, y), \mu_{(B \times C)}(x, y) = \mu_{(A \times D)}(x, y)$

Thus $\mu_{(A \cap B) \times (C \cap D)}(x, y) = \mu_{(A \times D) \cap (B \times C)}(x, y)$. Similarly

 $\sigma_{(A \cap B) \times (C \cap D)}(x, y)$ = min { $\sigma_{(A \cap B)}(x), \sigma_{(C \cap D)}(y)$ } = min { min { $\sigma_A(x), \sigma_B(x)$ }, min { $\sigma_C(y), \sigma_D(y)$ } }

 $= \min \left\{ \min \left\{ O_A(x), O_B(x) \right\}, \min \left\{ O_C(y), O_D(y) \right\} \right\}$

 $= \min \{ \min \{ \sigma_A(x), \sigma_D(y) \}, \min \{ \sigma_B(x), \sigma_C(y) \} \}$

 $= \min \{ \sigma_{(A \times D)}(x, y), \sigma_{(B \times C)}(x, y) \}.$ Thus $\sigma_{(A \cap B) \times (C \cap D)}(x, y) = \sigma_{(A \times D) \cap (B \times C)}(x, y).$

And also

 $\gamma_{(A \cap B) \times (C \cap D)}(x, y)$

 $= \max \{ \gamma_{(A \cap B)}(x), \gamma_{(C \cap D)}(y) \}$ $= \max \{ \max \{ \gamma_A(x), \gamma_B(x) \}, \max \{ \gamma_C(y), \gamma_D(y) \} \}$ $= \max \{ \max \{ \gamma_A(x), \gamma_D(y) \}, \max \{ \gamma_B(x), \gamma_C(y) \} \}$ $= \max \{ \gamma_{(A \times D)}(x, y), \gamma_{(B \times C)}(x, y) \}.$ Thus $\gamma_{(A \cap B) \times (C \cap D)}(x, y) = \gamma_{(A \times D) \cap (B \times C)}(x, y).$

Hence $(A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)$.

Theorem 2.33 Let X_i , i = 1, 2, ..., n be a family of neutrosophic product related *NTSs*. If each A_i is a *NS* in X_i . Then *NFr* ($\prod_{i=1}^n A_i$) = [*NFr* (A_1) × *NCl* (A_2) × ··· × *NCl* (A_n)] \cup [*NCl* (A_1) × *NFr* (A_2) × *NCl* (A_3)

 $\times \cdots \times NCl(A_n)] \cup \cdots \cup [NCl(A_1) \times NCl(A_2) \times \cdots \times NFr(A_n)].$

Proof : It suffices to prove this for n = 2. Let A_i be the *NS* in the neutrosophic topological space X_i . Then by Definition 2.2, *NFr* $(A_1 \times A_2) = NCl (A_1 \times A_2) \cap NCl (C (A_1 \times A_2))$ By Proposition 4.2 (a) [18] , $= NCl (A_1 \times A_2) \cap C (NInt (A_1 \times A_2))$ By Theorem 2.17 (1) and (2) [12] , $= (NCl (A_1) \times NCl (A_2)) \cap C (NInt (A_1) \times NInt (A_2))$ $= (NCl (A_1) \times NCl (A_2)) \cap$

 $C[(NInt (A_1) \cap NSCl (A_1)) \times (NInt (A_2) \cap NCl (A_2))]$ By Lemma 2.3 (iii) [12],

 $= (NCl (A_1) \times NCl (A_2)) \cap [C (NInt (A_1) \cap NCl (A_1)) \times 1_N \cup 1_N \times C (NInt (A_2) \cap NCl (A_2))] = (NCl (A_1) \times NCl (A_2)) \cap [(NCl (C (A_1)) \cup NInt (C (A_1))) \times 1_N \cup 1_N \times (NCl (C (A_2)) \cup NInt (C (A_2)))] = (NCl (A_1) \times NCl (A_2)] \cap [(NCl (C (A_1)) \times 1_N) \cup (1_N \times NCl (C (A_2)))] = [(NCl (A_1) \times NCl (A_2)) \cap (NCl (C (A_1)) \times 1_N)] \cup [(NCl (A_1) \times NCl (A_2)) \cap (NCl (C (A_1)) \times 1_N)] \cup [(NCl (A_1) \times NCl (A_2)) \cap (1_N \times NCl (C (A_2)))]$ By Theorem 2.32,

 $= [(NCl(A_1) \cap NCl(C(A_1))) \times (1_N \cap NCl(A_2))]$ $\cup [(NCl(A_1) \cap 1_N) \times (NCl(A_2) \cap NCl(C(A_2)))]$ $= (NFr(A_1) \times NCl(A_2)) \cup (NCl(A_1) \times NFr(A_2)).$ Hence NFr(A₁ × A₂) = (NFr(A₁) × NCl(A₂)) \cup (NCl(A₁) × NFr(A₂)).

III. NEUTROSOPHIC SEMI-FRONTIER

In this section, we introduce the neutrosophic semi-frontier and their properties in neutrosophic topological spaces.

Definition 3.1 Let A be a NS in the NTS X. Then the neutrosophic semi-frontier of A is defined as $NSFr(A) = NSCl(A) \cap NSCl(C(A))$. Obviously NSFr(A) is a NSC set in X.

Theorem 3.2 Let *A* be a *NS* in the *NTS* X. Then the following conditions are holds : (i) *NSCl* (*A*) = $A \cup NInt$ (*NCl* (*A*)), (ii) *NSInt* (*A*) = $A \cap NCl$ (*NInt* (*A*)). **Proof :** (i) Let *A* be a *NS* in X. Consider *NInt* (*NCl* ($A \cup NInt$ (*NCl* (*A*))) = *NInt* (*NCl* ($A \cup NInt$ (*NCl* (*A*))) = *NInt* (*NCl* (*A*)) $\subseteq A \cup NInt$ (*NCl* (*A*)) It follows that $A \cup NInt$ (*NCl* (*A*)) is a *NSC* set in X. Hence *NSCl* ($A) \subseteq A \cup NInt$ (*NCl* (*A*)) ------- (1) By Proposition 6.3 (ii) [12], NSCl (A) is NSC set in X. We have NInt (NCl (A)) \subseteq NInt (NCl (NSCl (A))) \subseteq NSCl (A).

Thus $A \cup NInt (NCl(A)) \subseteq NSCl(A)$ ------ (2). From (1) and (2), $NSCl(A) = A \cup NInt (NCl(A))$.

(ii) This can be proved in a similar manner as (i).

Theorem 3.3 For a *NS A* in the *NTS X*, *NSFr* (*A*) = *NSFr* (C (*A*)). **Proof :** Let *A* be the *NS* in the neutrosophic topological space *X*. Then by Definition 3.1, *NSFr* (*A*) = *NSCl* (*A*) \cap *NSCl* (C (*A*)) = *NSCl* (C (*A*)) \cap *NSCl* (*A*) = *NSCl* (C (*A*)) \cap *NSCl* (C (*C* (*A*))) Again by Definition 3.1, = *NSFr* (C (*A*)) Hence *NSFr* (*A*) = *NSFr* (C (*A*)).

Theorem 3.4 If *A* is *NSC* set in X, then $NSFr(A) \subseteq A$. **Proof :** Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 3.1, $NSFr(A) = NSCl(A) \cap NSCl(C(A))$ $\subseteq NSCl(A)$ By Proposition 6.3 (ii) [12], = AHence $NSFr(A) \subseteq A$, if *A* is *NSC* in X.

The converse of the above theorem is not true as shown by the following example.

Example 3.5 Let X = { a, b, c } and τ = { 0_N , A, B, C, D, 1_N }. Then (X, τ) is a neutrosophic topological space. The neutrosophic closed sets are C (τ) = { 1_N , F, G, H, I, 0_N } where A = $\langle (0.5, 0.6, 0.7), (0.1, 0.8, 0.4), (0.7, 0.2, 0.3) \rangle$, B = $\langle (0.8, 0.8, 0.5), (0.5, 0.4, 0.2), (0.9, 0.6, 0.7) \rangle$, C = $\langle (0.8, 0.8, 0.5), (0.5, 0.8, 0.2), (0.9, 0.6, 0.3) \rangle$, D = $\langle (0.5, 0.6, 0.7), (0.1, 0.4, 0.4), (0.7, 0.2, 0.7) \rangle$, E = $\langle (0.8, 0.8, 0.4), (0.5, 0.8, 0.1), (0.9, 0.7, 0.2) \rangle$, F = $\langle (0.7, 0.4, 0.5), (0.4, 0.2, 0.1), (0.3, 0.8, 0.7) \rangle$, G = $\langle (0.5, 0.2, 0.8), (0.2, 0.6, 0.5), (0.7, 0.4, 0.9) \rangle$, H = $\langle (0.7, 0.4, 0.5), (0.4, 0.6, 0.1), (0.7, 0.8, 0.7) \rangle$ and

 $\begin{array}{l} J = \langle \ (\ 0.4,\ 0.2,\ 0.8),\ (0.1,\ 0.2,\ 0.5)\ ,\ (0.2,\ 0.3,\ 0.9)\ \rangle. \\ Here \ E \ and \ J \ are \ neutrosophic \ semi-open \ and \\ neutrosophic \ semi-closed \ set \ respectively. Therefore \\ the \ neutrosophic \ semi-open \ and \ neutrosophic \ semi-closed \ set \ topologies \ are \ \tau_{NSO} = 0_N,\ A,\ B,\ C,\ D,\ E,\ 1_N \\ and \ C \ (\tau)_{NSC} = \ 1_N,\ F,\ G,\ H,\ I,\ J,\ 0_N \ . \ Therefore \\ \textit{NSFr}\ (C) = H \subseteq C. \ But\ C \not\in C\ (\tau)_{NSC}. \end{array}$

Theorem 3.6 If A is NSO set in X, then NSFr (A) \subseteq C (A).

Proof: Let *A* be the *NS* in the neutrosophic topological space X. Then by Proposition 4.3 [12], *A* is *NSO* set implies C (*A*) is *NSC* set in X. By Theorem 3.4, *NSFr* (C (*A*)) \subseteq C (*A*) and by Theorem 3.3, we get *NSFr* (*A*) \subseteq C (*A*).

The converse of the above theorem is not true as shown by the following example.

Example 3.7 From Example 3.5, *NSFr* (J) = J \subseteq C (J) = E. But J $\notin \tau_{NSO}$.

Hence $NSFr(A) \subseteq B$.

Theorem 3.9 Let *A* be the *NS* in the *NTS* X. Then C (*NSFr* (*A*)) = *NSInt* (*A*) \cup *NSInt* (C (*A*)). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 3.1, C (*NSFr* (*A*)) = C (*NSCl* (*A*) \cap *NSCl* (C (*A*))) By Proposition 3.2 (1) [18], $= C (NSCl (A)) \cup C (NSCl (C (A)))$ By Proposition 6.2 (ii) [12], $= NSInt (C (A)) \cup NSInt (A)$ Hence C (*NSFr* (*A*)) = *NSInt* (*A*) \cup *NSInt* (C (*A*)).

Theorem 3.10 For a *NS A* in the *NTS* X, then $NSFr(A) \subseteq NFr(A)$. **Proof**: Let *A* be the *NS* in the neutrosophic topological space X. Then by Proposition 6.4 [12], $NSCl(A) \subseteq NCl(A)$ and $NSCl(C(A)) \subseteq NCl(C(A))$. Now by Definition 3.1, $NSFr(A) = NSCl(A) \cap NSCl(C(A))$ $\subseteq NCl(A) \cap NCl(C(A))$ By Definition 2.2, = NFr(A)Hence $NSFr(A) \subseteq NFr(A)$.

The converse of the above theorem is not true as shown by the following example.

Example 3.11 From Example 3.5, let $A_1 = \langle (0.4, 0.1, 0.9), (0.1, 0.2, 0.6), (0.1, 0.3, 0.9) \rangle$, then C (A₁) = $\langle (0.9, 0.9, 0.4), (0.6, 0.8, 0.1), (0.9, 0.7, 0.1) \rangle$. Therefore *NFr* (A₁) = H \nsubseteq J = *NSFr* (A₁).

Theorem 3.12 For a *NS A* in the *NTS X*, then $NSCl (NSFr (A)) \subseteq NFr (A)$. **Proof**: Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 3.1, $NSCl (NSFr (A)) = NSCl (NSCl (A) \cap NSCl (C (A)))$ $\subseteq NSCl (NSCl (A)) \cap NSCl (NSCl (C (A)))$ By Proposition 6.3 (iii) [12], $= NSCl (A) \cap NSCl (C (A))$ By Definition 3.1, = NSFr (A)By Theorem 3.10, $\subseteq NFr (A)$ Hence $NSCl (NSFr (A)) \subseteq NFr (A)$.

The converse of the above theorem is not true as shown by the following example.

Example 3.13 From Example 3.5, $NFr(A_1) = H \nsubseteq J$ = $NSCl(NSFr(A_1))$.

Theorem 3.14 Let *A* be a *NS* in the *NTS* X. Then *NSFr* (*A*) = *NSCl* (*A*) – *NSInt* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. By Proposition 6.2 (ii) [12], C (*NSCl* (C (*A*))) = *NSInt* (*A*) and by Definition 3.1, *NSFr* (*A*) = *NSCl* (*A*) \cap *NSCl* (C (*A*)) = *NSCl* (*A*) \cap *C* (*NSCl* (C (*A*))) by using *A* – *B* = *A* \cap C (*B*) By Proposition 6.2 (ii) [12], = *NSCl* (*A*) – *NSInt* (*A*) Hence *NSFr* (*A*) = *NSCl* (*A*) – *NSInt* (*A*). **Theorem 3.15** For a *NS A* in the *NTS* X, then

$$\begin{split} NSFr \ (NSInt \ (A)) &\subseteq NSFr \ (A). \\ \textbf{Proof} : Let \ A \ be the \ NS \ in the neutrosophic topological space X. Then by Definition 3.1, \\ NSFr \ (NInt \ (A)) &= NSCl(NInt(A)) \cap NSCl(C(NSInt \ (A))) \\ By \ Proposition \ 6.2 \ (i) \ [12], \\ &= NSCl(NSInt(A)) \cap NSCl(NSCl(C(A))) \\ By \ Proposition \ 6.3 \ (iii) \ [12], \\ &= NSCl \ (NSInt \ (A)) \cap NSCl \ (C \ (A)) \\ By \ Proposition \ 5.2 \ (ii) \ [12], \\ &\subseteq NSCl \ (A) \cap NSCl \ (C \ (A)) \\ By \ Definition \ 3.1, \\ &= NSFr \ (A) \\ Hence \ NSFr \ (NSInt \ (A)) \subseteq NSFr \ (A). \end{split}$$

The converse of the above theorem is not true as shown by the following example.

Example 3.16 Let $X = \{a, b, c\}$ and $\tau_{NSO} = 0_N$, A, B, C, D, E, 1_N and C $(\tau)_{NSC} = 1_N$, F, G, H, I, J, 0_N where $A = \langle (0.3, 0.4, 0.2), (0.5, 0.6, 0.7), (0.9, 0.5, 0.2) \rangle,$ $B = \langle (0.3, 0.5, 0.1), (0.4, 0.3, 0.2), (0.8, 0.4, 0.6) \rangle,$ $C = \langle (0.3, 0.5, 0.1), (0.5, 0.6, 0.2), (0.9, 0.5, 0.2) \rangle,$ $D = \langle (0.3, 0.4, 0.2), (0.4, 0.3, 0.7), (0.8, 0.4, 0.6) \rangle,$ $E = \langle (0.5, 0.6, 0.1), (0.6, 0.7, 0.1), (0.9, 0.5, 0.2) \rangle$ $F = \langle (0.2, 0.6, 0.3), (0.7, 0.4, 0.5), (0.2, 0.5, 0.9) \rangle,$ $G = \langle (0.1, 0.5, 0.3), (0.2, 0.7, 0.4), (0.6, 0.6, 0.8) \rangle$ $H = \langle (0.1, 0.5, 0.3), (0.2, 0.4, 0.5), (0.2, 0.5, 0.9) \rangle$ $I = \langle (0.2, 0.6, 0.3), (0.7, 0.7, 0.4), (0.6, 0.6, 0.8) \rangle$ and $J = \langle (0.1, 0.4, 0.5), (0.1, 0.3, 0.6), (0.2, 0.5, 0.9) \rangle.$ Define $A_1 = \langle (0.2, 0.3, 0.4), (0.4, 0.5, 0.6), (0.3, 0.4) \rangle$ (0.8)). Then C (A₁) = $\langle (0.4, 0.7, 0.2), (0.6, 0.5, 0.4), (0.8, 0.4) \rangle$ 0.6, 0.3) \rangle . Therefore NSFr (A₁) = I \nsubseteq 0_N = NSFr (NSInt (A_1)).

Theorem 3.17 For a *NS A* in the *NTS X*, then *NSFr* (*NSCl* (*A*)) \subseteq *NSFr* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. Then by Definition 3.1, *NSFr*(*NSCl*(*A*))=*NSCl*(*NSCl*(*A*)) \cap *NSCl*(*C*(*NSCl* (*A*))) By Proposition 6.3 (iii) and Proposition 6.2 (ii) [12] , = NSCl (*A*) \cap *NSCl* (*NSInt* (C (*A*))) By Proposition 5.2 (i) [12] , $\subseteq NSCl$ (*A*) \cap *NSCl* (C (*A*)) By Definition 3.1, = NSFr (*A*) Hence *NSFr* (*NSCl* (*A*)) \subseteq *NSFr* (*A*).

The converse of the above theorem is not true as shown by the following example.

Example 3.18 From Example 3.16, let $A_2 = \langle (0.2, 0.6, 0.2), (0.3, 0.4, 0.6), (0.3, 0.4, 0.8) \rangle$. Then C (A₂) = $\langle (0.2, 0.4, 0.2), (0.6, 0.6, 0.3), (0.8, 0.6, 0.3) \rangle$. Therefore *NSFr* (A₂) = $1_N \nsubseteq 0_N = NSFr$ (*NSCl* (A₂)).

Theorem 3.19 Let *A* be the *NS* in the *NTS* X. Then *NSInt* (*A*) \subseteq *A* – *NSFr* (*A*). **Proof** : Let *A* be the *NS* in the neutrosophic topological space X. Now by Definition 3.1, *A* – *NSFr* (*A*) = *A* – (*NSCl* (*A*) \cap *NSCl* (C (*A*))) = (*A* – *NSCl* (*A*)) \cup (*A* – *NSCl* (C (*A*))) = *A* – *NSCl* (C (*A*)) \supseteq *NSInt* (*A*).

Hence $NSInt(A) \subseteq A - NSFr(A)$.

The converse of the above theorem is not true as shown by the following example.

Example 3.20 From Example 3.16, $A_1 - NSFr(A_1) = \langle (0.2, 0.3, 0.4), (0.4, 0.3, 0.7), (0.3, 0.4, 0.8) \rangle \notin 0_N = NSInt(A_1).$

Remark 3.21 In general topology, the following conditions are hold :

 $NSFr(A) \cap NSInt(A) = 0_N,$

 $NSInt(A) \cup NSFr(A) = NSCl(A),$

NSInt (*A*) \cup *NSInt* (C (*A*)) \cup *NSFr* (*A*) = 1_N.

But the neutrosophic topology, we give counter-examples to show that the conditions of the above remark may not be hold in general.

Example 3.22 From Example 3.16, define $A_1 = \langle (0.4, 0.6, 0.1), (0.5, 0.8, 0.3), (0.9, 0.6, 0.2) \rangle$. Then C $(A_1) = \langle (0.1, 0.4, 0.4), (0.3, 0.2, 0.5), (0.2, 0.4, 0.9) \rangle$. Therefore *NSFr* $(A_1) \cap NSInt (A_1) = F \cap D = \langle (0.2, 0.4, 0.3), (0.4, 0.3, 0.7), (0.2, 0.4, 0.9) \rangle \neq 0_N$.

NSInt (A₁) \cup *NSFr* (A₁) = D \cup F = \langle (0.3, 0.6, 0.2), (0.7, 0.4, 0.5), (0.8, 0.5, 0.6) $\rangle \neq 1_N = NSCl$ (A₁).

 $\begin{array}{l} NSInt \ (A_1) \cup NSInt \ (C \ (A_1)) \cup NSFr \ (A_1) = D \cup 0_N \\ \cup F = \langle \ (\ 0.3, \ 0.6, \ 0.2), \ (0.7, \ 0.4, \ 0.5), \ (0.8, \ 0.5, \ 0.6) \ \rangle \\ \neq 1_N. \end{array}$

Theorem 3.23 Let A and B be NSs in the NTS X. Then $NSFr(A \cup B) \subseteq NSFr(A) \cup NSFr(B)$. **Proof**: Let A and B be NSs in the NTS X. Then by Definition 3.1, $NSFr(A \cup B) = NSCl(A \cup B) \cap NSCl(C(A \cup B))$ By Proposition 3.2 (2) [18], $= NSCl (A \cup B) \cap NSCl (C (A) \cap C (B))$ By Proposition 6.5 (i) and (ii) [12], $\subseteq (NSCl(A) \cup NSCl(B)) \cap (NSCl(C(A)) \cap NSCl(C(B)))$ $= [(NSCl(A) \cup NSCl(B)) \cap NSCl(C(A))] \cap$ $[(NSCl (A) \cup NSCl (B)) \cap NSCl (C (B))]$ $= [(NSCl(A) \cap NSCl(C(A))) \cup (NSCl(B) \cap NSCl(C(A)))]$ $\cap [(NSCl(A) \cap NSCl(C(B))) \cup (NSCl(B) \cap NSCl(C(B)))]$ By Definition 3.1, $= [NSFr(A) \cup (NSCl(B) \cap NSCl(C(A)))] \cap$ $[(NSCl(A) \cap NSCl(C(B))) \cup NSFr(B)]$ = (*NSFr*(*A*) \cup *NSFr*(*B*)) \cap [(*NSCl*(*B*) \cap $NSCl(C(A))) \cup (NSCl(A) \cap NSCl(C(B)))]$ \subseteq NSFr (A) \cup NSFr (B). Hence $NSFr(A \cup B) \subseteq NSFr(A) \cup NSFr(B)$.

The converse of the above theorem needs not be true as shown by the following example.

Example 3.24 Let $X = \{ a \}$ with $\tau_{NSO} = 0_N$, A, B, C, D, 1_N and C $(\tau)_{NSC} = 1_N$, E, F, G, H, 0_N where $A = \langle (0.6, 0.8, 0.4) \rangle$,

 $B = \langle (0.4, 0.9, 0.7) \rangle$, $C = \langle (0.6, 0.9, 0.4) \rangle,$ $D = \langle (0.4, 0.8, 0.7) \rangle,$ $E = \langle (0.4, 0.2, 0.6) \rangle,$ $F = \langle (0.7, 0.1, 0.4) \rangle,$ $G = \langle (0.4, 0.1, 0.6) \rangle$ and $H = \langle (0.7, 0.2, 0.4) \rangle$. Now we define $B_1 = \langle (0.7, 0.6, 0.5) \rangle,$ $B_2 = \langle (0.6, 0.8, 0.2) \rangle$, $B_1 \cup B_2 = B_3 = \langle (0.7, 0.8, 0.2) \rangle$ and $B_1 \cap B_2 = B_4 = \langle (0.6, 0.6, 0.5) \rangle$. Then $C(B_1) = \langle (0.5, 0.4, 0.7) \rangle,$ $C(B_2) = \langle (0.2, 0.2, 0.6) \rangle,$ C (B₃) = $\langle (0.2, 0.2, 0.7) \rangle$ and $C(B_4) = \langle (0.5, 0.4, 0.6) \rangle.$ Therefore *NSFr* (B₁) \cup *NSFr* (B₂) = 1_N \cup E = 1_N \nsubseteq E $= NSFr (B_3) = NSFr (B_1 \cup B_2).$

Note 3.25 The following example shows that $NSFr(A \cap B) \nsubseteq NSFr(A) \cap NSFr(B)$ and $NSFr(A) \cap NSFr(B) \nsubseteq NSFr(A \cap B)$.

Example 3.26 From Example 3.24, we define $A_1 = \langle (0.5, 0.1, 0.9) \rangle$, $A_2 = \langle (0.3, 0.5, 0.6) \rangle$, $A_1 \cup A_2 = A_3 = \langle (0.5, 0.5, 0.6) \rangle$, and $A_1 \cap A_2 = A_4 = \langle (0.3, 0.1, 0.9) \rangle$. Then $C (A_1) = \langle (0.9, 0.9, 0.5) \rangle$, $C (A_2) = \langle (0.6, 0.5, 0.3) \rangle$, $C (A_3) = \langle (0.6, 0.5, 0.5) \rangle$ and $C (A_4) = \langle (0.9, 0.9, 0.3) \rangle$. Therefore *NSFr* (A_1) $\cap NSFr$ (A_2) = $F \cap 1_N = F \nsubseteq G$ = *NSFr* (A_4) = *NSFr* ($A_1 \cap A_2$).

Also *NSFr* ($\mathbf{B}_1 \cap \mathbf{B}_2$) = *NSFr* (\mathbf{B}_4) = $\mathbf{1}_N \not\subseteq \mathbf{E} = \mathbf{1}_N \cap \mathbf{E}$ = *NSFr* (\mathbf{B}_1) \cap *NSFr* (\mathbf{B}_2).

Theorem 3.27 For any NSs A and B in the NTS X, $NSFr (A \cap B) \subseteq (NSFr (A) \cap NSCl (B)) \cup$ $(NSFr(B) \cap NSCl(A)).$ **Proof**: Let A and B be NSs in the NTS X. Then by Definition 3.1, $NSFr(A \cap B) = NSCl(A \cap B) \cap NSCl(C(A \cap B))$ By Proposition 3.2 (1) [18], $= NSCl (A \cap B) \cap NSCl (C (A) \cup C (B))$ By Proposition 6.5 (ii) and (i) [12], \subseteq (NSCl(A) \cap NSCl (B)) \cap (NSCl(C(A)) \cup NSCl(C(B))) $= [(NSCl(A) \cap NSCl(B)) \cap NSCl(C(A))] \cup$ $[(NSCl(A) \cap NSCl(B)) \cap NSCl(C(B))]$ By Definition 3.1, $= (NSFr(A) \cap NSCl(B)) \cup (NSFr(B) \cap NSCl(A))$ Hence $NSFr(A \cap B) \subseteq (NSFr(A) \cap NSCl(B)) \cup$ $(NSFr(B) \cap NSCl(A)).$

The converse of the above theorem is not true as shown by the following example.

Example 3.28 From Example 3.24, (*NSFr* (A₁) \cap *NSCl* (A₂)) \cup (*NSFr* (A₂) \cap *NSCl* (A₁)) = (F \cap 1_N) \cup (1_N \cap F) = F \cup F = F \nsubseteq G = *NSFr* (A₁ \cap A₂).

Corollary 3.29 For any *NSs A* and *B* in the *NTS X*, *NSFr* $(A \cap B) \subseteq NSFr$ $(A) \cup NSFr$ (B). **Proof :** Let *A* and *B* be *NSs* in the *NTS X*. Then by Definition 3.1, *NSFr* $(A \cap B) = NSCl$ $(A \cap B) \cap NSCl$ $(C (A \cap B))$ By Proposition 3.2 (1) [18] , = NSCl $(A \cap B) \cap NSCl$ $(C (A) \cup C (B)$) By Proposition 6.5 (ii) and (i) [12] , $\subseteq (NSCl(A) \cap NSCl(B)) \cap (NSCl(C(A)) \cup NSCl(C(B)))$ $= (NSCl (A) \cap NSCl (B) \cap NSCl (C (A))) \cup$ $(NSCl (A) \cap NSCl (B) \cap NSCl (C (B))$) By Definition 3.1, $= (NSFr (A) \cap NSCl (B)) \cup (NSCl (A) \cap NSFr (B))$ $\subseteq NSFr (A) \cup NSFr (B)$. Hence *NSFr* $(A \cap B) \subseteq NSFr (A) \cup NSFr (B)$.

The equality in the above theorem may not hold as seen in the following example.

Example 3.30 From Example 3.24, NSFr (A₁) \cup NSFr (A₂) = F \cup 1_N = 1_N \nsubseteq G = NSFr (A₄) = NSFr (A₁ \cap A₂).

Theorem 3.31 For any NS A in the NTS X, (1) $NSFr(NSFr(A)) \subseteq NSFr(A)$, (2) $NSFr(NSFr(NSFr(A))) \subset NSFr(NSFr(A))$. **Proof**: (1) Let A be the NS in the neutrosophic topological space X. Then by Definition 3.1, NSFr(NSFr(A)) $= NSCl (NSFr (A)) \cap NSCl (C (NSFr (A)))$ By Definition 3.1, $= NSCl (NSCl (A) \cap NSCl (C (A))) \cap$ $NSCl (C (NSCl (A) \cap NSCl (C (A))))$ By Proposition 6.3 (iii) and 6.2 (ii) [12], \subset (*NSCl* (*NSCl* (*A*)) \cap *NSCl* (*NSCl* (C (*A*)))) \cap $NSCl (NSInt (C (A)) \cup NSInt (A))$ By Proposition 6.3 (iii) [12], = (NSCl (A) \cap NSCl (C (A))) \cap (NSCl (NSInt(C (A))) \cup NSCl (NSInt (A)) \subseteq NSCl (A) \cap NSCl (C (A)) By Definition 3.1, = NSFr(A)Therefore $NSFr(NSFr(A)) \subseteq NSFr(A)$. (2) By Definition 3.1, NSFr(NSFr(NSFr(A))) = NSCl(NSFr(NSFr(A))) \cap NSCl (C (NSFr (NSFr (A))))

By Proposition 6.3 (iii) [12], \subseteq (*NSFr* (*NSFr* (*A*))) \cap *NSCl* (C (*NSFr* (*NSFr* (*A*)))) \subseteq *NSFr* (*NSFr* (*A*)). Hence *NSFr* (*NSFr* (*NSFr* (*A*))) \subseteq *NSFr* (*NSFr* (*A*)).

Remark 3.32 From the above theorem, the converse of (1) needs not be true as shown by the following example and no counter-example could be found to establish the irreversibility of inequality in (2).

Example 3.33 From Example 3.16, $NSFr(A_2) = 1_N \not\subseteq 0_N = NSFr(NSFr(A_2)).$

Theorem 3.34 Let X_i , i = 1, 2, ..., n be a family of neutrosophic product related NTSs. If each A_i is a NS in X_i, then NSFr ($\prod_{i=1}^{n} A_i$) = [NSFr (A₁) × NSCl $(A_2) \times \cdots \times NSCl(A_n)] \cup [NSCl(A_1) \times NSFr(A_2) \times$ $NSCl(A_3) \times \cdots \times NSCl(A_n)] \cup \cdots \cup [NSCl(A_1) \times$ $NSCl(A_2) \times \cdots \times NSFr(A_n)$]. **Proof** : It suffices to prove this for n = 2. Let A_i be the NS in the neutrosophic topological space X_i. Then by Definition 3.1, $NSFr(A_1 \times A_2) = NSCl(A_1 \times A_2) \cap NSCl(C(A_1 \times A_2))$ By Proposition 6.2 (i) [12], $= NSCl (A_1 \times A_2) \cap C (NSInt (A_1 \times A_2))$ By Theorem 6.9 (i) and (ii) [12], $= (NSCl(A_1) \times NSCl(A_2)) \cap C(NSInt(A_1) \times NSInt(A_2))$ $= (NSCl(A_1) \times NSCl(A_2)) \cap C [(NSInt(A_1)) \cap$ $NSCl(A_1)$) × ($NSInt(A_2) \cap NSCl(A_2)$)] By Lemma 2.3 (iii) [12], = (NSCl (A_1) × NSCl (A_2)) \cap [C (NSInt (A_1) \cap $NSCl(A_1)$) × 1_N \cup 1_N × C($NSInt(A_2) \cap NSCl(A_2)$) = $(NSCl(A_1) \times NSCl(A_2)) \cap [(NSCl(C(A_1)) \cup NSInt(C(A_1)))]$)) × 1_N \cup 1_N × (*NSCl* (C (A_2)) \cup *NSInt* (C (A_2)))] = $(NSCl(A_1) \times NSCl(A_2)] \cap [(NSCl(C(A_1)) \times 1_N)]$ $\cup (1_N \times NSCl (C (A_2)))]$ $= [(NSCl(A_1) \times NSCl(A_2)) \cap (NSCl(C(A_1)) \times 1_N)]$ $\cup [(NSCl(A_1) \times NSCl(A_2)) \cap (1_N \times NSCl(C(A_2)))]$ By Theorem 2.32, = $[(NSCl(A_1) \cap NSCl(C(A_1))) \times (1_N \cap NSCl(A_2))]$ $\cup [(NSCl(A_1) \cap 1_N) \times (NSCl(A_2) \cap NSCl(C(A_2)))]$ $= (NSFr (A_1) \times NSCl (A_2)) \cup (NSCl (A_1) \times NSFr (A_2))$ Hence $NSFr(A_1 \times A_2) = (NSFr(A_1) \times NSCl(A_2)) \cup$ $(NSCl(A_1) \times NSFr(A_2)).$

CONCLUSION

In this paper, we studied the concepts of frontier and semi-frontier in neutrosophic topological spaces. In future, we plan to extend this neutrosophic topology concepts by neutrosophic continuous, neutrosophic semi-continuous, neutrosophic almost continuous and neutrosophic weakly continuous in neutrosophic topological spaces, and also to expand this neutrosophic concepts by nets, filters and borders.

REFERENCES

[1] K. Atanassov, Intuitionistic fuzzy sets, in V.Sgurev, ed.,Vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg. Academy of Sciences (1984)).

[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96.

[3] K. Atanassov, Review and new result on intuitionistic fuzzy sets , preprint IM-MFAIS-1-88, Sofia, 1988.

[4] Athar Kharal, A study of frontier and semifrontier in intuitionistic fuzzy topological spaces, Hindawi Publishing Corporation, The Scientific World Journal, Vol 2014, Article ID 674171, 9 pages.

[5] K. K. Azad, On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl 82 (1981), 14-32.

[6] C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182-190.

[7] Dogan Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, Vol 88, No.1, 1997, 81-89.

[8] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA (2002).

[9] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.

[10] Floretin Smaradache, Neutrosophic Set :- A Generalization of Intuitionistic Fuzzy set, Journal of Defense Resourses Management. 1 (2010), 107-116.

[11] I. M. Hanafy, Completely continuous functions in intutionistic fuzzy topological spaces, Czechoslovak Mathematics journal, Vol . 53 (2003), No.4, 793-803. [12] P. Iswarya and Dr. K. Bageerathi, On neutrosophic semi-open sets in neutrosophic topological spaces, International Journal of Mathematics Trends and Technology (IJMTT), Vol 37, No.3 (2016), 24-33.

[13] F. G. Lupianez, Interval Neutrosophic Sets and Topology, Proceedings of 13th WSEAS,

International conference on Applied Mathematics (MATH'08) Kybernetes, 38 (2009), 621-624.

[14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.

[15] A. Manimaran, P. Thangaraj and K. Arun Prakash, Properties of intuitionistic fuzzy semiboundary, Applied Mathematical Sciences, Vol 6, 2012, No.39, 1901-1912.

[16] Reza Saadati, Jin HanPark, On the intuitionistic fuzzy topological space, Chaos, Solitons and Fractals 27 (2006), 331-344.

[17] A. A. Salama and S. A. Alblowi, Generalized Neutrosophic Set and Generalized Neutrousophic Topological Spaces, Journal computer Sci. Engineering, Vol. (2) No. (7) (2012).

[18] A. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological space, ISOR J. mathematics, Vol (3), Issue (4), (2012). pp-31-35.

[19] V. Thiripurasundari and S. Murugesan, Intuitionistic fuzzy semiboundary and intuitionistic fuzzy product related spaces, The Bulletin of Society for Mathematical Services and Standards, Vol 2, 57-69.

[20] R. Usha Parameswari, K. Bageerathi, On fuzzy γ -semi open sets and fuzzy γ -semi closed sets in fuzzy topological spaces, IOSR Journal of Mathematics, Vol 7 (2013), 63-70.

[21] L. A. Zadeh, Fuzzy Sets, Inform and Control 8 (1965), 338-353.

Received: April 10, 2017. Accepted: April 28, 2017.