Skip to main content
Log in

A Necessary Relation Algebra for Mereotopology

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

The standard model for mereotopological structures are Boolean subalgebras of the complete Boolean algebra of regular closed subsets of a nonempty connected regular T 0 topological space with an additional "contact relation" C defined by xCy ⇔ x ∩ ≠ Ø

A (possibly) more general class of models is provided by the Region Connection Calculus (RCC) of Randell et al. We show that the basic operations of the relational calculus on a "contact relation" generate at least 25 relations in any model of the RCC, and hence, in any standard model of mereotopology. It follows that the expressiveness of the RCC in relational logic is much greater than the original 8 RCC base relations might suggest. We also interpret these 25 relations in the the standard model of the collection of regular open sets in the two-dimensional Euclidean plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asher, N. and Vieu, L. (1995), ‘Toward a geometry of common sense: A semantics and a complete axiomatization of mereotopology’, in C. Mellish, editor, IJCAI 95, Proceedings of the 14th International Joint Conference on Artificial Intelligence.

  2. Bennett, B. (1997), ‘Logical representations for automated reasoning about spatial relationships’, Doctoral dissertation, School of Computer Studies, University of Leeds.

  3. Bennett, B. (1998), ‘Determining consistency of topological relations’, Constraints 3:213-225.

    Google Scholar 

  4. Bennett, B., Isli, A., and Cohn, A. (1997), ‘When does a composition table provide a complete and tractable proof procedure for a relational constraint language?’, in IJCAI 97, Proceedings of the 15th International Joint Conference on Artificial Intelligence.

  5. Berghammer, R., Gritzner, T., and Schmidt, G. (1993), ‘Prototyping relational specifications using higher-order objects’, in J. Heering, K. Meinke, B. Möller, and T. Nipkow, editors, Proc. International Workshop on Higher Order Algebra, Logic and Term Rewriting (HOA '93), LNCS 816, pages 56-75, Springer.

  6. Berghammer, R. and Karger, B. (1997), ‘Algorithms from relational specifications’, in KAHL, W., and Schmidt, G., editors, Relational Methods in Computer Science, Advances in Computing Science, Springer [9] pages 132-150.

  7. Berghammer, R. and Zierer, H. (1986), ‘Relational algebraic semantics of deterministic and nondeterministic programs’, Theoret. Comp. Sci. 43:123-147.

    Google Scholar 

  8. Biacino, L. and Gerla, G. (1991), ‘Connection structures’, Notre Dame Journal of Formal Logic 32:242-247.

    Google Scholar 

  9. Brink, C., Kahl, W., and Schmidt, G., editors (1997), Relational Methods in Computer Science, Advances in Computing Science, Springer.

  10. Chin, L. and Tarski, A. (1951), ‘Distributive and modular laws in the arithmetic of relation algebras’, University of California Publications, 1:341-384.

    Google Scholar 

  11. Clarke, B. L. (1981), ‘A calculus of individuals based on “connection”’, Notre Dame Journal of Formal Logic 22:204-218.

    Google Scholar 

  12. Cohn, A. G. (1997), ‘Qualitative spatial representation and reasoning techniques’, Research report, School of Computer Studies, University of Leeds.

  13. DÜntsch, I. (2000), ‘Contact relation algebras’, in E. Orłowska and A. Szałas (eds.), Relational Methods in Computer Science Applications, pages 113-134, Berlin, Springer-Verlag.

    Google Scholar 

  14. DÜntsch, I., Wang, H., and McCloskey, S. (1999), ‘Relation algebras in qualitative spatial reasoning’, Fundamenta Informaticœ 39:229-248.

    Google Scholar 

  15. DÜntsch, I., Wang, H., and McCloskey, S. (2001), ‘A relation algebraic approach to the Region Connection Calculus’, Theoretical Computer Science 255:63-83.

    Google Scholar 

  16. Egenhofer, M., and Franzosa, R. (1991), ‘Point-set topological spatial relations’, International Journal of Geographic Information Systems 5(2):161-174.

    Google Scholar 

  17. Egenhofer, M., and Herring, J. (1991), ‘Categorizing binary topological relationships between regions, lines and points in geographic databases’, Tech. report, Department of Surveying Engineering, University of Maine.

  18. Egenhofer, M., and RodrÍguez, A. (1999), ‘Relation algebras over containers and surfaces: An ontological study of a room space’, Spatial Cognition and Computation, to appear.

  19. Egenhofer, M., and Sharma, J. (1992), ‘Topological consistency’, in Fifth International Symposium on Spatial Data Handling, Charleston, SC.

  20. Engelking, R. (1977), General Topology, Monografie Matematyczne, Polish Scientific Publ., Warszawa.

    Google Scholar 

  21. Gotts, N. M. (1996a), ‘An axiomatic approach to topology for spatial information systems’, Research Report 96.25, School of Computer Studies, University of Leeds.

  22. Gotts, N. M. (1996b), ‘Topology from a single primitive relation: Defining topological properties and relations in terms of connection’, Research Report 96.23, School of Computer Studies, University of Leeds.

  23. JÓnsson, B. (1984), ‘Maximal algebras of binary relations’, Contemporary Mathematics 33:299-307.

    Google Scholar 

  24. JÓnsson, B. (1991), ‘The theory of binary relations’, in H. Andréka, J. D. Monk, and I. Németi, editors, Algebraic Logic, volume 54 of Colloquia Mathematica Societatis János Bolyai, pages 245-292, North Holland, Amsterdam.

    Google Scholar 

  25. JÓnsson, B., and Tarski, A. (1952), ‘Boolean algebras with operators II’, Amer. J. Math. 74:127-162.

    Google Scholar 

  26. Koppelberg, S. (1989), General Theory of Boolean Algebras, volume 1 of Handbook on Boolean Algebras, North Holland.

  27. LeŚniewski, S. (1927–1931), ‘O podstawach matematyki’, Przegląd Filozoficzny 30-34.

  28. LeŚniewski, S. (1983), ‘On the foundation of mathematics’, Topoi 2:7-52.

    Google Scholar 

  29. Lyndon, R. C. (1950), ‘The representation of relational algebras’, Annals of Mathematics (2) 51:707-729.

    Google Scholar 

  30. Maddux, R. (1982), ‘Some varieties containing relation algebras’, Transactions of the American Mathematical Society 272:501-526.

    Google Scholar 

  31. Pratt, I., and Schoop, D. (1998), ‘A complete axiom system for polygonal mereotopology of the real plane’, Journal of Philosophical Logic 27(6):621-658.

    Google Scholar 

  32. Pratt, I., and Schoop, D. (1999), ‘Expressivity in polygonal, plane mereotopology’, Journal of Symbolic Logic, (to appear).

  33. Pratt, V. (1990), ‘Dynamic algebras as a well behaved fragment of relation algebras’, Dept. of Computer Science, Stanford.

    Google Scholar 

  34. Randell, D. A., Cohn, A., and Cui, Z. (1992), ‘Computing transitivity tables: A challenge for automated theorem provers’, in Proc CADE 11, pages 786-790, Springer Verlag.

  35. Schmidt, G. (1981a), ‘Programs as partial graphs I: Flow equivalence and correctness’, Theoret. Comp. Sci. 15:1-25.

    Google Scholar 

  36. Schmidt, G. (1981b), ‘Programs as partial graphs II: Recursion’, Theoret. Comp. Sci. 15:159-179.

    Google Scholar 

  37. Schmidt, G., and StrÖhlein, T. (1989), Relationen und Graphen, Diskrete Mathematik für Informatiker, Springer. English version: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS Monographs on Theoret. Comp. Sci., Springer (1993).

  38. SchrÖder, E. (1895), Algebra der Logik, volume 3, Teubner, Leipzig.

    Google Scholar 

  39. Smith, T. P., and Park, K. K. (1992), ‘An algebraic approach to spatial reasoning,' International Journal of Geographical Information Systems 6:177-192.

    Google Scholar 

  40. Stell, J. (1997), ‘Personal communication’, October 30, 1997.

  41. Tarski, A. (1935), ‘Zur Grundlegung der Boole'schen Algebra, I’, Fundamenta Mathematicœ 24:177-198.

    Google Scholar 

  42. Tarski, A. (1941), ‘On the calculus of relations’, Journal of Symbolic Logic 6:73-89.

    Google Scholar 

  43. Tarski, A., and Givant, S. (1987), A Formalization of Set Theory Without Variables, volume 41 of Colloquium Publications, Amer. Math. Soc., Providence.

    Google Scholar 

  44. Winter, M. (1998), Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtdeterminismus in Programmiersprachen, PhD thesis, Fakultät für Informatik, Universität der Bundeswehr. ISBN 3-933214-11-4.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DÜntsch, I., Schmidt, G. & Winter, M. A Necessary Relation Algebra for Mereotopology. Studia Logica 69, 381–409 (2001). https://doi.org/10.1023/A:1013892110192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013892110192

Navigation