THE ELEMENTALS

A work on the philosophy of logic (1980)

This is attempt to view the most basic and fundamentalgfartodern
logic fraaperspective which shares no grounds with anykstad
schoolspbilosophical logic, in that the truth and falseti@s judged by
means ofrfan interventions is denied and the notion of laitmensions
is introchat It establishes the minimum irrefutable log&talicture and
proceeds$aond the relations between logic and geométhe description
of symmetrgates and simultaneously constrains the logicatture,
whereas syatry itself can only be postulated.

What realymmetry is, is a riddle of the intellect.
Please khirf it for at least one hour before you open tiosk.

T.IWAMOTO

Thefzar (Tetsuaki IWAMOTO/ronnie-babshka@live.co.ué¥erves
alyints under American, European and internationayrogipt laws.



‘If God gave me a voice,
I'd sing for ten years,
and then go into a monastery’
Maxim Gorky

from ‘My Childbd’



CONTENTS

[.  Atomic Symbolic Form
II. Logic ; The Ontologico-Notational Demonstratiof FX

Il -i. Modes

Il -ii. O-Dimensionality
Il -iii.  1-Dimensionality
Il - iv. 2-Dimensionality
Il - v. 3-Dimensionality
Il - vi. Form of Mapping

[ll.  Schemata of Geometry, Arithmetic and Physics
The Epistemological Demonstration of FX ;
The Demonstration of The ConditionalizatidrSpace and Time

[ - 1. 1-Dimension in itself
1l -ii. Schemata
Il -iii. Schema of Geometry

1. 1-Dimension
2. 2-Dimension
3. 3-Dimension

Il - iv. Schema of Physics
4. 4-Dimension
1l - v. Schema of Arithmetic

IV. Art; The Manifestation of FX



I. Atomic Symbolic Form
1. Condition : Only that which is understandabldéscribable, and vice versa.

1.1. Postulate : There is such an entity, FX, withehich the above condition becomes
referenceless and thus fails to claim its owtht(i.e. raison d’étre). The existence of FX
makes possible its being postulated, and itggheostulated is the sole condition which allows
for its descriptive possibility. This entity FX generated within a space in which the above
condition insists on its own validity. FX th&ee cannot be sought for in relational juxtapasiti
to the so-called external world because tressiyet no such world. FX is a condition which
generates the world of its own. Such a worla itational space in which the most fundamental
understanding can hold. The above conditioninabostulated entity necessarily depend upon
each other so that each can exist (i.e. be imgfaf). They do this by creating an environment
such that in it only they can exist. Such aviremment is the space of mutual-representatioe. Th
two mutually represent each other in orderefach to be meaningful.

1.1.1. Ontologico-notationality : FX is ontologiomtational. What exists ontologically must alsaséexi
notationally, and vice versa. Ontological tisrare therefore also notational limits, and vice
versa. Two worlds are therefore one and theesdVhat is the most fundamental entity in one
is also necessarily so in the other. If theldvis to be understood only descriptively, then
whatever is descriptively understandable &@l$® existent. That is, what is describable is als
existent. That which is postulated in ordenfthat is describable to be possible, must also be
postulated to exist. This makes what is ertgp@ssible. Therefore the most fundamental
notational unit is postulatedly also the nfastlamental entity of the world.

1.1.1.1. The atomic symbolic form is the necedsitadf the descriptive justification of the above
condition. Therefore it is the atomic symbdbrm which generates FX, and it is FX which
justifies the existence of the atomic syrmbfdrm. This justification is done by
demonstration.

1.1.1.1.1. What makes it possible to ‘appreciatehsa demonstration is the fact that ‘I’ am
‘myself’ also FX. ‘I" am, so to speak, denstrating ‘myself’. Therefore the
‘appreciation’ of this demonstration li@s'iny awareness’ of ‘my’ construction of
the world. Whatever ‘I’ may construct, thathe world. The understanding of ‘I is
the world. This ‘awareness’ is the necesfaat of ‘my’ self-participation in the world.

1.2. Anti-postulates : From the above conditionftiilowing three possibilities of refutation arise

(i) There is some such which can be understattbut any kind of description, and it can also
be known to be understood.

(ii) There is no such which can be understo@t ar without description of any sort.
(iif) There is some such which can be describiédout any kind of understanding.

(i) can be valid if and only if it is demonded in a manner which can be understood without the
intervention of a description. If (ii) is valithen neither that description nor any attempt to
disprove it can be meaningful ; for there woloddno knowledge. For (iii) to be valid it would
have to be demonstrated, and this would habe tdone without the involvement of any
understanding that it was done.

1.2.1. If these anti-postulates do not hold, thexamn be claimed that the postulate implies anyenti
which is describable and understandable sanattusly. This is so because what can be
described can also be understood, and vicaver

1.3. In general if there is a condition, and ifrthare no entities which fall under it, then thandition
is null. A null condition is meaningless ; fbcannot descriptively justify its own validity. A
condition that cannot claim anything for itsedinnot be understood. The description of a
condition consists of a demonstration whichii®n in terms of the description of an entity



which falls under it. This description is basgubn properties of that entity.

1.3.1. The validity of a condition can only be derstpated. A condition can be demonstrated if there
is an entity which falls under it. A conditi@rhich is unable to have such an entity cannot be
demonstrated. A valid condition is therefoeeessarily demonstrable, and a demonstrable
condition necessarily has an entity which cli@spwith that condition. A condition whose
validity can only be postulated ‘conditionak& an entity in order to demonstrate its own
validity. The properties of a conditionalizewtity are therefore the meaning of that conditiom.
entity by which a condition is to be demontgtdais only assumed in order to describe the
validity of that condition.

2. The meaning of that initial condition is as dols :
(i) Anything, if it is to be understood, it hashe described.
(i) Anything, if it is to be described, it has be understood.
(iif) There is something - whatever it may behieh is describable and understandable.

2.1. An entity, as postulated above, has no coetihgroperties. It only has necessary properties
- whatever they may be -, and it has theseeapt®s only essentially. ‘Essentially’ is meant in
the sense that if this were not the case, ¢ing eondition would nullify itself. It is - in whater
way it may be - essentially only in itself.

2.2. The sole condition of the entity FX is thapr the initial condition itself, it can only be sialated
to be in itself. This is so because FX musstexpostulatedly - prior to any description or
understanding. It can therefore only existself. Being-in-itself is its only property. Anytig
that is essentially in itself is descriptivelymething.

3. FX can only be in itself. Consequently, the mmbp of FX is essentially that it has no properties
which can be described. FX is only essentialiantderefore only to describe. This can only mean
that FX is necessarily to describe itself. Thiglso the same as saying that FX has every pessibl
property to describe and, therefore, to be desdriFX generates contingent properties while it
demonstrates itself. A contingency lies in a finlty that a same entity can be described othsewi
Therefore, a contingent property is merely th#teariness of a description which is allowed withi
the constraint of a notational space. A notaligpace is conditionalized from FX.

3.1. FXis essentially to describe. Thereforeait only demonstrate itself.
3.2. FX cannot be described by concepts or by #mr@ontingent ways.

3.2.1. If what is referred to by a proper nameefenring expression is a set of descriptions, #h¥n
is what makes such a set unique.

3.2.1.1. What is referred to by a proper name farreg expression cannot be understood on its
own ; for in this way the world would be relra collection of independent entities.
Independent entities cannot be describetdatguonly to demonstrate themselves. The world
as a mere collection of independent entitiesefore cannot be said to have been described.
Proper names or referring expressions asningless on their own. Their meaning already
assumes a total descriptive convention ticlwthey are coordinated as parts. The
understanding of proper names or referrigressions necessarily involves descriptions in
which they are a part. Therefore, what makpsoper name or referring expression unique is
a way by which it is apprehended. The unigss - right or wrong - of a proper name or
referring expression lies in a set of dggwns which is associated with that proper name or
referring expression. The uniqueness of whedferred to by a proper name or referring
expression lies in relations between whagfierred to by that proper name or referring
expression and what is referred to by ewd#ner proper name or referring expression. Or it
may turn out that there is nothing reallptoreferred to by a proper name or referring
expression, and therefore that a seemirgueniess is only a complication. In the former



case FX is what causes such relations. i$lss because only by a relation - whatever it may
be, and including self-relations - an entityentities between or among which this relation
holds discerns itself or themselves unigaslyvhat occupies a definite position(s) in the
epistemological space of understandinghénlatter case a descriptive device in which such
proper names or referring expressions aad issdefective in its ability to describe the wdorl
and serves for some entirely different psgpdn such a case if the language deployed here is
not a theoretical one, which is especiatigstructed for a certain intended purpose, but afte
all turns out to be the same as the latter which is usually and vaguely understood as the
so-called ordinary language, then it ishmiiging out any truths, but appealing to the truth
that everything is FX, by the very existenféself and therefore by its being so recognieab
as an existence.

3.2.2. If a predicate stands for a category, théisRvhat makes a category unique.

3.2.2.1. A category, f, of any orders other thanrttaximum and minimum ones, which cannot be
described, but are to demonstrate themsedk/asdescriptive device to organize and
arrange entities, x’s, in order to desctheeso-called world. x’s are not themselves
descriptively existent, but are supposeldeguxtaposed somewhere outside a language.
However, such a f is in no position to comthaertain x’s so as to put them under it.
Both a f and x’s assume something whichteglaem to each other in some unique way
(i.e. something which associates a certauithf certain x’s). Without this something there is
nothing which enables a certain f to bindaia x’s under it. FX is - whatever it may be - an
entity which is assumed to exist not onliwiseen certain f's and certain x’s but also between
f's and x’s in general and command them @g@dain way so as to allow not only f's and x’s
but also f's and x’s in general to be radaie each other. In this context FX is a postulated
fact that f's and x’s need to presupposertam unity between and beyond them. What binds
f's in general with x’s in general is thetologico-notational FX. What binds certain f's with
certain x’s is the epistemological FX. Thersbnstration of the former FX gives rise to the
logical space, from which the latter FX @nditionalized. The maximum and minimum f's
are meaningful if and only if they are sondastrable as to show their relation in such a way
the entirety of the former is constructivenfi the latter. There is nothing by means of which
they can be described. Consequently, theycadescribe themselves and therefore stand for
a meaning which is identical with that oé ihitial condition.

3.2.2.1.1. If it is thought that categorizations done by a ‘thinker’, then this ‘thinker’ itseémains
a mystery. In this context this ‘thinkedrapletely fails not only to describe and understand
what ‘he’ calls the world but also to agpead what ‘he’ is doing. This is more or less the
history of philosophical thinking.

3.2.2.1.2. Assuming, for the sake of simplicityattan entity is described and understood in tefms o
categories of any orders, in such a walfthaga and so on (i.e. that there is one and only
one x such that uniquely unifies f, g, @€.a set, and that it is named a), then it istiiuing
but misleading to speak of depriving a,af,fetc., so as to show that a is in fact an
indescribable x, which is FX. This is sc&ese in such a case it suggests as if there were
some ‘operator’ which did this ‘deprivindgdowever, it is this x that descriptively precedes
anything but itself. If FX is postulatedwalsat gives a set of categories or descriptions a
uniqueness, then it cannot be ‘operatad’jdto manifest itself by demonstration ; for,
otherwise, such an ‘operator’ itself wotddnain a mystery. No mystery is a sound
description of the world.

3.2.3. If anything - whatever it may be - can doéyunderstood through descriptions, then FX is what
ontologico-notationally constitutes anythihgttis described.

3.2.3.1. If a description is possible, then thetstibe something - whatever it may be - to be dssdr
Such a something is FX. Anything that isadiésble is something.

3.2.4. If anything - whatever it may be - can dodydescribed through understanding, then FX is
what ontologico-notationally constitutes amyththat is understood.



3.2.4.1. If understanding is possible, then thewstrhe something - whatever it may be - to be
understood. Such a something is FX. Anytliirad is understandable is something.

3.2.4.2. Anything, if it is so discerned at allgssentially something (i.e. something which cay ba
postulated so that such a discernment hadded upon understanding and descriptions).

3.3. FX, being essentially only the essence, cabaatescribed, but is necessarily to describe. Such
description is a demonstration. Only by demmartistn it can be shown that certain properties
essentially belong to a certain entity - whatethose properties and this entity may be. FXdgo
speak, the form that something - whatever i b®- essentially belongs to something - whatever
it may be. This form, if it is valid, postulatéself to be an entity such that satisfies thegy ¥@m
which it sets for itself. The property of sumhentity is only ‘being-essential’. Such an enistyhe
subject-matter of understanding and description

3.3.1. FXis, so to speak, the form of the subjiectiobject and objectifed subject. This form exist
where neither of a subject and an object ogiob-notationally precedes the other. FX is
necessarily ontologico-notational and therefman be, on one hand, an entity and, on the ather,
form. If it is an entity, it has the propedi/being-essential. If it is a form, it is a conalit of its
own.

3.3.1.1. Ontology must be describable. Whatevdesribed, that is an ontology. The most
fundamental ontological entity and the nfastdamental notational entity are postulated to
be one and the same. FX stands for this.dEngonstration of FX therefore manifests the
world itself.

3.3.1.1.1. There can be no such as ‘I'. ‘I' am &30band can only be FX. The world is the
demonstration of ‘I'. The world demonstmaitself by itself, for itself and of itself.

3.3.1.1.1.1. Where there is no demonstration,pbistulated that there can be no world. It is also
postulated that a demonstration cannatdmonstrated to be demonstrated. If there
exists the world, then ‘I’ must be alrgaohd always demonstrating itself, and therefore
cannot be spoken about ; for ‘I' am tharld. Only a theory of essentialism such as this
need not concern itself with ‘thinker’hieh is always used without being justified in any
theories of whatever. ‘Thinker’ or ‘I' canly be the subject of a whole discourse and
remains implicit because of its indesabittity. A whole discourse is the demonstration
of what appears as ‘thinker’ or ‘I'. Tleéore, such a phrase as ‘I think - - -’ is mearesg|
in the very discourse in which ‘I' am thery ‘thinker’ of discourse. ‘I’ - whatever it may
be - can only be the most fundamentatyeot a discourse. ‘I’ am to conditionalize
everything else from itself so as to dastmte itself.

3.3.2. Whether the notion of a conceptual funciioadequate or not in order to describe the witrld,
is not an analytic notion but a synthetic amkich is itself beyond any conceptual or theosdtic
analyses. What stands for a predicate-lelteady presupposes what stands for a variableslette
and vice versa, while the necessity to utigetivo remains itself unexplained. FX is, so toagpe
the form of the notion of a conceptual functand, indeed, of every other notion. This is i sa
that for any notions to be possible there rexit some entity - whatever it may be - of which
some property - whatever it may be - is esaintonstitutive of that entity. Such a propeigy
indispensable if any description is to holchatéver is described, it is either to demonstrate
itself on its own and by itself or, otherwise be described by some descriptive device which i
conditionalized from such a demonstration bydvhat is demonstrable. In the latter case if any
description is to hold, what to be described what to describe - whatever it may be - must be
so related to each other. They can be scegktateach other if and only if there is something
whatever it may be - which is referred to loyibwhat to be described and what to describe. Such
a something can only be postulated to be &a#lgrin itself. This something is shared by both
what to be described and what to describetlzgr@fore necessarily unites them. Without this
something nothing can be sure of itself, d&tdfore no description can be certain of itsefisT
something ontologico-notationally generaliggsbols of all sorts and is called the atomic
symbolic form. It is also an entity which isgtulated to be the most fundamental
ontologico-notational unit and from which egling is ontologico-notationally conditionalized.



3.3.2.1. The only property of FX is that it canbetcontingently described ; for it is the geneoahf
of symbols, and not of a certain symbol.daX only be postulated to constitute itself. Ii$ thi
sense FX cannot be described, but can adgribe itself. Such a self-description is a
demonstration and is based upon what isufzdst to be the property of whatever that
self-describes (i.e. of FX). This propegythat of being-in-itself and therefore of being-
essential. Consequently, the subject-préelicam does not hold in the description of FX.
FX is itself a subject as well as a predic&uch descriptions that e.g. ‘FX is one’, ‘FX is
independent’, ‘FX is a self, etc., arerakkaningless.

4. Logic is a description by essence. FX descmfimanifests itself in terms of its property of
being-in-itself. Such self-manifestation is nessey an essential description and gives an
essential understanding. Logic can only be detrates!.

4.1. The demonstration of FX constitutes the mastémental understanding. Everything is
conditionalized from FX. Every schema followsrfi the ontologico-notational demonstration
of FX. Logic is the schema of schemata antiésafore the most fundamental notation.

4.2. Descriptions and understanding can only holdhat can be condionalized from FX. Every other
descriptive device, including the so-calledioady language, is either accidental or, in fact,
non-descriptive, and therefore can only givaeeidental understanding or nonsense.

4.3. Philosophical understanding consists notsetaf accidental understanding or nonsense but in
an essential understanding ; for any accidemtdérstanding can be otherwise. If an entity is
described based upon properties which do rsetrgisilly belong to that entity, then the
description of that entity has no guarantelegtmecessarily such and such.

4.3.1. If there exist essential properties, theateter they may be, they cannot be distinguishaa fr
the form of understanding. This is so becausenever they are present in understanding, they
are necessarily so present based upon apermi description such that an entity can only be
essentially described in terms of its esseptigperties. Therefore, if something is described
necessarily as such and such, then it isiaiderstood necessarily as such and such.

4.3.1.1. Essential properties - indeed whatever iy be - cannot be described. This is so because
if some property is essential, then it carbeodescriptively distinguished from an entity to
which it essentially belongs. An entity isdriptively identical with its essential propestie
Therefore, if an entity is described in terofi its essential properties, then such a desgmnipt
descriptively only amounts to a mere claimdome indescribable existence. It therefore
cannot be regarded as a description ; fdoés not tell anything but the existence of
something. Such a claim can only justifelit®y demonstration. Essential properties -
whatsoever they may be - can only be pastdlt be ‘being-essential’ and therefore amount
to one and only one demonstrable propettg. demonstration of FX proceeds only by making
use of this property.

4.3.1.2. If all essential properties are postulatea@mount to one and only one demonstrable prppert
then the demonstration of FX must be ablgite rise to a descriptive device which can give
the descriptive account of those essentiggrties. That is, the demonstration of FX must be
able to generate schemata in which an ecditybe essentially described. Such schematic
descriptions would appear as if an entityendescribed in terms of essential properties.
However, every such description already mesua whole schema to which those seemingly
essential properties belong as the propgeofi¢hat schema, and not of an entity. This is so
because these schemata are themselvesiopatited from FX, based upon this demonstrable
property of FX. Whether it is ontologico-atibnal or epistemological, the subject-matter of
every description is FX. This is the mearofig description. That is, the demonstration of FX
gives rise to schemata in which whatever begescribed, it can be again postulated to be
FX. FX conditionalizes schemata from itsatid a schematic description assumes a whole
schema in which it exists. Consequentlyhauit a schema no schematic descriptions can be
meaningful. The postulation of one and amig demonstrable property from essential
properties can be justified only demonstedyi and therefore gives rise to schematic



4.3.1.3.

descriptions. In this sense every essept@erty is necessarily schematic.

FX describes itself by itself, for itsatfd of itself. The ontologico-notational demonstrat

of FX constitutes logical descriptions arinkg rise to the schema of logic. It is also theida
of the epistemological demonstration of Fid @onditionalizes every other schema.
Therefore, while the subject-matter of adagdescription is directly FX, that of an
epistemological description can be FX onliiectly ; for an epistemological description
exists in a schema which is conditionaliffredh the schema of logic. The descriptions of an
entity in terms of numbers or space-timebglto the latter. Without some schema numbers
and space-time are descriptively meaninglBlssy are schematic essential properties.

4.3.1.4. The ‘proofs’ of the consistency and congless of a schema are, if they are not a

demonstration, artificial in the sense thaly presuppose something outside a system whose
consistency and completeness are intendbd foroved’ by them. Such ‘proofs’, if they are
not accidental, remain unjustified. Thisisbecause they are made possible by some
‘operator’ which is capable of contemplatargd manipulating a system outside that system.
Therefore, not only this ‘operator’ itselittalso whatever that is deployed by it (e.g. the
notions of the truth and falsehood) remaijustified in those ‘proofs’ as well as in a system
for which those ‘proofs’ are intended. Symtoofs’ are not a part of a system for which they
are intended. It is this ‘operator’ itsdiht must demonstrate itself. Consequently, its
non-demonstrative use can never be des@lptustified.

4.3.1.4.1. The ‘proofs’ of the consistency and clatgmess of the classical two-valued logic are thase

upon the system of the notions of the tauttl falsehood and the system of the rules of
inference without a reference to the neargsand sufficient conditions which necessitate a
certain relation between those two distgystems. Therefore, such ‘proofs’ are themselves
just another distinct system which cannstifiably claim its intended raison d'étre. The
necessary and sufficient conditions foruhdication of those two distinct systems are an
ontologico-notational relation which holdsand among the system of the notions of the
truth and falsehood, the system of thesrakinference and the ‘operator’. They are all
ontologico-notationally one and the sarfeg they are all to be conditionalised from FX.

4.3.1.4.2. Only FX can demonstrate itself. This lbarseen in this demonstration because everything

can be conditionalised from FX. This alseams that FX makes every ‘proofs’ superfluous
or at least justified. Consequently, neitagioms’ nor a contemplating and manipulating
‘operator’ need to be taken for granted.

4.3.1.4.3. ‘I - no matter what it may be - demaasgs itself based upon its demonstrable essential

property. The description of such an ‘Ihstitutes logic. Logic is the way in and by which
‘I' discerns itself. The truth of logic its existence. The validity of such an existenes In
the fact that it is demonstrated.



. Logic ; The Ontologico-Notational DemonstratiohFX
Il -i. Modes

1. Modes are the necessary ways in and by whictigeerns itself in terms of its own essential
property. FX discerns itself as an entity necélysa terms of the property that it is in itseModes
are the necessary ways of such self-discernrivrdes are the description of something, or they
are themselves meaningless.

1.1. In order to describe itself FX is descriptivedquired to quantify itself. This is so becau3ei$
a postulated entity with the postulated propeftbeing-in-itself. Modes are the forms of
self-quantification. This is a self-descriptiand is therefore ontologico-notational ; it is aot
mere description but a way of existence. FX$tsxby describing itself.

1.1.1. FX is itself a universal entity of which theiversality is essentially due to the
ontologico-notational fact that it is a presdeptive, postulated entity. Consequently, it has
no contingent properties and is universahagense that nothing can descriptively precede it.
Therefore, if FX is to describe at all, thendn only describe itself. Such a complete
self-description of FX by FX is called a deratvation. FX demonstrates itself by describing
itself. That is, FX is universal because thenmeothing else to be described but itself. Such a
self-description is an existence.

1.1.1.1. FX is necessarily a describable entitychlis postulatedly the most fundamental notational
unit. It is an entity which is postulatedrr a condition which specifies that for anything to
be understood it must be described. TheeefdoFX is to be describable so as to be
understandable, and if FX can only desdtd®df by itself, then its innate necessity to
demonstrate itself must require FX to beiantifiable entity within its own demonstration. A
condition binds its postulated entity, amegs FX is a self-quantifiable entity, no desdvipt
measures can be taken. This is so becausdén to describe itself it must be able to
demarcate itself from itself so that it ¢csee’ what is being described (i.e. itself as fsel
Therefore, the postulated, pre-quantifiadigty FX, in describing itself as required by the
condition from which it is itself postulatdaecomes a quantifiable entity by the very
self-imposed necessity of describing itsElfere can be no such as a quantifiable entity in
itself ; for FX, in describing itself, issilf described. The notion of a quantifiable eriity
therefore essentially descriptive. Anythiifdt is describable, it is ontologico-notationall
and postulatedly based upon something wisielssentially in itself. Therefore, anythingitif i
is described, it cannot be itself FX. It @ty be something which FX constructs from itself.
FX descriptively manifests itself in andiopdes. The described FX (i.e. FX which is
self-quantified) and modes are inseparablighout modes FX cannot descriptively present
itself. Consequently, whenever FX is destu@y present, it is necessarily in and by modes.
This means that FX and its property ontalogiotationally transform themselves into a
quantifiable entity with its modes. Modee #re descriptive form of a quantifiable entityeTh
postulated entity FX, in discerning itselfterms of its property, becomes the described FX.
Such FX is a quantifiable entity.

1.1.1.1.1. The ontologico-notational transformatdi-X as a universal entity into FX as a quaribiiéa
entity, is essentially due to the ontologimtational fact that it is a postulated entithisTis
S0 because for anything to be postulatetktmust be something from which it is postulated.
The validity of what is postulated (i.e. JJé&n only be demonstratively seen if and only if
this something can be deduced from thisytated FX. This deduction is a demonstration
and is the self-description of FX, basedrujs property. The initial condition (i.e. | -5
not itself this something from which FXgestulated. The initial condition is only an
unjustified descriptive claim for this saimeg and therefore requires FX in order to justify
itself. The demonstration of FX is thereftine description of this something as well as the
justification of the initial condition. Shhk@ something is the most fundamental ontological
entity which constitutes the world.

1.1.1.1.1.1. This demonstration proceeds only baped the innate necessity of FX. That is, FX
necessitates itself to describe itsdfie Ebove mentioned transformation is therefore an
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ontologico-notational procedure whicimézessary in order to make it possible for FX to
descriptively manifest itself. A quardifile entity, if it remains undescribed or is ireltsit

is the same as FX as a universal etityis an entity which is postulated as the outcome
of the generalization of every descriptiocluding self-descriptions (i.e. existences)isTh
means that the demonstration of FX isladescription which shows what descriptions
are. Therefore, the postulated univezsdty FX, in describing itself, necessarily
transforms itself into a describable tgnti

1.2. In order to be describable an entity discésadf by demarcating itself. It is an existencéhwi
locality. This locality is generated by sucheasistence itself. Modes are the descriptive fofm o
such locality. This self-discernment is not tlhawing of a line between something and every
other thing in order to make this somethingstirtct existence ; for a discernment in this sense
presupposes more than just that something ety ether thing, namely the ‘drawer’ of a line.
This self-discernment is to make it possibledoything to establish itself by itself as an tedige.
This is done by a self-demarcation. The seffigiecation of an entity generates the locality &f th
entity.

1.2.1. This discernment is not a spatio-tempoif&dintiation, which already assumes something else
(i.e. a schema) besides a very existence-idmerned. Such as space-time and numbers are
yet to be conditionalized.

1.2.2. A quantifiable entity is the only entity whidiscerns itself at this stage of demonstration.
Ontologico-notationally there can be one anly one such quantifiable entity ; for it is the
outcome of the transformation of a universdite. If a quantifiable entity appears multiple, i
is necessarily because of modes. In sucheaacaame entity is required to multiply itself by
its own necessity of describing itself. Mo@gs, in this context, the descriptive form of FX
and are based upon the essential propertXof F

2. The property of a quantifiable entity is thasténtity demarcates itself from itself and by litée
order to discern itself as an existence. Conggty¢he ontologico-notational necessity to tramsf
an entity from that with universality into thaitkvlocality necessarily brings out the describiapil
with it. While FX is a postulated entity, a quifiable entity is a describable entity. Nothing is
describable unless it can confine itself to ftsBhat is, a symbol can have one and only onenidefi
meaning. Therefore, if the initial condition ialid, then FX is necessarily an entity which can
demarcate itself from itself.

2.1. A quantifiable entity is describable if andyoifiit is also an entity which consists in andtab
mutually dependent constituent entities. Whatémarcate and what to be demarcated mutually
depend upon each other in order for each w&t.e@Xbthing can be demarcated unless there are
both what to demarcate and what to be dematc@ensequently, a quantifiable entity must be
made of such constituent entities ; for, otlisewa quantifiable entity is, contrary to theiadit
condition, not describable. This internal stowe of a quantifiable entity is therefore an
ontologico-notational necessity. The descriptida quantifiable entity lies in the descriptiafn
this internal structure. The property of thb@e mutually dependent constituent entities is
necessarily their own relation to each othed, mothing else. This is so because such two
constituent entities are descriptively requif@dthe describability of a quantifiable entityhdir
relation is therefore the descriptive properta quantifiable entity.

2.1.1. If there exists a quantifiable entity, thieare necessarily also exist two constituent estivith
their relation of mutual-dependence. Suchewtities are required by a descriptive necessity
which makes it possible for a quantifiableitgrib comply with the initial condition and theceé
to become describable. A quantifiable entitthaut such constituent entities is the same as FX.
FX conditionalizes a quantifiable entity fratself so as to comply with its own self-imposed
self-describability. If a quantifiable entitycessarily consists in and of constituent entities
order to be self-describable, then such ctuestt entities are necessarily two and only two and
are also mutually dependent ; for, otherweemtingencies could come into the description of a
quantifiable entity.

2.1.1.1. If there were only one constituent entitgn a quantifiable entity would be descriptiviig
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same as FX and therefore would be yet tordesitself. This is so because a demarcation,
including a self-demarcation, is necessaripolynomial relation. Consequently, with only
one constituent entity nothing can demaritagdf from itself. If there were more than two
constituent entities, then the descriptiba quantifiable entity would contradict the initia
condition, which it was to demonstrate. Tihiso because in such a case there would be
more than two sets of relations which hattbag constituent entities. This means that there
would be more than two descriptions of asguomantifiable entity. This, however, would allow
the existence of something which could hithee describable and understandable nor
demonstrable ; for there can be nothing lvisaescriptively more fundamental than those
constituent entities. That is, if there werere than two sets of relations, then there would
have to be a relation or relations suchwwatld hold among those more than two sets of
relations and put them together as a sisgfeSuch a relation is indescribable. A quantiéab
entity would then fail to describe what nesitates to relate or connect those more than two
sets of relations which hold among its citumsit entities and therefore would also fail to
describe its wholeness as an entity. Thezethe description of a quantifiable entity would
also fail to show what necessitates to eatatconnect those more than two descriptions. If
there is nothing which relates or conndutsé more than two descriptions, then it cannot be
known if they are the descriptions of a s@uantifiable entity. This amounts to say that
constituent entities can only be two and their relation can only be that of a mutual-
dependence and is binomial. Therefore, atifisble entity, if it is describable, it necessar
consists in and of two and only two mutual@pendent entities. Such constituent entities have
no properties other than their own relatiéor they exist only to make it possible for a
guantifiable entity to describe itself. Titedation of mutual-dependence is ontologico-
notational because ontologically and notetity without either of what mutually depends the
other cannot exist and therefore resulthénindescribability of both. The description oisth
relation is the description of a quantifeakehtity.

2.2. Representing a quantifiable entity ®),(the meaning of(@) is the ontologico-notational relation
of mutual-dependence.

2.3. Those two constituent entities are mutuallyeshelent only in two ways,

(i) ; what to demarcate demarcates what todmadcated and therefore forms an existence with
locality,

(i) ; what is demarcated in (i) demarcates tnlemarcates in (i) and therefore forms an exigenc
with locality.

(i) and (ii) are two and only two ways of débtrg a quantifiable entity. This is necessarily so
because constituent entities are not themsspklégliscernible. Each constituent entity could be
the other because their meaning lies onlydir tielation. That is, the self-demarcation of a
guantifiable entity holds without the necessitydentify which constituent entity demarcates th
other. The meaning of constituent entitiesnity o make it possible for a quantifiable entiby t
describe itself. The existence of a quantigadnttity lies in a ‘state’ in which two self-indesmible
constituent entities discern themselves by allytwlemarcating each other. A self-demarcation is
descriptively twofold and therefore generates dlistinct states of a same quantifiable entity.
(i) and (ii) ontologically means that theraisertain entity which is to be constructed by the
relation of mutual-dependence holding betwaendgelf-indiscernible entities. Therefore,
representing two constituent entitiesabgndb, (Q2) can be constructed either &% demarcating
b orb’'s demarcating. In either way Q) is ontologically and descriptively existent asdne and
the same.

2.3.1. Those two states of a same quantifiabléyastthe form of existence of a quantifiable gnt&
quantifiable entity has two ways of existence.

2.3.2. Such two states give rise to two descrigtioina same quantifiable entity. They are the
descriptive form of a quantifiable entity. Aantifiable entity has two ways of description.

2.3.3. The relation of mutual-dependence is nataddnal relation but a pair of two sets of unilate
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relations. This pair of two sets stands fpoasibility and its counter-possibility (i.e. the
otherwise-ness) based upon the self-indisie#ityii This is so because if two constituent eaest
bilaterally depend upon each other, thendni®logico-notationally not possible to discerarth

as two distinct entities. Two constituent gedi, in this way, self-describe themselves. The
description of a bilateral mutual-dependenoeld appear as if a quantifiable entity consisted i
and of a single constituent entity. Two cdnstit entities can bilaterally depend upon eackroth
only simultaneously because they are notdistfernible and are to determine each other in such
a way as to represent a same quantifiabléyeBtich simultaneity only means the self-identity

of a quantifiable entity itself. A quantifiabéntity, in that way, remains undescribed.

2.3.4. Q) is an ontologico-notational representatiorQI§tands for what is refereed to &ythen
() stands for what is referred tolpyif Q stands for what is refereed to lpythen () stands
for what is referred to by (Q2) descriptively means that each@fand () is meaningless
without the other, and that they are mutuaipsformative. The validity of thi€))-notation
lies in the self-imposed necessity that it edibs a parallel ontological interpretation. ltssie$
own rules by its innate necessity of self-dipsion and therefore demonstrates itself
ontologically and descriptively.

2.4. From Q) it ontologico-notationally follows that :
O- :e@@C¢-¢-@))))
O (@2)9) 0

2.4.1. BothO- and—O stand for a same qguantifiable entity. They are awd only two ways of
describing a same quantifiable entity. Theatioh O- may ontologically mean that a
quantifiable entity consists in the mutualgpéndent relation of an entidis demarcating the
other entityb. If so, -O means that a quantifiable entity consists in tiually dependent
relation of an entitl’s demarcating the other entily Or, necessarily, each O and—O
means what the other means. This demarcatlaton betweem andb is mutual ; for if there
are two and only two self-indiscernible epsitsuch that each depends upon the other, then
although each dependence is unilateral, saithteral dependence is necessarily self-reciprocal
Neither constituent entity, whether it is decading or being demarcated, can dispense with the
other. Consequently, each, while demarcatiegother, also gets demarcated by the other. This
relation is mutual, but not simultaneous. Tieaning of O~ and O s therefore that they
describe two possibilities of initiation sutttat each possibility entails the other as its t@un
possibility. The demarcating relation betweeandb is necessarily unilateral and therefore
must be initiated by either afandb. In either way such initiation necessarily underbeself-
reciprocity.O‘ and—O are the descriptive form ofY). (Q) is necessarily self-identical
so as to comply with the initial condition.i$imeans that there are two and only two ways of
Q)’s being self-identical O~ and—O are to say that what respectively appeaQ asd
( )in O- , could have been the other way arcamdi therefore results inO , Or vice versa.

2.4.1.1.0- and—O are the natural extension of the meaningdf pased upon the innate
necessity of the self-description &) ( This is so because what(scould have been (),
and vice versa. The description Q) fnust be necessarily based upon
and not either of them or the unjustified(s‘eO‘ and—O. O- and—O are necessarily
related to each other and repres@nthy their relation. Modes are the form of the ferm
O~ and . They are the description d®J.

2.4.2.O~ and—O are meaningless if they are not related. This isexause they refer to a same
guantifiable entity, and yet both are necgsgathe sense that if either is possible, then th
other is also necessarily possible. The entst of each necessarily underlies that of therothe
Consequently, although they both refer taraes quantifiable entity, neither can be, on its own
the description ofY). The existence and description &f)(lies in a certain necessary relation

betweerlO- and —O.
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2.4.2.1. lllustration : A geometrical straight linensists in and of two directions, which are sttt
the existence of each necessarily impliasdhthe other. Consequently, although both
directions stands for a same line, a sidglkection alone cannot be regarded as the desamipti
of a line. A line is therefore describedébgertain necessary relation between the two
directions. The notion of such two directas, in this sense, the descriptive form of a.line

2.42.1.1.0- and-O may be metaphorically conceived as the two dioastiof a straight line.
and—O are necessarily together to form, so to speaksariptive line. They are, so
to speak, descriptive directions. Modesthe necessary ways by whiQ- and—O are
related to each other. A ‘line’ commanigks two directions so as to represent itself asa li
While a line is descriptively visible, iigo directions are not. The two directions are
innately related to each other so asmmfa line. {2) commandsO- and—O so as to
represent itself as a quantifiable ele.' and ~O are innately so related to each other
as to describ&] by essence (i.e. without any contingent elemeiits® description of(g)
by either ofO- and—O alone is contingent because it can be otherwiseisl
described as the setO- and —O, then this set itself will remain unjustified usgeit is
also described why they make a set. Nesdbe description ofX) in terms of O and
-O with some ‘operator’ hold good ; for this ‘opemdtibself would remain mysterious in
this way. Only the description @) in terms of a certain necessary, innate relation
betweerlO~ and—O can be said to hold good without contingenciesraysteries.

2.5. The relation betweelO~ and O lies, like that between the two directions ofreeliin the

innate necessity dO- and—O to relate to each other. Such a relation holdg between
and —O. Itis not something which can be conceived, Ifyanis possible, to hold among

an entity, another entity and something whixiste between and beyond those two entities and
contemplates them in order to relate them b @dher, while forgetting itself, to which it wall
therefore appear as if a resultant relatiorevedrsolute O~ and—O themselves generate
certain relations between them based upon ithedite necessity to descrit®)(between them.
Such relations are not seemingly but absolwbgolute.

2.6. Rules of the(g)-notation :
I:())Qand ( ) stand for two mutually dependent entities
(i) O and—O stand for the self-indiscemibility & and ().
(i) () stands for the necessary relation which holdedenQ and ().
I1: 1-(i), I-(ii), I-(iii) are all simultaneouly dependent upon one another.

2.6.1. If there existQ and (), and if they are self-indiscernible, tizand () are inter-
transformative. I€2 and () are inter-transformative, then theretarepossible states of
the two entities’ depending upon each otheithér of such two states precedes the other.
Both are necessarily possible. Consequergifher of them can, on its own, claim to be the
description of@). (Q2) can only be described by relations which necdgdald betweenO-
and —O, based upon their innate necessity (i.e. with@irtgiven meaning).

2.6.1.1. Within this notation the above rules effedy rule out such ill-formed formulae &{ )
and ( Q. That is, from the meaning & and ( ) sucha@( )and ( {2 can only
mean, if they are meaningful at all, the sam {2). If (Q) is a meaningful symbol and
therefore exists in a given notation, theorider to be recognizable as a meaningful symbol
it must be something which can be understdbé meaning of(g) lies in the necessity for
the notation in which it exists. TherefafdQ), Q( ) and ( 32 are all to be meaningful
at all, then the necessity for their notatiequires only one of them to be present ; foy the
can only be identically meaningful. Anythitigat is already described and understood need
not be repeatedly described and unders#agmbol has one and only one meaning. No
relations can be described between two ic@rdescriptions, except that of a possibility and
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its counter-possibility based upon the sadiscernibility. A symbol has a definite meaning
which is self-discernible. Therefore, twemdical descriptions of a same symbol contradict
the initial condition. In the same sensedhmmnnot be two FX’'sCY) is chosen by definition.
However, definitions are superfluous whermotation is a demonstrative one. What describes
itself necessarily so describes itself, Haggon its innate necessity of self-descriptiomals
only itself to describe and to be describednything describes itself, then there can be no
further innate necessity for it to repeaativing itself again ; for it is already undersdoo
What is self-described cannot describefitsgain. This is so because its existence is now
only structurally conceivable in a notatishich it conditionalizes from itself, and therefore
because it has no self to describe. Consglgu&om the moment wher)) is chosen,
nothing else butX) can meaningfully exist in order to designate wigytalready designates.
The possibility that more than one symbahdtfor a same meaning is ruled out by the initial
condition from the outset of this demonstraif they are ontologico-notationally
demonstrating. Similarly such@s€) cannot exist in the above notation. It can only be
interpreted (i.e. made fitted into a giveration) as standing for either two distinct, self-
discernible entities or the sameq8) or (2)Q. In the first case it contradicts the initial
condition. In the second case it is respettiidentical with O~ or —O. In this notation
each of2 and ( ) is itself meaningless and therefore charist without the other.
Whenever either @ and () is present, it is necessarily with theeot If both are present,
then they are necessarily eittlOr or O. Both O~ and—O stand for Q) and

together describ€j.

2.6.1.2. In the@)-notation 2) is the most basic symbol which stands for a dgton. O- and
-O are the form of@). Q and () are the most basic demonstrable unitsy &he
together to demonstrate FX.

3. The relations which necessarily hold betwlOn and—O are ontologico-notationao— and
-O relate to each other by generating relations gqimed by their innate necessity to describe
(©Q). Such relations are the descriptions€f.(

3.1. FromO- and O it follows that :
OO OO OOy : O
00 : ((tOyOy0O)-)-5-0 : -O
~O0- - (@Q)Q) ~))AQQ(-(@)))

3.1.1. Neither of O~ and ~O holds without the other because the possilofieach necessarily
underlies that of the other. ConsequerQ‘O— amounts toO— -O- O to ~O. That
is, O-0O- and OO are either meaningless or must adopt the foan‘ and O

(i.e. their own form) in order not to be memgiess.O— and —O are forms. The meaning of
a form lies not in symbols themselves butlations between or among symbols. This means

that OO~ and=O-O can have a meaning if and onQT sin'O-O- and-O s
in—O-O are symbols such that manifest their oveaning between themselves. Therefore,
they can only be the sametasind ( ).O‘O‘ can only beO- becauseO-O- is,
according to its own form, meaningful onIyQ‘(O‘). In O‘(O‘) the symboIO‘ is
necessarily the same@sfor in the formO- () is discerned in terms@f Consequently,

it OO is meaningful at all, it can only bO- Q‘ ), in whi€J- - or whatever symbol

it may be - identifies itself witf2 by means of ( )O‘O‘ is therefore identical with

Q(Q), which refers 0O~ . 10O~ can only bO‘, -O-Ois necessarily‘o . This

is so because tO-O s meaningful at all, it oaty be in its correlation -0

O-O- isidentical withO- O~ is meaningful only irsitorrelation to~O . Therefore,
-O-O isidentical with—O . In this senséO-O mayQ‘ f and only if O-O-
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is —O.

3.1.1.1. There are no ontological states whichespond OO~ andO-O O-O-  and
-O0-O only amount to a mere claim for their ownnfi, which is respectivelp— and

3.1.2.0- and O are necessarily coexistent. The relationsiwinadd between them are the ways
of coexistence. There can be two and onlysuah relations «§) is described ;

(i) wherea demarcateb, and therb demarcates, in which the latteb is the same as the
formera, and the lattea is the same as the fornmgrnevertheless in which the two
demarcations are not one and the same,

(i) whereb demarcates, and thera demarcateb, in which the lattea is the same as the
formerb, and the latteb is the same as the form@rnevertheless in which the two
demarcations are not one and the same.

This is so because the coexistencEdf and O can be discerned if and onI@‘ and
-O comply with their own rules. That is, bd= and —O are simultaneously coexistent,
but each is only discernible in terms of ¢iiger. This means thdD~ and O are

coexistent if and only if they coexist in Burway that each is discerned in terms of therothe
is necessarily eitherO  intermsQ- O ims of O because the existence of
each underlies that of the other.

(i) ontologically means that there existseatity which consists in and of two self-indiscéiei
mutually dependent entities. This entity bandiscerned as an existence if and only if its
constituent entities depend upon each othsu¢h a way that ;

(1) either of them depends upon the otherthecdkfore gets itself discerned in terms of the
other,

(2) since either of them is now discerneteims of the other by depending upon it, the other
can be also discerned if and only if it deggeapon that which has been discerned.

(i) ontologically means the possibility dfet only other initiation. Therefore, the self-
indiscernibility of constituent entities atiee necessity of their mutual-dependence generates
two possible states : f)in terms ofa, and thera as such in terms dfas such, (ii) and vice
versa.

3.1.2.1. Between two such constituent entitiestbtual-dependence holds only unilaterally. This is
so because the bilateral mutual-dependehiveocself-indiscernible entities ontologically
and descriptively does not allow the verjiters to discern themselves as two distinct estiti
The bilateral mutual-dependence betweenssiindiscernible entities is ontologico-
notationally the same as the mere claintferexistence of a single self-discernible entity. (
FX), which is to describe itself and themtanifest itself by demonstration. For this reagen
mutual-dependence of two self-indiscerndaiéties is described as a pair of two sets of two
unilateral relations.

3.1.2.2. (i) and (ii) are both necessarily possiideause the possibility of each underlies that®f
other. Both (i) and (ii) are the descriptmfra quantifiable entity. The difference betwegn (
and (ii) is merely a matter of initiationitlter of the two constituent entities has to ingithe
mutual-dependence if it is not to be bilake¥Whichever may initiate, that forms (i), while
what is left as the other possibility oftiaiion forms (ii). This is so because these caunsiit
entities are self-indiscernible and onlycdim themselves in terms of each other by initmatio
Consequently, the mutual-dependence becamag of two sets of two unilateral relations. It
is this necessity of initiation that diffetates (i) from (ii). (i) differs from (ii) only bcause
it takes the initiation. As two possibleteta(i) and (ii) are ontologico-notationally onedaghe
same. These two possible states descriptimahifest themselves by either’s taking the
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initiation, and indeed either can take thigdtion. That which initiates presents itself(8s

(ii) is, based upon (i), that which is laft the only other possibility of initiation. (i)hich is
presented asOO- , therefore means that a djaaidientity ontologico-notationally
describes itself as an entity whose two tugnt entities mutually ‘include’ each other. Tha
is, by—OO‘ a quantifiable entity describeslftas ‘inclusive’. This is so because either
ofa andb, both of which are not yet discerned, initiatesjtitiating, its own self-
discernment in terms of the other. Consetiyiezach discerns itself in terms of the other in
such a way that if one discerns itselady depending upon the other, then the other discer
itself a by depending upon that which discerns itself,asnd by doing sa establishes
itself in contrast tb, b to a. This is the mode OO~ . The moddOO- is a formin
which the two descriptive forlO-  amO muuegpresent each other by each
initiating itself in terms of the other. Bye mode—OO- Q) is described as inclusive.
once~OO- s establisheo—o necessarily follosvtha description of the other
possibility and is therefore based uthO‘ atl$, what comes to discern themselves
respectively ag andb in —OO‘ could have been the other way around if amg if the
initiation had taken place the other wayuaich Therefore, the description of such a possbili
is necessarily based upon the one whichstieinitiation and presents itself aO0O-

The modéD——QO s the descriptive inversiomr{ OO~ nd s therefore based upon
-O0-.1f O—C0O is not based uponOO‘ , then it can ordyidkentical with what is
-OO-. This is so becauseandb are originally self-indiscernible, and therefoexhuse

the other possibility of initiation cannat Hescribed until an initiation takes place. Asener
possibilities of initiatiomrOO-  anO—O  are ontgico-notationally one and the
same.

3.1.221.0-0 is necessarily a possibility whichaséd upon what is already described. It makes
use of the description @) by -OO- in order to present itself as a descripti®y.
-O0- Q) is described as anything whose two and only tamstituent entities discern
themselves by mutually representing edbbraand by establishing themselves in contrast to
each other. That is, by initiation the tfwoms O-and-O unify themselves as a single
field of representation ; for ‘initiatiomeans that whichever - and O is taken, it
is necessarily in terms of what initiatiest what is initiated discerns itself. The meariiig
the notion of initiation is th& and () do not have an individual meaning andoaig
relationally meaningful. The notion oftiation is to describe the meaning of either-ness.
By -O0- a guantifiable entity is an existemd@ch recognizes itself as an inclusive
unified field.

3.1.2.2.2. The descriptive inversion OO~ is to #aat if (Q) can be described as an existence
in such a way thatin terms ofa, and thera as such in terms dfas such, then it can also
be described as anything that could haemtthe other way around. This is so because the
two constituent entities are initially fsgldiscernible and get discerned only by depending
upon each other. Therefore, the unilateiahtion of this mutual-dependence is necesgaril
twofold. That which initiate, by itselfisa initiates the other possibility of initiatiomé
therefore forms a set of two unilaterghtiens.~OO- stands for this. Based upon such
an itself,—OO‘ can also be described thebild have been the other way around. This
possibility gives rise to another setvad unilateral relationsO—O  stands for this.
-O0- andO—0O are, in themselves, one and the b&ceuse as a relation they
have an identical internal structure. THeywever, externally differ from each other
because despite of their common interimat®ire one is necessarily based upon the other.
Consequently, the self-description@j (s such that it is internally identical but extally
different. This fact constitutes the minstdamental structure of the world and represents
itself as the schema of logic. Logic is Helf-imposed necessity by which the world
describes and manifests itself. Therefibtbe world is to exist, it necessarily existonp
logic.

3.1.2.2.2.1. Whichever of what is self-indiscemialandb may take the initiation of discerning itself
in terms of the other, it necessarilyutessin -O0-.-00- is simply the necessary
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way by which they first describe themeshO—CO is whatever that follows from

- as the only other alternative way@j's describing itself and is therefore
necessarily based upUOO‘ . Because ofittigal self-indiscernibilitya andb can
only be descriptively recognized aftemtlare described. This means thataheitiation
and thé-initiation cannot be so recognized umtihindb are described. Consequently,

- may be indeed either by #a@nitiation or by theb-initiation. In either way the
same OO~ follows from whatésandb, and the samO—O  follows from what
is— OO~ .0—0 isthe descriptive inversion dOO-  chese andb relate to
each other inversely from those OO~ QQj (s described by‘OO‘ as
‘inclusive’, then it is described @‘—O ‘agclusive’. This is so becausO—O
results from the discernadéndb, while —OO- results from the undiscernadndb.
That is, the discernedandb appear as if they are representing each othensixely

from each other, while the undisceraehdb appear as if they are doing the same
inclusively to each other. Therefore gatity which discerns itself as ‘exclusive’ canyonl
be so described based upon the desaripfian entity which discerns itself as ‘inclusive’

3.1.2.2.2.1.1. What iO—O , is, in itself, the same 0O~ ; for there is nothing which
discriminates between tdnitiation and theb-initiation. Because of the initial self-
indiscernibility of andb thea-initiation and theb-initiation are descriptively

simultaneous and can only be seen mgaf the difference betweerlOO-  and

O——0. Therefore, iO—0O isthe descriptive irsien of -O0- , then
-O0- is equally the descriptive inversionO—QO.

3.1.2.2.2.1.2. There can be no conflict of mealtniagveen—OO‘ andO—O . This is so because

either of the two possible states(f ¢an be—OO- , and what is left O—O for
the very reason that it is the one wincleft.

3.1.2.2.2.2. lllustration : Each of the two direci of a line can only see itself in terms of theeo
They speak about each other in the sthiagavithout either the other cannot exist. Each
direction has to describe itself in tewhshe other. Such two directions are, in themesglv
one and the same. However, such two ieisers are related to each other in such a way
that they form a pair of two identicatsssuch that one is necessarily based upon the. othe
This is so because each of the two dowestof a line has to be discerned in order to be
describable. If such a discernment i@k place within the meaning of a line itself, and
if this line is to describe itself, theach of the two directions cannot simultaneously
discern itself in terms of the otherr, fotherwise, this line remains undescribed and
therefore can only be taken for granfétht is, a ‘line’ does not construe unless it is
analytically constructive. Consequengigher of the two descriptions of a line must
initiate itself and therefore, by doirg sitiate the other possibility of initiation. &h
results in a pair of two sets of two itleal descriptions such that either of the two &ets
necessarily based upon the other.

3.1.23.-00- and0—0O are ontologico-notational. The n&itesf description and the
necessity of existence coincide with eatteoin their meaning. Such a description is a
self-description and also conditionalizelsesnatic descriptions from itself. This constitudes
demonstration. An existence is a necessagyimand by which an entity describes itself.
There can be no entities which cannot desdtiemselves, if they are to exist. Whatever may
be describable, it also exists, and vicsaerOO- andO—O  are not only the
descriptive properties of the symbQl)) put also the ontological properties of a quaalifé
entity. That is, they are not only the ruldgch manipulate¢) as a symbol but are also the
necessary ways in and by which a quantiiaitity exists. The rlesOO-  a0—0O
are thus necessarily also the descriptidhe@hecessary ways in and by which a quantifiable
entity exists.

3.1.2.3.1. Every symbol, including those in theesoh of logic, has an ontological counterpart. The

meaning of a symbol is its rules. Rulesrayeonly to tell how to manipulate symbols but
are also to describe what ontologicallysexbehind those symbols. What ontologically
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exists behind every symbol is one and #mesand therefore embraces all rules in its
wholeness. Rules are meaningless outsislevtioleness. The meaning of a rule is
necessarily structural. FX is an entitaimd by which a symbol and its ontological
counterpart are unified. It is therefore tmtological basis of every symbol. Every symbol
is conditionalized from FX. The descriptioihFX is rules. Rules therefore govern both
symbols and their ontological counterpBX.is the origin of symbols and ontological
entities. The failure to grasp the sigmifice of FX results in the mystification of logicdan

every other schemaO0O- a0 are, in thisesghe most fundamental laws
of the world and its description.

3.1.2.3.1.1. The modesOO-  aO—0O are the laws of ogitdenotational discernment.
They are the laws based upon which ekigngtis to exist and to describe itself. There can

be two and only two mode OO~ ax—O ; forehean be no other
possibilities ol O~ andO s meaningfullyathg to each otheO~ amdO  are
the only constituents oOO-  aQ—O and affeodnly forms of 2). Based
upon the meaning O amO , orﬂQO‘ 1O tlaeenatural
extension of the meaning O O

4. The formation rules of th&j-notation :
I : (i) There are two and only two basic symb@lsand ().
(ii) Either ofQ and () is not presentable without the other.
(i) Q and () are not discernible by themselves.
From this it follows that if there exist@sand/or (), then it necessarily gives rise®). (For each
Q there must be a (), and vice ver$d) is therefore a symbol which stands for the refati

betweerQ2 and (). ) represents the most basic unit of the most sibols.

Il: (Q) is constructive in two and only two ways :

(ii) -O . ((QQ)Q) -+ : fora( )thereis Q.

Therefore,O‘ andO ontologico-notationally staftdsa same quantifiable entity (i.e€2)).

Q and () are ontologico-notational notions. Thi&iseliscernibility is the ontologico-notational
property ofQ and () and is based upon their innate necest#glf-description. From this it
follows that each o O~ andO identically referd@) by underlying each other.

I : 1f both of O~ and—O necessarily hold, ancedch stands foKY), then the descriptive
representation ofY) lies in the necessary relations between the wasiple statesQ‘ and
—O. such relations are as follows :

(i) OO0 : ((@Q)Q) ~))2AQQ((-(Q))) :

This describes the lI-fact that eithekbéind () may initiate its discernment by depending
upon the other so as to forfm)(

This, based upon the lI-fact, describedthiefact that if whichever ofQ2 and () may initiate
its discernment so as to for@)( then the lll-i-fact is necessarily twofold incdua way that
one is based upon the other.
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4.1. The modesOO-  anO—O  arethe descriptiortd)f @‘ and=O are the
descriptive form of().

4.2. 1, Il and IlI effectively rule out such ill-fmed formulae e.g. &( ), ( X, QQ,
O‘O‘, —O—O, Q(Q))Q and so on. They are meaningless. Or, if they a@ningful, they
can only be interpreted by a given notatiorsyfbol has one and only one meaning. A formula
presents one and only one idea. Two formulaehwétand for a same idea without the necessity
to do so must dispense with either. This ibetause no relations can be described between them,
and therefore because they contradict theair@tindition. What can be dispensed with is also
what can be interpreted and therefore alreagsypposes its indispensable counterpart based
upon which it is interpreted.

4.3. For an illustrative purposEOO— may be calledltision’, andO—0O , ‘exclusion’.

4.4, lllustration : If a geometrical straight linensists of points and consists in two directidinen
these two directions can be described at argngboints in such a way that they appear
necessarily as if either ‘colliding’ with eacother or ‘dispersing’ from each other. That is, a
straight line can be described in terms ofv@gicollision- or dispersion-point. These two
descriptions of a line is, however, identicatheir meaning. Therefore, whether the two
directions of a line appear at a given poinf aslliding with each other or as if dispersingiin
each other, they represent a same straight line

4.4.1. The meaning of ‘as if lies in its descrygtinecessity which is imposed by a descriptive
standpoint. A descriptive standpoint is a ssaey way of self-description.

5. -O0- andO—O are related to each other in such a vatytitley are internally identical
but externally different. They are internallgidical because each could have been the othey. The
are externally different becaus@ndb get discerned in that which takes the unilatenisikition of

mutual-dependence. mOO- a andb discern themselves by mutually demarcating eachrot

In O—CO itis described that suerandb in “OO~ could have been the other way around in
their identical meaning because in either wayrthation betweea andb identically refers toQ).

5.1. OO~ s called ‘inclusion’ becauseandb discern themselves by mutually demarcating each
other. O—Q is called ‘exclusion’ becawsandb are already discerned2) is, however,
identically described in bothOO-  a0—0O becaclOO-  d Or—O have an
identical internal structure. Therefore, whatemay be conditionalized fromOO-~ , it
identically follows fromO—0 .

5.2. OO0~ andO—O are internally identical but externdlifferent. This is so because
OmONS necessarily based quOO‘ . The externalrdifiee of what is internally
identical, is ‘operational’ in the sense tha external difference of each necessarily masifest
itself in the other. That is, the external eliince is operationally transformative from eacth&o
other. Therefore the relation betweg{OO- £-O  alse the form of mapping
between them.

5.3. Whatever may follow fronrOO- , it identically folvs from O—--0. Consequently, the form
of mapping betweerOO~-  afO—O  holds in that whiantitally follows from both
-O0- andO—0O . Given what follows fromOO-  afO—O , this foofrmapping
holds in and between that from whickOO- 424—O fidaily conditionalize
themselves.

Il - ii. 0-Dimensionality

1. The meaning of OO~ is FX and is described as assacg way in and by whicKO-  and
—O relate to each other. The same applieQO‘O t Whigh is identically to follow from
both OO~ andO—O |, is, however, initially based updOO~ This is so because
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despite of their representing an identical iefabetweenO~  andO O‘—O is based upon

-O0-. OO differs fromO—0O only in the sense that whatlOO- initiates the

description of such a representation. Logitiésdescriptive ‘paraphrase’ of the relation between
and=-O . The 0-dimensionality is such a ‘parapdirbg the mode™

1.1. BothO- and=O stands far). Therefore, the meaning O amO is one and the
same. This is to say th&) has an internal structure such that is a reldiewveenO-  and
-O. Logic is the description of this internal stiure. If O~ and=O have an identical
meaning, then they must have an identical syimtfmim. This is so because a description can be
understood if and only if there exists one anly one symbol for a meaning and for every différen
meaning. The use of such symbols is based upoaritologico-notational meaning of symbols.

1.1.1. Logic is the description of FX. Consequeritlgannot provide any symbol for FX. This is so
because FX can only be demonstratively seémeitotality of the description of FX. FX can
only be demonstrated. FX is described®}; (vhich has two form{O~  andO . BoO-
and—O stands fo€)X) and have an identical meaning. Because of thkistical meaningO‘
and—O must be represented by an identical simpbeo as to show their identical symbolic
form. ‘p’ is a variable-notion, whose meanligg in its self-identity and is applicable to wiatr
that is self-identical. This self-identitydescribed by the identical meaning which holdsnd a
betweerO-  andO

1.1.1.1. The relation betwedD~  anO is initiallpchébed by—OO‘ and is identically
repeated bQ—O . Therefore, p is found inigia -O0O- and identically inO—0O .
The 0-dimensionality is such descriptiveiaity of -O0-

1.1.1.1.1. A ‘conditionalization’ is a descriptiby a descriptive necessity. ‘p’ is said to be
conditionalized because it is, by the @&itondition, necessary for any two symbols to
represent themselves by an identical syrflawid only if they are described to have an
identical meaning and are not requiredg@therwise by some other descriptive necessity.

I - iii. 1-Dimensionality

1. While the 0-dimensionality is based upUQO‘, any further dimensionalities are common to both
-O0- andO—0O ; for-OO- andO—O  have an identical internalctie. What
differentiates the @imensionality from the himensionality is the descriptive necessity for eithf
what is— OO~ and what iO—O 1o initiate their own dgstion and results irOO- .

1.1.In both—OO‘ anc()—O the internal structureCOr aro is such that what

demarcates, by doing so, gets demarcated.igtiie meaning of(g) and therefore also -
and—O . ConsequentI)O‘ amdO identically relateaoh other in such a way that if

what demarcates gets demarcated, then whatiardated by what demarcates demarcates what
demarcates. IO~ andO  are represented by p,ghsaif-differentiatively relates to itself in
such a way that given a p, it implies itseliislis so because the internal structuré f is
necessarily identical with that o0 . Therefafeither of O- andO is possible, then

the other is also necessarily possi@? ad re, rwever, distinctly discernible from

each other in such a way that one determireesttier.

1.1.1. p is given by the 0-dimensionality. Onca given, p implies itself by the 1-dimensionalithis
is so because regardless*IOO‘ ol OO theressacity exist two such p’s that are
identical and yet separately discernible. Teiation between two p’s is therefore operational
the sense that all and only those which dfedsmtical implies itself. Representing this réden
by —, the meaning of— is that it can operationally discern the antecéétem the consequent
if and only if the antecedent and the consetjaee self-identical in such a way that one
determines the other, but both are neces$hiy.is also the only necessary and sufficient
condition for such a discernment to hold goblds self-identity is necessarily unilaterally
determinative and therefore makes it posdtiiscern the antecedent from the consequent even
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if they are represented by a same symbol. Oiilateral determinativeness is due to the netgessi
for an initiation, by which two self-indiscéife entities discern themselves by mutually
demarcating each other. If p implies itselfewsarily unilaterally, then the antecedent and the
consequent are discernible from each otherelated to each other in such a way that if the
antecedent implies the consequent, therideistical with saying that the antecedent implies t
the antecedent implies the consequent. Thitidat is p in the 0-dimension is such thatp"

in the 1-dimension, then the relation betwdrn0-dimension and the 1-dimension is that
p—(p'—p"). What is p in the 0-dimension can only be idfead with p'. This is so because while
that which implies can exist on its own, thviich is implied cannot exist without that which
implies. Therefore, if p>p" follows from p, then p is such that is p', whamply implies
whatever that is implicative from such anlfts8onsequently, p>p" must be, by its own
meaning, identical withp*(p—p"). p—(p—p") is the operational formation of the meaning of
— and is also the meaning of the 1-dimension. $biformulated by the relation between the
0-dimension and the 1-dimension=igp'—p") is recursive by its own meaning and takes the

1.1.1.1. The relation between that which implied #ire fact that that which implies implies that @i
is implied, is the repetition of the meanafghe latter and is recursive. This is so becdfuse
p—p" is to be given, the meaning of p' must be gifrest. Consequently, whatever may be in
the relation of implying and being impligdnecessarily assumes its being already implied by
that which implies and therefore remainstibal if it is implied by the antecedent. Thattlse
meaning of p>p" contains its being implicative by p' and is &fere identical with that of

p=(P—=E—=(C((P—pP"))))-

1.1.1.2. (p—p")—p' is identical with p' because that which implias only imply. The meaning of p'
is contained in p*p". Therefore, if the meaning of p' implies p',rhkis merely identical
with p'. A meaning and its reference carydm identical.

1.1.1.3. While p~>p" contains the meaning of p', which is to implylas therefore to be the
antecedent, the existence of p" is identiédd the meaning of p>p". That which implies
implies whatever that is implicative fronthuan itself and therefore exists on its own. That
which is implied , however, cannot existitsnown without that which implies. This also
means that if that which is implied exist®n such an existence embodies the meaning of its
being implied by that which implies. Thenefpgiven p", it is the very existence of p" that i
identical with p~>p". p" exists necessarily on the assumption thatp; but not vice versa ;
for p—p" exists on its own. The relation between an erist and its assumption is
0-dimensional in such a way that an existaadnitially the antecedent, and its assumptson i
the consequent. This is so because if atende is based upon some assumption, then this
existence requires such an assumptiondatdscription, but not vice versa. p" anebp" are
nevertheless 0-dimensionally related becatis@" is already existent before it is required by
p". If p" and p~>p" are 0-dimensionally related and if p" is inilyaio be the antecedent, then
p"—(p'—p") is necessarily what is self-identical and isréfore identical with p.

1.1.1.3.1. The 1-dimension follows from the O-disien, but the very existence of the 1-dimension
reduces itself back into the 0-dimensidme ifference is, however, while reducing itself
back into the 0-dimension, the 1-dimensaperationalizes’ the 0-dimension in terms of
itself.

Il - iv. 2-Dimensionality

1. If p" and p—p" are 0-dimensionally related and represent thimsén such a way that
p"—(p—p"), then p*=(p'—p") is necessarily identical with (p'p")—p". This is so because the
antecedent and the consequent are one and tieerséme 0-dimension. Therefore, once given
p"—(p—p") as being identical with p, then(p'—p") is necessarily identically twofold. That is,
the antecedent and the consequent are not disieeftom each other in the 0-dimension. This gives
rise to (p—p")—p" as being identical with p*>(p—p"). p"—(p'—p") is the 1-dimensional
description of the 0-dimension. This is so beeahs very existence of what is implied is baseohup
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the 1-dimension. If the existence of p" is neagfsbased upon the assumption thatp", then for
such an existence to imply itself is identicathato imply its necessary assumption. Thereforand
only if the existence of p" is taken for grantddht is, if and only if the 1-dimension existsh
p"—(p—p") is identical with p"’s implying itself and thefore with p. However, (p>p")—p"
cannot exist without the initial existence ofp(p'—p"). This is so because {pp")—p" can only
be 0-dimensionally postulated to be identicahvat— (p—p") if and only if p“—(p'—p") is first
described to be 0-dimensional—p(p—p") and (p—p")—p" are therefore identical in their
meaning, but the latter is necessarily based tipoformer. However, such a relation is neither
0-dimensional nor 1-dimensional. Whilep(p'—p") is the 1-dimensional description of the
0-dimension, the descriptive necessity for thdiriensional postulate of (p'p")—p" is the
0-dimensional description of the 1-dimension Hratefore constitutes a new dimension. The
relation between the 0-dimension and the 1-diimens 1-dimensional and therefore allows the
0-dimension to be 1-dimensionally described. Hawefor the 1-dimension to be 0-dimensionally
described there must be a new dimension, whiofggired by the necessity for{pp")—p".

1.1. (p—p")—p" is necessary because of the identical twofolsloép"— (p—p"). If (p—p")—p"
and p*—(p—p") have an identical meaning, then the meaning'e$p")—p" is that there
0-dimensionally exists p' and p", from eithémbich (p—p")—p" can be given. p*>(p—p") is
identical with p, which is necessarily one, am@ only. Consequently, if 1-dimensional p' and p"
are to be 0-dimensionally identified, then reseeily either p' is identical with p, or p" is idial
with p. This means that {(pp")—p" is identifiable necessarily either with p' othp".

1.2.1. The 2-dimensionality is therefore based upath the 0-dimension and the 1-dimension and is
so constructive by either p' or p".Ap")—p" is necessarily based upon—p(p'—p") ; for the
latter must be first formulated. That is, teation between an existence and its assumption is
necessarily such that while an assumptiores#st on its own and therefore does not necessitate
itself to imply anything, an existence, ifstto so exist based upon an assumption, necegssaril
necessitates itself to imply its assumption.

1.1.1.1. Representing {pp")—p" by p'vp", p'vp" is, unlike p>p", symmetrical. Consequently, p' and
p" are interchangeable. This is so becéhe®tcan be no descriptive initiality in p itself.

1.1.1.1.1. p'vp" can be identically given by ppr However, from this it follows that given p'vgt,
is not describable if it is given by p'lyr p". Consequently, there 2-dimensionally necdgsar
exists such a case that p'vp" by p' ang'@y p". This case is neither 0-dimensional nor
1-dimensional nor 2-dimensional. 0-dimenalty there can only be either p' or p* ; for p is
necessarily one, and one only. 1-dimendlippa/p” by p' and p'vp" by p" cannot be
discerned in terms of the antecedent aaddmsequent ; for p'vp" is constructive by eitbfer
p' and p". 2-dimensionally no such two &dises of p'vp" is describable by means of v ; for
both of them can be given by p' or p" aldnevhich case two existences of p'vp" are merely
identical. The necessity to describe suchse therefore constitutes a new dimension.

II - v. 3-Dimensionality

1. p'vp" is identifiable with either p' or p" arglnievertheless unspecific about either of p' and p"
Consequently, in the existence of p'vp" p' andng"altogether indiscernible from each other ard a
both associative with p. This is so because xistence of p'vp", once given by p' or p", canmditif
itis by p' or by p". If p' and p" are 2-dimensadly indiscernible from each other, but neverthglso
exist, then they are themselves a unity from twipiep" necessarily follows. The 3-dimension is
therefore identical with the O-dimension in sacivay that what is p is what is the unity of p' afid
The unit of p' and p" is existent if and onlytifs necessarily by both of p' and p", so that tekar
may follow from either of p' and p", it necessaalso follows from this unity.

1.1. Representing such a unit bygd*, pAp" is the operational formulation of the 0-dimemsand is
therefore the operational form of p. Consedyenthatever may follow from the 0-dimension, it
also necessarily follows from the 3-dimensibhe 0-dimension operationally recurs at the
3-dimension.
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1.1.1. pAp"is, like p'vp", symmetrical and therefore givese to the interchangeability between p' and
p". This is so because the meaning @pplies in its wholeness.

1.1.2. p'vp" and pp" are related necessarily in such a way thavjg'p's only identifiable with p', then
pAp', or if p'vp" is only identifiable with p", thep'Ap". That is, p'vp' and pp' are necessarily
identical, and the same applies to p"vp" ahpp. This is so because p is necessarily identical
with itself. Therefore, if p is p', then bailvp' and pip' are identical with p', and the same
applies to the case that p is p". v arithve no meaning if there exists only p' as p capp.
However, it can be described thatp'are necessarily based upon p'vp'. The sameeagpli
p"Ap" and p"vp". This relation holds between v andhen there exists only p' or p", and
manifests the relation which holds in whatsntical in meaning but necessarily differs in its
descriptive presentation. Those two formsyafraetry apply to anything which is identical in
meaning but is necessarily twofold in its nfiastiation. Such a anything is then described to
holds upon itself in such a way that theymmetry is necessarily based upon the v-symmetry,
although both are indeed identical in meaning.

1.2. Logical dimensions do not expand beyond tkdé&nsion. This is so because there are no
descriptive necessities. The 3-dimension isatpmally identical with the 0-dimension. This
means that logical dimensions operationally eatur between the 0-dimension and the
3-dimension. Logical dimensions are relatedrie another in such a way that ;

1-dimensionally ; from the O-dimension the irdnsion follows,
2-dimensionally ; the 1-dimension describestftimension,

3-dimensionally ; the 0-dimension which is désed by the 1-dimension is identical with the
0-dimension.

There are no descriptive necessities whiclselfedmposed upon the 3-dimension becausp'p

is a single unity which describes itself. (8idimensionally identical with pp". pAp" is
0-dimensionally identical with p. Logical dinsans therefore complete themselves at the
3-dimension. Such completed logical dimensfons the logical space. This recurring logical
space is descriptively relativistic to itseffdatherefore bears no descriptive relations tdfitSaat
is, what is identical is merely what is ideatiand therefore cannot be described unless iithgnw
the logical space. Consequently, on one haisitjé the logical space the logical space is
descriptively recursive, on the other, outsltelogical space the logical space is descriptivel
relativistic.

1.2.1. The meaning of v amdfollows from —. The meaning of~ follows from the 0-dimensional
relation which holds in and between what delfrarcates and is self-demarcated. Therefore,
(p, p, p~p) is the general form of logical dimensions. If (p p—p) delinearizes itself by the
very meaning of—, then p—p". p—p" is, by its own meaning, identical with-p(p'—p").
(p—p")—p'is, by the meaning ofp'p", identical with p'. p*>(p—p") is, by the meaning of
p—p", identical with the linear p. p*(p'—p") is, by the meaning of the linear p, identicithw
(p—p")—p". pis, by the meaning of (p'p")—p", identical with the unity of p' and p". If p'@n
p" are a unity, then p' and p" linearize thelwss as the unity of p. The unity of p is, by the
meaning of a unity, identical with p. p ismdieal with itself and is therefore-pp. From p—~p
p—(p—p) and (p~p)—p follow. (p—p)—p is identical with p and is therefore also thetyiof
p. The unity of p is p. The relation betweka linearization and the delinearization is suett th
the delinearization recurs between the 0-dgimenand the meaning of the 3-dimension and is
therefore based upon the linear p. (p,pppis the internal structure of the logical space.

1.2.1.1. (p, p, pp) is the ontologico-notational structure of FX asdhe self-description of FX. FX
becomes epistemological through (p,,®. FX with such an internal structure is an entity
which can be described to comply with thgidal space. Such an entity is an epistemological
entity because it is accompanied with its @&scriptive understanding (i.e. because it is, by
means of (p, p,Pp), the descriptively visualized form of FX ). Tarternal structure of FX
is the self-description of this epistemotzdientity.
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1.2.1.2. A'variable-notion’ is the descriptive essity for the identity in meaning. An ‘operata’ i
the descriptive necessity for the descriptibthis identity. Consequently, it necessarily
appears as if an operator is delineariziligear variable-notion. It is the linearity of a
variable-notion that manifests itself in asithe meaning of an operator. For this reasan if
variable-notion remains linear, on one hanandA remain identical with the meaning of a
variable-notion itself, on the other, thdimkarized p*—(p—p") is identical with the linear
p—p. This latter so holds because p" as the antetaderp—p" as the consequent stand for
the identity of p" and p*p" in their meaning. From-pp pvp follows as the 1-dimensional
description of the 0-dimension. From pwpgdollows as the unity of the 0-dimension. The
value of a variable-notion lies in this \edolie-notion itself, and in nothing else. If it appeas
if a variable-notion takes values, thisésduse those which are such values already underlie
the meaning of this variable-notion. Thaisvariable-notion’ is the internal structureasf
entity and is therefore the meaning of aityerAn operator is always the form of a
dimensionality, and its meaning is alwaysrfolated by a dimensional relation.
Dimensionalities are to describe the meaning variable-notion, and an operator represents
the descriptive necessity of each dimenditynd he descriptive necessity for> is that p is
necessarily self-identical and unilateraigpfold. While p can only be initially given in the
0-dimension (i.e. only byOO‘ ), the descriptafrthis twofoldness is necessarily common
to both- OO~ andO—O . If this constitutes a newesion, then this new dimension
must be describable solely on the basisafxisting one. For this reason the meaning-of
can only be found between the 0-dimensiahtha 1-dimension. No contingencies arise in the
process of the conditionalization from FXigis so because whatever may be descriptively
necessary, it is necessarily reducible théoself-describability of FX, and because only tvha
is descriptively necessary can be describbd.meaning of every operator is already
contained in the linear variable-notion peTdelinearized form of p (i.e. p' and p") is tokma
this implicitly contained meaning explicitdiis therefore to describe the meaning of p.

1.2.1.3. The logical space is consistent becausgy dvgical description is a necessary descripbibn
what is self-identical and is based uponsttléimposed self-describability of what is
self-identical. Consequently, there are matingent descriptions in the logical space. The
logical space is complete because the gasunriof what is self-identical recurs to what is
self-identical and makes itself relativigticitself.

1.2.1.3.1. The consistency and completeness dftaraywhich is consistent and complete by itself
cannot be ‘proved’, but can only be dema@tstl. This, in relation to the so-called ‘proas§’
such consistency and completeness, isiggntith saying that unless the descriptive
necessity for truth-values is describedséhso-called ‘proofs’ have no ground for such
claims. However, if this descriptive nedgsis to be described, then it must be necessarily
within the logical apace. Consequentlyptds’ become a demonstration. A ‘proof’ is, ifst i
valid, the demonstration of a descriptieeessity. ‘Proofs’ which are based upon the
invalidity of a contradiction (and the laivexcluded middle) cannot be valid if they fail to
describe the very validity of the invaliddf a contradiction. However, it is the very
description of the invalidity of a contration that constitutes the logical space with the
notion of truth-values.

1.2.1.4. Between and within dimensions the follgnvaperational relations hold :

A : The 0-dimension gives rise to p, whistwhatever that is self-identical. Only and allgho
which are self-identical have a descriptieeessity in the logical space.

CP : What is self-identical relates to itselcessarily in such a way that it ‘implies’ itsét
‘implies’ itself because what is self-idexati can be described if and only if it is also
unilaterally twofold. Therefore, the meanfghis ‘implication’ is based upon the
describability of what is self-identical. \&ths self-identical can only be described in sach
way that what demarcates itself, by so dogeds itself demarcated. Therefore, given p by A,
then necessarilypp. p—p can be described asfp" ; for the meaning of the consequent p
is identical with the meaning of the antesrgdo’s implying itself, while the meaning of the

25



antecedent p is to imply itself+p is therefore, by its own meaning, delinearizase—>p".
CP is necessarily common to bat OO~ £a-O eea(OO- and
have an identical internal structure. Oniergp initially in —OO‘, p is also found in

On®)

MPP : From p by App follows by CP. p>p is p—p" by the meaning of—, where p' and

p" are the delinearized p—p and p—p" hold because without the antecedent p (or p') th
consequent p (or p*) does not hold. Theegfgiven the antecedent p by A, then the
consequent p necessarily follows by CP. Ehidentical with saying that given p' and-@",
then necessarily p" ; for p' and p" are taeth necessarily in such a way that what gets
demarcated is not so describable withouttwhanarcates, but not vice versa. MPP is merely
the meaning of CP and is therefore formblatas p=(p'—(p—(-(--(p—p"))))), which

is, by its own meaning, identical with-g".

vl : If p—=p" is, by its own meaning, identical with-p(p'—p"), then p is, by its own meaning,
identical with p*>(p'—p"). This is so because the meaning of the existefp" is identical
with the meaning of the existence efp". Consequently, p*>(p—p") is merely the
delinearized form of the linearity and isitbfore identical with the meaning ofyp, which is

in turn identical with the meaning of p. @rgiven p*—(p—p") as being identical with the
meaning of p, (p*p")—p" is also identical with the meaning of p. Thissbecause the
antecedent and the consequent bear no piidgenneanings in terms of the meaning of p.
p*—(p—p") precedes (p>p")—p" despite of the identical meaning between p" @irep" ;

for p—p" exists on its own and is therefore, by itsedff-sufficient. This means thatpp"
does not motivate itself to be implicativelaherefore requires a descriptive necessity to be
so, while the existence of p" as the anteoei self-imposed with such a necessity. From thi
it necessarily follows that based uporgp—p") and therefore also upon the meaning of p,
(p—p")—p" holds as being identical with either p' as p'das p. This is so because p is
necessarily one, and only one, and is thezednly identifiable with either p' or p". Theredo

if and only if p' or p", then (P*p")—p" holds as being identical with p*(p—p"). This

means that if and only if p' by A, or p" Bythen necessarily (p*p")—p".

VE : If (p—p")—p" by either p' or p", then the existence of{p™)—p" necessarily
comprises the possibility of both p' andtis is so because from the existence of whatshold
by either of p' and p" it cannot be desdilfet is by p' or by p".

Al : If it is descriptively necessary for the existe of (p—p")—p" that both p' and p" hold,
then p' and p" hold only as a unity whicfers to the meaning of p. Therefore, this unitydsol
if and only if both p' and p" hold.

AE : If this unity is the unity of p' and p", therhatever may hold from either of p' and p", it
also holds from this unity. This is so besmthis unity does not hold without the necessiay t
both p' and p" hold.

1.2.1.4.1. A, CP, MPP, vi, v&| andAE are related in such a way that one necessathesudls
another by describing the meaning of iedgcessor, and that they recur and therefore form
a closed chain. They are therefore congistethe sense that nothing else holds within this
closed, recursive chain of meaning. Theycamplete in the sense that they are all
enclosed within, and converge upon, thenimgeof A.

Il - vi. Form of Mapping

1. Once initially given p by‘OO‘ , p can be identicadiyen by Oan®) ; for-OO- and
O have an identical internal structure. p is tfemecommon to botrfOO-  and
O—0. whatever may subsequently follow from thistgs therefore also common to both
-O0- andO—0O . what subsequently follows from p recurd lb@comes relativistic to itself.
However, the descriptive necessity that p ismgiwdially by -OO- and only thereafter can be
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found in O—CO , makes it necessary to make a discamhb®tween those two identical logical
spaces. The logical space is necessarily idélyticammon to both- OO~ anO—O . Two
logical spaces are identical in their own spawktherefore, on their own, do not differ from each
other. However, the necessity to make a discembtretween those two identical logical spaces,
makes it possible for the logical space to descitself and therefore to descriptively show its
consistency and completeness.

1.1. The logical space describes itself in termihefrelation betweemrOO-  alO—0O
This is identical with saying that two identit@gical spaces see each other by means of
the relation betweenOO-  afO—O . Two identical labEpaces relate to each
other necessarily in such a way that ;

0] -O0- is, in itself, identical withO—O , and viceksa,
(i) what is O—0O could have beerlOO~ , and vice versa,

(iii) if what is OO~ is OO, then what iO—0O  cannot 50O, and vice versa.

(i) holds becauseOO- afO-—O  have an identicalrialestructure. (i) holds because
this identical structure is such that what dexates itself, by so doing, gets itself demarcafi@yl.
holds because what gets itself demarcatetd O~ is identical with what demarcates itself in
O‘—O, and therefore because neither{OO~ OO cdhebease in the other
without falling into the impossibility of demstmation. However, ifOO- s the case, then
-O s also necessarily the case. This means X0~ and O—O  coexist
necessarily in such a way that both are ntiénsame logical space, and therefore that easksexi
in the other. Two identical logical spaces ¢fi@re form a single logical space by describingheac
other in such a way that each becomes the btheansforming what demarcates itself in each
into what gets itself demarcated in the otfidis form of mapping is ‘negation’.

1.1.1. By negation, therefore, there exist two ibahlogical spaces such that each contains therot
O—C0 is-O0O- ifand only if it is negated, and vicese Each contains the other in such
a way that they are identical. Consequerttly,description of either alone suffices for the
description of both. The descriptive necedsitythis is that"-OO~  with the negation of
O"—O, is not discernible frofO—O  with the negatio‘n‘cQO‘. The logical space
with this form of mapping is the self-descdldegical space and contains the notion of
truth-values. A ‘truth-value’ is therefore idizal with the logical space itself. The validdfa
‘truth-value’ lies in the very existence oétlogical space. Truth-values are identical witbhea
other if and only if they are on their own are therefore not related to each other. The mgani
of each truth-value lies in the other andéfane in their mutual-relation by means of negation
Representing truth-values by T and F, théntwatiue of p is necessarily T or F, and not both.
This is so because if the truth-value of p‘OO‘ is T, then that of p iKO—0O s
necessarily F, and vice versa. Thereforaydaf$uch p’s are identified with each other, thdrap
two truth-values which are either T and thgat®n of F or F and the negation of T. This means
that p in the self-described logical spaceTasd F which are assigned to p in such a wayifthat
p takes T, then the negation of p takes F vicelversa.

1.1.1.1. pis necessarily one, and one only. Thesethe coexistence of T and F, both of which are
assignable to p, forms the ‘matrix’ of p.€ldhescriptive necessity for a ‘matrix’ is this oass
of p. Therefore, the meaning of a ‘matrsxté enumerate T and F in such a way that they are
not simultaneously assignable to p andfaesfore not a unity.

1.1.1.2. Representing negation by ~, the matrix déscriptively determine thatep. If pis T, ~p is F,
and if p is F, ~p is T. From this it followlsat the relation between p and ~p is identicth wi
that between T and F. Consequently, thenfedsion of the self-described logical space
consists in and of either p or ~p. If it simts in and of both p and ~p, then it resulthe t
impossibility of demonstration ; for thisitkentical with saying that p is T as well as Fhet
same time, and therefore, contrary to thstemce of the logical space, results in the
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indescribability of p. p is what is identigdth itself. Therefore, if T and F are identiagith
the logical space necessarily in such atwaleach identically holds in the other, then p is
identical with either T or F. If p is sailbe identical with both T and F, this is the sase
saying that what is self-identical holdssite itself and therefore without any descriptive
necessities to bind what is self-identigabh identical symbol. If what is self-identicallti®
outside itself, then there are no relatiwh&ch hold in what is self-identical. Two existenagf
what is self-identical are merely the sasén p’s without any relations between them. p is
not describable if it is on its own and rémsaso. A symbol does not signify anything if itnist
describable to be related to itself. Thisgagainst the initial condition and is contraryhie
described existence of p (i.e. of the logspamce). If not both p and gan constitute the
0-dimension, themp-pis contrary to the meaning af; for p and ~annot be a unity. The
operational relations which hold betweemg apare therefore as follows :

RAA : From p~pnothing follows. If anything which follows fromap-p holds, then it is
identical with saying that the self-deschitity of FX does not hold.

DN : The negation of ~ip identical with p, and vice versa. This is sodwese T is identical
with the negated F, and F is identical with negated T.

The identity between T and ~F is identicahwhat between F and ~T ; for T and F are either
identical with each other if they are unteth or already underlie each other if they arateel.

p is matricized for this reason. p and ~ip loa related to each other if and only if they clymp
with RAA and DN. From this it also holds tha

MTT : The meaning of p*p" is identical with that of ~p*>~p'. This is so because the
relation between p' and p" is such that dney only they are discernible from each other
in such a way that the latter is based uperexistence of the former.

This also means p' and p" are necessarilideatical if they are delinear. Consequently,
each is delinearly identical with the negatof the other because the delinear relation
between p' and p" is identical with thatimtn p and ~p. This means that given and based
upon p~>p", p'is ~p", and p" is ~p'. That is, ~p*~p" is based upon, and identical with,
p—p".

1.1.1.2.1. T and F are, in themselves, identicti thie logical space itself. Therefore, the meawihg
T is identical with that of F if they ararelated. In the matrix of p T and F are not reldiat
only enumerated so as to stand for theticirand twofold relation betweenOO-  with
the negation OO anlO—O withthe negation‘OO‘. If the truth-value of
p is T or F and refers to the identical nieg of the unrelated T and F, then whatever that i
operationally identical with p is evaluatedeither T or F in such a way as to refer to the
identical meaning of the unrelated T an€é&nsequently, it does not make any difference if
this meaning of the unrelated T and F gesented by T or F.

1.1.1.3. The matrix of p is {T, F}, with which thmatrix of ~p is correlated as {F, T}. From this it
follows that the matrix of p'is {T, T, F},Rwith which the matrix of p" is correlated as
{T, F, T, F}. This is so because p' and p&¢ eorrelated not only with each other but alsdwit
p. The correlation between p and p' and éetwp and p" is linear and therefore generates a
linear correlation between p' and p". Theaation between p' and p" is delinear without
this reference to p. This means that i@ ,ip"is F, if p'is F, p" is T. Consequentlye th
matrices of p' and p" consist of two distiparts. This can be shown as follows :
p'{T, {T, F}, F}, p" {T, {F, T}, F}, in which the outer-matrices stand for a linear part,thed
inner-matrices stand for a delinear part.

1.1.1.3.1. The meaning of the delinearity of p' phdles in their correlation without a referencept p'
and p" are delinearly correlated in suetesg that each is not the other ; forqp" is,
otherwise, identical with-pp. For the same reason the relation between thécesbf p and
~p is identical with that between thos¢haf delinearized form (i.e. p' and p") of p. The
existence of p' and p" is due to the desiee necessity for p to discern the antecedent and
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the consequent out of itself when it implieself in accordance with the relation between
what self-demarcates and what gets selfadested. Therefore, it is this descriptive necgssit
that requires p' and p" to be delinear thedefore not to be identical with a same truthseal
when they identify themselves in termsrofti-values. If p' and p" are identical with a same
truth-value, they are linear and are tteeehot discernible from p. The descriptive nedgssi
for the delinearization of p and that farth-values (and therefore for matrices) go aloith w
each other because what is conditionalmedf the logical space necessarily underlies the
logical space. That is, T and F are thewesehothing but the values of a ‘variable-notion’.
The relation betweenfp and p—p" is that the former is describable to be idemtigéh p
only in its reference to the latter. Thethrvalue of p is the identical meaning of the lsex
TandF.

1.1.1.4. If all and only those which are identis@th themselves can be given in the logical spaxk a
are subsequently operationalized, then thaning of RAA, DN and MTT is already in A.
This is so because two identical logicalcgsacannot be in a single logical space unless each
exists in the other. The self-describeddabspace is a single logical space such that each
the two identical logical spaces is iderlyceontained in the other. This already means that
not both p and ~p can be given by A in thdiriension of this self-described logical space.
This is so because what can be given by &ath logical space can only be either identical
with or identically contained in what candieen by A in the other. For this reason the
matrices of p and ~p correlatedly consist @ind F. That is, the meaning of p already costain
that of ~p by means of its matrix and igéfere also contained in that of ~p. Matrices are
descriptively necessary because of the gser necessity for the existence of bot

and O—QO . The meaning of p and that of ~p are mutualhtained in each other
necessarily in such a way that each is @oediain the other, based upon the other.
Consequently, if p is given by A, then ~fa&sed upon p, or if ~p is given by A, then p is
based upon ~p. In either way it identicadigults in the same meaning of p and therefore of
~p. Both p and ~p can be given by A if antj/df it is in the logical space instead of in the
self-described logical space ; for p anchrgthen in themselves and are therefore one &nd th
same. Consequently, the relation betweenetwrsively closed chain of A, CP, MPP, vI, VE,
Al andAE and those newly found RAA, DN and MTT is such tha latter is descriptively
superfluous and is already implicitly incorated in the former. The latter makes what is
implicit in the former explicit by descrilgjrwhat is impossible in the former without falling
into the impossibility of demonstration. Téfore, if and only if p and ~p comply with RAA,
DN and MTT, then they also necessarily cgmyth A, CP, MPP, vi, vEAl andAE, and
vise versa./p-p cannot even be formulated and is in fact nostert. The existence of such a
non-existence is only seen if and when digichl space sees itself by describing itself by
means of truth-values, which are, if they a0t related, identical with the logical spacelfts
The descriptive necessity for truth-values In the descriptive necessity for the logicalcp
to see itself. Consequently, the meaninguth-values and that of negation are identical and
results in RAA, DN and MTT. The impossihjlbf pa~p is the impossibility of the logical
space’s not seeing itself ; for p and ~p atleerwise, identical. The impossibility ofpp
governs the self-described logical spacabse the logical space is necessarily to see figelf
the self-imposed descriptive necessity ier¢oexistence of OO~ anlO—0O , which
gives rise to truth-values and negation.

1.1.1.4.1. The consistency and completeness dbtieal space can be seen if and only if the ldgica
space sees itself. This means that sucsistency and completeness can be seen necessarily
through the impossibility ofap-p and therefore through truth-values and negation.

1.1.1.5. The matrices of p' and p" are respectiEI{T, F}, F} and {T, {F, T}, F}. From this it
follows that the matrix of p*p" is {T, {F, T}, T} : Representing the identical@aning of the
unrelated T and F by T, the linear part'efp" stand for T ; for the meaning of> does not
hold if p' and p" are linear. This resutidT, {, }, T}. If p' and p" are delinear, then [@s
the antecedent andHp" as the consequent are identical. This meanghbaheaning of—
does not hold between them, and therefaie-th between them stands for T. This is possible
if and only if the antecedent and conseqaeaiinear and have a same truth-value. Therefore,
this results in {T, {F, T}, T}. The matrixfq'—p" is therefore found by-pp and
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p"—(p'—p"). The latter is the paraphrase of the meaninh@®former by means of its
delinearity and is therefore descriptive#sbd upon the former. The meaning-ef and the
matrix of — are therefore compatible.

1.1.1.5.1. If the identical meaning of the unradateand F is represented by F, then the matrices of
and p" are respectively {F, {F, T}, T} af#, {T, F}, T}. Consequently, the matrix of p>p"
is {F, {T, F}, F}. This is so because ifd¢tidentical meaning of unrelated T and F can be
represented by F as well as T, then T ahdve the same discernibility as the related TRand
and are therefore correlated. Therefordtiogs change in accordance with this correlation.
However, by the very correlation betweeant F the identical meaning of the unrelated T
and F cannot be represented both by T gridldi the same time. T and F are identical in
themselves. Therefore, there is no diffeeeifip'—p" is metricized as {T, {F, T}, T} or
{F, {T, F}, F}.

1.1.1.5.2. The outer-matrix and inner-matrix of>p" do not have an identical meaning and are related
in such a way that the latter is based wtperformer. This is so becausep(p'—p") is
identified with p>p by p—p. p—p is identical with p because if the antecedentthad
consequent are not discernible from eabhbrothen the meaning of> does not hold. The
matrix of p stands for the identical megniri the unrelated T and F and is therefore
evaluated by T ; for not both p and ~p bargiven together by A in the same 0-demension.
Therefore, if p is given, then this p i€@ssarily on its own. This means that T and F canno
be correlated if they are to be assignabtais p. The linear part of p%(p—p") is therefore
identical with p*>(p—p). p"—(p—p) is identical with p>p because p" is neither what to
imply nor what to follow from p without bej correlated to p'. For this reason the matrix of
p*—(p—p") both linearly and delinearly stands for thentieal meaning of unrelated T and
F and is therefore evaluated by T.

1.1.1.5.2.1. If the outer-matrix and inner-matrbpb—p" are related that way, then the inner-matrix is
to be linearized by the outer-matrix. St the meaning of p*(p'—p"), in which the
linear part of the matrix of-pp" linearizes the delinear part of the matrix ofp". This
is so because the meaning ef'—p") is based upon that ofpp in the sense that the
latter identifies the former by its owreaming.

1.1.1.5.2.2. Once given the matrix ofp", it follows that the matrix of p'vp" is {T, {TT}, F}. This is
so because p'vp" is identical with-¢p™)—p", which is, by the matrix of p>p",
matricized as {T, {T, T}, F}.

1.1.1.5.2.2.1. Once given the matrix ofy@", p' and p" are interchangeable. This is so bezatand
p" are then correlated with T and F ams of — and its matrical evaluation.

1.1.1.5.2.2.2. The relation between the matrix'efg' and that of p'vp" is that the latter is, baspdmu
p—(p—p"), the linear form of the delinearity which is nif@sted in p~p". This is so
because the matrix of " is necessarily based uponp(p—p"), which is
0-demensionally identical with{pp")—p". That is, the inner-matrix of p’p" is
determined by the outer-matrix of@" in the sense thatpp is the operational model
of p*=(p—p"). This means that the meaning ofp(p*—p") is, based upon-pp, to
linearize the delinear part of the matri p—p" and is therefore not concerned with the
linear part. Therefore, by the 0-dimenal identity between p*(p—p") and
(p=p")—p" this same meaning holds in-(pd")—p" and thus results in {, {T, T}, }, in
which T stands for the identical mearofighe unrelated T and F. Howeverp")—p"
differs from p>(p—p") in the sense thatpp" differs from p“—p. The meaning of
p—(p—p") and (p—p")—p" is in their delinearity. In the linear part dfp (p'—p")
and (p>p")—p" the consequent of the former and the anteceafaht latter are
identical with p>p and therefore stand for the identical meanintpefunrelated T and F.
This means thatp*(p—p") is linearly identical with p*>p, and (p~p")—p", with
p~p". By the meaning of~ p"—p is identical with p, andgp", with p". Such p and
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p" are both 0-dimensional. p standdfieridentical meaning of the unrelated T and F.
Therefore, p>(p—p") results in {T, {T, T}, T}. p", in its distinctsense from p, stands
for the delinearity and is thereforeretated with p'. If such p" is 0-dimensional, then
and F are necessarily correlated anethiee cannot stand for the identical meaning of
the unrelated T and F. T is linearlyntieal with T, and F, with F. Consequently,
(p=p")—p" results in {T, {T, T}, F}. The meaning of v arttie matrix of v are
compatible because{p")—p", by the very meaning of>, stands for the descriptive
impossibility for p' and p" to be unreld and therefore also for T and F to be unreldited
they are linear and yet discernible fremch other.

1.1.1.5.2.2.2.1. The relation between the matrig-efp" and that of p'vp" stand for the relation
between the linearity and the deliitgan such a way that, on one hand, what is
delinear is to be linearized by wisdliniear if the 0-demension is linear, on the gther
what is linear is to be delinearizgdahat is delinear if the 0-dimension is delinear.
However, the 0-dimension can only beadibed to be delinear based upon the linear
0-dimension. This is so because ttaiom which holds in and between what is
delinear, cannot exist without whaingar. That is, p>p is necessarily descriptively
more fundamental tharqp" in the sense that without what is self-identivathing
is describable to imply itself.

1.1.1.5.2.3. The matrix ofgp" is {T, {F, F}, F}. This is so becauseAp" is the 0-dimensional unity
of the delinear form (i.e. p' and p")pfThis means thatAp" is discernible as either p' or
p" in such a way that ;

(i) if pAp" is the antecedent, and if either p' or p" istbesequent, then the antecedent is,
by the meaning of>, discerned as being identical with the consequent,

(ii) if p' or p" is respectively the antglent, and if pp" is the consequent, then the
antecedent is, by the meaning-ef discerned as being respectively identical wittopp'.

This is so becauseap” is 0-dimensional in such a way that the deligas
0-dimensionally taken for granted. Consely, (i) whatever that is implied, is only
implicative from itself, (i) whateverahimplies, implies what it is described to imply b
the delinearity. The difference betwegmad (ii) is due to the difference of meaning
between the antecedent and the conseqiéile the consequent necessarily assumes the
existence of the antecedent and is tbezefot existent without the antecedent, the
antecedent does not assume the existérthe consequent and is therefore on its own
meaning. Therefore, p' or p" as the cqusat is related to " as the antecedent in such
a way that if pp" is 0-dimensional, then p' or p" assumes whaetessary for it to exist
0-dimensionally, which is namely itsgifor p" as the antecedent is related tppas the
consequent in such a way thatAiff)'is 0-dimensional, then p' or p" as the anteceden
implies whatever that is to be impliedrfr such an itself. From this it follows that (i)
(PAp")—p' and (Mp")—p" are respectively identical with-pp'and p*—p", which are,

in turn, identical withpp, (ii) p—(p'Ap") and p*—( p'Ap") are respectively identical
with p~p" and p*—p'. The matrix of pp" is therefore what metrically satisfies all these

1.1.1.5.2.3.1. The relation between the matrix'gh'pand that of pp" is that ;
(i) while their linear part is identigatelinear,
(ii) their delinear part is linear inckua way as to be delinear to each other.
This is so because (i) pvp amg@re necessarily identical, (ii) by the same dptee
necessity which requires pvp angb po be identical p'vp" andAp" are necessarily
distinct from each other. Otherwisey¢hean be no descriptive necessity for the
delinearity of p and therefore for th#fedence between v and Therefore, the matrix

of pAp" is {T, {F, F}, F} and is necessarily based upthie matrix of p'vp". The meaning
ofA and the matrix ok are compatible because the unity of the delin@an {i.e. p'
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and p") of p is itself linear in suchvay that it is distinct from, and based upon, p'vp"
Consequently, between' as the antecedent and p'vp" as the consequente¢aning
of — does not hold in such a way that while the delipeat of pAp" differs from that

of p'vp", their linear part remains itieal with each other. By the descriptive necessity
for p*=(p—p") the delinear part of p'vp" is necessarily {T, {T}, }. This means that if
the delinear part ofAp" is distinct from that of p'vp", and if this is secessarily based
upon that of p'vp", then it can onlydistinct as {, {F, F}, }.

1.1.1.5.2.3.1.1. The difference between v arigs in the difference between p and its delirfeem.
p gives rise to its delinear form hesawhat is self-identical is necessarily
self-implicative, due to the descrptnecessity for what is referred to by p to be
self-demarcative in order to be ongado-notationally discernible as an entity. This
means that the difference betweendvais necessary. The matrix efstands for
this necessity. Consequently, if teérebar part of the matrix of p'vp" is based uptsn i
0-dimensional identity with p*(p—p") and is therefore necessarily {, {T, T}, }, the
by the same necessity the delineargidhe matrix of ptp" can only be {, {F, F}, }.
The descriptive necessity folies in the descriptive necessity for p to become
delinear. The matrix ofyp" represents this descriptive necessity.

1.1.1.6. The identical meaning of the unrelatedhd B can be identically represented by T or byd¥ ;
p is identically identifiable either withdr with F. This means that the matrix of p is
identically evaluative either by T or bylEis in this evaluation that T and F are descritied
be unrelated. The meaning of the matriczéslnecessarily in p and is identical with the
meaning of p. Consequently, whatever maigbetifiable with p, it can only be related to
itself. It is not T in its relation to F 6rin its relation to T that is identically idenéble with p
and evaluates the matrix of p. In being iiienl with p T and F are in themselves and are
therefore identical in meaning. This ideatimeaning of the unrelated T and F is therefore p
itself. This means that the truth-valuep @ its own logical space (i.e. its own
self-describability). That is, the demonility of p is the truth-value of p. p is therefatself
a tautology. Whatever that is identifiablighwp is also itself a tautology. What is operatitiy
identical with p is given by the delinearitthe linear p ; for if p remains linear, then no
operations of p hold. The truth-values tdw@tology is its identity with p itself and is tiedore
the very demonstrability of p. If p demoasts itself, then p evaluates itself only by its
demonstrability and therefore by the relatichich holds between p and what p demonstrates
(i.e. between p and itself). In the ventfilat p is evaluated as T, and that whateverishat
operationally identical with p is also ewatled as T, the necessity for every other evaluation
lies. Every matrix has a descriptive nedgssithe sense that it is necessarily demonstrayed
p. The description of such a descriptiveessity is a tautology in the sense that every matri
is determined by p, its matrix and its easilbn and therefore has a necessary relation with
those. This means that whatever that complith A, CP, MPP, vI, VEAl andAE , RAA,
DN and MTT, is a tautology. That is, p detares every matrix. Therefore, if it is described
how p determines every matrix, then sucleidgsons are themselves tautologies. This is so
because such descriptions can only be therigéion of the ontologico-notational propertids o
p and are therefore the paraphrase of ttaanimg of p.

1.1.1.6.1. In the matrix of p T and F are not catesl but only enumerated. Therefore, the matrig of
may be {T, F} or {F, T}. However, T and e to be correlated due to the existence of ~p.
p and ~p are identical if each is in its@therwise, p and ~p are correlated in such athaty
each exists in the other, and thereforerthaher is the other. Consequently, p and ~p come
to be necessarily matrical in such a way theither is matricized as {T, F}, the other is
matricized as {F, T}. The meaning of negatis therefore necessarily matrical and
designates this matrical difference. Ifidentical meaning of the unrelated T and F is
representable by T or by F, then such TRade correlated. This means that the matrix of p
which is evaluated as T, cannot be idehtigth the matrix of p which is evaluated as F,
although evaluations bear an identical imgaror this reason negation exists in the
self-described logical space. The meanfntggation is to correlate T and F so that the
matrix of p (and therefore the matricep'agdnd p") come to discern itself against the other
way of matricization, which gives rise toidentical meaning and therefore need not be
repeated. This also stands for the meanfitige impossibility of p~p. If the meaning of
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negation is matrical and stands for theatation between T and F, then negation is
applicable to whatever that is matricat] amkes T and F interchangeable. The two possible
ways of matricization are compatible beestey are independent from each other in such a
way that no operations hold between thelneyThave an identical structure with an identical
meaning. The consistency and completerfesaah is seen in the other in the sense that the
necessity of each underlies the possililitthe other.

1.1.1.6.2. It does not make any difference in magifithe identical meaning of the unrelated T &nd
is represented by T or by F. p is evalga#is T or as F. This relation between T and F
describes what holds and what does notihdite self-described logical space. That is, if p
is evaluated as either of T and F, therratjmal relations between such T and F givestdse
‘rules’. Either of T and F is the evaluatdmp. Based upon the evaluator of p, ‘rules’ diescr
how to linearize. This is so because thmearity cannot be described without the linearity
and therefore because operators are nzsiciecessarily based upon the linearity. This also
means that not both T and F can be theuat@l and therefore can designate the logical
space. ‘Rules’ are therefore given by tbscdiptive necessity for p to be evaluated as eithe
of T and F and the descriptive necessityte linearity between T and F. ‘Rules’ therefore
can only be made descriptively visible ricaity.

1.1.1.6.2.1. p is necessarily discernible fromifit§éhis self-discerniblity of p generates operatdrhis
also means that if p is not discernibterf itself, then the meaning of operators does not
hold and therefore becomes identical Withmeaning of p and consequently with the
evaluator of p (i.e. with the meaningle# demonstrability of p). Operators do hold
because the self-discerniblity of p isc@tively necessary. The self-discerniblity asp
however, necessarily based upon theidetfitity of p. Consequently, operators do hold
only in such a way that their meanindéscribable necessarily based upon this relation
between the self-discerniblity of p ahd self-identity of p. The delinearity is therefore
paraphrased necessarily by the linedrFitat is, the delinearity which is based upon the
self-discerniblity of p, is paraphraset@ssarily by the linearity which is based upon the
self-identity of p. This also stands floe meaning of matrices. Operators and matrices are
compatible because the latter is justibgcription of the meaning of the former. Matrices
describe the relation betweerp and p—p". The meaning of p>p" is based upon that
of p~p, and therefore its matrix is based upon the itebétween p*>(p—p") and

p-p.

1.1.1.6.2.1.1. The self-identity of p is manifesbgdp—p, while the self-discerniblity of p is manifested
by p~p". By the meaning of~> p"—(p—p") is operationally identical with-pp.
Therefore, the meaning ef is, by means of a matrix, described as the form of
linearization of the delinearity.p'(p'—p") is 0-dimensionally identical with
(p=p")—p". Consequently, the 0-dimension is operationié/unity of p' and p". Rules
are the description of the matrical digsion of the meaning of operators. The relation
between the linearity and the delinggiand therefore between the self-identity of p and
the self-discerniblity of p) stands tbe meaning of operators.

1.1.1.6.2.1.2. The consistency and completenegedbgical space without negation (i.e. of thesul
A, CP, MPP, vil, V&I andAE) is described as the self-relation of what i§iskentical
and the recursiveness of what is saiéalinible. The consistency and completeness of the
self-described logical space (i.e. tigidal space with negation) is described as the
description of the meaning of rules, athaire based upon the relation between the
linearity and the delinearity and stafat<either the delinear manifestation of the liriya
or the linear manifestation of the dedirity. Such manifestation of the consistency and
completeness is not a ‘proof’ but onlyuperfluous description of the very demonstrative
manifestation of the atomic symbolicnioiThe so-called ‘proofs’ of the consistency and
completeness are not proofs, but nedgsbacome a demonstration if the descriptive
bases of such ‘proofs’ are describesteimd of being taken for granted.

1.1.1.6.2.1.3. There are no such as ‘truth’ andétaood’ in the ordinary sense. Whatever that is
demonstrable is existent. Whatever ithakistent describes itself. Whatever that
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describes itself only relates to itsHlftruth’ and ‘falsehood’ can be described in
whatever ways, then they relate to edhbr necessarily in such a way that they are only
identical. What is describable as notding’ in the logical space indeed holds by the
very descriptive necessity of its besogdescribed. What is ‘false’ is not false if indae

so described and is therefore known &y how it is so. This is so because the
description of such ‘falsehood’ is ifseldemonstration. All and only those which exist,
exist. What cannot be demonstrated, @iaewven be described to be non-existent. The
logical space underlies whatever thabisditionalized from it. This only amounts to say
that everything is the demonstratiothef atomic symbolic form.
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lll. Schemata of Geometry, Arithmetic and Physics ;
The Epistemological Demoaisbn of FX ;
The Demonstration of Then@itionalization of Space and Time

Il - i. 1-Dimension in itself

1. Epistemologicality : The logical dimensions, aopgheir completion, constitutes a single logical
space. This is the outcome of the ontologico4iatal conditionalization of FX. The logical
space is essentially structural, and throughabieal space FX visualizes itself as anything
that satisfies OO~ anO—0O (i.e. as the meaning of/éit@ble-notion p). The
ontologico-notational property of FX is postuthte be such that if FX is anything, then it is
describable and understandable. Having desciibelflthrough the logical space, FX is now
an entity such that can recognize itself as angtthat can be seen through the logical space.
FX and its self-described counterpart are idahtfcand only if what is postulated and what is
described are identical. Given the logical spaagaust also be postulated now that there
exists something which satisfies FX. This is soduse by the meaning of self-description
their identity is necessarily already establisfidds something is, in its relation to FX, the
substance of the logical space. That is, whilenf&fifests itself only structurally so as to be
the description of itself, this something is véhagr that complies with such a structure.
Therefore, anything is this something if and dhlyis seen through the logical space. This
something is not an entity to describe but aityettt be described ; for this something is
necessarily already described through the logigate. Consequently, it is not a being whose
existence is yet to be characterized in termtsgfroperties but an existence whose properties
are descriptively already established. An existenf this sort is the value of variable-notions,
which are bound by, and yet manifest, the progedf the logical space. FX is
ontologico-notational, while this something isstemological. This is so because the former is
yet to be known to itself by self-descriptiore(iby demonstrating its existence and
simultaneously by establishing its own notatiavi)ile the latter is already known to itself by
being descriptively specified through the logisphce. What self-describes is
ontologico-notational, and what is self-descrizedpistemological. Therefore, they are still one
and the same, and yet their difference is in dedves (i.e. necessitated by itself).

1.1. An entity is epistemological if and only ifassumes the logical space. Therefore, the internal
structure of an epistemological entity is thgital space. This entity is also collective beeaus
the logical space specifies one and only oassobf entities, namely all and only those which
comply with the logical space (i.e. anythinghe postulated ontologico-notational anything
therefore becomes, by self-description, thedetvely specified anything, which is
epistemological and, with the only propertycomplying with the logical space, also
collective. What is ontologico-notational isitiis described, epistemological, and what is
epistemological is, if it is postulated, onigilm-notational. The two depend upon each other
in so far as a description is about somethiieg ihost essentially about itself). Without each
the other is impossible.

1.1.1. The epistemological entity, e, is colledivene, and one only ; for there exists one ang onl
one logical space. This is so because if vehself-described based up(ﬂOO‘ and that
upon O—CO were independent, it would allow a ielabetween them such that is
necessary , but remains indescribable. Thisngrary to the initial condition. Therefore, two
identical logical spaces necessarily merge tim self-described logical space, which is, so
to speak, the unified field of logic and iskd upon the necessary relation betwe!
andO—0O . Consequently, e can only be epistemcéddigidescribable through the
self-described logical space, and is coll&tyiwne, and one only.

1.1.2. Being collectively one, and one only, ande&sponding to-OO- anO—0 , € has two
and only two forms of representation. Thisasecause if e is epistemologically describable
and understandable collectively as one ang amé entity that complies with the
self-described logical space, then this &,#to be so described, must be represented as
one, and only one, and is yet based upondenwtical logical spaces which constitute the
self-described logical space. That is, thedescribed logical space consists in and of two
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FX's such that each is in a different mode, tithout the other, invites a contradiction to
the initial condition. This means that nothgan be said to be epistemologically describable
and understandable if it is based upon FXthree mode alone. Consequently, the internal
structure of e mirrors that of the self-ddsed logical space and therefore has two identical
selves such that become collectively one,ar@only. The difference between this e and
the notions of truth-values lies solely in b&ing able to see itself through the logical space
while T and F are to make it possible for eldcso. This is also the difference between the
epistemologicality and ontologico-notationalit

2. The value of variable-notions of the logic baspdn -OO-  and that of the logic based upon
O—CO are identical outside the unified field. Whagigor the logic based upo‘nOO‘ and
what is e for the one based upQ'—O are one anshihe in the same sense that T and F
are, in themselves, identical with each otiOO- nd O—O are, in themselves, identical
and therefore result in two identical logical s Their difference lies in their necessary
relation. Consequently, the two forms of représton of e also lie in this relation. While T and
F are, in themselves, identical and stand foritleatical logical spaces in order to describe a
necessary relation between them, e stands faelfielescribed logical space which is described
by means of such T and F. T and F are the twaatdtwo forms of representation of e.

2.1. While T and F exist only in order to describeecessary relation betweelOO- and

-O , € is the outcome of this description. 1§&K such that, having described itself
through the logical space, can now see itd@f) e is necessarily such that consists in and of
two and only two identical constituents angiés collectively one, and one only. This is so
because the logical space is already, by jtsplétemological. The self-described logical
space is the self-imposed necessary way byhwhilogical space sees itself. e stands for the
logical space and is necessarily made collelgtione, and one only by the self-described
logical space. That is, e epistemologicallyd&afor the logical space and is epistemologically
described by the way by which the logical speees itself. The properties of e are therefore
determined by relations which hold betweemvits identical constituents, e' and e". e' and e"
stand for two identical logical spaces andthemselves epistemological entities. e' and e"
relate to each other so as to represent ess&dly in such a way that ;

(i) e" and e" are self-indiscernible ; forlpate, in themselves, identical,

(ii) e' and e" discern themselves by assagjatiemselves with two identical logical spaces,

one of which is based upOTQO‘ , the other, uQn—O for hoth are to comply with
the logical space and therefore with the irakstructure of the self-described logical space,

(i) €' and e" cannot be in themselves ; fwherwise, it would allow two independent
identical logical spaces and therefore woulatiaalict the initial condition.

From (i), (ii) and (iii) it follows that :
| : e determines e" : T leads its relatiothvi.
Il : e" determines €' : F leads its relatiathw .

I and Il rest upon the ontologico-notationaltféhat the relation between T and F remains
identical either way. This also means thathi® matrix of p is {T, F} if and only if that of
~pis {F, T}, (Il) the matrix of p is {F, T} ifand only if that of ~p is {T, F}. This relation
between T and F in terms of e is external anistemological in the sense that it is valid only
on the basis of the ontologico-notational kremige of negation. By the meaning of negation
the internal structure of the self-describegidal space remains identical regardless of the two
ways of representing the matrix oprO‘ — , Br¢hemselves, identical, and
yet by the descriptive necessity of initiattbie existence of each unilaterally underlies thiat o
the other. The relation between them is thahefotherwise-ness and generates an identical
self-described logical space. If there necdlgsaxist two identical logical spaces, and if they
necessarily merge into the self-described kgipace so as not to contradict the initial
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condition, then there exist e' and e" suchdha, in themselves, identical, but cannot be in
themselves. Either of, but necessarily oneary one of, e' and e", is associated with
-O0O- and simultaneously determines the other agtoni Therefore, it follows that | or II.
I and Il may be called ‘directions’.

2.1.1. e can only be epistemologically describeigdims of both | and II. Neither of | and Il can
be, by itself, the description of e ; for, @tise, there would be two independent, identical
descriptions of e. This contradicts the ihit@ndition because no relations can be described
between them.

2.2. Both | and Il represent e, but neither isiterown, the description of e. Therefore, the
description of e is to be found in the way byich | and Il relate to each other. If both | aihd |
represent e, then they are not self-discerfibt@use they can only be seen in terms of e. This
also means that if both | and Il identicallpmesent e, but remain distinct from each other,
then | and Il are first to discern themselviese ways by which | and Il discern themselves are
the relations between them. Consequently, éiseription of e is identical with the necessary
ways by which | and Il discern themselves. Tibiiso because if | and Il are self-indiscernible,
then they can only discern themselves by radat each other. Relations between | and Il are
identical with relations of relations betweémued e". The description of e is the 1-dimension
in itself and is the fundamental framework piséeemological understanding.

3. e' and e" manifest themselves as e by eacteésniaing the other. The 1-dimension in itself
consists of e' and e" and consists in relatidnish hold in and between such e. e is the
representational output of | and I

3.1. The output of | and Il is represented as fadlo

e,
|. . el A en
' "
. . e' &= e
Il

I and Il are epistemologically discerned bytésexistence underlying that of the other. The
possibility,—, that e' determines e" so as to represent essetly, in itself, implies the other
possibility,«, that e" determines e’ so as to represent evieadersa. If | discerns itself as
—, and Il, as—, then their relation is that of a possibility atglcounter-possibility and
therefore also holds the other way around. €guently, it is also possible that | discerns
itself as—, and Il, as—, in either way identically representing e—¥ holds, then—
necessarily also holds, and vice versa.

3.2. Given—, it, in itself, implies that it could have been, and therefore :

e

:
—e— T

Given«, it, in itself, implies that it could have bees, and therefore :

e

——  reeiEa ats

3.2.1. Such as»— and«<« are impossible ; for the reason for representihgtus already
represented cannot be described without aigése necessity. That is, a relation between
what is represented and what is repeatedhgsepted without a necessity, is indescribable.
Or, it can only be that of self-identity.

3.3.—« and«— describe e as one and the sa" = " . This is so because what, in itself,
could have been otherwise so as for each thébether, is necessarily one and the same.
Therefore~»« and«—— are the necessary, natural extension of the ghesming of- and
- and<« consist in relations between e' and e". This m¢aat the description of e,

¢~ <" has an internal structure :
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which is to say that bys«— or by«—— "~ " remains identical and is therefore uniform

(i.e. self-relationally symmetrical). Therefogiven * = <" as the only and identical
description of e, ig necessarily, in itself,lmdies two possibilities of being such an itself.
That is, given *" ~ , implies , and implies . This is identical with
saying that giver * ek by —«, it derives—— out of itself by the fact of its existence,
or it exists by—— and derives—« out of itself. This is so becaus*" ~ “* can be given
identically by either of>«— and«—— and remains one and the same description of e.

Therefore, once it is given in either way daigstence manifests the other as the necessary
potential possibility of being an identicalfggle. so to speak, as its structure). That is,

° = <" exists necessarily either by« or by<—, and consequently its existence
necessarily, in itself, embodies non-specifjcaither of -« and«— and, relating to such
an itself, implies the other as its own pot@ntivhile preserving its self-identity in either ya

Therefore, giver ©° ~ " | it has an external structure :

< v L e > e e S e " — : —_— . <
. =) = P S e’ L 3 Lo~ e . —_—— ,

which is self-relationally symmetrical and ietefore :

L et S e e > &= e~ | e s | = —
=T N ———

= and = are self-relationally symmetrical in the sense #&h necessarily implies the
other, and therefore that both are necessaxitent—« and<—— can only be described in
contrast to each other. This means that is described as if it is>, and——, as if it is—,

or the other way around. Consequently, gi ~ = *" , both = and = are separately
discernible and yet simultaneously coexistérhere is a form such that gover= and
<, then:

SA<=)

il

s ,

This means that ;

(i) e underlies the self-described logical gpand is therefore anything that satisfies the
self-described logical space, but is not thedsscribed logical space itself,

(i) consequently, if bott= and = represent e and therefore have an identical mganin
but are nevertheless distinctly discerniblerfreach other, then they are identifiable with two
variable-notions such that are identical wilcleother and are subject to the self-described
logical space,

(iii) this being so because the self-descrilogital space is what the logical space describes
itself and makes itself its own value (i.e. dese e is a value of p in the sense that both the
self-described logical space and the logicateplescriptively converge in p),

(iv) given two p’s such that are identical ieaming, but nevertheless remain distinct from
each other, their relation is necessarily indbable ; for the logical 0-dimension
accommodates one and only one p,

(v) this, however, is identical with saying tigeonly linearly implies itself ; for once the

internal structure of the self-described lobgace and of the logical space is understood, the
linear self-implication of p leads itself teetpossibility of AT or FAF, which

epistemologically contrasts itself to the imgibgity of TAF,

(vi) consequently, the relation between twoip’spistemologically described as anything
between which v andidentically hold without changing their meaninfpr, the meaning of v
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anda lies in the delinearity and therefore does notitdtween two p’s,

(vii) v andA, however, have their own descriptive necessitgl, taerefore neither is reducible
into the other,

(viii) this epistemologically means that v andlentically hold between two p’s and yet
maintain their difference on the basis of tlo#itologico-notational meaning,

(ix) given the self-described logical space Hrallogical space, v andnecessarily coexist by
the irreducibility between them,

(x) such coexistence is simultaneous when ltindy between two p’s because they are not
holding, and therefore because their meanioglis seen in themselves,

(xi) v anda are together the form of simultaneous coexistevigen they hold between two
p’s,

(xii) two p’s are related to each other in terofiv andx in such a way that they
simultaneously coexist.

e

The external structure ¢*" ~— " is therefore described as what logically follovesvieen
two identical variable-notions (i.e. as thenfiasf simultaneous coexistence). The meaning of
v anda is such that if pvp from p, themp confirms that both disjuncts are identical wtik t
initial p.

3.3.1. Therefore, i and = are identical, then both v andfollow between them and
operationally identify their identity by meaofthe necessity for their simultaneous
coexistence. v andhold between them as identical, yet distinct,tretes. This is so
because v anddo not distort the identity betwee= and = and are yet different from
each other in their given ontologico-notatiomeaning. Therefore, i=sv<, then
simultaneously=s A<, and vice versa.

3.3.2. GivenSv= and =A< as showing the identity betwec= and <=, they are to
identify themselves as the form of simultarooexistence. This is so becar= and
= are asserted int—Sv<= and =sA= as being identical by means of v ands
applied to two p’s, and because neither megpoirv anda follows the other when they are
applied to two p’s. For this reason the meguaifiv andA can only be seen
epistemologically (i.e. on the basis of theenstanding of their ontologico-notational
meaning).

3.3.2.1. The relation betwee=v<= and A<= is transcendental in the sense that they are
descriptively incommensurable to each otlier there is nothing in terms of which the
identity betweer=v<= and A<= can be assertecSv<= and A= are
an epistemological application of the ongido-notational meaning of v and
Therefore, their epistemological relation caly be seen through their
ontologico-notational relation. That is, yoh the basis of their ontologico-notationality
in its wholeness the relation betwe=v<= and <A< can be epistemologically
taken for granted. If each v<= and =A< s identified in terms of the other,
then it becomes a ‘constant’. A ‘constamth ©nly be described in its own system and is
identical with FX. That is, v andare yet to describe themselves if they do not laave
relation between them. Consequen=v< and <A< only simultaneously
identify each other.

3.3.3. = and = collectively refer to one and only one e and dbsdhis e as two, identical
‘points’. ‘Points’ are schematic entities wiiare governed by the given structure of the
description of e. They schematically preshist $tructure. The substance of a schematic
entity is a structure in which it exists.

39



3.3.3.1. e is described as ‘points’ becausand« are relations, which do not hold by
themselves. However, ‘points’ are differfoim e' and e". ‘Points’ are anything between
which both— and« hold simultaneously, while e' and e" are prinyaidl describe such

— and«. ‘Points’ are anything which is to be described-byand«, based upon their
innate necessity.

3.4. The most fundamental epistemological strudsitberefore that of the most basic
epistemological description, which is conditiimed from the most basic
ontologico-notational self-description. Whaepistemologically describable has twofold
forms of description, by either of which it caa presented as being identical. What is thus
presented by each has the other as its owmtpadteEach of twofold forms of description
embodies itself as an existence and impliesther as its own structure.

3.5. Allowing ‘points’ as entities such that scheicelly present the epistemological structure of
the ontologico-notational self-descriptiens— may be, for an illustrative purpose, called as
the form of attraction, and-—, as the form of repulsion. ‘Points’ are collectvilentical
with e. Their multiplicity is due to their gimdorm only in which they are meaningful.

e

4. The 1-dimension in itself is therefore presers”" ~— ", which has the internal structure of
self-relational symmetry and the external streetf simultaneous coexistence.

Il - ii. Schemata

1. Schemata are necessarily the description dfttheture of description and notationally depict
the laws which anything must comply in order xgseepistemologically. They are the external
presentation of the internal structure <" ~— . ©" ~ “ has two distinct forms of
description, by either of which it remains ideati It is such self-identityo ©* ~ " that
maintains the identity of its own epistemologiegistence. The distinctness of its two forms is
internally described as the self-identity of thaitput because they embody themselves as their
own output. Consequenth©" < " is internally complete and externally (i.e. redgtio the
initial condition) incomplete. This is so becatise distinctness of the procedures by which it
externally presents itself, cannot be, once tkegntation is made, found in what is thus
externally presented, due to the descriptivetilebetween two outcomes.

1.1. The internal structure ¢©" ~— " is its self-identity. However, the two distinctfies which

generate such identity, are yet to be desciibéieir relation to their identical output of

° < " Therefore, the external incompleteness* ~ " is conditionalized from and

by the internal completeness ©° ~ " . The initial condition requires such incompletenes
to be satisfied.

1.2.—« and<—— generate an identic: ©° ~ " . Consequently, the existence of this identical

= < s, not only in itself but also by itself (i.e laéing to itself as such an existence), to
describe not only the internal identity butoatlse external identity, between« and<«——.

That is, the internal structure ©° ~ " is descriptively required to present itself sdas
describe the relation between its self-idergitg the distinctness of the two forms which
generate this self-identity. The internal stnoe of ** ~— | if it is described, becomes the

external structure g’ ~—

e

1.2.1. This requirement is the descriptive necgésit < ~ “ to describe itself not only
internally but also externally as an identigable.

1.2. The internal wholeness 1 *" ~— " is its self-identity, while the external wholenésshe

description of this self-identity. Schemata duerefore the descriptive ‘spatialization’ of this
self-identity. That is, only in a ‘spac.” ~— “° can see itself externally as an identical
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whole. In whatever wa,* =  may see itself, that way is a ‘space’. A ‘spasethie
description of the self-identity ¢ ~

1.3.1. A space is therefore generated out of ttegrial structure ot " ~— " . This is identical

with saying that©" ~ “° schematizes itself in order to see itself extdyrasd an identical
whole. This schematization holds in orderdamply with the initial condition (i.e. of the
describability).

1.3.2. What is a schema is therefore identical ththschematizec” ~ = (i.e. =~ 7
with its internal and external wholeness). sauently, there can be no such as an empty
schema. Whenever it exists, it is necessanhbstantial and is therefore about something.
There can be no space without entities.

1.4. This schematization is solely based uponrthate necessity ¢ ©' = " to describe itself
and strictly within the given meaning *" ~— '

1.4.1. The most fundamental schema is a schemavdpatializes’ the self-identity o ot

[l - iii. Schema of Geometry
1. 1-Dimension : The internal structure ©' ~— ' is to saythat® ~ " remains
descriptively identical regardless if e is dased by—«— or by«—. This is so because«
and«<—— are the relations of relations between e' and/eith are, in themselves, one and the
same, and are therefore to describe each ottemnathing else. If either 6« and«—— is
possible, then the other is also necessarilyilplessvhile both giving rise to a sarmr ©* ~
Consequently, givel* ~— = by or by , both and necessarily hold in

and between a san ©’ = . This means that what is internally one and timees " ~—
has externally two relations which hold in anda@en the internally identical self.

e

1.1. The external structure *’ == “ is therefore to say that the internal structure ©" ~—
(i.e. the self-identity o ©" = " regardless of its two distinct forms of gescrip)ids
possible if and only if both>«— and«— hold in and between a san o for
- ‘“A “" can be given non-specifically by either-ek&— and—«. This meays that once

is given, both of>«< and—+« are to hold in the existence ' s
Therefore;»«— and«— are necessarily together to form a single selvofunllateral

self-relations of *' s . They are unilateral because they are distinédgegnible from
each other. They are self-relations becausene:~ ~— = holds by—« or by«—, and

therefore because give ' ~ ", both—<« and«— holds in and between a same
e! «— e"

el «— e"

1.1.1. What is internally *' " based upor-« and implied by——, or based upoa-—
and implied by—»«, is externally what is>« and what is——, and vice versa—»« and

«—— imply each other, while ©" ~ " remains identical.

1.1.1.1. ©" = “ s internally identical, while>« and«— are externally identical. What is
is what is—«— and«——, vice versa.

1.1.1.2. ©° ~ " is an identical output of>« and<—. Therefore, giver " ~ “ , -« and
«—— are a set of two unilateral self-relations of mge =" ~—

1.1.2. Such self-relations, in order to be desdiilbequires < = " to present itself as multiple
and yet identical entities between which theedérelations hold. That is, the internally
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identical =" ~ " ‘spatializes’ itself so that these self-relatimas be made describable.
In this sense a space is necessarily andtedbedescriptive. A space is the epistemological
field of self-description. The most fundamésthema is therefore the spatialized self.

1.1.3. The spatializec*" ~ " is ‘points’, which are therefore essentially scaéimentities.
There can be no such as ‘a single point’‘@dints’ collectively refer to the spatialized

'~ " so0 as between them to descriptively present thelaelations which hold in and
between that identice ©° ~ " . They therefore only schematically exist in ortter

describe those self-relations which hold id Between a sam ™= ~— " . Such

self-relations can be described between twotpoEach point necessarily underlies the
existence of the other. Points are necessatriligtural. There can also be no such as ‘a point
in itself’. Points only have a collective m@anwhich is given by their schema. Points
therefore cannot be independent from each.dm'ﬂehout a structure between them they are

either meaningless or the same as thatidd ©" ~ " itself. With a structure between
them they are multiple and identical, andrthe@aning is the schematized, described
e! «—— e"

1.1.3.1. It also follows that there can be no sagh schema in itself. A schema is a descriptive
space, which is, without schematic entitiest,only empty but also altogether
descriptively non-existent. Schemata arestiiedescription of e and are therefore also the
epistemological demonstration of the ontaognotational FX. The self-spatialization is
therefore due to a descriptive necessitgekvig based upon the describability required by
the initial condition, so as for anythinglte ‘anything’.

1.2. =, which internally means the self-identity =~ ", externally describe © =~ “ as
multiple and identical points, between whiek— and<—— hold unilaterally because of their
descriptive distinctness, and as a set bea#ubeir relational simultaneity (i.e. mutual
implication). Therefore, the existence = necessarily underlies that =, and vice
versa.— and = are correlated in such a way thsv=,=Ar<=}.

1.2.1. Two and only two points are descriptivelguieed. This is so because points are schematic
entities and therefore exist only in ordedéscribe the self-relations which hold in

© <7 7 . Such self-relations can be described betweerdemtical points which

collectively refer to a sam ' ~ " . Points which are not required for this descriptio
are merely non-existent because their existenatradicts the initial condition.

1.2.2.—»« and«—— form a set and hold between same two points, wtidlectively refer to a

same ° =~ " . Consequently, given two and only two points, beth- and<— hold
between them in such a way that they arendiyi discernible from each other and yet
simultaneous. This descriptively appears asadh unilaterally determines the otherx—
and—— are externally to say that if either holds betwtem points, then the other
necessarily also holds between the same twaspd his results in a set which contains two
and only two points on the basis of their gmies of the internal identity and the external
describability.

1.2.3. Both the existence ef— and«<— and the ways of their existence are demonstratéuei
1-dimension in itself. The schema of deriviimints out of ©* ~ " is therefore not to

‘prove’ if and how— <« and<— hold, but to describe wh,*’ — < remains
self-identical regardless if it is by« or by«—. The internal relations betwees«— and

«—— results in one and the same description of e sElfddentity of " ~ " is
described by making such internal relatiortemmal. The meaningc " ~ <" s that ;

(i) e' determines — following the relationgvbeen what issOO- andwhatO—O -
e" and therefore represents e,
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(i) e" determines e' and therefore represent

(iii) each e, in itself, implies the other bese of the self-indiscernibility between e' and e’
and therefore results in the descriptive mhidfitity of both representations of e.

Consequently, if there is a schema such tlatvsa <= o derive identical entities out
of itself, then such entities externally mast the internal structure « — e (i.e. the
self-identity of ' e ). Such a schema is therefore the descriptive mstaifion of the
innate necessity ¢ ' o to describe its internal self-identity in its riéde to its two
distinct, external forms of description. That ~= " holds identically by—<« or by
«——, and therefore givel e , both—« and«— hold in ' <~ ' This internally
necessitate ' = ' to describe its self-identity in terms of andtmrielation to—« and

“——>.

124 7~ s given because i — “ holds identically by« or by«——, then it is

e

descriptively necessary to identi ' ~ = by —<«with "~ “ by<«—, despite that
their identity is internally already estabishin terms of the mutual implication between

—<« and«—, due to the self-indiscernibility between e' atid " ~ " is therefore

given by the initial condition (i.e. the debability). Thatis, © ~ = must be describable
to be self-identical not only internally (iley the describability of> and«) but qlso

externally (i.e. by itself in terms of andiig relation to its internal structure,”” ~ " is
therefore given by its own innate necessitgescription (i.e. by itself).

1.2.4.1. In any specified theories, if somethingpfes something, then this can be ‘proved’ by
means of what is taken for granted by bétih@se something (i.e. by presenting a schema
such that is capable of coherently locakinth those something within its structure and is
therefore capable of taking both those shingtas its values). This is so because a
schema descriptively acknowledges whatiismaatically taken for granted in it.
Consequently, anything which fits into tikusture of such a schema can be described by
means of this structure in such a way thatwhich occupies a less basic structural
position follows from one which occupies armbasic position. However, in a general
theory such as this there can be no sueh@®of’ ; for nothing is taken for granted in it.
A general theory describes not somethingkwkatisfies what is axiomatically taken for
granted, but indeed anything. It proceedg by complying with a condition such that its
generality excludes any possibilities ofitafion within that generality. Such generality is
irrefutable if and only if it coincides wittuman limitations and therefore must be
demonstrated for its claim of validity. Tlismonstration consists in describing whatever
that is describable, and therefore emboslieh limitations ; for by describing all and only
those which are describable it, by demotistramanifests all those which are not
describable. Anything is describable ifxists and is not yet described. This is so because
if it exists, then it is describable to éxiBhe ways by which it is described, are also the
ways by which it exists. Anything exists yphly demonstration (i.e. by describing itself).
Therefore, anything which exists also hasitimate necessity of self-description.
Whatever that exists necessarily compligh thiis innate necessity. If whatever that exists
is also describable, and vice versa, thearitonly be giveneby itself ; for anything is

existent if and only if it can describe ifs&herefore, if ©° ~ < exists, then it is to
describe whatever that is describable oitseff.

1.2.5. © =~ " holds identically by« or by<—. Therefore, giver © =~ <" as
necessitated by itself, by<— or by , both and necessarily hold in the
existence o1® ~ 7. "~ 7 necessitates itself to come into existence, ancoitming

into existence is its sole purpose ; for @mig into existence as necessitated by itself also
means its descriptively establishing itselfash an existence.

1.2.5.1. The schema of deriving points out ' e (i.e. out of the existence ¢ *’ s ) is
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therefore necessitated by what necessit® = “° to describe itself (i.e. by its own
existence). >« and«<— hold in the existence ¢ ©" =~ ", and if the existence of

'~ < is to describe itself in terms of and in its rigatto its innate necessity (i.e. in
terms of and in its relation to the interrelations between»«— and<——), then it is

descriptively necessary for the existenct©" ~ " to spatialize itself (i.e. to transform
itself into such entities that are multipted identical and collectively refer to the

existence 0 °' ¥ "), so that»« and<—— can be described to hold in the existence

of = < (i.e. between two identical selves of the existenit ** ~ " ). That is,

the internal relations between— and<—— can be externally described if and only if
—<«— and<—— can be described to hold separately between temtichl entities, and yet
between same two entities. This schemaagalthe describability and is therefore not
arbitrary but necessary. This schema isiredso that FX can epistemologically describe
itself. It is therefore a necessary extemsibthe meaning of the ontologico-notationally
self-described FX, based upon the desciiibali?oints are necessarily entities such that
are multiple and identical and only colleety stand for an identical meaning. Two and
only two of them are required because- and«—— which hold in the existence

o~ " are binomial relations and therefore can be maderéptively visible by
two and only two points, which consequestyisfy the describability. Two and only two
sets of two and only two points are requitedause there are<— and«——.

1.1. 1 : It is demonstrated that in the 1-dimensivitself that ©* ~ <* always necessarily
remains identical whether it is by« or by<—, due to the internal relations betweer—
and——. On the basis of this it follows that :

-1 : There is a schema such that, gix = ek by itself, derives points out of the
existence ol ¥ " so as to describe the self-identity " ~ " in terms of and in its
relation to—«— and«—. This is so because the self-identity © ~— " is generated by

the internal relations betwees— and<——, and therefore because giv *' ~ by
itself in such a way as to take the form dfi@it->«— or , both and necessarily

hold in the existence ¢*' < *" . Thatis, * ~— ", by itself, describes its self-identity
necessarily in terms of and in its (as an eris¢) relation te-« and«—, which are

holding in and between a sar ©" ~ " itself. If points are, giver ©" ~ ", what
describe the self-identity ¢©" ~— “* and its cause, then it is descriptively necestaly:

I-l-i : Points are identical with each otherchase without any relations between them they are
identical with <" <~ <" itself.

I-1-ii : There are two and only two points basa—+«— and<—— hold in the existence of

© = < and therefore hold between identical points, #gskations. A self-relation is
necessarily binomial because a multinomiatiftion, if there should be, can only be
circular or reducible into binomial ones whenfe related to one another in terms of the
identity of the nominative. Consequently, ither way a multinomial self-relation amounts to
a self. This means that if a self-relationésctibable and is therefore meaningful, then it can
only be binomial and therefore requires two anly two points.

I-I-iii ; Points are anything which are idergti@and multiple (in this case they are two in
accordance with a descriptive necessity) atiéatively stands for a same meaning.

I-1l : If -« and<—— hold as self-relations between two identical pgittien there are two
and only two schemata which give rise to tweniical points. This is so because— and
«—— cannot be described to hold simultaneously betwaeme two points. From this it
follows that it is descriptively necessary that

I-1l-i : Two identical points are only given blye schema of I-I.
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I-1l-ii : There is a set of two identical ponbetween which-»« holds as a self-relation, and
there is another set of two identical pointsveen which—— holds as a self-relation.

I-11-iii : Two sets of two identical points . two schemata which give rise to two identical
points) are identical with each other.

I-111 : If there are two schemata, and if theg identical, then in order to be two what hotds i
each schema is externally different not ontyrfreach other but also on its own absolutely,
and in order to be identical what holds in esciiiema is internally identical with each other.
This is so because what is demonstrated tateenally identical with each other (i.e. in terms
of the internal relations between— and<——), can be different only externally from each
other (i.e. in terms of the external relatibe$ween—<«— and«—— in their relation to the

self-given ©" ~— ). Therefore, it is descriptively necessary that :

I-11l-i : The relation in and between that whiis internally identical and externally different,
is descriptive and is manipulated from withinawis already demonstrated, in accordance
with descriptive necessities. This is so beedaysthe initial condition nothing exists if it is
not describable, and therefore because gnytfnii’ugi;s anything at all, must be describable.

Consequently, if it is demonstrated tt ©* ~ " is existable, then it is descriptively also
necessary that this existence is describablat@ver that is existable, must exist and be so
describable.

I-11l-ii : What is internally identical, is adrady demonstrated.

I-11l-iii : What is externally different, is #refore the descriptive appearances of what is
internally identical. That is, they are diffat@nly as descriptions and are therefore different
absolutely in each schema, which is indepenfilent, and identical with, each other.

I-IV : What is internally identical, is exterhadifferent because->« can be described as
what is initiated by», and——, as what is initiated by-. Therefore, it is descriptively
necessary that :

I-IV-i : —« is described as what is initiated by, so as to be externally different not only
from«—— but also schematically on its own.

I-IV-ii : «—— is described as what is initiated &y, so as to be externally different not only
from—« but also schematically on its own.

I-1V-iii : These two schemata are independeoit each other and yet identical with each
other.

I-V : Given two points in each of such schem#tay are described to hold by the initiation of
— between them in one schema, and by the initiatfer in the other. They are yet same
two points because their schema is necessaeihical. Therefore, given same two points,
—« holds between them as if one determines the otliéle <—— holds between them as if

it goes the other way around. This is so bex@augach schema itself whatis and what is

« are not discernible to be different due to thelf-sdiscernibility and independent
absoluteness. However, if two schemata aressadéy identical and yet remain two, then
what is absolutely» and what is absoluteky- in each schema, must be different on their own
as well as from each other, despite of thesohlieness. This is so because, otherwise, two
identical schemata cannot be described to beatwd therefore contradict their own
descriptive necessity. Therefore, it is dediugy necessary that :

I-V-i : Two identical points do exist. Thistise same as saying that it is demonstrated that
there is a schema such that necessarily gise$a such points.

I-V-ii : Two sets of two identical points doiskand are identical, based upon the descriptive
necessity that><— and«—— hold between same two identical points and musiobe
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described.

I-V-iii : Such two points hold as if one deten@s the other, and also as if it goes the other
way around. This is so because they existderoto describe the external difference between
—<« and«<——, which are internally identical.

I-VI : Given same two identical points by twaentical and independent schemata, they hold
as if one determine the other, and also agyiés the other way around. This is necessarily so
because-»«— and«—— need to describe their external difference. Orbts of this the
meaning of ‘as if’ is that points, if they d@weexist, can only be described in this way. The
internal identity betweer>«— and«—— externally presents itself only by means of such *

if’. Two sets of two points are independentrireach other in the sense that each, in itself,
self-contains the other and is complete byfit3éat is, given only a set of two points, not
both—« and«—— can be described to hold between them simultatgomsile —«— and
«—— are, by their given meaning, such that if eitlsgpassible, then the other is also
necessarily possible. Consequently, two sessurie two points are required by the
describability, so that botk« and«—— are describable to hold between same two points.
Neither of the two sets supersedes the othihieisame sense that neitheroé& and«——
supersedes the other because they are inteithafitical, and because the existence of each
underlies that of the other. Each-ef— and«—— is complete by itself because its meaning
already contains that of the other. What is glete by itself is independent. However, they
exist as if they are externally related to eaitter. This is so because there must be two
schemata if there exist two sets of same twntpoand because these two schemata are
necessarily independent from, and identicahwétch other. They are independent because
no relations are descriptively possible betwanidentical schemata, and they are identical
because-»<— and<—— are internally identical and therefore necesséuilyl between same
two points. This also means that the two set®ae and the same because nothing can be
independent from itself. The two sets of sawe points are therefore, by the describability,
externally independent from each other, anerinatlly identical with each other. Therefore,
representing a point by e :

I-VI-i : >« : «—e: —: Given two points, they hold as if one determitiesother so as to
externally differentiate>« from «—, both of which are internally identical. This' (i.e.
— which holds between two identical points) may bled a ‘schematic direction’, while in
this context— which holds between e' and e", may be callemahstrative direction’. The
former is descriptively based upon the latter.

I-VI-ii : «— : «—o: « : Given same two points, they hold as if one dwriees the other in
such a way that it goes the other way aroumeh fi-VI-i, so as to externally differentiate —
from—«, both of which are internally identical. This-' (i.e. < which holds between two
identical points) is also a ‘schematic direetiavhile < which holds between e' and e" is also
a ‘demonstrative direction’.

I-VI-iii : — and« hold necessarily the other way around from eahbrofThis is so because
their schema is described to be identical,lzawhuse there are two of it. In order for their
identical schema to be discernible as twa@and« hold necessarily in such a way that—
and—— are differentiative from each other.< and<—— are internally identical, and their
difference is only external. This necessarigams that such difference can only be described
in terms of what externally constitutes— and<— (i.e. in terms of demonstrative
directions). Therefore, the external differebhetween—«— and«—— is identified with that
between the demonstrative directions. Thistifleation is due to the describability, and
therefore the schematic directions are gengéfafehe describability.

I-VIl : The two points between which holds and those between whiehholds, are

identical with each other and are thereforbdadentified under a same schema. That is, the
two identical schemata which give rise-t8— and«——, must be necessarily described as an
identical schema. The two identical schemaganacessarily independent from each other by
a descriptive necessity. This means that thersa in which these two independent, identical
schemata are to be described as identicalptéendescribed. Such a schema can only be this
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demonstration itself and is therefore not talbscribed but to describe itself ; for descriptive
necessities can only be demonstrated. Constyguie validity of such a schema can only be
the demonstrated fact that these two idengichémata are necessary if anything is to be
describable at all. If this demonstration st the descriptive presentation of such a schema,
then the assumption of the impossibility of ith@ependence between these two identical
schemata leads itself into the impossibilityan§ self-descriptions and therefore of any
descriptions. If this very demonstration is aotepted, then it inevitably follows that it cahno
even be described that this demonstrationtivalad. Therefore, accepting this very
demonstration, these two independent schemataegessarily identical and are therefore to
be so demonstrated :

I-VIl-i : Given —«, and given——, therefore giver»« and , and are
independent from, and identical with, each otRepresenting this b,== <=, —»« and
«—— respectively hold between two points and are fbeeerepresented b <. These
two sets of two points consists of same twmisoind therefore descriptively require the
internally identical>« and<— to be externally different from each other sd thay can

be descnbed to hold between same two poiitsréfore I < <=1 s ‘e, and

ce—- is " ‘—3 in which — stands for the identity between thovge sets of two

points. Once giver> and« in their relation to each othe =" is = because

the meaning of points is incorporated intorelation betweer> and«. — isthe
representation of the two sets of same twotpaitich are now identified as an identical set.

= is = because the relation betweenand<« is such that they hold the other way
around to each other. Consequently, given &t® af two points, and if those two sets are
identical with each other, then the two poarts described a <, which is to say that the
two points symmetrically relate to each otheif@ach determines the other. That is, given
any two points, they are described as anythvnigh appears as if each unilaterally relates to
the other. The meaning of this descriptiondsassarily external and therefore refers not to
the relation of mutual-determination but to thkation of such a relation (i.e. the descriptive
symmetry between two unilateral self-relatiofis3ays that there are points which are
identical with each other and two.

I-VIl-ii : Where there are two points, whicheainternally identical and yet externally two,
they are descriptively seen as if each extbrdatermines the other so as to be internally

. oo .
identical. This is the meaning =, which is, by the symmetry;—. The meaning of
the relation of their mutual-determinationdsdiescribe their internal identity in terms of its
external manifestation (i.e. to tell what ifivaie like if what is internally identical transfois

itself into any externally divisible entity¥.what is described a ** =~ ", which is
internally identical by»>« or by<—, is externally divisible into two points, then &usvo
points will appear as if each externally defesas (i.e. internally transforms itself into) the
other, so as to be internally identical (ieebe externally two). What is described as

° == " is necessarily also described to be divisible éisstwo points, which self-relate to
each other). This is so because it is self-sagowith the descriptive necessity to describe the
external difference of the internally identieak— and«——.

e

I:1f <~ " is described to be identical by« or by<—, then by the internal relation
between»+« and—— what is—« could have beea-—, and vice versa. This is so because
given—, it, in itself, implies<— and therefore forms>«—, and consequently because given
—, it, in itself, may be implied by- and therefore could have been—. The same applies to
the case that-is given first. Therefore, what is presented == <= could have been
presented a====. This, however, makes no difference and resultkérexactly same
outcome. This is so because the meanin == <= lies in the external relation between
—<«— and«——, which are mutuaIIy determ|nat|ve Consequen=s= R

o v .‘:__
— :whichis also —.

Il : The relation between | and Il describkatt—> and<— holds symmetrically (i.e.
descriptively non-specifically) between same pints. Therefore, — is =, and
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— is % The 1-dimension is anything which is demonstrdtteveen any two
points by means of their innate necessity l@teego each other. Any two points are
necessarily described to appear as if eachrathg determines the other in such a way as to
be internally identical. Consequently the 1-gliision is demonstrated to hold between any
two points which are identical with each othed therefore relate to each other mutually and
unilaterally. The 1-dimension is a set of twilateral self-relations.

IV : This demonstrative schema is necessainy,na accidental. There is nothing which is
borrowed from nowhere, including this very destoative schema itself. This demonstrative
schema follows solely by the innate necessith@® description of the self-identity of

° ~— " and therefore contains no contingencies.
1.3.1. The 1-dimension therefore has the followingperties :

| : It holds if and only if two points are gn. Two points are anything such that can be
described to be internally identical and exadly different.

II': 1t holds between such two points and dffiere as a relation between them.

[l : 1t consists in and of two and only twohematic directions, which are a set of two
unilateral self-relations holding between tidentical points. This set is formed because
such two relations holds between same twatickdrpoints.

1.3.1.1. It can be summarized that the above ptiegeare based upon the following descriptive
necessities due to the initial conditior.(the describability).

e

(i) By—« or by«— "~ " remains identical.

(i) Given ©' e by itself in accordance with its own self-|mp0$m1be53|ty of

describing itself, boths« and«— hold in the existence ¢ ° e e is
given non-specifically by either e« and<«—, but not descr|pt|vely simultaneously by
both of»« and«—. This is so because no relations can be descirbaad between

such descriptively simultaneo ** ~ “* , and therefore because it would contradict the
initial condition.

@iy = < comes into existence non-specifically, necesssilgither of—« and

«——. This means that if both>«<— and«— hold in the existence ¢’ ~ ", then in
this existence><— and«<—— necessarily differentiate each from the other.

(iv) If -— and«—— are to be differentiatively described in a samsterce of

° = " | then this existence necessarily transforms ita@fan entity such that is
descriptively divisible. It is descriptiveiynpossible for both-+«— and<—— to be
described to hold in a same existence ahtbyee differentiative from each other.

° < " exists necessarily in such a way that it comesénistence by either ef <«
and——, and then that it, in itself, implies the otherstance of self. This is the external
structure of the existence ©° ~ ", based upon the internal structure of the exigtenc
of "~ 7 (i.e. the self-identity oi ©" ~— " ). This schema that the existence of

e

'~ < transforms itself into a divisible entity, is rémpd by a descriptive necessity so
that—« and«— can describe themselves in terms of and in tiedation to their own

necessary outcome (i. ©* < ).

(v) Given such a schema as necessitateddly; the above mentioned entity is
descriptively required to be divisible irteo and only two identical selves, which may be
called ‘points’. They are identical because- and<—— are internally identical and

therefore give rise to asar ' ~ " . They are two because« and«<— hold as
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1.3.2.

self-relations and are therefore binomial.

(vi) Not both—+«— and<—— can hold between same two points descriptively
simultaneously. Consequently, there mustudoeof the above mentioned schema so that
there can be two sets of same two pointbelfabove mentioned schema is required to be
two by a descriptive necessity, then suahdehemata necessarily demonstrate
themselves to be identical with each otter the identity between such two schemata is
the meaning of the descriptive necessityctvihequires them to be two.

(vii) Given such two schemata, they give ttis two sets of same two points. These two
sets can only be demonstratively seen tidémical with each other. That is, they are
described to be identical with each othéeims of a third party (i.e. this very
demonstration itself). However, unlike thin schemata there is no third party in terms
of which the two points can be describedeadentical with each other ; fo[ the two

points are internally identical with eachatin terms of the existence " ~— ", but
the sole meaning of their existence is temally describe this internal identity by

themselves (i.e. only for this reason thisterce of ©° ~— " transforms itself into two
points). Consequently, the two points argcdbable to be identical with each other only
from the descriptive standpoint of each p@ie. in terms of each point). This means that
such two points appear as if each ‘detersitie other so as to descriptively identify it
with itself. This external appearance offstweo points forms two schematic directions.

(viii) There are two and only two schematiections. They are internally identical with
each other and externally different fromheather. This description is the demonstration
of the 1-dimension. The descriptive diffaration between the internally identical«—
and—— forms the 1-dimension.

From the properties of the 1-dimension dassarily follows that :

| : A point has no size. This is so becausestiie and whole meaning of each point lies in its
relation to the other.

Il : Between two points there is no distandeis is so because the relation between them is
only the external appearance of what is iraiyrdentical. This distanceless space between
two points is the 1-dimensional space. Thegsfthe distance between two points can be
described to be neither finite nor infinite.

[l : The 1-dimension has the length of twars. This is the most basic unit of length and
size and underlies the basis of any measurtsmBmwo points are necessarily bound together
by their relation and form the most basic wfineasurement. Such as finiteness and infinity
are generated by the 1-dimension.

1.3.2.1. The 1-dimension cannot be cut. This ibestause where it is cut there are no entities, no

1.3.3.

measurable quantities and no directionss€guently, the notion of a unit is originated in
the 1-dimension.

Given the schema of deriving points outheféxistence o ©° ~ by the describability,
and therefore given two of it, the 1-dimensiwitself is, by demonstration, seen as anything
which consists in and of two schematic dimtti— and«. Such 1-dimension in itself is

the 1-dimension.

1.3.3.1. The schema which derives points is dethegly necessary for thel-dimension in itself to

describe itself so as not to leave anytlfirg itself) undescribed. The schematically
presented 1-dimension in itself (i.e. theirhension) is therefore self-descriptive. The
internal structure of the 1-dimension iritss embodied in that schema and then
manifests itself as the 1-dimension.

2. 2-Dimension : The 1-dimension immediately resirtthe conditionalization of the 2-dimension
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in order to complete its own describability. Amet dimension simultaneously follows because
given the schema of deriving points, points amewvéble, and therefore this schema is valid, if
and only if there is a space in which points lbarderived at the precise descriptive moment
when they are derived. If it is descriptively essary that the 1-dimension holds between two
points, then it is also descriptively necesshaf there is a space into which those two poirgs ar
given. This is so because it is descriptivelyudiemeous that two points are given, and that the
1-dimension holds between them. This also mdzaishe 1-dimension and this new dimension
are descriptively simultaneous. This new dimemgonecessarily underlain in the schema of
deriving points elnd therefore by the necessityeshonstration. The self-spatialization of the

existence of © ¥~ “ therefore conditionalizes two forms of space. @rgetween two

points, the other is between any possible twatgoirwo points are given by the necessity that
two identical, independent schemata identify thelwes with each other in terms of the
self-imposed necessity of this very demonstrafidre 2-dimension stands for this necessity, and
whenever there are two points, the 1-dimensiaesgarily holds between them. Consequently,
the space between any possible two points idicdmwith every possible location of points such
that can be held together by the 1-dimension.ZFdamension is what makes it possible for the
1-dimension to exist and is therefore the detigpspace of the 1-dimension. The 2-dimension
consists in and of points such that are 1-dinmevadly binding. The 2-dimension is the totality of
such points. The space into which two pointsgiven is identical with the descriptive necessity
by which two points are given. Two points areegivf and only if they can be given. Those
which are given and those which can be giveredffiom each other and are yet descriptively
simultaneous. Nothing is given unless it is kndwitself that it can be given, and vice versa.
The 1-dimension holds between two points whiehgiven , while the 2-dimension holds
between two points which can be given. The 2-dsmn is therefore the space of points such
that are 1-dimensionally binding. This also meiuas$ there can be no such as the 2-dimension
in itself ; for the 2-dimension is necessarilgcliptively characterized in terms of the
1-dimension. Therefore, the internal structuréhef2-dimension is the 1-dimension. The
2-dimension is described as the space of poihtshnare characterizable in terms of the
1-dimension. The 1-dimension is the space oftanypoints and is the descriptive space of the
1-dimension in itself.

2.1. If the 2-dimension is the descriptive spacthefl-dimension, then the description of a single
1-dimension determines the 2-dimension. Thahes describability of the 1-dimension
determines the existence of the 2-dimensioe. I-dimension is symmetrical to itself. This
means that a single 1-dimension is describ@méold. This twofold description of a same
1-dimension characterizes the 2-dimension. iBg® because the 2-dimension is any space
such that the 1-dimension can exist in it, tredtefore because the external structure of the
1-dimension is the internal structure of theirdension. The 1-dimension is describable

—

externally twofold, —— and % This externally twofold 1-dimension holds between
same two points and is therefore internallyiaal. The relation which holds in and between
what is internally identical and externally fafol is {=v<",=A<=}. This is to say that
given what is internally identical and exteipaofold, v anda hold between them as
identical relations and therefore schematicedigfirm their identity. v and hold between

—> —>

<—— and —— as identical relations. This also meanst———- and —— are both
necessarily under the schema of logic.

2.1.1. By the describability the 1-dimension nexté described only once. This means that there
can be one and only one 2-dimension. Thim2edsion is the descriptive space of the
1-dimension and is therefore necessarily soahcan descriptively differentiat=v<
and =A< on the understanding of their identi=v<= and =A< are

1-dimensionally identical and 2-dimensionalifferentiative. This is so because they are the
external structure of what is symmetricaltself. To the 1-dimension the 1-dimension is

— andlor — ;for each of = and — is symmetrical to itself and

—>

therefore, in itself, implies the other. Thimounts to say that each ——— and —

is self-identical with the other. To the 2-éinsion the 1-dimension describes itself as the
relation which holds between any possible pemts and therefore manifests every possible
relation which holds in such an itself ; foetrelation between possible two points and two

50



given points is such that the former can dbsdhe relation which holds in and between
what holds in the latter. Their relation is tame as that between the
ontologico-notationality and the epistemoladjiy. The former is, so to speak, the ‘idea’ of
the latter. Without the former the latter canbe given, without the latter the former nullffie
itself. Therefore, every possible relation efhholds in the latter is already in the former.
That is, every possible relation which holdsvhat is symmetrical to itself, descriptively
presents itself in the 2-dimension. This mahaasthe relations which hold in the identity

—>

between —== and ——= exist in the 2-dimension.

2.1.1.1. Two points can be given if and only ikipossible for them to be given. Two points are
possible to be given if and only if theraispace of points, which is every possible
location of points such that are 1-dimenailyrbinding. The schema of logic provides
such locations which descriptively accommedgwossible points ; for the relations
between possible points can only be fourtthiénschema of logic. That is, the internally
identical and externally differetiative reden of relations between two given points can
only be described in terms of the logic#tien between two identical variable-notions.
Therefore, the 2-dimension can be said tthbepistemological description of the
ontologico-notational conditionalizationfeX. It is the epistemological presentation of
the meaning of v andbecause two identical variable-notions which grerated by v
anda are epistemologically evaluated.

2.1.1.1.1. There descriptively exists one and onky 2-dimension. This 2-dimension, however,
descriptively appears as if it has two g/péspace. This is so because the relation
betweer=v<= and =A< is transcendental and stands for the descriptive
incommensurability between them. A logiedhtion holds between v andf and only
if v anda operate same two different variable-notions. hisns that there is
descriptively no difference of meaning betw v and\ when they operate same two
identical variable-notions. v and/et remains differetiative from each other evermwh
they operate same two identical variabléems. This is so because the existence of
same two identical variable-notions necelysdepends upon the logical structure which
is originated by the necessity for same different variable-notions , due to the meaning
of the operator—. v anda are therefore descriptively incommensurable, difiative

—>

and yet identical when they operate saneeidentical variable-notions — and

= are identical in meaning and therefore form amtigal value of an identical
variable-notion. Consequent=v< and A<= are descriptively
incommensurable, differetiative and yentitzal. If the 2-dimension has two types of
space such that are characterizable instefrv<= and =A<, then it appears

as if there are two types of 1-dimensiothim 2-dimension, although these two types of
1-dimension are 1-dimensionally identiddiat is, the two types of 2-dimension are
descriptively incommensurable to each o#met therefore must have the 1-dimension in
each of them. This makes the 1-dimensigrears as if it 2-dimensionally has two types.
These types are due to a descriptive nitggeSherefore, they are related to each other
only transcendentally in the sense that tieéation of mutual-incommensurability can
only be demonstratively seen.

2.1.1.1.1.1. Anything that is identical with its&dfself-relationally symmetrical, and vice versa.

—

— and —— are the 1-dimensional description of what is id@iwith itself.
Logic is the only schema which descrigivconfirms it and is also the most
fundamental schema of description. Thammgful existence of same two identical
variable-notions is logically dependepon the structure which is constructed by the
necessity for same two different variatd¢ions. This relation of unilateral
dependence between the two sets of larradiions is due to the descriptive necessity
for the meaningful existence of the opmra—. That is, whatever that is meaningless
can be known to be meaningless if ang bl can be described to be meaningless
and is therefore necessarily precedesbinyething which is meaningfully describable
on its own. This is identical with the améng of the initial condition and can only be
demonstrated. Consequently, no relatiamsbe described betwec=v<=and
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“=A= on their own account. A transcendental relatiamds for a relation such
that is descriptively incommensurabldterown.

2.2. =Sv= and A<= are transcendentally related and are thereforerigésely
incommensurable to each other if they are eir twn. v<= and =A<, however,
can be described to be differentiative frond &entical with, each other. This is so because
there logically cannot be same two identicalalde-notions unless there are same two
different variable-notions. The meaninglessrafmg — cannot be described to be
meaningless unless it is based upon the mefahimgerator —. By this descriptive necessity
v andA have their own meaning even when they operate sameariable-notions. The
transcendentally relate=v< and =A< can be described to be differentiative from,
and identical with, each other because ofdbicriptive necessity that v anchave their own
meaning. That is, the transcendence betw=w< and =A< is demonstrated by
means of the descriptive necessity of logigerators’ retaining their own meaning regardless
of their contexts of use. Therefore, the spEqEossible points can be descriptively
characterized in terms of the meaning of v.and

2.2.1. The meaning of logical operators does nahgh whether they are applied or not. This is so
because the schema of logic is more fundartaa that of geometry. The schema of
geometry is conditionalized from that of lagihe schema of logic is demonstrated to
underlie every other schema.

2.2.2. The 2-dimension is descriptively requiredhsy 1-dimension in itself and is therefore in
parallel with the 1-dimension, so that theirthehsion can come into existence. Therefore,
the only property of the 2-dimension is thesence of the 1-dimension. The 2-dimension is
the space of possible points such that aressecily 1-dimensionally binding, and therefore
has no properties of its own. Apart from thistence of the 1-dimension the properties of
the 2-dimension are identical with those &f thdimension.

2.2.2.1. If the 2-dimension is the space of poesigints such that are necessarily 1-dimensionally
binding, then it appears as if consistingaihts which can only be described in terms of
the 1-dimension. Therefore, given the desiee necessity for points and therefore also
for the 1-dimension, the 2-dimension appeari consisting of points and 1-dimensions.
A 1-dimension holds between any two poifitis means that the 2-dimension appears as
if consisting of anything that can be constted by points and 1-dimensions. Points and
1-dimensions exist in the 2-dimension withioeing descriptively distorted ; for the
2-dimension is simply the existence of thdirhension and therefore has no properties of
its own. The 1-dimension exists in accor@anith its own descriptive necessity.

2.2.2.1.1. The 1-dimension is 2-dimensionally mpldeal. This is so because the 1-dimension
2-dimensionally holds between any two adrgypossible point and then descriptively
determines the 2-dimension by charactagiitim terms of =v< or =A< This
means that a single 1-dimension can detergrthe 2-dimension and therefore gives rise
to a single 2-dimension. The meaning ofZkdimension is the existence of the
1-dimension. Consequently, given a singieminant 1-dimension, and therefore also
given a single 2-dimension, no more 2-digi@ms are descriptively required. Such a
single determinant 1-dimension is the 2&tigional demonstration of the existence of
the 1-dimension and therefore holds noveeh two possible points but between two
points which can be described to be giweddiermining the 2-dimension. Once the
2-dimension is given by this determinamtithension, every other 1-dimension exists in
this 2-dimension by complying with suchedetminant 1-dimension. This is so because
any one of possible 1-dimensions could dgtseely have been this determinant
1-dimension. This plurality of points andlimensions makes it possible to form every
possible 1-dimensional combination of peintthin restrictions imposed by the
1-dimensional characterization of the 2-lision. This 2-dimensional plurality of points
and 1-dimensions descriptively presentsyepessible 2-dimensional figure ; for every
possible point is 1-dimensionally relatedhe another.
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2.2.2.2. Once the 2-dimension is determined anethiee given, points and 1-dimensions appear
in it as if they are on their own ; for timeaning of the 2-dimension is demonstrated by
the existence of a determinant 1-dimensidis determinant 1-dimension
2-dimensionally embodies its own descriptieeessity. Consequently, this 2-dimension,
in itself, embodies the descriptive necgdsit every point and 1-dimension. This means
that anything that exists in this 2-dimensi@cessarily appears in it as if it is free and
independent. Anything that exists in theirdehsion innately underlies the meaning of the
2-dimension and consequently what deternsnel a 2-dimension (i.e. its own meaning).
That is, whatever that exists in the 2-digien necessarily underlies its own descriptive
necessity and therefore appears as ifihigs own.

2.2.2.2.1. If every point appears in the 2-dimemsiecessarily as if it is on its own, then the
1-dimensional relation which holds betwaey two of them appears as if it is a property
of the 2-dimension. This is the notion &-dimensional distance, which may be called a
2-dimensional 1-dimension. The 1-dimengian a unit of length. Therefore, if there is a
minimum 2-dimensional 1-dimension such thato longer divisible, then it has a unit of
length which is the 2-dimensionally transfed form of the 1-dimensional unit of
length. This is the minimum 2-dimensionaituThat is, being necessarily
1-dimensionally binding, every point in taimension has a 2-dimensional distance to
every other point. Every 2-dimensional aigte is constructive from this minimum
2-dimensional unit. A geometrical functigra combination of such units or of such a
unit. A curved ‘line’ - but not a curvedage - is a functional combination of such units,
without which no differentiation is pos&blOnce numbers are generated, units are
descriptively subject to the schema of neratand therefore to numerical
representations. This 2-dimensionally tfemmed 1-dimension unit of length is the most
fundamental unit of measurement not onfthan2-dimension but also in every other
higher dimension.

2.2.3. The propertiless 2-dimension has charatitsighich are necessarily due to the difference
in meaning between v and These characteristics generate two types of Spabe
2-dimension.

2.2.3.1. Characteristics | v<=: v is a logical operator and holds between two
variable-notions. Consequently, it is dgstively necessary fo= and = to be
values of variable-notions. Logical operatare the ontologico-notational representation
of the modes of FX, while variable-notiome the ontologico-notational representation of
FX. This means that anything can be a vafuariable-notions if and only if it satisfies
FX. e (i.e. the epistemological descriptidri-X) is necessarily such a anything.
Therefore, anything that is conditionalized of this e can also be a value of
variable-notions. This means that only thek&eh comply with their own descriptive
necessity can be such values. Those whigtplyowith their own descriptive necessity
descriptively demarcate themselves fromamather so as to be descriptively intelligible,
and come to create dimensions. Thereforg,tbase which are discernible from one
another or descriptively appear as if belisgernible from one another (i.e. points and
1-dimensions in the 2-dimension), can beeslof variable-notions. That is, descriptive
necessities are necessarily dimensionagmsatic and clearly demarcatable from one
another. Consequently, the schema of logiicanly be applied to one schema at a time
unless it is applied to every schema ate tifor this mutual-demarcation among
descriptive necessities is also itself a&dptve necessity. When it is applied to a schema
whether it is this very demonstration itseifsome particular schema within this
demonstration, only entities which are deratable or as if being demarcatable can be
values of variable-notions and therefore pigrwith the initial condition.= and =
belong internally to the schema of the 1atision and externally to the schema of the
2-dimension= and = are together 1-dimensionally demarcated from angtalse
and are described to be identical with egtbler. They 2-dimensionally appear as if being
demarcated from each other ; for the 2-dsiwnis the space of possible points and is
what makes it possible for the internallgridcal = and = to be given. Neither of
= and = is 2-dimensionally reducible into the other. Tliere, both of them
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2-dimensionally embody <= and = are the only descriptive constituents of the
2-dimension. Consequently, in the applicattbthe schema of logic to the schema of the
2-dimension, only= and = can be values of variable-notions.

2.2.3.1.1.= and = are internally identical and are so demonstraietié schema of the
1-dimension. The schema of the 2-dimendemonstrates their external
differentiativeness. The schema of logiapgplied to the schema of the 1-dimension in
order to bring out this external differatitteness of what is internally identical with each
other. Therefore, the internal identityvze#n = and = is the meaning 0= and
= which are taken as values of variable-notionss Tintans tha— and = stand
for an identical value of an identical \dnlie-notion in this applied schema of logic.

2.2.3.1.2. Values of variable-notions are necelgsadeiscriptively demarcatable from each other,
and neither 0= and = s descriptively reducible into the other in theighension.
This means that the disjuncts=v<=are identical with each other and are yet
differentiated from each other. This is theaning of =v< . This meaning of
v<=can be so described and known if and only if efisjunct of Sv<= s
indeed identical with the other and yetdiucible into the other.

2.2.3.1.3. The meaning of v is therefore applieddln between two values of an identical
variable-notion such that are identicahveich other and yet irreducible into each other.
The meaning of such v is described neci#gsacontrast to that ok of =A<,
based upon the knowledge t=v<= and =A< are operationally identical. It is
already demonstrated how v andre conditionalized and that v andre the only
operators which - applied or not - idertichold between two identical variable-notions
and therefore between two identical vahlfesn identical variable-notion.

2.2.3.1.3.1. If v holds between two such valuesntihmeans that its two disjuncts are necessarily
such entities that are identical, mutuateducible and are yet in a same schema.
Given only either of such entities, vd®lv therefore holds identically in either way.
This means that there is a schema sattcém be constructed identically by either of
such entities.

2.2.3.1.4. Given either 0= and =, the 2-dimension can be constructed identicallys T
means that the 2-dimension can be constluny = or by =, and that two such
2-dimensions are identical. Two such 2-disiens can be described to be identical and
therefore can manifest themselves as arni@# schema if and only if they appear as if
they are themselves a space such thatipi@sely consists in and of two determinant
1-dimensions which describe themselvestabntical. It is a space in which given two
1-dimensions, they both descriptively marge one and the same 1-dimension.

2.2.3.1.4.1. Such a space is necessarily desddbeel ‘curved’ so that two given 1-dimensions
(i.e. two determinant 1-dimensions) cardescribed to be spatially identical. That is,
given two 1-dimensions in it, they meng@ one and only one 1-dimension which has
two and only two schematic directionsisTitrew 1-dimension which is
2-dimensionally formed by two given 1-@insions, is not a functional combination of
units but itself a single unit. This slsecause this new 1-dimension is the outcome of
two 1-dimensions which are given in ortbedetermine the 2-dimension by means of
their inherent relation which is necesgam contrast to another inherent relation
between them. This new 1-dimension tlweeefwo and only two directions and is
‘curved’ in such a way as to be one anigf one 1-dimension. The necessity for the
existence of such a new 1-dimension dtarizes the 2-dimension and generates a
type of space of the 2-dimension.

2.2.3.1.5. The 2-dimension therefore has a typetwisi characterized b-=v<=". Such a type

forms its own schema because it satisfiesvin descriptive necessity. The characteristic
of being-‘curved’ is not 1-dimensional mgcessarily 2-dimensional. Therefore, not only
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two but also any given 1-dimensions menge one and only one 1-dimension in the
above type of 2-dimensional space. Any given 1-dimensions can be determinant if
and only if they demonstratively embody #fseve characteristic of being-‘curved'.
Every other given 1-dimension appears #w) are determined by these two
determinant 1-dimensions and therefore $aaiif being made to curve by this
2-dimensional space. Any given 1-dimensioosve’ because of their internal structure
of {=v=,=A<=}. However, it appears as if the space in whicts¢hr-dimensions
are given is itself ‘curved’. This is sochese 1-dimensions are given in a space
necessarily in such a way as to chara@ehat space by means of their own internal
structure. This means that the characted$teing-‘curved’ appears as if it is a
property of the space in which those 1-disiens are given, and that this ‘as if' is a
descriptive necessity. The two determidadimensions only demonstratively show this

property.

2.2.3.1.5.1. If a space can be characterized bygtwen 1-dimensions’ merging into a single
1-dimension and is therefore describeoetaurved, then anything that can be given in
this space is curved and merge intoghmgle 1-dimension. This means that any
number of 1-dimensions can be given émlsesult in a same 2-dimensionally merged
1-dimension with two and only two directs. Therefore, this space is curved in such
a way as to be closed and uniform. Téisoi because if two 1-dimensions are given
and merge into a single 1-dimension, idadything that is given in this space merge
into this single 1-dimension, then thime 1-dimension is necessarily such that is in
a space and also, by itself, holds aespny space which is characterized by a single
entity that is in that space and hasawd only two directions, is necessarily closed
and uniform. It is closed because, otlimwit cannot be described that it has one and
only one entity in it. It is uniform bagse this one and only one entity is in a space
other than itself and has two and only tlirections. This space is therefore closed
and uniform in terms of what charactesizeand is therefore also finite. It is finite but
boundless because its boundary (i.e.sfhgte 1-dimension) is itself a unit. A single
entity can be described to exist andaeeitwo and only two directions only in a
space that is uniformly closed and boesslif and only if there exists in it one and
only one entity such that has two andg &wb directions. This space and its boundary
determine each other. Consequently,iteece this space is identical with that of its
boundary.

2.2.3.1.5.2. This type of 2-dimensional space &dbed as a ‘circle’ if it is, by a descriptive
necessity, put into the other type ofi2ehsional space. It also has the finite but
boundless size of a single unit. Thid imihowever, descriptively incommensurable
with a unit in the other type of 2-dimemal space. This is so because the two types
are only transcendentally related to eztbler and do not share a same descriptive
necessity. Consequently, neither of thagetypes of unit can be the descriptive basis
of measurement by which to measure therof his is the reason why the description
of a ‘circle’ necessarily needs a desorgty incommensurable quantity (i.e. the
transcendental numbgr The transcendence ofis identical with the descriptive
incommensurability between the two type&-dimensional space, which are
respectively characterized by mean~=v<= and Sar<=.

2.2.3.1.5.3. In this type of 2-dimensional spacerg\d-dimension is described as one and only one
1-dimension which constitutes the boupadrthis space and has a unit of length.
Every 1-dimension consists in and of amal only two and only two points which are
necessarily so correlated as to detertmineand only two directions. This single
1-dimension, however, appears as if lipeime and only one point which is,
nevertheless, correlated to itself inhsaavay as to determine two and only two
directions of this single 1-dimension.nSequently, in this type of 2-dimensional
space two points appear as if mergedadrgimgle point from which two directions can
be found along this single 1-dimensiohafTis, from such a single point this single
1-dimension appears as if it is, in ftséirectionally twofold, each representing one of
its two directions. Such a point is theritre’ of this 2-dimensional space.
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2.2.3.2. Characteristics || =A< : The meaning of is based upon that of v and lies in its
schematic confirmation of such existences éine operationally identified by v as being
0-dimensionally identical. That is, by theaning ofa two schemata such that can be
identically constructed by each of two O-ditsionally identical existences, can be
confirmed to be an identical schema undeistime schema of logic or under a same
applied schema of logic. Therefore, whateway be v-operative, they are necessarily also
A-operative. Any two entities are v-operative if amdy if they result in an identical
schema. v identifies two such entities mmie of what identically results from them (i.e.
the identity in structure between two schiamehich are based upon those two entities
which are both 0-dimensional). If two emtitiare both 0-dimensional and therefore result
in two identical schemata, then they, orgao-notationally speaking, self-contain each
other. v represents the identity of suclitiestin terms of what structurally identically
results from them. Two identical entitiesiethare so identified by v as what results in
two identical schemata, must be schemagisallconfirmed as an identical schema under
the same schema of logic. This is so becausédentical schemata which result from two
identical entities, can only be identifieslan identical schema in terms of the identity in
existence between two such entities. WHatsatains each other necessarily belongs to
an identical schema. Therefore, two ideh8chemata which result from them are
necessarily an identical schema. Whatevegrnesult from two entities which belong to an
identical schema, they are necessarily withis same identical schema. Consequently,
holds only between two schemata such tleasaidentified by v as what results from two
0-dimensionally identical entities, anddéntifies them as an identical schema in terms of
the identity in existence between those @wbimensionally identical entities. That is,
represents the identity of two identicalestlata in terms of their identical
0-dimensionality. Only two schemata sucht #re identical with each other can be
A-operative. =A< says that there are two schemata which are identitile
v=says that there are two entities which can beribestto be identical and are
therefore necessarily under a same schehr. dnly difference is that schemata are
necessarily structural and therefore, if/taee identical, cannot be described to be existent
independently from each other, while ergitiee descriptively existential and therefore,
even if they are identical, can be descriloelge identically existent independently from
each other. That is, two entities can berilesd to be identical with each other and yet
independent from each other if and onlyéyt are both 0-dimensional and therefore
self-contain each other. However, two scharmannot be so described because a schema
is not an existence but the descriptionroégistence. There cannot be any describable
relations between two identical descriptianithout contradicting the initial condition. If
two schemata are identical, then they cdy lmm an identical schema, and not two
identical schemate=v<immediately results ir A<= because two entities which
give rise to two identical schemata, havénaate necessity to confirm that such two
identical schemata are necessarily an idgirdchema. Two identical schemata have a
descriptive necessity to be an identicaéstdnin order to comply with the initial
condition. This descriptive necessity is#ffiere identical with the descriptive necessity by
which the schema of logic is conditionaliz&tlis means that the resultant identical
schema is, applied or not, O-dimensionalgntical with what ontologico-notationally
describes itself (i.e. the schema of log=s A< s therefore described to stand for two
identical schemata’s being necessarily antidal schema and is also described to be
under the same schema of logic that gov—v<". The logical space encompasses
= and = as their descriptive necessity and is also clohi is so because the
logical space is the descriptive necessityahd of anything, and because anything can be
described to self-contain itse=sv<= and =A< are together a description of such
a anything and are under a same descripéeessity. Whatever may be v-operative, they
are alsa-operative. However, neither of v ands descriptively reducible into the other
because they underlie each other by beidgnain by their common descriptive
necessity.

2.2.3.2.1. The epistemological description of theaning of v is that there exist two entities such

that are identical and therefore resutiia identical schemata. In contrast to this,
epistemologically says that there exist 8sbemata such that are identical and are
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therefore an identical schema. The apjtinatf the schema of logic necessarily
generates this difference between entiiiesschemata in accordance with its internal
structure. Therefore, only within this a@pplschema of logic—= and = are taken,
on one hand, as entities, and on the offseschemata. A ‘value’ is an individual
presentation of what is collectively calledriable-notions’. Anything can be a
‘variable-notion’ if and only if it is degbable, while anything can be a ‘value’ if and
only if it is described (i.e. descriptivedgecified). Consequently, anything can be said to
be a ‘value’ if and only if it can also ddhat it can, by itself, construct the logical apa
= and = can be ‘values’ only because they already undasigable-notions’. The
schema of logic can be applied to them bseghey are describable as
‘variable-notions’. Therefore, in the logispace= and = act as if they are
‘variable-notions’.

2.2.3.2.2. Wher= and = area-operated, they are therefore two identical schamaich are
to be identified as an identical schersA<= stands for a space in which two
identical schemata are, by complying with initial condition, so taken for granted as to
be an identical schema. In contrast tq t=sv< s a space in which two given
entities descriptively merge into an ideatientity and therefore, by doing so, give rise
to two identical schemata, which immediatelsult in = A< . Therefore, space and
its contents determine each othe =sv<=", while they coincide with each other in
=A<=. That s, the space c=v<=(Type | space) is a space which commands its
entities toward its descriptive necessitys to be compatible with what it allows itself
to take as its entities. This also meaasittappears as if entities determine their space
for there cannot be any entities outsidpace if this space is the descriptive space of
those entities, and this includes a cash that an entity is its own space. The space of
A<= (Type Il space) is the space of spaces which@memnded by their entities
toward their descriptive necessity so dse@ompatible with what they are allowed to
take as their entities. This necessarilkgsahose spaces a single identical space. This is
the reason why the entities of Type Il gpae&an only be schemata.

2.2.3.2.2.1. A space can take in only what it ee tin. Therefore, a space either determines what
it can take in or is determined by whaakes in. By the initial condition anything
which is describable to exist, existg] amat is describable is so known to itself by
itself. This means that anything existss to be described or is described so as to
exist. A space is determined by whabittains, and what is containable is determined
by a space. Consequently, every spaiceigical with each other, and therefore
results in an identical space.

2.2.3.2.3.= and =, on one hand, determine Type | space if and drihely are taken as
identical entities, on the other, determiigpe Il space if and only if they are taken as
identical schemata. If they are taken agtidal entities, then they are necessarily under
a same schema which takes in both entiigsther so that they can be described to be
identical. If they are taken as identicdiemata, then they necessarily describe
themselves as an identical schema. Thisset they are not under an identical
schema but themselves an identical sch&herefore, A<= is the form of
coexistence and stands for the coexistehteo 1-dimensions.

2.2.3.2.3.1. If it is descriptively necessary ttvat identical schemata are an identical schema, the
they necessarily imply each other adantical schema. This is so because the
necessity for two identical schematadah identical schema, is inherent to each of
those two identical schemata and is tbegenot the same as an identification by a
third party. This epistemologically medinat there must exist two schemata which are
identical, and that they determine tldéntical space by implying each other.
Consequently, there necessarily existdaltemata of the 1-dimension. Type |l space
is determined by two existences suchdhaidentical and therefore so imply each
other. Type Il space holds two and ownly fL.-dimensions which are only
1-dimensionally identical.
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2.2.3.2.4. The 1-dimension is anything that coasisand of two and only two directions such that
are determined by two and only two pointscly are so correlated as to descriptively
represent each other. This is the 1-dinoenas a schema. The existence of two of such a
schema can be so correlated as to be atiddkexistence if and only if they ‘intersect’
in the sense that ;

(i) two sets of two and only two directicrEexist,

(ii) if such a coexistence is describatien those which coexist cannot be independent
from each other,

(iii) whatever that is not independent freath other, share a same space,

(iv) given any two 1-dimensions in suctpaee, they cannot hold exclusively to each
other.

2.2.3.2.5. Type Il is therefore a space which teeined by two 1-dimensions’ intersecting each
other. That is, being unable to hold exelkly to each other two 1-dimensions
necessarily generate a space between f@m'between’ stands for the characteristic
of Type Il space. Type Il space is therefdike Type | space, internally determinant and
is therefore a schema of its own. Two letigions are given by intersecting each other
and so determine a space between themsphize therefore necessarily has a ‘centre’.
However, unlike the centre of Type | sptis ‘centre’ is not identifiable with the
2-dimensional manifestation of schematim{so which determine two and only two
directions and, in the case of Type | spagrge into a single point (i.e. a 2-dimensional
point). This is so because Type Il spaaessarily consists in and of two intersecting
1-dimensions. This means that no schemaiitts can be descriptively seen within this
space. Type |l space is described by ahddsan them.

2.2.3.2.5.1. There is no such as ‘the’ centre gfeTl space. This is so because Type Il space is
determined by two 1-dimensions which sse€ly intersect each other by being
internally so determined as not to be ablhold exclusively to each other.
Consequently, the necessity for thisrggetion is 1-dimensional. This 2-dimensional
space is the description of such 1-dinwerad necessity, which 1-dimensionally
remains indescribable. The existencevofihtersecting 1-dimensions is a
1-dimensional necessity and is not 2-disienal. This necessity conditionalizes itself
as Type |l space. This means that thoedritersecting 1-dimensions generate Type
Il space and only simultaneously compdssess 2-dimensional directions. That is,
Type Il space comes into existence siamalbusly with those two intersecting
1-dimensions’ acquiring 2-dimensionakdiions. Therefore, if a centre is where two
given 1-dimensions intersect each offteemn it can be anything from where four
2-dimensional directions extend from anether, making two sets of two
symmetrical directions. Type Il space bardetermined by any two given intersecting
1-dimensions. This is so because 1-dilnesghemselves have no 2-dimensional
directions and are therefore unable tini2ensionally standardize themselves. Two
given 1-dimensions come to possess 2+iinaal directions simultaneously as they
intersect each other. Two given 1-dimemnsiintersecting each other is simultaneous
with Type Il space’s coming into existerand therefore with its giving those two
1-dimensions 2-dimensional directionsafTik, two intersecting 1-dimensions’ giving
rise to Type Il space is simultaneouslieir getting 2-dimensionally identified in
that space. This means that Type Il spacebe 2-dimensionally described to be
determined by any two 1-dimensions sihetlt intersect each other and are therefore
uniquely identifiable in this Type Il aga Consequently, if a centre is where any two
given 1-dimensions intersect each ofttemn every point where twol-dimensions are
2-dimensionally uniquely identifiableitdersect each other, is a centre. Such a point
is a 2-dimensional point.

2.2.3.2.5.1.1. It is descriptively necessary thgi€lll space is infinite and uniform for the
following reasons :
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(i) Type Il space is a space which cambtermined by any two given intersecting
1-dimensions.

(ii) 1-dimensions themselves do not hamg directions other than 1-dimensional
directions (i.e. what internally holasedvery 1-dimension).

(i) Two given 1-dimensions interseeicl other and simultaneously generate a
space between them. By this simultareiry other 1-dimension can be described
to be given into this space if and dhihey intersect at least one of those two given
intersecting 1-dimensions. This necélysaltows Type Il space to have parallel
2-dimensional directions.

(iv) In determining Type Il space notarar two 1-dimensions can be descriptively
discernible from any other two 1-dimemsi and therefore can be taken as the
determinant of Type Il space ; for 1-dimsions themselves do not have any
2-dimensional directions. That is, 1-dimsions which generate Type Il space acquire
2-dimensional directions only simultansly as they generate this space, and
everyl-dimension is descriptively simnkous.

(v) Given Type Il space by any two isteting 1-dimensions, any points where at
least two 1-dimensions are uniquely dbable to intersect each other, can be a
centre. Every centre is descriptivelgritical with one another because any two
intersecting 1-dimensions are 1-dimemsily identical and 2-dimensionally
simultaneous. Consequently, from evemnti@ every possible 2-dimensional
direction identically extends.

(vi) Type Il space therefore consistainl of such centres from every one of which
every possible 2-dimensional directigeritically extends. Such a space is
necessarily infinite. This is so becaukee to the 1-dimensional identity and
2-dimensional simultaneity of 1-dimemsiponce given Type |l space by two
intersecting 1-dimensions, this spackn2ensionally allows anything as a
2-dimensional direction if and onlytifig describable to intersect at least one of
those two given intersecting 1-dimensicrhis complies with the initial condition
because there can only be one and amyiralependent two intersecting
1-dimensions and therefore one and only =A< . That is, in Type Il space
there can be not a single 2-dimensidiraktion without intersecting at least one
other 2-dimensional direction. The extigte of more than one Type Il space
contradicts the initial condition. TkEesures the 2-dimensionality of any
1-dimensions in Type Il space.

(vii) Every 2-dimensional direction indects at least one other 2-dimensional
direction. This allows parallel 2-dimamsal directions to any given 2-dimensional
directions. This parallelness is therefoompatible with the characteristic of Type Il
space. Parallel 2-dimensional directicans be accommodated within a same space if
and only if this space is infinite. Tlésso because to any parallel directions there is
always a parallel direction. 2-dimensibdirections therefore extend infinitely.

(viii) Type Il space can be determingdainy two 1-dimensions, which are, in
themselves, 2-dimensionally not diffeiative from one another. It is therefore
incompatible for such a space to be &bliscriminate any particular

1-dimensions from others. This meansellygpace is uniformly distributed with
centres, and that every centre is idahtiith every other centre. Type Il space is
necessarily such that any two 1-dimemsican be uniquely described to intersect
each other if and only if at least ofi¢hem is unique. This is so because any
1-dimensions can be given into TypepHce if and only if they can be described to
intersect at least one of two givennsgeting 1-dimensions, and because they cannot
be descriptively discriminated from théwo given intersecting 1-dimensions.
Consequently, two 1-dimensions can bhgquaty described to intersect each other

59



wherever there is not yet an intersectithis makes Type Il space uniform.

2.2.3.2.5.1.2. A space is infinite if and onlytifd dynamic. An infinite space is a space which
expands with no limits so that any ppiwhere two 1-dimensions intersect each
other, can be a centre. From every eantery 2-dimensional direction identically
extends. If any points can be a cefiien) it is necessary that more 2-dimensional
directions, which necessarily includegtial ones, intersect at least one other
2-dimensional direction. This gives riesamore centres. Consequently, an infinite
space expands in order to comply witoin descriptive necessity and is therefore
necessarily dynamic. It consists ofrimite number of centres. These centres are
not countable because they are dynamic.

2.2.3.2.5.1.2.1. If Type Il space stopped expandimgn it would internally generate a fictitious
space ; for Type Il space would theprile itself of its necessity for parallel
2-dimensional directions. That is,gv&-dimensional direction would become
unique. This means they would interse® another at a same point and therefore
would constitute a space which is ssadly finite, boundless and uniformly
curved. This space is finite becausedchematic points hold a 1-dimension (i.e.
a set of two symmetrically relatedigwensional directions) between them and
therefore have the length of a umitj aonsequently because this space does not
expand. It is boundless because thitsofi length between two schematic points is
1-dimensional and therefore 2-dimenally indefinite. It is uniformly curved
because any two schematic points aolalentical unit of length between them.
These amount to say that this spaosists of uniquely different 2-dimensional
directions which are infinitely deresed extend from one and only one centre.
These directions appear as if boustilesxpanding because between any two
uniquely different directions thereala/ays at least one uniquely different
direction. This expansion is, howewtatic because the size of that one and only
one centre is necessarily static enghnse that it can be determined by two and
only two 1-dimensions and so remaimsnatter how many 1-dimensions may
intersect one another at that poihisBpace therefore remains finite despite of
such a descriptive appearance. Theamitre of this finite, boundless and
uniformly curved space consists in afdither a point or a region of space and
has a static size which cannot be oreds The size of this centre cannot be
measured because the constituentthiopace is the only substance of this
space. An immeasurable static sizmigfinitesimal quantity if and only if this
size consists of a substance whicls doé form its own space and is therefore in a
space. This is so because if therst®xine and only one substance in a space, then
there is nothing else other than $piace itself in order to compare and measure
the size of this substance. A spaceiessarily either infinite or finite but
boundless. This means that the sizeidfi a substance can only be infinitesimal.
Type Il space and its static versimngenerated by intersecting 1-dimensions so
that those 1-dimensions can accomnedth@éimselves necessarily together. This
necessity of 1-dimensions’ being ueablhold exclusively to each other
manifests itself as Type Il space isdtatic version. Consequently, if a point of
intersection is a substance, thenghizstance cannot itself be its own space and is
necessarily in a space. A point oiiséction is necessarily quantitative because it
occupies a portion of space. A desiwgly immeasurable quantity is infinitesimal
in size if it is static and is in aasp, while it is infinite in size if it is dynamand
is itself a space. The size of centféBype Il space and also of the centre of the
fictitious version of Type Il spaceldrggs to the former case, and the size of Type
Il space belongs to the latter ca$es Tatter so holds because Type Il space can
be described to consists in and ofresnThe only difference between Type |
space and the fictitious version op&}yl space is that while the former has one
and only one point of centre, theelaltas a central region of space which consists
of either one and only one point @o#ection of points such that result from
every two different 1-dimensions’ irgecting each other. If this second one is the
case, then points are confined ingéoreof space which is finite, boundless and
uniformly curved. This means that tlaeg confined in such a way that they
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become denser and denser toward aebesd centre. This central region is finite
because there are no parallel direstitt is boundless because any two different
1-dimensions can intersect each othéx.uniformly curved because every
1-dimension has an identical unitesfdth. Whether this centre is a point or a
collection of points, it has no meadle size. This is so because that collection of
points is formed necessarily in suebeg that points get denser and denser toward
a centreless centre, and thereforethigregion of points necessarily appears as if
demarcated from its surrounding spatgis consequently as if being in a space.
That is, a point and a collection ofrs are, in this context, descriptively

identical.

2.2.3.2.5.1.2.2. Type |l space has a necessityorgtop expanding. Therefore, this static Type Il
space is purely fictitious. It is, hewer, useful in the sense that it can describe the
transcendental relation between Tyaed Il spaces if Type | space also internally
generates a fictitious space. Thismedhat even a notational fiction, if it is
meaningful, necessarily complies wité initial condition. If it could be assumed
that this fictitious space could benetiow given, then it would be a space which
coincided with its own central regiminspace. Therefore, it would be finite and
uniformly curved. It would also be olby schematic points and therefore would
be boundless ; for schematic pointsiatoexist within a 2-dimensional space. This
fictitious space is, so to speak, Typpace which is seen and described from
outside that space.

2.2.3.2.5.1.3. Type |l space is the external matateon of an internal relation between two
1-dimensions and is infinite and dynabgcause of this internal relation. It expands
with no limits in order to accommodasteadlel directions which are necessitated by
an infinite number of centres. Typegase holds between two 1-dimensions and
simultaneously determines them as 1-dgioas directions. This means that a
1-dimensional unit of length simultansiyuransforms itself into a 2-dimensional
unit of length, and that this 2-dimemsibunit of length is infinity. In the
1-dimension a 1-dimension is a substaridéts own and holds in and between two
schematic points. However, in this 2-giitsional Type Il space its substance is not
such 1-dimensions but a relation betwagntwo of such 1-dimensions ; for Type |
space exists in order to describe suddtadion. Therefore, points of intersection (i.e.
centres) are the substance of Typedts@nd spatially occupy Type Il space.
2-dimensional directions (i.e. 1-dimemsi in Type Il space) are the form of Type I
space and do not spatially occupy Tympace. This means that that 2-dimensional
unit of length (i.e. infinity) is thergth of a pair of symmetrically related
2-dimensional directions if and onlyhifs pair of 2-dimensional directions is made
spatially visible by means of pointdmtersections. Infinity is therefore the form of a
collection of infinitesimal quantitieach that are descriptively found in a
1-dimension in Type Il space.

2.2.3.2.5.1.3.1. The 2-dimension consists of tvpes$yof space and therefore of two types of
2-dimensional 1-dimensions. The 1-digien consists in and of two schematic
points. Schematic points are there®sddmensionally described twofold. In Type
| space the two schematic points layeheir meaning, identical with the centre
(i.e. one and only one 2-dimensiormhf) of that space and give rise to the closed
boundary of that space. In Type llcgpand its fictitious version there are an
infinite number of schematic pointsddhey form the boundary of those spaces
from outside those spaces and giwetdghe substance of those spaces. These two
types of space are 1-dimensionally ame the same. Their difference is
necessarily only 2-dimensional. Thermtary of Type | space is internally formed,
while that of Type Il space is extdiynéormed. This is so because the former is
internally schematic, while the latieexternally schematic and is therefore a
schema of schemata.

2.2.3.2.6. A 1-dimension is a unit of quantity aimdType Il space, comes to have an infinite
length. This unit is also the most basiit. Wonsequently, a point of intersection is
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descriptively immeasurable. However, a pofrintersection is quantitative because it
necessarily occupies a portion of spac@yje Il space a 1-dimension is a pair of
2-dimensional directions and therefore dusdtself occupy any portion of space. This
means that a 1-dimension can be describbdve an infinite length in Type |l space
only in terms of points of intersectioncéllection of this immeasurable quantity of a
point of intersection therefore constitutdmity, which is the most basic 1-dimensional
unit of Type Il space. Such a quantityhis most basic 2-dimensional unit and is
infinitesimal. It is infinitesimal becaugads static, immeasurable and is in a space, which
is infinite in size. A 1-dimension can besdribed to consist of an infinite number of
points of intersection, each of which haly@n infinitesimal quantity. That is, in Type
Il space a 1-dimension is necessarily unifg intersectible by an infinite number of
other 1-dimensions. This also means thaeTy space itself consists in and of an
infinite number of centres.

2.2.3.2.6.1. In the fictitious version of Type flaxe a 1-dimension has only a finite length and is
intersected either at the very centrepafce or more and more often toward the
centreless centre of space. If the lagténe case, then a given 1-dimension can be
described to consists of a finite numdifanfinitesimal points which become denser
and denser toward this centreless centrerefore, if those points are described to be
uniformly dense, then this given 1-dimensappears as if being curved toward this
centreless centre. Or, if a given 1-digi@n is intersected by every other 1-dimension
at the very centre, then this given lefigion can be described to consist of a single
infinitesimal point, which coincides withe total quantity of this space.

2.2.3.2.6.2. In Type | space a 2-dimensional pisistich that from where two and only two
directions can be determined so as tm forl-dimension. This point, however, does
not occupy a portion of space. This idsoause a 1-dimension such that can be
determined by a single point, neitheelisécts anything nor coincides with that point.
Therefore, in Type | space a 2-dimendipoint is a region of space with no quantity.
This 2-dimensional point determines twd anly two directions in such a way that
from any part of this resultant 1-dimemsthey simultaneously hold. This
2-dimensional 1-dimension which forms bloeindary of Type | space therefore
necessarily consists of points whichreokintersectible by anything. Every point of
this 1-dimension is, if it can be so diswed, descriptively identical with that one and
only one 2-dimensional point. This 1-ditei®n is closed and uniformly curved in the
sense that seen from that 2-dimensiooialt pevery part of this 1-dimension is
necessarily such that can be taken upowitbeing separated from any other parts and
implies every other part. ConsequentiyType | space a 1-dimension can be
described to become boundlessly denskdanser so as to descriptively coincide
with that 1-dimension which forms the hdary of this space and consists of
boundlessly and uniformly dense pointsege points are so dense that none of them
can be separately discernible from ahgist Therefore, this space can be described
to consist of a single 2-dimensional paiith no quantity and a single 2-dimensional
1-dimension which is boundlessly and amifly dense and therefore cannot be
reduced into parts. If this 1-dimensiam de discerned in terms of parts, then every
one of such parts is descriptively idegitivith that 2-dimensional point. Between this
2-dimensional point and the boundaryhiff space there are points which are
described to become boundlessly densertbthis boundlessly dense, closed
boundary. The boundary of Type | spadbasefore a 1-dimension such that becomes
boundlessly and uniformly denser andaalyg be seen when it becomes densest (i.e.
boundlessly dense). This means thati€éitomes necessary to describe a
‘1-dimension’ within the boundary of tlEpace, such a ‘1-dimension’ necessarily
appears as if being curved toward thentaty ; for such a ‘1-dimension’ consists of
points which become denser toward thentlaty, and this means that if every
possible ‘1-dimension’ is identified asiagle type in terms of the uniformity in
density, then ‘1-dimensions’ whose denisitnot uniform are made uniformly dense if
and only if it is described to be more amore curved toward the boundary. In Type |
space a 2-dimensional point is eitheefagable from every other point or
guantitiless. Such a point does not ogauportion of space, and therefore its size
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cannot be described, except saying tlaatly has a 1-dimensional unit. Type | space
is determined, and holds, between twanbates which describe each other. That is,
it descriptively holds between a singldiensional point and inseparable
2-dimensional points. The only substasfc&ype | space is these boundaries
themselves. The substance of these boesdzaccupies no portion of space which it
binds ; for, otherwise, this space careotiescribed to be closed and finite. A
substance can be described to occupytpf space if and only if it is in a space.
Type | space therefore descriptively rfests itself in terms of the description of its
two boundaries. Its outer-boundary isdimhension every part of which is every other
part so that two and only two directitvodd at any parts of it. Its inner-boundary is a
2-dimensional point which determines &m only two directions in such a way that
each starts from where the other endthatoa 1-dimension holds at every point where
two directions start and end. These taorlolaries describe each other in the sense
that the meaning of each underlies thét@other. Any parts of the outer-boundary
are identical with the inner-boundary simerefore with one another. Neither of these
boundaries can be descriptively seenowitthe other. Between these two boundaries
there exist a 1-dimension which startwlatre there are no describable quantities and
expands while boundlessly becoming damskdenser and ends at where there are no
describable quantities. This 1-dimengwists between those two boundaries in order
to describe a space between them. THisménsion is the form of Type | space and
embodies the meaning of density, whiteséhtwo boundaries are the substance of
Type | space. If this 1-dimension is didsed at each level of density, then there are a
boundless number of 1-dimensions betweernner-and outer-boundaries. That is,
between those two boundaries there ih@ea space nor any substances. Those
1-dimensions are, so to speak, the daserisubstance of the two boundaries of Type
| space. They consist of points such ie@bme denser at each level of density which
is represented by each of those 1-dimassiThe two extreme limits of those
1-dimensions are the two boundaries gfellyspace. They are made meaningful by
what descriptively exists between themmngquently, the space between those two
boundaries is filled with points and Irénsions which are the descriptive substance
of those two boundaries and thereforeehay2-dimensional quantities. The meaning
of those points and 1-dimensions is, h@areidentical with that of those which are in
Type |l space (and its fictitious vergiohhis is so because the relation between the
two boundaries of Type | space and thegcriptive substance is identical with that
between schematic points and spatialtanbss of Type Il space (and its fictitious
version). The difference is, while in fleemer those two boundaries are made
descriptively visible by their descrigigubstance, in the latter spatial substances are
made descriptively visible by schematiings, which bind Type Il space (and its
fictitious version) from outside Typesipace (and its fictitious version). That is,
schematic points are, so to speak, thadary of Type Il space (and its fictitious
version). Therefore, from this standpdive contents of those two types of space are
identifiable.

2.2.3.2.6.2.1. If it can be assumed that the dobeirdary of Type | space can be reduced into
parts, then it is reduced into a bousslleumber of points. Every one of those points
then becomes two schematic points aakfbre determines two and only two
directions between them. That is, inrgwme of those points there holds a
1-dimension. Every possible part of thiger-boundary is identical with every other
possible part. Consequently, every drtease points gives rise to an identical
1-dimension. These 1-dimensions neciggatersect one another either at a same
point or within a same region of spalas is so because

(i) all those points are identical witte centre (i.e. one and only one 2-dimensional
point) of Type | space,

(i) due to the necessity for their bdlassly multiple existence, they necessarily
represent different directions with raxadlel directions,

(i) only the centre is left in Typespace after the outer-boundary disintegrates.
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2.2.3.2.6.3.

2.2.3.2.6.4.

Consequently, the centre of Type | spatke only space where all those
1-dimensions can exist and generateswaspace for themselves. This new space is
therefore identical with the fictitiousrsion of Type Il space. That is, the two types
of space necessarily have an identicalibus version.

A given 1-dimension has a unit in Tipgpace and is, due to its infinite
intersectibility, described to consistaofinfinite number of 2-dimensional points (i.e.
points of intersection). This unit isiafinite quantity, and its constituent points only
have an infinitesimal quantity. Betwe&ery two of these infinitesimal points there is
a unit which is infinitely divisible ; fan Type Il space a 1-dimension consists of as
many points as it is intersectible byatiént 1-dimensions. In Type Il space centres
multiplies themselves and this meansititatsections multiplies themselves.
Therefore, between any two points ofrisgetion there is always at least one point of
intersection. This infinitely divisiblenit is a linear continuum and is the most basic
2-dimensional unit. Consequently, in TYjpgpace the most basic 1-dimensional unit
consists of such infinitely divisible Zstensional units. The unit of this infinitely
divisible unit is a 2-dimensional 1-dins@n which holds between two closest
possible points of intersection. In Typspace if anything can be described, it is
described in terms of such units of uhiterefore, if relations are described between
or among such units of unit, then anyghian be described in Type Il space in terms
of such relations (i.e. numbers) or iefa of such relations (i.e. functions). The most
basic 2-dimensional unit is therefore matnbers but functions in the sense that Type
Il space necessarily consists of mora tha point. This is identical with saying that
the meaning of numbers is necessarilgtfanal. An infinite quantity underlies an
infinitesimal quantity, and vice versaitlier is possible without the other. Only
infinitesimal quantities can make the e@mess of a unit infinite, and only an infinite
quantity can make every part of a urfinhitesimal. In Type Il space a 1-dimension
(i.e. a set of two 2-dimensional direptipconsists of an infinite number of
2-dimensional points. A 2-dimensionalifiiensions is the most basic constituent unit
of such a 1-dimension and yet consistnahfinite number of 2-dimensional points ;
for by the meaning of Type Il space no fwoints can be conceived without at least
one point between them. Consequentlyetigeno such as two closest points. The
whole and a part therefore consists dhéinite number of 2-dimensional points.

The two types of space are summaegddllows : Type | space has one and only one
2-dimensional point. This point has natid quantity and forms the centre of Type |
space. This space is enclosed withimsed boundary which is not reducible into
parts. Within this space there are a Hiass number of fictitious points which exist in
order to describe the two boundariesisf $pace in terms of their density. At each
level of density there is a fictitiousitnensional 1-dimension. The two boundaries of
Type | space are the two extreme limitsuzh descriptive 2-dimensional
1-dimensions. Type Il space has an it€inumber of 2-dimensional points which are
points of intersection of at least twdifrensions. Every one of such points is a centre
of Type Il space. Between any two pothtye is either a 2-dimensional 1-dimension
or a combination of 2-dimensional 1-disiens. A 1-dimension which holds between
two schematic points is a pair of two ayatrically related 2-dimensional directions.
The infinite extension of a 2-dimensiohalimension along its two given directions is
such a 1-dimension. Both types of spaaela common fictitious version. This
fictitious version is a finite, boundlesmsd uniformly curved space with one and only
one centre which is either a 2-dimendipoét with an infinitesimal quantity or a
region of space with such 2-dimensiorahts.

2.2.3.2.6.4.1. There is no space where there @ihstance, and vice versa. A space is a

descriptively necessary way by whiclubstance exists, and vice versa. A space is
the manifestation of the descriptiveessity of a substance. The substance of the
2-dimension is the 1-dimension. The rheatision is, by its own descriptive necessity,
transformed into 2-dimensional substararal simultaneously generates
2-dimensional spaces. A space and aautes depend upon each other. Neither is
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descriptively possible without the othBne 1-dimensional unit forms the boundary
of each type of 2-dimensional spaceevBidimensional units describe such
boundaries from within those spaces. flilwetypes of 2-dimensional space are
1-dimensionally identical. The 2-dimemsinternally refers to the innate necessity of
the 1-dimension to coexist with, anexdst in, the 2-dimension, while it externally,
collectively refers to the set of thdwe types of 2-dimensional space. Those two
types of space are only transcendenteljted to each other.

2.2.3.2.7. Type |l space consists of an infinitenber of centres and is therefore an infinite space.
This infinite space is uniformly dense h&ma 1-dimension is intersectible by another
wherever there is not yet a point of intet®n. That is, every centre is identical in its
composition, and centres breed and multipdynselves identically and infinitely and
therefore make Type Il space uniformly mand more densely populated until there
exists no more space without externallyadgically and infinitely expanding. This is
made possible by the descriptive simultgris@tween two initially intersecting
1-dimensions’ acquiring a 2-dimensionakldy and Type Il space’s coming into
existence. This only means that no pasicldcalities have any special claims upon the
way by which Type Il space exists. Typegace is therefore uniform in the sense that it
is not discriminative about locations ofrgs of intersection. Type Il space is simply the
class of every possible space which catdbermined by any two possible 1-dimensions.
Such spaces form a class because theyl drelimmensionally identical and
2-dimensionally simultaneous. If every dnsional point can be a centre, then any one
of them can choose itself as the centreowit causing any changes in the characteristics
of Type Il space. Every centre can desdtiwf as the centre of Type Il space.
However, the centre of Type Il space isagsarily one, and one only ; for nothing can
be identically described more than oncéavit contradicting the initial condition. That
is, there is no descriptive necessity foything to repeat describing itself identically.
Every centre of Type Il space is identiedh one another. Consequently, any one, but
one and only one, of such centres can itesitself as the centre of Type Il space. Type
Il space is externally described as a spawdiich every 2-dimensional point can be a
centre. The internal description of thia@pis the description of the meaning of such a
centre. Type |l space is described in tesfeentres, and these centres are described in
terms of a centre. The description of aants Type Il space, and the description of a
centre is centres. This difference consg#tthe external and internal structure of Type I
space. The description of the internal degon of Type |l space is identical with the
external description of Type Il space. Btleing either describes Type Il space or is
described in Type Il space. This is so heeahe 1-dimension is the only
epistemological entity which is so far citisthalized, and because this 1-dimension
simultaneously and identically applies tahbtypes of 2-dimensional space. Those which
are described in Type Il space are so dest@as to describe Type Il space. This means
that in Type Il space everything is eveinghelse and is identical with itself.
Consequently, if everything is a centre] drit describes itself as a centre, then it, by
itself, determines its relations to evettyen thing. That is, the description of a centre is
identical with the description of every etftentre. Every centre results in an identical
description. Therefore, any one, but oret @my one, centre can be described as a centre
and becomes the centre of Type Il spacks. i$the internal structure of Type Il space.
Type Il space can be internally and extéymiescribed differently, while Type | space
and their common fictitious version areeinially and externally described identically.
This is so because the latter has one alydome centre. The description of such a single
centre is internally and externally ideatibecause one and only one centre of a space is
necessarily, in itself, the centre of thgdice. Consequently, the description of such one
and only one centre is identical with tbh& space which has this centre.

2.2.3.2.7.1. In Type |l space a 2-dimensional pisitetermined by any two intersecting
1-dimensions. Consequently, a centr@ysvhere where two sets of two
2-dimensional directions extend from anether. Two 2-dimensional directions form
a set based upon a 1-dimension and areftire directionally symmetrical to each
other. A centre differs from every otlcentre if and only if it describes itself as a
centre and becomes the centre ; fon itself, manifests the description of a centre. A
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2.2.3.2.7.2.

centre relates to every other centréénsense that any one of them could have been
the centre. The centre therefore embagi@sions such that hold among every centre.
This means that every centre is detemtittaone another in their identical relation to
the centre. That is, the centre descrilvesy other centre in such a way that they are
all mutually determinant. This is possifiland only if the centre is determinant to
itself. If anything is determinant todlf then between them there is a space such that
describes how it is determinant to itskélfhe centre is the description of a centrenthe
a space in which the centre is deterntit@itself descriptively accommodates every
other centre and makes them determiaohé another in their relation to the centre.
This necessity of the centre’s being eteant to itself differentiates the two
determinant intersecting 1-dimensionthefcentre from every other 1-dimension in
Type Il space. Only those two determinatdrsecting 1-dimensions of the centre are
described to relate to each other so @etermine and give rise to a centre which
describes itself as a centre. Every othéimension and centre can be described in
their relation to those two determinastithensions. Consequently, only those two
determinant 1-dimensions need to forrataétwo sets of two 2-dimensional
directions which extend from one anotites centre that describes itself as a centre.
Every other 1-dimension can be descrémed single 2-dimensional direction by those
two determinant 1-dimensions, each ofcliorms a set of two 2-dimensional
directions. Type Il space is infinite.érbfore, neither those two determinant
1-dimensions nor any 2-dimensional dioext have, unlike a finite 1-dimension, a
reflex direction along a given directidrey extend into infinity. A given direction

and its reflex direction of a finite lattnsion become a spatial symmetry in Type I
space and are so embodied by each of tim@sdeterminant 1-dimensions. Only those
two determinant 1-dimensions need to atylibis spatial symmetry ; for every other
1-dimension can be determined by those tw

Those two sets of two spatially synnitedt 2-dimensional directions relate to one
another only in such a way that they clynajith the uniformity of Type Il space. This
uniformity manifests itself as the egdahsity of 2-dimensional points in Type Il
space. That is, those two sets of twaighasymmetrical 2-dimensional directions
relate to one another in order to gige to a uniformly dense space. Type Il space is
generated by any two intersecting 1-disi@ms and is therefore simultaneously
assigned the characteristic of beingarnify dense ; for Type Il space only consists
in and of points of intersection. Thatdsery two of intersecting 1-dimensions
generate an identical space and simuitasig acquire their 2-dimensionality. Type |l
space is what identifies such identipalces. Type Il space is therefore inherently
uniformly dense. This means that any determinant 1-dimensions of a centre
necessarily and inherently comply witis tlniform density. The two determinant
1-dimensions of the centre of Type llcambody such uniform density ; for this
characteristic of being-uniformly densd.idimensionally inherent to Type Il space.
Type |l space is determined by the twtedwrinant intersecting 1-dimensions of a
centre which describes itself as a cefitn@se two determinant 1-dimensions
determine Type Il space and are simutiasly made 2-dimensional by this Type Il
space. Consequently, they, in themseheggesent the uniform density of Type I
space. This representation takes plasadh a way that ;

(i) those two determinant 1-dimensiores @escribed to consist of points which are
uniformly dense,

(ii) these two 1-dimensions spatiallyleef the uniform density of Type Il space,

(i) at where these two 1-dimensiongisect each other (i.e. at the centre) each of
them is spatially transformed into adfeivo 2-dimensional directions which
symmetrically extend from each other,

(iv) this set of two 2-dimensional diriedts is 2-dimensionally 1-dimensional because

it spatially divides Type Il space inteot, each of which necessarily consists of an
equal number of centres in order to cgmth the uniform density of Type Il space,
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(v) each set of two 2-dimensional dires divides Type Il space into two,

(vi) two sets of two 2-dimensional diiiecs relate to each other and reflect the
uniform density of Type Il space in suctvay that they divide each other further into
two, each of which consists of an equethber of centres.

This means that the two determinant ledisions of the centre intersect each other in
such a way that they transform themseiviesfour 2-dimensional directions which
perpendicularly extend from one anotBsery other centre can be therefore
described to be inherently determinalyiéi® perpendicularly related 1-dimensional
directions. Every 2-dimensional directamd their relations can be described by those
four 2-dimensional directions which pergieularly extend from one another. Those
four perpendicularly related 2-dimensiatigections extend from one another only at
the centre. They arise only when Typgplce necessitates itself to internally describe
itself. The description of a centre is tientre. Every other 2-dimensional point is a
centre. The centre can transpose itselfiy centres because

(i) any centres could have been the eentr

(ii) every centre is inherently deterntiteaby two perpendicularly intersecting
2-dimensional directions which coordingitemselves with the four perpendicularly
extending 2-dimensional directions of teatre,

(i) these four perpendicularly relat2dliimensional directions can describe whatever
that exists in Type Il space.

2.2.3.2.7.2.1. In the 2-dimension the 1-dimensiecomes spatial and therefore becomes a
1-dimension. The two types of 2-dimensicspace are given by the internal meaning
of the 1-dimension and are thereforeegatied by the innate necessity for such an
internal meaning. That is, the 1-dimenss 2-dimensionally transformed into two
types of space and their substancessé&prently, in a 2-dimensional space the
1-dimension is inherently spatial in #emse that a space and a substance determine
each other.

2.2.3.2.7.2.1.1. The description of Type | spaat @fithe common fictitious version of both types
of space is internally and externadigntical ; for the description of a centre of a
space with one and only one centigegtical with the description of that space.
That is, the description of a spaddéstical with that of a substance if and only if
a space has one and only one subst@gipe Il space consists in and of an infinite
number of substances which are unifpdistributed and therefore make this
space uniformly dense. Type | spacesists of one and only one substance which
is the only centre of that space. Teistre is the inner-boundary of Type | space
and describes itself as the outer-daunof that space. Type | space is therefore
filled with descriptive entities withthose two boundaries. This inner-boundary
describes itself in such a way that ;

(i) there necessarily exists a setwaf and only two directions which it can
determine,

(ii) these two directions are such thald in and between a single point,

(iii) they are so determined by thirggée point and therefore cannot coincide with
that point,

(iv) if they are outside that pointaare determined by that point to hold in and
between that point, then that poimtésessarily such that starts from itself and
ends at itself and therefore, in ftggives rise to a set of two directions ; fortif i

starts from, and ends at, a same pibieh both a starting-point and an

67



2.23.2.7.2.1.2.

ending-point do exist, but are indisdgle from each other, which results in the
twofoldness of a single point,

(v) this is possible if and only ifthsingle point is quantitiless and multiplies litse
into a single substance which is susdly populated with such single points that it
cannot be reduced into parts.

This substance is the outer-boundéfyype | space and is generated by the
inner-boundary of that space. Thersfbetween those boundaries there are
entities such that become boundledshser toward the outer-boundary. The
inner-boundary has no quantity othantthe 1-dimensional quantity, while the
outer-boundary is itself a 2-dimensiloguantity. The outer-boundary is therefore
not spatial but self-spatial. It hasgpatial quantity and therefore does not occupy
a portion of space, neither externatly internally. The inner-boundary is
guantitiless because it necessarilyaides with its own space and does not
externally exist in a space other titsuown descriptive space which is filled with
its own descriptive entities. The coomfictitious version of both types of space
also has one and only one substanaehvigithe only centre of that space. The
description of this centre is therefarternally and externally identical with that of
this fictitious space ; for one andyazne substance can be described in terms of
itself. This centre is either a singtdimensional point with an infinitesimal
guantity or a region of space whicfilisd with such points. In the former case
that point is determined be everyat#ht intersecting 1-dimension and is
therefore bound by schematic pointmggquently, a space with such a point is
necessarily finite, boundless andamifly curved. In the latter case each point is
determined by a different set of tviffedent 1-dimensions and therefore, together
with every other point, necessarilgniie a region of space which is bound by
schematic points. Consequently, aspath such a region of space is necessarily
finite, boundless and uniformly curvétis fictitious space with a single
2-dimensional point has no densityduse this point can only be itself the basic
unit of density. This space therefoas no spatial properties which can describe
its substance. The description of smspace is identical with that of its substance.
If this space consists of a singldae®f space which is filled with 2-dimensional
points, then such a region of spa@sdwt have a centre. This is so because this
region of space consists of 1-dimemsisuch that every one 2-dimensionally and
directionally differs from every othand that every two of them intersect each
other. This means that every particatd of two different intersecting
1-dimensions necessarily preventsyegtirer from forming a centre. This region
of space is necessarily such that imesodenser toward its centreless centre.
Consequently, no particular sets af imersecting 1-dimensions can be the
determinant 1-dimensions of this spdoe this space appears different from
every point. If a space is to be diéstt in terms of its substance, then it is
necessary for a space to be iderdicalery point in it. This means that this space
has no spatial properties which castdbe its substance without losing its own
self-identity. The description of suelspace is identical with that of its substances
which are necessarily collectivelygakogether. Therefore, a space with one and
only one centre is internally and ex#dly described identically. Only Type I
space can be internally and exterrdgiycribed differently. This difference makes
it possible for Type Il space to spilyidescribe whatever that is in it. This
difference is, so to speak, the boundéthis infinite Type Il space. That is,
anything can be described to be withenboundary of Type Il space if and only if
it is spatially describable.

The external description of Tylpgphce differs from the internal one. This is so
because Type Il space is externallyamd only one space which consists in and
of an infinite number of centres, \ehil is internally an infinite number of
identical spaces which consists in @ehone and only one centre. The description
of Type Il space in terms of centréfeds from that of centres in terms of Type Il
space. Type Il space can be descalkdtie totality of an infinite number of
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centres. These centres, however, nhnbe described to be such that any one of
them could have been the centre sfttitality which they themselves form. A
space of centres is necessarily duah;t

(i) if it is seen externally (i.e. frothe collective standpoint of centres), it is a
totality with no centre,

(ii) if it is seen internally (i.e.dm the individual standpoint of each centre), it is
an infinite number of totalities witme and only one centre.

This is so because a space of ceistrescessarily a space which is identical with
every possible centre. Consequerttlyinternal description consists of two parts :
one is the self-description of a certs the centre, the other is the self-description
of the centre as a centre. That s discription of a centre forms the centre, and
the description of the centre formstees. The difference between the external
description and the internal one @eacriptive necessity and is therefore not a
property of Type Il space itself. Is@ace of centres any centres can be the centre.
However, one and only one centre astdbe itself as a centre and becomes the
centre. This is based upon the detegimecessity that no relations can be
described between or among identieatdptions. Whatever that is once
understood does not require itselfgainderstood again. By this descriptive
necessity the description of a cear@ centre, leads itself to an infinite number of
identical spaces with one and only oetre and results in one and only one
description of such spaces. Consetyyehat difference is not a property of Type

Il space but a necessity which Typgplce imposes upon itself so as to comply
with the initial condition.

2.2.3.2.7.2.1.2.1. Whichever centre is taken aséimtre, Type Il space remains identical. Every
centre has at least two intersecthymensions, two and only two of which are
the determinant 1-dimensions of t&ttre. Such two determinant 1-dimensions
of the centre are also the deterntidadimensions of Type Il space and form
four 2-dimensional directions whipérpendicularly extend from one another.
These four perpendicular 2-dimenaialirections embody the uniform density
of Type Il space. This is so becabhseuniform density is a necessary
characteristic of Type Il space antherefore necessarily represented by
whatever that determines Type licgpd hese four perpendicular 2-dimensional
directions can spatially determinerg substance and every combination of
them in Type Il space, based upemtieaning of a centre that any centres
could have been the centre. Thioisible because every centre is related to
every other in their identical refiece to the centre in the sense that the centre
represents the uniform density arfichity of Type Il space. That is, the two
determinant intersecting 1-dimensiofhthe centre embody the uniform density
of Type Il space by forming four pendicular 2-dimensional directions which
infinitely extend from one anothadaherefore also represent the infinity of
Type Il space. Such four 2-dimenalatirections can transpose the centre to
any positions in Type Il space dmer¢fore describe every possible centre of
Type Il space. This is so becaussatour 2-dimensional directions are
described to consist of an infimitenber of points which are infinitely and
uniformly dense, and are also desdtito be related to one another in such a
way as to be able to determine epessible position in Type Il space. That is,
every centre can be the centre harkfore inherently has two determinant
intersecting 1-dimensions which meeessarily identical with those of the
centre in terms of the way by whitby embody the uniform density and
infinity of Type Il space. Unles®thare ones which descriptively constitute the
four perpendicularly related 2-dirsigmal directions, every centre is
necessarily in one of the quartérfype Il space and therefore can be uniquely
determined by means of a set ofpiaimts each of which comes from the two
surrounding 2-dimensional directiofis. quarter to which a given centre
belongs. The meaning of such a E&t@ points is based upon the necessity of
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Type Il space that every centreegtedminable inherently in the same way by
which the centre is determinabler;the centre is the description of a centre.
The two determinant 1-dimensionswdry centre other than those of the
centre, however, do not form fourgeadicular 2-dimensional directions. This
is so because the centre standféodescription of every centre. Consequently,
the two determinant 1-dimensionamy centres can be spatially determined by
those of the centre and therefosedptively transform themselves into the
internal meaning of any centres Wwidan be described to be determinable by
two intersecting 1-dimensions. Tiakes Type Il space a space of infinitely
dense, uniform lattice which candescribed as the spatial self-multiplication
of the four basic perpendicular Bxeinsional directions of the centre. These
four basic 2-dimensional directi@ms the form of the internally described Type
Il space and stand for the meanirth® x-y coordinate. They become the x-y
coordinate with the introductionmafmbers. With this x-y coordinate Type Il
space becomes the space of antmfinimber of pairs of real numbers. In this
space of pairs of real numbers adjnZensional directions and 2-dimensional
1-dimensions can be described aseétibn, which is a relation between two
pairs of real numbers, based upemtioperties of numbers. Any combinations
of them are therefore described Bdaion of functions or a function of
functions. A 2-dimensional 1-dimemsholds between two nearest possible
pairs of real numbers and is thetrhasic 2-dimensional unit. Such a
2-dimensional unit underlies thenpiples of differentiation and also makes the
meaning of a number essentially fiamal. In Type Il space there is no such as
a ‘curve’ in the sense of Type I@paA ‘curve’ is merely a functional
combination of 2-dimensional 1-dirsiems. The notion af-constant is
introduced by the descriptive neitgdbat the two types of space are
necessarily under a same dimendiba.notion oft-constant is geometrically
transcendental because logic prexgdemetry, and therefore because not
every logical relation can be geametly describable. That is, unlike in the
logical space the logical relatiaiviieen the two types of space geometrically
remains descriptively incommensuzabi the same sense theonstant is
algebraically transcendental. Thisa not in the sense that theonstant is a
non-algebraic number but in the sghat geometry precedes the schema of
numbers, and therefore that notyepart of geometry is numerically
representable. Type | and Il spacesgeometrically and algebraically
incommensurable to each other becthey are originated in the logical space.
This means that their relation calyde described logically. This is the
meaning of the transcendence ohtt®n ofr-constant. The-constant differs
from an irrational number in the sethat it cannot even be ‘pointed at’ as a
gap on a sequence of real numbdnis.i$ so because assuming that both types
of space can be numerically repreesbon a same sequence of real numbers,
the notion of-constant exists between those two types of speaxknot in each
of them. The meaning of the notidm-constant is the descriptive necessity
that the two types of space are ssardly under a same dimension. This means
that the two types of space canpekist independently from each other under
the same 2-dimension, and therefuaieit is necessary for each to be able to
accommodate the other. With theoihtriction of the notion af-constant there
are no combinations of 2-dimensidirdimensions which cannot be described
in terms of functions. Numbers catyde geometrically generated.
Consequently, the x-y axes relateaoh other in the exactly same way by
which the two determinant 1-dimensiof the centre of Type Il space relate to
each other. The meaning of a typeunfibers is a geometrical property. ‘0’
geometrically stands for the dedargpnecessity that the two determinant
1-dimensions of the centre necelgsfatim four perpendicular 2-dimensional
directions by intersecting each at@nsequently, ‘0’ necessitates the x-y axes
to differentiate themselves intorfoumerically (i.e. functionally) symmetrical
sequences of numbers which infigieettend from one another. + and - stand
for such a symmetry. The two deteant 1-dimensions of the centre also
determine Type Il space itself. Tiere, ‘0’ also means that it is necessary for
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any two identical sequences of nunibde identified under a same schema.
This means that ‘0’ is necessariB+@mensional number. ‘0’ can be transposed
to any 2-dimensional positions byameof a function. This is so because ‘0’
can be related to any 2-dimensigoaitions by means of a functional relation
of 2-dimensional 1-dimensions. Tikithe meaning of the x-y coordinate.

2.2.3.2.7.2.1.2.1.1. The meaning of a number ikértotality of numbers ; for a number is
essentially functional. A numberirsitself, meaningless. Numbers are
necessarily geometrical.

2.2.3.2.7.2.1.2.1.2. Mathematical dimensions arex@nsion of the internal description of Type I
space ; for Type Il space can berdeined by at least two determinant
intersecting 1-dimensions. The nandf determinant intersecting
1-dimensions can extend from twa {@e. any countable numbers) with or
without a geometrical or physicatassity. Any mathematical dimensions
higher than the 2-dimension areedagoon this 2-dimensional, geometrical
Type Il space. Only the 3-dimensamial the 4-dimension have respectively a
geometrical and physical necessity.

2.2.3.2.7.2.1.2.2. Type | and Il spaces are 2-dgioexally two distinct schemata. Consequently, in
order to be under a same dimensi@riecessary for them to schematically
describe each other in each of théanthey are both simultaneously
necessitated by an identical interm@aning of the 1-dimension. This is the
meaning of the notionmetonstant and of transcendental numbers in general.
They are, however, 1-dimensionaligritical. This 1-dimensional identity is not
in terms of a set of two mutual-dgstons but in terms of their common
descriptive necessity (i.e. therin& meaning of the 1-dimension). That is,
Type | and Il spaces 2-dimensiona#lg each other in each of them, while they
1-dimensionally see themselves the# them. Consequently, a 1-dimension is
1-dimensionally identical and 2-dim®nally differentiative in each type of
space. This means that the deseefitirm of a 1-dimension is identical if it is
seen from within each type of spdeet differs if each type of space is seen
from the other. Numbers are the dp8on of such a descriptive form of a
1-dimension in the 2-dimension areltherefore necessitated by the internal
identity and external distinctnesshe two types of space in the 2-dimension.
The notion of-constant represents the external distinctnesdewhbimbers
represent the internal identitythis sense the notion @fconstant stands at the
same descriptive level as numbeesthr of the notion of-constant and
numbers is possible without the otfdis is so because whenever the two
types of space have a common gearakproperty, an identical types of
numbers must be found in both typlespace. This necessarily assumes the
notion oft-constant. The schema of arithmetic is originatetheé schema of
geometry in the sense that a typsuafibers represents a geometrical property.
The schema of arithmetic is, howedéstinct from that of geometry in the
sense that it is the presentatioa déscriptive necessity of the latter, while the
latter is the description of thausture of description of e. Numbers are
therefore generated, but not cood#lized. This descriptive necessity is to
descriptively identify geometricabperties which are common to both types of
2-dimensional space.

2.2.3.2.7.2.1.2.2.1. Numbers are originated ingg@metrical 2-dimension. There are two distinct
types of numbers. One is those Wwhi@ common to both types of
2-dimensional space, while the othehose which can only be found in one
of them. The former is the interdascription of each type of space which
necessitates itself to be iderdifigth the other. The latter is an internal
description within one of them. Tthemer consists of natural, integral and
rational numbers. The latter caissid irrational and imaginary numbers (
and therefore also complex numbers)
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2.2.3.2.7.2.1.2.2.2. Natural numbers are the daseziform of recursiveness, integral numbers are
that of symmetry, and rational nemnsbare that of infinite divisibility, while
irrational numbers stand for theessity for the x-y axes to relate to each
other. Consequently, irrational im@ms cannot be located on either of the
sequence of numbers which consistgtural, integral and rational numbers.
They exist necessarily betweenetsexjuences and therefore only as gaps in a
sequence of natural, integral aitbnal numbers. Real numbers therefore
consists of natural, integral aational numbers together with gaps among
them. An imaginary number is theaitive inverse of irrational numbers and
is therefore one, and one onlysTiiso because it is found in the common
fictitious versions of Type | aridspaces. The fictitious versions of Type | and
Il spaces are common to both tygfespace and are therefore identical with
each other, but are descriptivelgdtdl upon the adversative of the descriptive
necessity of each type. They ase descriptively a single space which is
identical with the description t€ own centre.

2.2.3.2.8. Type Il space is commonly known as thelifean 2-dimensional space. The Euclidean
2-dimensional geometry is identical witlscigptions within Type Il space. This space,
under the 2-dimension, descriptively bahtendentally incorporate Type | space.
Therefore, in Type Il space there are &inite number of combinations of
2-dimensional 1-dimensions, which, togethi¢éh the notion oft-constant, generate
every known Euclidean 2-dimensional figuggery one of such figures is therefore
algebraically describable with the introtioic of numbers (and therefore of the x-y
coordinate and functions). The EuclideatirBensional geometry is the totality of
internal descriptions of Type Il space. fifiere, within the Euclidean geometry there
can be no proofs for anything which is emed with the external description of Type Il
space. This explains the postulate of peEsawhich is concerned with the schema of the
Euclidean geometry itself. The followingliee schematic description of the impossibility
of the proof of the postulate of parallels

1) If Type Il space is already given, then

I-1) what is meant by a given straight lened a given point is, respectively, and in Type
Il space, a 2-dimensional direction anddir@ensional point. This is so because,
otherwise, there can be no space. Thatds/en straight line and a given point are
necessarily given together in a same space.

I-1-i) There are infinitely many 2-dimensial points, every one of which is a centre of
every possible 2-dimensional directionoAg of these a given 2-dimensional direction
can be descriptively seen. At any one efdthers it is yet to be descriptively seen if
there is any 2-dimensional direction(s)akhtan be described to be ‘parallel’ to this
given 2-dimensional direction.

I-1-ii) If Type Il space is already giveten with it and necessarily its uniform density is
also given,

I-1-iii) It is determined by Type Il spadself that such two 2-dimensional points have a
certain 2-dimensional distance between thns is so because every one of
2-dimensional points necessarily occupiperéion of space. It is also determined by
Type Il space itself that this 2-dimensiadigection which is given at one of any
2-dimensional points is necessarily eithfeeiny two possible determinant 1-dimensions
of that point. This 2-dimensional directitherefore consists of two and only two
1-dimensional directions and therefore atgeinto infinity. Equally it is intersectible as
many times as every other 2-dimensiona&ations.

I-1-iv) This given 2-dimensional directiasnecessarily uniformly dense and has a
centre.

I-1-v) The other 2-dimensional point is@Bs centre of every possible 2-dimensional
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direction and has exactly as many 2-dinmradidirections as every other 2-dimensional
point. Every one of these 2-dimensionatction is necessarily either of any two
possible determinant 1-dimensions of tloisipand is therefore uniformly dense.

I-1-vi) Relative to the center of Type pace, including the case that either of the above
two 2-dimensional points is the very cenésrery centre is transpositional to every other
centre.

I-1-vii) That given 2-dimensional directidras a centre. Consequently, this centre is,
together with this given 2-dimensional diren, transpositional to the other
2-dimensional point.

I-1-viii) It is necessary that one and oolye of 2-dimensional directions of the other
2-dimensional point coincides with thategiv2-dimensional direction. This is so because
every centre is identical with every othentre, except for their spatial location.

I-1-ix) It is necessary that there are gddbcations for the following two reasons ; (L) i

is descriptively necessary that Type llcgpis determinable by any two intersecting
1-dimensions which are given their 2-dimenal spatial location only simultaneously as
they intersect each other and determineeTlyppace, (2) any spaces which are so
determinable, are all simultaneous andtidahbecause every possible 2-dimensional
spatial location is identical in their deptive meaning of being a determinant factor of
Type Il space. Consequently, Type Il sgageecessarily such that its every possible part
(i.e. 2-dimensional points) is identical ai centre of this space, and yet has a spatial
location. Once Type Il space is given, ssgétial locations appear as if created by a
simultaneous transposition of the centt@chvis the outcome of a centre’s describing
itself as a centre. This simultaneous pasgion is made possible by the uniform density
of Type Il space. The centre is the desiompof a centre. Therefore, Type Il space is
uniformly dense in the sense that it isgpatial self-multiplication of the centre.

I-1-x) That given 2-dimensional directioasa centre. This centre can be spatially
self-identified with the other 2-dimensibpaint. This is so because every centre can be
described to be a transposition of thereesnd is therefore identical with every other
centre. If every centre is identical witlegy other centre, then at the other 2-dimensional
point there can be one and only one 2-déomal direction which is identical with that
given 2-dimensional direction. This one antly one 2-dimensional direction can be so
identified because it is the only one whid®es not intersect that given 2-dimensional
direction and comes to coincide with it whie centre of this given 2-dimensional
direction is spatially self-identified withe other 2-dimensional point by means of the
transpositionability of the centre of Tylbspace.

I-1-xi) This one and only one 2-dimensiodakction which is spatially self-identified

with that given 2-dimensional directioncassarily coincides with that given
2-dimensional direction and therefore, gigespace between them, does not intersect it.
This is so because the uniform densityygferlll space also means the uniformity of
space and directions. Such two 2-dimensidinactions which have a space between
them and do not intersect each other, aseribed to be ‘parallel’ to each other.

I-1) Therefore, at any given 2-dimensiopaints there necessarily exists one and only
one 2-dimensional direction which can bscdided to be directionally identical with

(i.e. parallel to) a given 2-dimensionakdtion. A 2-dimensional point and a
2-dimensional direction can be describebadoth ‘given’ if and only if they do not
overlap each other. This is so because Tyggace consists in and of an infinite number
of 2-dimensional points. Consequentlyhédyt overlap each other, then a given
2-dimensional point is described to be & pha given 2-dimensional direction.

I-111) However, if Type Il space is alreadiven, then this parallelness is internally

already described in that space. What @ninkey Type Il space’s being already given, is
not that a straight line can be ‘drawn’glle to a given straight line through a given

73



point, but that there exists a space wistisreture, by means of its descriptive
necessities, dictates a straight line apdiat to be descriptively necessarily such that
one and only one straight line can be diesdridentical with (i.e. parallel to) a given
straight line through a given point. Consaily, the statements I-I-i) — I-I-xi) are not
about any parallel lines themselves buutlcpace itself in which every possible
straight line is already drawn in accordanith their own necessity and results in
manifesting that space itself among thewesel

I-1V) This means that it does not make seiosask within such a space if there is a
2-dimensional direction(s) which can beadibed to be parallel to a given 2-dimensional
direction through a given point. Conseqlyettis schematic description is, if it is about
parallel lines themselves, only superfluous

II) If Type Il space is not yet given, then

[I-1"Y What is meant by a given straightdiin that postulate, is identical with either of
any two determinant 1-dimensions, whichdeddetween two schematic points and
therefore can form a schema of its own. Vitheneant by a given point in that postulate,
is identical with a set of two schematiénp® and therefore can form a schema of its
own. Either of any two determinant 1-dirmiens except those which share a same
2-dimensional point with the above strailjie, holds between those two schematic
points.

[I-1") A given straight line means the saasethe above. However, there is no such as a
given point. This is so because there ispaxre into which a single point can be given by
itself, or in which a single point can lmerfied by itself. Consequently, if this is the case,
then this assumption is absurd.

[I-11) If 1I-1') is the case, then there & independent schema of Type Il space, and also
there is another independent schema dérefitte 1-dimension or Type | space or Type Il
space. This is so because unless a givaglstline and a given point are given
independently, they necessarily assumeeespetween them and therefore contradict

).

[I-111) If a given straight line and a gimgoint form two independent schemata, then
there can be no spatial relations betwkernwo ; for there is no schema shared by the
two, and therefore there is no space betwleem. The parallelness is a spatial relation.
Consequently, this assumption is absurd.

[I-1V) Whichever of II-I") and 1I-I") may b the case, it results in the absurdity (i.e. the
indescribability). A given straight linecha given point are necessarily given in a same
space and therefore already assume that itha space into which they are together
given. The postulate of parallels is dggtrely innate to Type 1l space and therefore
can only be schematically demonstrateth@asonstruction of that space itself.

[II) A space into which a given straighidiand a given point assume themselves to be
given, is not limited to Type Il space. Vlean be given into Type | space or the
common fictitious versions of both typespéce. This gives rise to the non-Euclidean
geometry.

2.2.3.2.8.1. Type | space and the common fictitiersions of both types of space are commonly
known as non-Euclidean spaces. The natidaan geometry consists in descriptions
within these spaces. These spaces, tine@-dimension, descriptively but
transcendentally incorporate Type Il gpdthis is so because Type | and Il spaces
necessarily describe each other in epabes and therefore because their common
derivatives contain both elements. Thémns that Type Il space provides Type |
space with the notion of a ‘straight ljnghile Type | space provides Type Il space
with the notion of a ‘curve’. The notiofin-constant stands for this pair of notions. A
‘straight line’ and a ‘curve’ are tranadentally identical outside Type | and Il spaces.
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The notion of-constant is the bilateral form of mapping betwtentwo types of
space. The common derivatives of Typed k spaces are therefore provided with
both notions of a ‘straight line’ andcaifve’. They are derived by assuming the
impossibility of parallel 2-dimensionatettions in the case of Type Il space, and by
assuming the finite density of the oudetndary in the case of Type | space. There
are two versions of them. In the cas&ygfe Il space parallel 2-dimensional
directions are impossible

(i) Version 1 : because this space hasamu only one 2-dimensional point, or

(i) Version 2 : because this space hesand only one region of space in which
2-dimensional points become denser towsdtentreless centre.

In the case of Type | space the finitagity of the outer-boundary of this space is
possible in terms of boundlessly denstinzensional directions

(i) Version 1 : which share one and ang 2-dimensional point,
(i) Version 2 : which share one and omhe centreless central region of space.

2.2.3.2.8.1.1. The notion of a ‘straight line’ damprovided in Type | space and version 1 and 2
spaces if and only if those spaces eady given. Otherwise, this notion itself (i.e.
a ‘straight line’) conditionalizes thosgaces themselves. Within those spaces this
notion itself is identical with their ovinternal self-description. This means that from
the standpoint of Type Il space

(i) in Type | space a ‘curve’ and aasght line’ are respectively a straight line and a
curve,

(i) while in Type Il space a ‘curve’ém ‘straight line’ are respectively a curve and
a straight line.

From the standpoint of Type | spaceabeve holds simply the other way around. If
a straight line is whatever that follothe internal structure of each of Type | and II
spaces, then a curve is the descrimicuch a straight line by the internal structure
of the other space. In this sense dgsiréine and a curve underlie each other in
version 1 and 2 spaces. Consequenttis, dre@ a straight line, or neither is a straight
line.

2.2.3.2.8.2. The postulate of parallels must beefoee tried in every other space on both
assumptions that (i) a space is alreagng (ii) it is not yet given.

I) Type | space is already given, then :

I'1) What is meant by a given straightlin this postulate, is any 2-dimensional
directions which can be found in Typsphce and is placed in Type | space as a
‘straight line’. This ‘straight line’ isecessarily within Type | space and therefore
exists between the outer- and inner-batiad in such a way that it extends from any
corner of the outer-boundary to any ottener. This is so because the parallelness
must hold throughout Type | space. Whahéant by a given point in this postulate, is
any points which are described in Tygpdce to become boundlessly denser toward
the outer-boundary so as to form thembeaindary. It therefore cannot be a part of
the outer-boundary and is a descriptivyeof the inner- and outer-boundaries ; for it
can only exist within the outer-boundafyl'ype | space.

I-1-i) A ‘straight line’ and a straigline necessarily differ from each other. This is so
because a straight line is necessariatéd by the descriptive necessity of a space.
Consequently, a straight line of Typ@ace can only be the outer-boundary which is
the extreme limit of descriptive 2-dimemal 1-dimensions which hold at each level
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of density of descriptive points. Destitip points become uniformly denser because
the outer-boundary is necessarily suahlihs two and only two directions which are
determinable by and from the inner-boupdsleither the outer-boundary nor its
descriptive bases (i.e. descriptive 2atigional 1-dimensions) can be a ‘straight line’
because they can only be a straight Tilis means that a given ‘straight line’ is a line
which is described to consist of pointthwo uniform density among them. It is
described to consist of points which medoundlessly denser toward the
outer-boundary. A given point is any gaiithin the outer-boundary of Type | space
and therefore can include the inner-bampdtself. This is so because it is the
inner-boundary itself that self-multigigself as descriptive points in order to
self-describe the outer-boundary in teofithe limit of density, and because a given
‘straight line’ consists of such desdriptpoints.

I'-1-ii) ‘Straight lines’ can be a clas§‘straight lines’ if and only if they consist of
points with uniform density. A ‘straiglime’ can be descriptively reduced into a
totality of points. The only property whiholds among points is the density. In Type |
space ‘straight lines’ consist of pomtsose density varies within a ‘straight line’ and
among ‘straight lines’. A comparison aarly be made among entities based upon
some common property. This is identicithwaying that entities can be put into a
class in terms of a common property. Théans that a comparison can only be made
within a class, and necessarily basech tipe intension of that class. This is so
because a comparison can only be theigéen of a property between or among
differentiative totalities. Thereforecamparison can be made between or among
‘straight lines’ if and only if they cassof points whose density is uniform either
within every ‘straight line’ or among eyéstraight line’. The latter is, however,
impossible because not every ‘straigi#’lconsists of a same number of points. This
means that in Type | space ‘straightdirian be made into a class if and only if every
‘straight line’ has a uniform densityiinbut not necessarily among them. That is, this
class is based upon the uniformity ohpoin each ‘straight line’, and not upon the
density of points in each ‘straight lin€herefore, it is descriptively necessary that a
given ‘straight line’ curve boundlesstyard the outer-boundary in order to

uniformly equalize its density. Thatiis,Type | space ‘straight lines’ can be
compared if and only if they are curved are made straight lines.

I-1-iii) Every given ‘straight line’ isurved necessarily in such a way that while its
centre remains where it is given to lmated, the two sides of this centre curve
themselves boundlessly toward the oubemdary and eventually meet each other at
the densest point, which is a part ofdbter-boundary. Consequently, it is, like the
outer-boundary, not only curved but aksed. This is so because the variations of
the density of points in each of those sides are identical, and therefore because
those two sides curve identically and swatrically toward each other and meet each
other at an identical part of the outewfdary.

I-1-iv) Every given ‘straight line’ hasio curved selves. That is, they have two ways
of equalizing their density. This is sechuse the outer-boundary is itself symmetrical.
Consequently, a given ‘straight line’ eaqualize its density by curving itself either to
the nearest part or to the furthest pdrthe outer-boundary. This means that in Type |
space a ‘straight line’ cannot remaitéoa 2-dimensional direction. In Type | space
there are no 2-dimensional directionscivtare spatially relative to one another. A
given ‘straight line’ has two identicalges in terms of the outer-boundary.

I-1-v) A point is described to be giveat only in Type | space but necessarily in a
descriptive correlation to a given ‘sftatiline’. Consequently, such a point is made
meaningful in two ways : one is in terofists given location in Type | space, the other
is in terms of its descriptive correlatitm a given ‘straight line’. These two ways
coincide if and only if a point is giveénsuch a way that it is the centre of a ‘straight
line’ and is descriptively correlatedat@iven ‘straight line’. This is so because Type |
space determines the meaning of a poistich a way that it can have one and only
one ‘straight line’, such that, seen frihat point, holds symmetrically to the

76



outer-boundary. Therefore, there is am @nly one ‘straight line’ which is parallel to
a given ‘straight line’ and goes througbiven point if and only if this point is given
on a ‘straight line’ which is perpendiauto that given ‘straight line’ and goes through
the centre of that given ‘straight lin€his is so because for every ‘straight line’ there
is one and only one point at which itdsosymmetrically to the outer-boundary. That
is, a point and a ‘straight line’ whicbeag through this point, necessarily have a
one-one correspondence, due to the mitstructure of Type | space. Parallel
‘straight lines’ are, however, curvedliype | space necessarily in such a way that
they meet at two identical parts of theo-boundary. This is so because they are
identically symmetrical to the outer-bdarny and therefore share an identical nearest
part and furthest part of the outer-baryd

I-1-v-i) If the above coincidence is rtbe case, and if a point is only meaningful in
terms of its given location in Type | spathen it has a ‘straight line’ such that is
parallel to a given ‘straight line’ frotine standpoint of Type | space, but not from that
of Type Il space. That is, it has a patattraight line’ to a given ‘straight line’ only

in the sense that it follows the interstalicture of Type | space. Consequently, those
‘parallel straight lines’ are curved inch a way that (1) they have different nearest
and furthest parts of the outer-boundeny therefore do not meet at the
outer-boundary, (2) they intersect eatieiowithin Type | space at least when they
are curved toward two different furthpatts of the outer-boundary. This is so
because those ‘parallel straight lines’rot identically symmetrical to the
outer-boundary. This only amounts to tbey what is parallel in Type | space is not
parallel in Type Il space, and vice versa

I'-1-v-ii) If that coincidence is not tlease, and if a point is only meaningful in terms
of its descriptive correlation to a givetraight line’, then it has a ‘straight line’ duc
that is parallel from the standpoint @p€ Il space, but not from that of Type | space.
This only amounts to repeat I'-I-v) besmif there is a ‘parallel straight line’ to a
given ‘straight line’ through a given pgithen such a ‘parallel straight line’ is
necessarily described to have a centiis. i$ so because this ‘parallel straight line’
must also be curved.

I-1-vi) In Type | space a given ‘stratdime’ therefore has two identical selves (i.e.
straight lines) such that are uniformiy aymmetrically curved and are closed at the
outer-boundary. If at a given point thisra ‘straight line’ which is parallel to a given
‘straight line’, then this parallel ‘sight line’ is curved and closed at two identical
parts of the outer-boundary. Every pataditraight line’ meets at two identical parts
of the outer-boundary. If at a given pairere is a ‘straight line’ which can be
described to be ‘parallel’ to a giverrégght line’ in the sense that both of them are
determined by the internal structure gyb& | space (in the sense that both of them are
symmetrical to the outer-boundary), ttieyse two ‘parallel straight lines’ are curved
and closed in such a way as to intersach other within the outer-boundary.
Therefore, to a given ‘straight line’ thecan be no parallel ‘straight line’ through a
given point. This means that in Typeadapthere are no parallel ‘straight lines’ or
‘parallel straight lines’ without meeting intersecting each other.

I-1) Therefore, it is concluded thatTiype | space there are no parallel ‘straight
lines’ or ‘parallel straight lines’. Eweparallel ‘straight line’ necessarily meets one
another, and every ‘parallel straighélinecessarily intersects one another. However,
the notion of a straight line (i.e. aasght line’) is not originated in Type | space.€Th
above proof that there are no ‘straigied’ which are parallel or ‘parallel’ to each
other, is the description of Type Il spat Type | space. The notion of a straight line
is transcendental in Type | space instime sense that that of a circle or curve is so in
Type |l space. The above proof proceeat® the supposition that ‘if there are
‘straight lines’, and if they are ‘pasll, to the conclusion that ‘then they are not
parallel’. Such a supposition is possiblnd only if Type | space transcendentally
accommodates Type Il space. This meaiditbse two types of space must be
already in existence in order even toigllere are parallel straight lines.
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Consequently, I'-1-i) - I'-1-vi) do nobastitute a proof, but are merely a description of
the demonstrative construction of Tyad Il spaces.

I") The derived space, Version 1, igatty given, then :

I"-1) What is meant by a given straiihe, is any 2-dimensional directions. In

Version 1 space 2-dimensional directiaressboundlessly many and uniquely

different. What is meant by a given ppisthe centre (i.e. the only 2-dimensional
point) of this space. This is so becadsision 1 space consists in and of every
possible different 2-dimensional direntend a single 2-dimensional point as a centre.

I"-1-i) This space is identical with tdescription of its own centre. In this space the
centre is where there is everything. €hae no parallel 2-dimensional directions. The
centre contains every possible 2-dimeradidirection and the only substance (i.e. a
2-dimensional point) of this space. Capustly, the description of this centre is also
the boundary of this space. This spadiaite and boundless. It is finite because every
2-dimensional direction has the lengtla dfdimensional unit and intersect one
another at a same point. It is boundtegzmuse this 1-dimensional unit is
2-dimensionally indefinite. Therefore,rgien 1 space is a space which is identical
with its centre, is uniformly curved acldsed, and extends boundlessly.

I"-1-ii) In this space there can be @m& only one given point. This is so because this
space has one and only one 2-dimenspiat which is also the very centre of this
space.

I"-1-iii) A given straight line has twand only two 1-dimensional directions and
consists of a single 2-dimensional pddnsequently, although this space is curved
toward its centre and is finite, a giwraight line remains directionally uniform.

I"-1-iv) A point can be given if and gnif it is identical with the only 2-dimensional
point. This 2-dimensional point is theyeentre of Version 1 space as well as of
every possible given straight line. Capsmtly, at a given point there are a boundless
number of straight lines which can becdbgd to be ‘parallel’ to a given straight line.
This is so because Version 1 space isrigitisely identical with its own centre (i.e. a
given point). Therefore, within Versiorsface and at a given point every possible
straight line is identical with one anattand is therefore ‘parallel’ to one another.

I"-1) Therefore, it is concluded thatVersion 1 space there are a boundless number
of straight lines which are ‘parallel’ aogiven straight line through a given point.
However, this does not constitute a prdof this is the description of a space, and
not of a straight line and point.

I") The derived space, Version 2, ireadly given, then :

I"'-1) What is meant by a given straitihe and a give point, is necessarily found
within the boundary of this space, whigfinite and boundless.

I"'-1-i) This space is identical witheldescription of its own centre for the same reason
as Version 1 space. However, Versiongsgliffers from Version 1 space in the
sense that it has no central point. Térgre of Version 2 space is not a 2-dimensional
point but a region of space. In this gpthere are no parallel 2-dimensional directions,
and there are also no central point athvivery 2-dimensional direction intersects
one another. Every 2-dimensional direct®directionally unique and is therefore
different from one another. Every twalwém intersect each other in such a way that
2-dimensional points form one and onlg central region of space. This region of
space is necessarily such that 2-dimeasiooints become boundlessly denser toward
the centreless centre.

I"'-1-ii) The description of this regiarf space forms the boundary of Version 2 space.
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A straight line and a point can only ldeeg within this boundary. Version 1 space
consists in and of a single substaneeftfie only 2-dimensional point) and therefore
does not possess any spatial relatioassivh 2 space, however, consists in and of a
single region of space in which substar(te. 2-dimensional points) are spatially
related to one another. The way by wiidse substances are related, is the internal
structure of that space and thereforgvshehat a straight line is in that space. A point
can only be a 2-dimensional point. Indfen 2 space 2-dimensional points are related
to one another in such a way that theypb® denser and denser toward the centreless
centre. Consequently, a given straigig tonsists of 2-dimensional points which are
not uniformly dense. A comparison cardhmétween or among such straight lines if
and only if they are made into a claggha class can only be formed in terms of the
uniformity of points in each straightdinThis is so because, on one hand, not every
straight line consists of a same numlb@-dimensional points and therefore cannot
have a same density, on the other, tiferanity and density are the only properties
which hold among points. ConsequentlgjrBensional points which constitute a
straight line , necessarily equalizertikeinsity and make this straight line curved
toward the centreless centre. This iBestause in Version 2 space a straight line
consists of points which become densdrdamser toward the centreless centre.

I"-1-iii) A given straight line is thefore curved toward the centreless centre in such a
way that while maintaining same two posi at the boundary, its centre (i.e. a
2-dimensional point which is nearest® tentreless centre) symmetrically and
uniformly approaches the centreless eeMersion 2 space is finite and boundless for
the same reason as Version 1 space. diredary of Version 2 space is, like that of
Version 1 space, the self-descriptioit€entre and therefore extends boundlessly.
That is, this self-description of a centan only be indefinite and allows itself to
extend boundlessly. This is so becaudernsional directions hold between two
schematic points which do not descripyieist within this space, and therefore
because the length of such 2-dimensidimattions are indefinite. The parallelness of
a straight line must hold throughout acgp Therefore, a straight line extends from
any corner of the boundary to any otteener.

I"-1-iv) Version 2 space becomes boesdly denser toward a centre which has no
central point. This means that a giveaight line forms an open, indefinite line which
is curved in such a way that its centrariullessly approaches the centreless centre.
When and where it reaches the centreg tisenothing to reach.

I"'-1-v) A given point is any 2-dimensial points except those on a given straight line.
It, unlike one in Type | space, is notamiagful in two ways ; for Version 2 space is
descriptively determined by its own censhich has no central point. A straight line
is therefore symmetrical not to the baamydut to a centre which has no centre. Such
symmetry cannot be described. Conseguentannot also be described that there is
a one-one correspondence between a gvi@hand a straight line such that is
symmetrical to the centre and goes thndbgt point. This means that a given point is
only meaningful in its descriptive coatbn to a given straight line. If there is a
straight line such that can be describdok parallel to a given straight line through a
given point, then this line also consit&-dimensional points which become denser
toward the centreless centre. Consequehtit straight line is described to be curved
so that a comparison can be made beterggren straight line and this line. It is
curved toward the centreless centreénstime uniform way as a given straight line.
This is so because if two straight lines parallel to each other, then they are
identically symmetrical to the centrelesstre. If this is the case, then there are a
boundless number of lines which can txxdeed to be parallel to a given straight line
through a given point. This is so becg$e¢hose two parallel straight lines are
curved in a same uniform, symmetrical \way therefore do not intersect each other,
(2) at the very centre there is nothing/laich those two can meet.

I"-1-vi) Version 2 space is closed. Téfere, the very centre of this space is described
by a single straight line in such a waattit holds between two lines which face each
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other from the two opposite sides ofdhatre, are fixed at the boundary, and are
curved boundlessly toward the centretesdre (and therefore toward each other). A
given straight line therefore, by itsétfyms a hyperbola in and between which there
exists the centreless centre. This hygarboundlessly approaches each other because
the centre becomes denser and denserddh&very centreless centre. Two parallel
straight lines are curved and coexisiveen the two outer-extremes of such a
hyperbola without intersecting or meetaagh other. The centreless centre exists
between the two inner-extremes of thigdnpola. Between the outer- and
inner-extremes there exist a boundlesshan of self-descriptions of this hyperbola.
In this sense it is described that ttegeea boundless number of straight lines which
are parallel to a given straight lineotigh a given point.

I"'-11) Therefore, it is concluded thatVersion 2 space there are a boundless number
of straight lines which are ‘parallel’ aogiven straight line through a given point.
However, this does not constitute a prdof this is the description of a space, and
not of a given straight line and a point.

I Type | space and Version 1- and2aces are not yet given, then :

II-1) A straight line and a point can giwen if and only if they themselves generate
those spaces. This is so because th&ts as yet no space into which they can be
given.

II-1-i) The notions of a straight lin@@a point are originated in Type Il space. This
means that Type Il space must be firaegated.

II-1-ii) If anything is to generate itsvn space, then it is referring not to itself i\ th
sense that it is so described and unoimisbut to what makes it possible for it to be
so describable and understandable. Corsdly, if a space is not yet given, then a
straight line and a point are identicatl with such themselves but with what makes
them so exist.

II-11) However, what makes a straigitdiand a point so describable and
understandable, is already demonstrdtedt is what conditionalizes itself as those
spaces themselves.

II-111) Therefore, the postulate of plets is, if a space is not yet given, identicathwi
the construction of a space itself. Thetplate of parallels refers to the internal
structure of a space. If the notions efraight line and a point are presented in and
with a space, then they embody the itiestructure of that space. Their existence
necessarily underlies that of a space. droof of the postulate of parallels is simply
the same as the demonstration of thetear®on of spaces.

2.2.3.2.8.3. The two types of 2-dimensional spaedath conditionalized from the same
1-dimension. Therefore, they are 1-dinemally identical. What is 1-dimensionally
identical, is necessarily also identioathe 2-dimension. Such an identity based upon
a descriptive necessity is a transceradiéhentity. Those two types of space are
2-dimensionally identical by transcendenthe outer-boundary of Type | space and
the two determinant 1-dimensions of Tilppace are descriptively identical by
transcendence.

2.2.3.2.8.3.1. Version 1 and 2 spaces are comnumnlyed from Type | and Il spaces. They
are ‘derived’ in the sense that theis&nce is based upon a descriptive necessity
such that requires Type | and Il spdod®e 2-dimensionally one and the same if
they do not hold. Such a descriptiveassity is, however, identical with a
descriptive necessity which conditionedi Type | and Il spaces from the
1-dimension ; for the 2-dimensional elifince between Type | and Il spaces is
descriptively necessary and is demotestrdn this sense Version 1 and 2 spaces
are fictitious because they have no rdgthee necessity. They are generated on the
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assumption that Type | and Il spaceaatchold. They are, however, meaningful
because they describe that the conteagach of those two types of space leads both
of those types of space to the formatiban identical space. Consequently, the
existence of Version 1 and 2 spacesseth upon such meaningfulness. These
common fictitious derivatives of Typard Il spaces, however, remain
2-dimensional because the contrary th @é Type | and 1l spaces can only be
assumed from within those spaces. Thezethe 1-dimensional identity between
Type | and Il spaces is 2-dimensiona#ign in the existence of those common
derivatives.

2.2.3.2.8.3.2. Those fictitious derivatives contadth notions of a straight line and a circle ; for
they are generated from both Type | lhispaces and are common to them. They
are ‘self-contained’ in the sense thalthave no descriptive necessity. They
therefore do not necessitate themselagdurther conditionalizations.

2.2.3.2.8.3.3. The meaningfulness of those fiaigiderivatives differs from a descriptive necessity
which conditionalizes Type | and Il spacA descriptive necessity is based upon
another descriptive necessity and besamgart of demonstration from within an
existing demonstration. This meaningésknis, however, not a constructive part of
demonstration but simply the descriptidhe validity of a descriptive necessity in
terms of the impossibility of contradiict that descriptive necessity without losing its
necessary descriptive outcome. That iisis descriptively necessary that the
2-dimensional transcendental differelneveen Type | and Il spaces comes out of
the same 1-dimension due to an innatessity of the 1-dimension, then this
difference necessarily disappears whesd spaces contradict themselves from
within themselves. This is so becausedmtradicting themselves those spaces are
contradicting their own descriptive n&gity and therefore lose their difference. This
results in identical fictitious spacesieth are commonly derived from mutually
different Type | and Il spaces.

2.2.3.2.8.3.4. Type | and Il spaces necessarilgriteseach other. This is so because they are
under the same 2-dimension and areftreraot only 1-dimensionally but also
2-dimensionally related to each othdrerfE is no space other than those two types of
space in the 2-dimension. Thereforey e only be related to each other by
describing each other. The mutual-deion between two transcendentally different
types of space is transcendental desmnig

2.2.3.2.8.3.4.1. The description of Type | spacarid by Type Il space is a ‘concentric circle’. A
Euclidean concentric circle is madeamegful by this notion of a ‘concentric
circle’. This is so because the mestibrelation between two points in Type I
space is a 2-dimensional 1-dimensidrich is a ‘straight line’ with an
infinitesimal length. In Type Il spaadcuclidean concentric circle is described as
the locus of points such that holdraequal distance from a same point. A circle
is not a polygon with an infinite nuertof edges. Therefore, this locus cannot
consists in and of points which aratslly related to one another in terms of
2-dimensional 1-dimensions. The notibn-constant stands for the descriptive
incommensurability between a ‘circded a ‘straight line’ and transcendentally
relate them to each other by mearnkehecessity for each to be describable by
the other. This is so because a ‘eirahd a ‘straight line’ are both a straight line
in their own space (i.e. respectivalifype | and Il spaces) which are
transcendentally related to each offiee notion oft-constant exists between
those two types of space and therefoes not stand for a geometrical property.
This means that it cannot be refetoelly a number of any types (and therefore by
any functional means). The notioma@onstant can only be numerically processed
as an incommensurable relation betvileese two types of space and is therefore
referred to by a process itself. Boyipe | and Il spaces have a common
geometrical property which generasgi®nal numbers. The numerical value of the
notion of--constant is a relation between two totalitiesational numbers within
the totality of totalities of rationalimbers in Type Il space. Type | space
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generates the recursive totality ¢dlibes of rational numbers and is therefore
incorporated in Type Il space as a ahiotality of rational numbers. This unit
necessarily corresponds to an equivalgit within the totalities of such units in
Type Il space. A totality of ratiomalmbers holds between two succeeding
integral numbers. A circle and a 2-gisional 1-dimension are both such a
totality respectively by the meanirigigpe | and Il spaces. By this
correspondence between a circle ahdianensional 1-dimension a circle can
determine, and be determined by,iamdter. Type | space is incorporated in
Type Il space and determines a 2-dgiogral 1-dimension as its diameter by
means of such mutual-determinabilitiye relation between these two totalities of
rational numbers is the ratio of tirewumference of a circle to its diameter and can
be numerically processed becauseaheyoth within the totality of totalities of
rational numbers as determined by medithe x-y coordinate. The
incommensurability of such a rationsts for the transcendental relation between
those two types of space. This istieaning oft-constant as a ‘transcendental
number’. The-constant is, however, essentially a Euclidean rarrbecause it
can only be processed in a Euclidgats. The notion af-constant can only be
processed as a Euclidean number becdaus/pe | space the totality of totalities
of rational numbers can only be déstiin terms of recursiveness and therefore
cannot represent the ratio of twodramdentally related totalities of rational
numbers. If the notion ofconstant can only be numerically evaluative in a
Euclidean space, then the descriliglfithe notion of a curve is numerically
necessarily Euclidean. That is, evemnerical representation is essentially
Euclidean. This is the reason why a-rieuclidean geometry can only be, in so far
as the description of a curve requihest-constant, numerically represented by a
Euclidean geometry. All those whichuies this numerically processed notion of
n-constant for its description, can only be desctiinea Euclidean space ; for the
notion ofi-constant can only be numerically processed indidan space.

2.2.3.2.8.3.4.1.1. Type | space can be incorporat@gpe Il space because the meaning of what
constitutes its centre and outerratauy is identifiable with that of what
constitutes 2-dimensional point3ype Il space. The substance of Type |
space encloses that space, whilsubstance of Type Il space fills that space.
The two are, however, schematica@ntical.

2.2.3.2.8.3.4.2. The description of Type Il spacand by Type | space is a ‘closed line’ and an
‘open curve’ as a segment of the farmis is so because in Type | space a
straight line is necessarily two ‘@ddines’. This means that in Type | space any
two intersecting 1-dimensions necalystrm four ‘closed lines’ such that at least
two of them intersect each other. Ehédswever, cannot be numerically
represented because the notiatrainstant can only be numerically processed in
Type Il space. In Type Il space arelogurve’ is made possible because a same
point can be shared by a straightdiné a circle. That is, if a circle is intersected
by a straight line, then two pointsraérsection which are shared by these circle
and straight line, determines a seétvofopen curves as the segments of this
intersected circle. The descriptiomnfopen curve requires theconstant
because an open curve can only bgraesat of a circle or a combination of such
segments.

2.2.3.2.8.3.4.2.1. It is also for this reason thatirve and a circle necessarily share a segment

which is more than a point. Curvatisr a transcendental relation between
Version 2 space and Type |l spacgv&ure also gives rise to another
transcendental numlgaand intrinsically contains the notioneftonstant as
Version 2 space is a derivative g | space. A fictitious line within Version

2 space transcendentally becomepan ourve in Type Il space and generates

e. In Version 2 space a straight line consists afifgovhich become uniformly
and boundlessly denser toward tmrekess centre. This line becomes an open
curve in Type Il space which corssigtand of points which are uniformly and
infinitely dense is numerically processed as representing an opee n
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terms of such density on a humetioal

2.2.3.2.8.3.4.2.1.1. Certain functions of 2-dimenal 1-dimensions, be it a circle or a curve, need
numbers which are not in Type lhap as neither a ‘circle’ nor a ‘curve’ exist
in Type Il space. A ‘circle’ origites in Type | space and a ‘curve’ is found in
Version 2 space, while Version apis the descriptive inverse of Type I
space in the sense that every poifiype Il space is fictionally described to
form its own space and therefopresents schematic symmetry to the
necessity for intersectiane, andi are found when Type | space, Version 2
space and Version 1 space are c&sphy incorporated in Type Il space. The
numerical relation among Type lasp, Type | space, Version 1 space and
Version 2 space is as follows ;

0 and 1 originate in Type |l spacel respectively represent the necessity for
intersection and points,

n originates in Type | space and represents a closee (i.e. circle),
e originates in Version 2 space and represents an oprve,
ioriginates in Version 1 space and representsensatic symmetry.

<7 +1 =0 numerically expresses the dimensional relationrayniype Il
space, Type | space, Version 1spax Version 2 space and the necessity for
them to describe one another. Tdhe descriptive necessity for the
1-dimension to progress into thdirdension unravels itself in Type Il space
by transcendentally incorporating@ | space, Version 1 space and Version 2
space. Type |l space, by virtubeihg essentially a coordinate and open, is
numerically more descriptive in gense that numbers are directional
guantities by nature and a transioosl centre (O as the centre and 1's as
points) on the lattice of dynaminjform and infinite density gives rise to
universality to any numerical dgsitons.

2.2.3.2.8.3.4.2.1.2. An open curve given by Vergdapace in Type Il space, can be described to
be closed (Type | space) by vidfischematic symmetry (Version 1 space),
this is the meaning ef —1 = c. It is a numerical representation of
transcendental relations, muctaddgical dimensionalities are recursively

expressed by (p, p°p).

2.2.3.2.8.3.4.3. The notion efconstant is the bilateral form of mapping betwégpe | and Il
spaces ; for each type is necessitateéscribe the other. Theconstant (i.e. the
numerically processed notiomefonstant) is, however, only applicable to Type
Il space. This is so because (i) reticumbers are the highest type of numbers
which is common to both types of spaé contains the meanings of natural and
integral numbers, (ii) therefore tidation between two totalities of rational
numbers can only be described in tevfmational numbers, (iii) this can only be
done in a space which can representatality of totalities of rational numbers.
For this reason a non-Euclidean gepnwetnnot be purely non-Euclidean if it is
to be numerically represented. Thenggtacal equality which holds between
Euclidean and non-Euclidean spacesiutig 2-dimension, loses its balance
because of this necessity for the migakinequality. This numerical inequality
between Euclidean and non-Euclideatap lies in the descriptive necessity that
the notion af-constant can only be numerically processed indid®an space. A
Euclidean space therefore suppliesraEuclidean space with a coordinate system
and a set of functions which numehcdétermine the geometrical ‘distortion’ of
non-Euclidean space against Euclidggeate, in terms of the ratio of curvature.

2.2.3.2.8.3.5. Type | and Il spaces are necessitatdescribe each other so as to be the
description of the 2-dimension. The digsion of each type therefore necessarily
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assumes the other type in such a way(idhidney generate identical natural, integral
and rational numbers, (i) they mutuastablish the notions of a straight line and a
circle, (iii) the relation between thdés® notions in terms of numbers, makes Type
Il space the descriptive basis of thdirlension, (iv) on this descriptive basis those
geometrical notions numerically manifdgmselves and also numerically establish
their derived notion of an open curwd,dn this descriptive basis the notion of an
open curve can numerically representtiveature of a space, (vi) a Euclidean space
contains the notion of an open curverimlly, (vii) a non-Euclidean space contains
the notion of an open curve externadlywll as internally, (viii) the description of a
non-Euclidean space is therefore a fanat combination of at least two Euclidean
spaces.

2.2.3.2.8.3.5.1. The description of the 2-dimengiohiype | space on the above descriptive basis,
is the 2-dimensional elliptic geomeltyis based upon a geometrical space which
has a single centre and is closediéh & way that points become boundlessly
denser in order to form the bounddrthis space. Every parallel straight line in
this space is described to meet atitl@atical points of the boundary. Such two
points face each other across theeafithis space.

2.2.3.2.8.3.5.2. The description of the 2-dimengiofiype Il space on the same descriptive basis,
is the Euclidean 2-dimensional geoyndtris based upon a geometrical space
which has an infinite number of cestaad is open, infinite and uniformly dense.
There is one and only one straighd lirhich is parallel to a given straight line
through a given point.

2.2.3.2.8.3.5.3. The description of the 2-dimengioersion 2 space on the same descriptive
basis, is the 2-dimensional hyperbgéometry. No meaningful descriptions are
possible within Version 1 space beedtisontains no points. This hyperbolic
geometry is based upon a geometrizate which has a single centreless, central
region and is closed in such a way plaénts become boundlessly denser toward
the centreless centre and make thisesfwlentical with its own centre. Every
parallel straight line in this spaselescribed to exist as an indefinite number of
hyperbolic lines which determine thaivn outer- and inner-extremes by
indefinitely approaching each othed amist between them. This means that there
are an indefinite number of straighe$ which are described to be parallel to a
given straight line through a giverno

2.2.3.2.8.3.6. The description of the 2-dimensgotherefore based upon the transcendental
relation between Type | and Il spaces their necessity to describe each other and
is presented as the above three typ2sdahensional geometry. That is, while the
2-dimension necessitates Type | angdlces to relate to each other, the description
of the 2-dimension results in three g/pédescription. These three types of
description of the 2-dimension are eab one another in such a way that each of
them embodies that transcendental oglathd stands for the 2-dimension and
therefore implicitly assumes among tteespace which is not 2-dimensional. This is
so because the necessity for Type llbesigaces to relate to each other so as to
stand for the 2-dimension, is what makes2-dimension descriptively representable
and therefore cannot be itself preseirtede 2-dimension which is now described in
each of Type | and Il spaces and thainrmon derivative. Consequently, while the
transcendental relation between Typadl lA spaces is innate to the 1-dimension
and is descriptively purely 2-dimensiptiais implicitly assumed and descriptively
necessary relation among three typaseoP-dimension is innate to the 2-dimension
and is not descriptively 2-dimensional.

2.2.3.2.8.3.6.1. Type | space provides Type Il spaith the notion of a circle and makes it
possible for Type Il space to derive hotion of an open curve. Type Il space
provides Type | space with the notib@a straight line and makes it possible for
Type | space to derive the notionmbaen curve. Each complements the other
and makes it possible for both to dteom the 2-dimension. Between such two
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there exists a space which is notr2edisional ; for the 2-dimension can only be in
each of those mutually complementedeTlyand Il spaces.

2.2.3.2.8.3.6.2. Version 1 and 2 spaces can beeadenecessarily commonly from Type | and
Il spaces. That is, if they can beast from either of Type | and Il spaces, then
they can also be derived from the nt@ensequently, they contain that necessity
of Type | and Il spaces’ describingleather. They, however, do not represent
that space which is not 2-dimensidnal2-dimensionally necessary. This is so
because they are based upon whanisary to the necessary characteristics of
each of Type | and Il spaces.

2.2.3.2.8.3.7. A further dimension is conditionatizby the necessity to describe this space which
is not 2-dimensional but 2-dimensionalcessary. Version 1 and 2 spaces remain
fictitious and 2-dimensional. The 3-dim®nal description of these common
derivatives is not purely geometrical algebraic. This is so because the above
mentioned space exists between mutaalyplemented Type | and Il spaces, and
not in those common derivatives. Thaz@mon derivatives therefore do not have
any descriptive necessity to conditiom@ah further dimension from them. They can
only be algebraically manipulated ; ioe 2-dimensional hyperbolic geometry is
descriptively based upon a functionahbmation of at least two Euclidean
coordinates such that determine a cureatt can therefore manipulate itself purely
algebraically and make itself 3-dimensiowith or without a geometrical necessity.
This also means that the 3-dimensiogpétbolic geometry does not have any
geometrical reality and remains fictitso

2.2.3.2.8.3.7.1. Only geometrical dimensions aszdptively vertical. Algebraic ones are
descriptively parallel to the geonwti2-dimension. This is so because two
sequences of numbers are made possibfgatially intersect each other and to
descriptively identify each with théher, by Type Il space. Once given the
meaning of the intersection of seqesraf numbers, it applies to the intersection
of any number of sequences of numpfnsit is described in Type Il space that a
point of intersection is determinableat least two intersecting 1-dimensions. This
means that once a point of intersadadetermined, it can be intersected by any
number of 1-dimensions. A sequenceunfibers is embodied by a 1-dimension.
An algebraic dimension therefore afiers to the number of intersecting
sequences of real numbers and resdlitise geometrical characteristics of Type Il
space. Algebraic dimensions can beethee extended to n. Geometrical
dimensions are conditionalized by dpsize necessities and become a physical
dimension.

3. 3-Dimension : Type | and Il spaces relate tcheztber in order to describe the 2-dimension.
They are required to be so related by their oesctdbability ; for they are 2-dimensionally
simultaneous and coexistent. This describahgitherefore an identical dimensionality of Type
| and Il spaces. That is, what descriptively &gpthe 1-dimension in order to make it fully
self-descriptive, applies in such a way thaé#ults in an identical dimensionality of the
outcome of such a self-descriptiveness. An igahtdimensionality of two spaces, however,
assumes a space in which this identical dimeasitgrholds between those two spaces. Such a
space is the descriptive space of that dimenkignahe 2-dimension holds in each of Type |
and Il spaces, while the 2-dimensionality holdsateen them. The 2-dimensionality is therefore
identical with what necessitates Type | and Hcgs to relate to each other and consequently
cannot be seen in the 2-dimension. The 2-dimaasty differs from the 2-dimension because if
it is in the 2-dimension, and therefore if iinseach of mutually complemented Type | and
Il spaces, then it cannot be described that Tyl 1l spaces share an identical
dimensionality. This is so because those mutualiyiplemented Type | and Il spaces are
internally self-sufficient and are therefore Zadnsionally independent from each other. The
dimensionality of a dimension cannot be describiékin that dimension unless that dimension
consists in one and only one independent coestittherwise, the dimensionality of a
dimension can only be something which exists hdythat dimension and makes it see itself.
The 2-dimensionality therefore cannot be desdribghe 2-dimension. It exists in a space which
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holds between those mutually complemented Tygrallll spaces and makes them see their
own dimensionality. Such a space is the 3-dinmendt is the descriptive space of the
2-dimensionality.

3.1. The 2-dimensionality necessitates Type | &spdces to relate to each other so as to show
that they share a same dimensionality. In tdér8nsion this dimensionality is therefore
descriptively seen as the relation betweendgets of description of the 2-dimension (i.e.
between mutually complemented Type | and Icepa Type | and |l spaces are made
possible to relate to each other by their tandental relation. They are necessitated to relate
to each other by their dimensionality. This\seendental relation is innate to Type | and Il
spaces and is therefore manifested in eactutfatty complemented Type | and Il spaces.
What necessitates Type | and |l spaces toerédatach other, is external to them and
therefore cannot be manifested in them. Thesdgionality of mutually complemented Type
| and Il spaces can only be described as wtiatrally determines them. Type | and Il spaces
are both under the 2-dimension because theytmally identical and externally coexistent.
That is, what is internally identical and ertgty coexistent has a necessity to relate to each
other. Consequently, the dimensionality ofraetision which has two independent
constituents, is identical with what externaltermines such a necessity.

3.1.1. {=v=,=a<=1}Is the description of what is internally identigmd externally
coexistent (i.,e= and =) and forms the 2-dimension. v anthave a necessity to have
an identical meaning when they hold in andviken what is internally identical and
externally coexistent. This necessity is amtétal dimensionality of Type | and Il spaces.
What externally determines this necessithésdntologico-notational meaning of v andv
anda have an identical meaning between two same variaitiens because neither of them
has an ontologico-notational necessity to lativeen two same variable-notions. v and
exist in order to describe the meaning of the Oedligipnality in terms of two differentiative
variable-notions. v operates two differentiatvariable-notions and describes the
0-dimensionality of what is internally iderglca operates two differentiative
variable-notions and describes the 0-dimemdityrof what is externally coexistent.
However, the latter is based upon the fornesiabse it is descriptively necessary that
nothing can be externally coexistent unlessiitternally identical, and that the reverse does
not hold. This is demonstrated in the loggdce. What externally determines v arid
have an identical meaning between two samahlarnotions, is therefore their
ontologico-notational necessity to hold ongieeen two differentiative variable-notions and
to describe the meaning of the 0-dimensiopadlihis results in v's being more fundamental
thana ; for what is externally coexistent can only begmted by the 0-dimensionality of
what is internally identical. Two differentie variable-notions make it possible to describe
what is internally identical and externallyeggstent, while two same variable-notions
embody it in their existence. Consequentlgnda are equally meaningful and applicable
whether they hold between two differentiatiagiable-notions or two same variable-notions.
The description of the former, however, gixise to the meaning of the description of the
latter. The meaning of v anés having an identical meaning between two same
variable-notions is therefore described byrtredation which holds when they hold between
two differentiative variable-notions. ThisaBbn is that v is more fundamental tham the
sense that it holds withaat but not the other way around.

3.2. Type | and Il spaces are necessitated teer@datach other in order to show their identical
dimensionality and results in two sets of diggiom of the 2-dimension. Their identical
dimensionality is therefore seen in the relfatetween these two sets of description of the
2-dimension. One set is the description offtBmension in Type | space in its relation to
Type Il space, and the other is the descripticthe 2-dimension in Type Il space in its
relation to Type | space. The former is baggahuthe meaning of v, and the latter, upon that
ofA. v anda have an identical meaning between identical twoesaaniable-notions because
v is more fundamental thanvhen they hold between identical two differentiativ
variable-notions ; fok only exists in order to confirm the meaning of natis, v and\ have
an identical meaning between identical two saar@ble-notions becauseneed not confirm
the meaning of v between two same variablesnstand therefore becomes identical with v. v
need not hold between two same variable-noti@esiuse two same variable-notions are
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identical with a single variable-notion, whaseaning embodies that of v in terms of its
truth-values. The 2-dimension in Type | spacthéerefore 3-dimensionally more fundamental
than that in Type Il space ; for v is more faméntal tham. This means that the
2-dimensionality is seen between those twodadgscription of the 2-dimension in such a
way that the 2-dimension in Type | space iserfandamental than that in Type Il space. This
is the meaning of the 3-dimension.

3.2.1. The above relation between two sets of ¢egmm of the 2-dimension does not appear in the
2-dimension. This is so because the 2-dimerisithe description of what is internally
identical and externally coexistent and themeftannot be the description of such a
description. The 3-dimension is the descriptibsuch 2-dimension.

3.2.2. Thea-operator is conditionalized in order to schemdliiaaonfirm a v-operation.
Consequently, whatever may/eperated, it is operated as the schematic confiomaf
the meaning of what is v-operative. Whatehet ts v-operative, is 0-dimensional and is
therefore 0-dimensionally twofold. What is ibrénsionally twofold, is schematically
confirmed to be 0-dimensionally identicalsvmore fundamental thanbecausa is the
necessary description of a meaning which igained in the meaning of v.

3.2.2.1. The 2-dimensionality is descriptively sasrthe relation between two sets of description
of the 2-dimension. By this relation whaRislimensionally equal is 3-dimensionally
related to each other in such a way thati®nere fundamental than the other. The
relation between the 2-dimension and thén®dsion is that while the latter makes the
former describable, the former makes thedatescriptively visible.

3.2.3. If a set of descriptions is more fundamettitah another set of descriptions of a same
dimension, then the latter set is necessegdycible into the former set. The 3-dimension is
identical with a set of 2-dimensional deséoips in Type | space and is also necessarily a
descriptive space into which the other setescriptions based upon Type Il space is
reducible.

3.2.3.1. These two sets of descriptions of then®edision are descriptive structures which consist
in and of a single identical schema ; fanda hold identically in and between an
identical schema. Consequently, one sebiefundamental than the other not because
the latter is a part of the former, but hessaa one-one correspondence holds between
them in such a way that it is made desctéabterms of the structure of the former. That
is, this one-one correspondence holds @médy from the former to the latter. A
description in a 2-dimensional space isdimensional relation between two points or a
combination of such relations. The formea tsasic description, while the latter is a
compound description. Consequently, then2edisionality conditionalizes a one-one
correspondence between mutually compleméehypd | and Il spaces in such a way that
descriptions in the complemented Type | spaake such a one-one correspondence
describable. This means that the complerdefype | space must be conditionalized in
such a way that it can make this one-oneespondence describable. The complemented
Type Il space remains same.

3.2.3.1.1. In the complemented Type | space thien2ikion is described to consist in a space
which is finite, closed and becomes bousgliedenser in order to form a boundary. This
space consists of a circle as its bound&ithin this boundary it consists of closed lines
which can be described as ellipses. Evilipse has one and only one tangent with the
boundary and consists of points which @scdptive entities of the boundary.

3.2.3.1.2. In the complemented Type |l space thdar&nsion is described to consist in a space
which is infinite, open and uniform. Th{gage consists of intersecting 2-dimensional
directions and circles. Such intersectiging rise to segmentations. By segmentations
there descriptively exist finite straigimds and open curves. The former is segments of
2-dimensional directions and consists déast a 2-dimensional 1-dimension. The latter
is segments of circles, consists of attla@sdimensional 1-dimension, and is described
with the notion of-constant. These are the substances of the 2-diomeinsType |l
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space. Segmentations and combinationsem@itbed in terms of points which are shared
by such substances. They determine eaeh mtlsuch a way that whatever that can be
segmented, can be combined, and vice vByssegmentations and combinations every
Euclidean 2-dimensional figure can be dbscrin terms of 2-dimensional 1-dimensions
and the notion of-constant. This means that in Type |l space evalbgtsince can be
differentiated into a functional combinatiof 2-dimensional 1-dimensions.

3.2.3.2. The finiteness of Type | space is obtalmeds boundlessly dense, closed boundary. This
boundary consists of a boundless numberdifrznsional points. Points within this
boundary are descriptive entities which exi®order to describe such a boundary. A
one-one correspondence therefore holds leetitee constituents of the boundary of Type
| space and the centres in Type |l spaceioh a way that the 1-dimensional relation
between any two centres in the latter sjgacealso be described between two constituents
of the former space. This means that theéorspace must be conditionalized in such a
way that any descriptions in the latter gpalso hold in the former space by a one-one
correspondence.

3.2.3.2.1. Every description in the complementepeTly space is a 1-dimensional relation
between two centres or a 1-dimensionatdin®nsional combination of such relations.
The complemented Type | space consistssafgle description which holds among all
its 2-dimensional points. This is the boanydof that space. This is so because in Type |
space every 2-dimensional point 1-dimeralignelates to one another and forms the
closed line of the boundary. A one-one egpondence holds between those mutually
complemented Type | and Il spaces in sushthat every description in Type Il
space is reducible into one in Type | sp&msequently, it is necessary that the
complemented Type | space is conditiondlize that its 2-dimensional points relate to
one another in such a way that not onlymedisional relations and their 1-dimensional
combinations but also 2-dimensional comiiams can be described.

3.2.3.2.2. 2-dimensional combinations of 1-dimenalgelations cannot be reduced into
1-dimensional relations or 1-dimensionahbmations of such relations ; for the relation
between the 1-dimension and the 2-dimernisidiescriptively irreversible. A dimension
cannot be described in one which is lowantitself. It can only be conditionalized. If
any 2-dimensional substances can be 1-diimeally described, then there is no
necessity for the existence of the 2-dirieansA conditionalization always and
necessarily proceeds unilaterally.

3.2.3.2.2.1. Type |l space is numerically represisliet necessarily by two identical sequences of
numbers, while a single recursive seqaeean numerically represent Type | space.
Not every description by two sequencesuhbers can be reduced into one by a
single sequence of numbers. This is saume what can be described by a single
sequence of numbers does not give risencessity for two sequences of numbers.

3.2.3.2.3. Numbers are the only way of describiegngetrical properties. This is so because the
totality of a type of numbers is the saddription of a geometrical property.
Consequently, it is necessary that Tygeace is conditionalized into a space in which a
single recursive sequence of numbers garesent two non-recursive correlated
sequences of numbers.

3.2.3.3. Whatever that exists in Type Il spacelmadetermined and described by two determinant
intersecting 1-dimensions (i.e. the x-y ax#sType Il space every 2-dimensional point
can be a centre, and any one, but one dgdna, centre can be described as a centre.
The centre of Type Il space is a centre Wwisadescribed as a centre. Consequently, the
two determinant intersecting 1-dimensionswfh a centre can also be described to
determine Type Il space itself. Type Il sp&cinfinite, open and uniformly dense. The
two determinant intersecting 1-dimension3 e Il space therefore necessarily comply
with those innate characteristics of Typspéce. The x-y axes consequently extend into
infinity and are related to one anothereinrts of symmetry. In contrast to such x-y axes
Type | space consists in and of a singlsedol-dimensional relation which holds among
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all its 2-dimensional points. In Type | spal of a boundless number of 2-dimensional
points are correlated with one another chsaway that two 1-dimensional directions can
be determined at any one of them from timgreeof that space. Type | space therefore
consists in and of a boundary which is unifly, boundlessly dense, finite and closed. In
Type | space this closed 1-dimensional imtaamong its all 2-dimensional points is an
internal relation and is determined by thpsits themselves. This contrasts with Type I
space in which every 2-dimensional poirdésermined not by itself but by the x-y axes.
That is, 2-dimensional points are internadliated to one another in Type | space, while
they are externally related to one anothdnyjipe Il space. Therefore, neither class of
2-dimensional points has any 2-dimensioaktion to the other. A one-one
correspondence consequently cannot be fasred2-dimensional relation between those
two classes of 2-dimensional points.

3.2.3.3.1. Whatever that can be described in thgptemented Type Il space must also be
describable in the complemented Type | sp&bis is possible if and only if there is a
one-one correspondence between those pves yf space. Such one-one
correspondence is a descriptive necesHity.3-dimension is conditionalized by this
descriptive necessity. A closed line caveha one-one correspondence to the x-y axes if
and only if it is conditionalized to hawe identical self in such a way that ;

(i) this identical self determines the saspace that is determined by that closed line,
(ii) this identical self is symmetricallglated to that closed line.

This is the ‘self-differentiation’ of Tydespace and gives rise to the 3-dimension. A
closed line need to have an identical Betfause the x-y axes have a necessity to consist
in and of two identical selves of a strailjiie, and because this necessity would not exist
if everything in Type Il space could beeatatined and described by a single straight

line. Each of the x-y axes has its own one-correspondence to a same closed line. The
reverse does not hold because unless &ipairade to differentiate itself from itself, it
remains a single point and therefore cahage two identical references without
contradicting the initial condition. Suatifsdifferentiated points constitute a line. The
identical self of a closed line need natrsithe same space as that of this closed line ;
for a self-identity is a unilateral relatirom something to its self. Consequently, two
selves exist neither under a same spacmmao different spaces. The identical self of a
closed line determines the same spaceastidgtermined by this closed line in such a way
that there is a relation in and betwees $hime space. The identical self of a closed line
cannot be described if it remains spatialgntical with this closed line. An identical
space can differentiate itself from its€Hind only if it has a one-one correspondence to
itself. This is the meaning of a self-diffatiation. The 3-dimension is therefore a
one-one correspondence in and betweeneatiédl Type | space and necessarily
enables itself to have a one-one correspacelto Type Il space. The identical self of
Type | space relates to this Type | spgoansetrically ; for the uniform density of the
boundary of Type | space is innate to Tlyppace. This means that a one-one
correspondence in and between an iderfigaé | space determines a space such that its
boundary is also uniformly dense and cast#iiose of Type | space and its identical
space. A Type | space relates to its idahtelf symmetrically because it descriptively
reflects its own innate characteristic nifarm density. Such symmetry and uniform
density determine the 3-dimension as deisghere’. A ‘sphere’ is the uniform
self-differentiation of Type | space inrtex of a one-one correspondence in and between
this Type | space. The 3-dimension is tfeeeedescriptively determined by two
symmetrically intersecting Type | spacesusymmetrically related semi-circles (i.e.

the boundaries of Type | space and itstidahself) correspond to the x-y axes and
establish a one-one correspondence betilieem This is possible because both the
boundary of Type | space and the x-y ax@sists of an infinite number of points.
Therefore, whatever that can be describedx-y coordinate, can also be described by
this self-differentiated Type | space.

3.2.3.3.2. The centre of Type |l space is, oncemitranspositional to any 2-dimensional points ;
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for any 2-dimensional points could haverbee centre. Such transpositions only take
place in a given x-y coordinate. A x-y adioate stands for the meaning of Type Il space
and therefore for the schematic identitgwdéry Euclidean 2-dimensional coordinate.
The self-differentiated Type | space cassis and of the same inner-boundary as that of
Type | space and an outer-boundary sudhigtimite but boundless, closed, uniformly
dense and curved. This outer-boundary diffieom that of Type | space in the sense that
it consists of a boundless number of séfékntiatively intersecting Type | space. This
is so because the outer-boundary of Tygmate is uniformly dense and curved, and
therefore because any two opposing poertsbe points of intersection and boundlessly
multiplies themselves. Consequently, anptsof intersection can be the centre of this
boundlessly self-differentiated Type | spaSuch a centre is also transpositional to any
points of intersection. Such transpositionly take place in a given spherical x-y
coordinate. Such a coordinate stands fombaning of self-differentiated Type | space
and therefore for the schematic identitgwdry self-differentiated Type | space.
Consequently, these two coordinate systdlog themselves free transpositions of a
centre necessarily within themselves adeépendently from each other.

3.2.3.3.3. Whatever that can be described in angive coordinate, can also be described in a
given spherical x-y coordinate ; for thése sets of x-y axis have a one-one
correspondence between them. The 3-dimensidentical with this spherical x-y
coordinate. A spherical x-y coordinateal-selationally symmetrical and therefore
corresponds to the spatial uniformity ofyacoordinate.

3.2.3.3.3.1. The self-relation of a 2-dimensiomelce cannot be 2-dimensional ; for the totality of
a space cannot be described within {hates. A space can only relates to itself in such
a way that it holds a one-one correspoodéo itself. Such a one-one correspondence
is the description of a space by thatspeelf. A space describes itself by the
transpositions of a centre. A centreassgpositional if and only if a space is
descriptively recursive. Type |l spacedsursive only in the sense that any centres
could have been the centre. It, howedees not have a necessity of its own to
describe itself ; for one and only onatoe can describe itself as a centre and becomes
the centre. The transpositions of a eeisttherefore merely the loci of the centre in its
absolute relation to such an itself. Tygpace is recursive in the sense that from the
centre of this space an identical seétvof 1-dimensional directions can be determined
at any 2-dimensional points. This is seduse the outer-boundary of Type | space
consists of 2-dimensional points, butds reducible into parts. This means that every
2-dimensional point is every other 2-disienal point and is therefore recursive in its
relative relation to itself. If such 2atnsional points hold a one-one correspondence
to themselves, then they determine aespawhich every one of them is a centre. This
is so because such a one-one correspoadiatermines at every 2-dimensional point
as many identical sets of two 1-dimenaiahirections as there are constituents in that
outer-boundary. This results in a spacshich a boundless number of Type | spaces
share a same centre, intersect one anatigetherefore multiplies themselves. The
outer-boundary of this space consis& lodundless number of self-multiplying points
of intersection. Every one of these pudn be a centre of this outer-boundary
because they determine one another.dfafisuch centres is described as a centre and
becomes the centre, it forms a sphexigatoordinate, in which this centre is only
transpositional in its absolute relatiorsuch an itself. Such a spherical x-y coordinate
is the meaning of the 3-dimension.

3.2.3.3.3.1.1. The boundless number of 3-dimensjowiats correspond to the infinite number of
2-dimensional points in Type Il spacetty dynamism of both spaces.

3.2.3.3.3.2. Type | space has no spatially reafienvithin its boundary. This is so because a is
space such that its centre can deteraniridentical set of two 1-dimensional
directions at any parts of that spacea tdimension is the self-description of such a
space and therefore also does not haywspatially real entities within its boundary. If
Type | space had spatially real entitieaiould describe itself in terms of those
entities and therefore would result seaof 2-dimensional descriptions such that
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differ from one another ; for every sphyi real entity has an absolute position in a
finite space and therefore makes thatesp@pear different from one entity to another.
The 3-dimension has descriptive entitvéhin its boundary in the same sense that
Type | space has. Such entities existder to describe the outer-boundary in terms
of the inner-boundary and become unifgramd boundlessly denser from the
inner-boundary toward the outer-boundary.

3.2.3.3.3.2.1. The 3-dimension is the space of Tygpaces. Type | space can be described
identically at its every 2-dimensionaimt. By a one-one correspondence which
Type | space holds to itself, at evewidensional point there are a boundless
number of spaces which are descriptiiddytical with Type | space and share the
same centre as that of a given TypatspEvery Type | space therefore intersects
every other Type | space and therefotendlessly multiplies points of intersection
(i.e. self-differentiated 2-dimensiopalints). This means that the 3-dimension is
externally bound by a boundless numlbdiype | space and therefore by a
boundless number of points of intergectiThese points are boundlessly and
uniformly dense and externally cover 3ndimension. They are transpositional
because any points can be a centreeisghse that they are all descriptively identical
with one another and determine one amoth centre is the centre and forms a
spherical x-y coordinate if and onltifs described as a centre. This coordinate is
the meaning of the 3-dimension.

3.2.3.3.3.2.1.1. The 3-dimension can describe wkatdhat can be described in the complemented
Type Il space. It consists in and miraer-boundary and an outer-boundary. This
inner-boundary is the internal cemti¢his space and can determine an identical
set of a boundless number of setwofl-dimensional directions at any points of
the outer-boundary. Between this iAm@undary and the outer-boundary there
exists a descriptive space in whickcdptive entities relate the inner- and
outer-boundaries by becoming uniforanyl boundlessly denser from the
inner-boundary toward the outer-boumd@he outer-boundary consists of points
which are descriptively identical wRkdimensional points, are boundlessly and
uniformly dense, and have no spati.sThey are described not to have any
spatial size because they do not ocamy portion of space. This outer-boundary
is also not reducible into parts besesitis the self-differentiation of the
outer-boundary of a given Type | sp&nts of this outer-boundary have a
one-one correspondence to those oé Typpace. This is so because (i) they are
descriptively identical with 2-dimeasal points of Type | space, (ii) there are a
boundless number of them, (iii) theg aniformly and boundlessly dense, (iv)
they are transpositional, and (v) tfeyn a spherical coordinate, which
2-dimensionally corresponds to thelil@an 2-dimensional coordinate. Points of
this outer-boundary have no spatiz sivhile those in Type Il space have an
infinitesimal size. This, however, do®t prevent a one-one correspondence
between them ; for a ‘point with n@sgl size’ only means that its size cannot be
spatially described because ther@ispace among or outside those points. This
outer-boundary of the 3-dimension nahonly represent any descriptions in the
complemented Type Il space but alsorors’ them all onto it ; for it consists of a
boundless number of uniform faces.ofpis infinitesimal in a infinite, open and
dynamic space, while the same poispatially sizeless in a closed space.

3.2.3.3.3.2.1.1.1. The 3-dimension is a finite, imtlass ‘sphere’ and is the descriptive space of the
2-dimensionality. This ‘sphere’ lasolid surface and a hollow inside. It is
hollow because it contains no sfigtiaal entities. Its surface is solid because
it is the self-relation of the outssundary of Type | space. That is, it consists of
points which are so dense that tanot be reduced into parts. Those points
are transpositional because anyodtieem can be a centre. This surface
therefore forms a spherical x-y chioate and has a one-one correspondence to
the Euclidean 2-dimensional x-y chioate.

3.2.3.3.3.2.1.1.2. A space cannot relate to itseliolding a one-one correspondence to itself if it
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has a centre which is spatially seal transpositional. This is so because such a
centre gives rise to an absolutedioate within that space and therefore
prevents that space from holdingne-one correspondence to itself. In such a
space a one-one correspondence hotds that space itself but to its
substances. A space therefore casorgtin any spatially real entities if it is to
hold a one-one correspondence &if.itSuch a space is also necessarily finite.
The surface of the 3-dimension cetssdf points such that every one of them
can be a centre and is spatially Aeay one, but one and only one, of such
centres, can describe itself asrdreeand becomes the centre. This centre is
transpositional because any cemtetd have been the centre. This centre
therefore gives rise to a spheneglcoordinate. This also means that the
3-dimension cannot relate to itkgitholding a one-one correspondence to
itself.

3.2.3.3.4. The 3-dimension is itself neither Eugdid nor non-Euclidean. It is merely a space-entity
(i.e. the space of empty, closed spaces) the description of this 3-dimension that is
Euclidean or non-Euclidean. The 3-dimensiolis a one-one correspondence to the
complemented Type Il space. Once given sutche-one correspondence, it
descriptively holds twofold ; it, on onert enables the complemented Type Il space to
describe the 3-dimension, on the othemibles the 3-dimension to describe the
complemented Type Il space. These two ¢egmms are, however, constrained by the
necessity that a coordinate can only bearigally Euclidean. This is so because
irrational numbers can only be given in &ypspace. That is, only Type Il space can
generate a sequence of real numbers. Elixigtively determines the way by which the
3-dimension describes the complemented Tiypeace. A spherical x-y coordinate can
only be numerically processed by a Euclid2alimensional x-y coordinate. The
description of the complemented Type licgphy this numerically processed spherical
x-y coordinate is identical with the 2-dinsénal elliptic geometry.

3.2.3.3.4.1. The description of the 3-dimensionhg/complemented Type |l space is as follows :

(i) A one-one correspondence between timeans that they descriptively coincide
with each other. That is, the 3-dimenslmnitself, represents the entire complemented
Type Il space, and vice versa. This one-@orrespondence is therefore twofold in the
sense that, on one hand, the 3-dimerntsiariparaphrase’ itself into the complemented
Type Il space and, on the other, the demented Type Il space can ‘synthesize’

itself into the 3-dimension. Therefol@stone-one correspondence is itself a space
which holds between them and relate ttegather.

(i) The 3-dimension can describe the ptemented Type Il space if and only if it is
numerically processed. This means ttsgaee in which a one-one correspondence
holds between them is itself Euclide&or only Type Il space can generate a
sequence of real numbers. The 3-dimercaonot be in the complemented Type I
space because of one-one correspondenwedn them. The 3-dimension and the
complemented Type |l space can existdpace and hold a one-one correspondence
between them if and only if the 3-dimemnsiparaphrases’ itself into the
complemented Type |l space. This resaltee existence of two Euclidean
2-dimensional x-y coordinate. Such tworclinates are related to each other in terms
of a one-one correspondence as wellasittentical and common characteristics.
They are both infinite, uniformly denseatially symmetrical and internally freely
transpositional. Consequently, a one-aareespondence between them determines a
space which complies with, and retainsseé identical and common characteristics
between them. This one-one correspondeas@®o descriptive necessity to specifies a
distance between them. This means tBptiae between them can have a width of
anything between the length of a 2-dinra 1-dimension and that of a
2-dimensional direction (i.e. betweennitésimal and infinity). This is the Euclidean
3-dimensional space and is the space offaite number of Type Il spaces.

(iii) This space can be determined bgé¢haxes. This is so because a one-one
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correspondence between the centres oktyooordinates can spatially extend into
infinity and becomes the z-axis. Evemythin this space can be determined by those
three axes. This space is identical tithalgebraic 3-dimension and therefore holds
with or without a geometrical necessity.

(iv) Given this Euclidean 3-dimension gpathe 3-dimension (i.e. the 3-dimension
itself) is identical with a locus of ptsrwhich holds at a certain line segment from a
certain point ; for it can only be théfskescription of a Euclidean circle. A spherical
x-y coordinate can be numerically detaediin accordance with its curvature against
this Euclidean 3-dimensional coordinatd hased upon the numerically processed
notion oft-constant. Every point in this space is also trasijpnal because a
one-one correspondence holds in suchysas/#o retain every characteristic of Type
Il space.

(v) This space can be described by theggiences of real numbers which are
symmetrically related to one anotherriden to comply with the uniform density of

this space. This space consists of anit@fnumber of points which are uniformly
dense and can be represented by a Haeefreal numbers. Those points can describe
any Euclidean 3-dimensional solids inghee way by which 2-dimensional points
describe any Euclidean 2-dimensionalrégu

(vi) The descriptive necessity for thimse is the numerical evaluativity of a spherical
x-y coordinate and is therefore not disegeometrical ; for any numerical treatments
can only be an algebraic applicatiorhef geometrical 2-dimension. This Euclidean
3-dimensional space therefore has no gégal reality. The 3-dimension itself can
be differentiated from the 3-dimensioari only if the 3-dimension remains purely
geometrical and retains its one-one epwadence to the complemented Type |l
space purely as its internal structure.

3.2.3.3.4.2. The description of the complementepeTly space by the 3-dimension is as follows :

(i) Once the 3-dimension is identifiediwa Euclidean sphere, it becomes a spherical
x-y coordinate with a Euclidean curvatlEgery description in the complemented
Type Il space can be mapped onto thisr&dsion by a one-one correspondence
between them and based upon this cumalihnis is so because this curvature is a
form of mapping between them and makpsstible to translate a relation between
any two points in the complemented Tylpgphce into one between two points in the
3-dimension.

(ii) The description of the complementggbe Il space by this 3-dimension is

identical with the 2-dimensional ellipgeometry. This is so because a non-Euclidean
space can only be described by a Euclideference system. A Euclidean reference
system is a function of at least two Eiedn x-y coordinates and determines a
curvature. It is therefore algebraic&igimensional.

3.2.3.3.4.3. The Euclidean 3-dimensional spaceaétation between two Euclidean 2-dimensional
spaces. The Euclidean 2-dimensional sjga@epace which is open, infinitely
expanding and uniformly dense. Consedyemtither of them can accommodate the
other within itself and therefore canyordlate to the other externally. This external
relation holds between those two 2-dirfered spaces in terms of a one-one
correspondence. This one-one correspaedéoes not specify any distance between
those 2-dimensional spaces and therefmmébe externally anything between
infinitesimal and infinity. This is so teuse a 2-dimensional 1-dimension determines
the minimum distance known to those 2atigional spaces, while 2-dimensional
direction determines the maximum distafi¢®se two 2-dimensional spaces can
externally relate to each other in teoha one-one correspondence if and only if this
one-one correspondence complies wittthizgacteristics of those spaces. The
characteristics of those spaces arem@ted by the ways by which points relate to
one another. This means that a one-orresfmondence holds between points of those
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spaces. Therefore, there exists an tefimimber of those spaces which are internally
related to one another by such a oneconespondence and spatially related to one
another by the continuous variation atalice ranging from infinitesimal to infinity.
This space is therefore open, infinitd aniformly dense. It consists of points which
are transpositional not only horizontdilyt also vertically ; for any two of those
spaces are internally related to eachrdily a one-one correspondence. Any points
can be a centre. The description of @reeas a centre yields the centre and gives rise
to a Euclidean 3-dimensional coordindtes coordinate has the z-axis in addition to
the x-y axes. This z-axis stands forabetinuous variation of distance between two
Euclidean x-y coordinates and has theesseale as the x-y axes. This is so because
this variation of distance is identicathwthat of a Euclidean x-y coordinate. Once
given this x-y-z axes, it determines geprdinates in their infinite continuous

variation of distance to one anothetthis infinite variation the z-axis retain

an identical centre because of their ome-correspondence and the
transpositionability of their substancelserefore, the z-axis holds between the centres
of two x-y coordinates whose distancedoh other varies infinitely and continuously,
and determines such distances. This m&ahgvery point in this space can be
determined by this x-y-z axes. Thathgs k-y-z axes can describe any figures and
solids in this space. A figure is a horital relation among points, while a solid is a
vertical relation of figures.

3.2.3.3.4.3.1. The 3-dimension onto which desaitiin the complemented Type Il space can be
projected by a one-one correspondesaggdessarily one which can be described as
a sphere in the Euclidean 3-dimensispate and is therefore not the 3-dimension
itself. This is so because descriptiorthe complemented Type Il space can only be
mapped onto a numerically processedrgie-y coordinate. Consequently,
the 3-dimension is required to be inEuelidean 3-dimensional coordinate by an
algebraic necessity. The necessity i3rdimensionally geometrical because it is
based upon a 2-dimensional geometrieegssity. The 3-dimension itself differs
from the 3-dimension in the sense that3-dimension geometrically only need to be
a ‘sphere’, while it is algebraicallygréred to be a sphere. A ‘sphere’ is internally
capable of describing whatever thatlmaescribed in the complemented Type I
space, while a sphere is the externalfestation of such a ‘sphere’. The Euclidean
3-dimensional space and the 2-dimenslhiptic space are the ways by which a
‘sphere’ externally manifests itself édsipon its algebraic necessity. If a ‘sphere’
externally manifests itself based ugerpurely geometrical necessity, then it
conditionalizes the 4-dimension.

3.2.3.3.4.3.1.1. The 3-dimension holds a one-onespondence to the complemented Type Il
space in such a way that ;

(i) it ‘paraphrases’ itself into a cplamented Type Il space,

(ii) it conditionalizes the Euclide@rdimensional space between such an itself and
the complemented Type Il space,

(iii) it identifies itself with a sphe in that space,

(iv) and projects the complementeddilspace onto it by a one-one
correspondence.

This ‘paraphrasing’ takes place beeabe 3-dimension has an algebraic necessity
to numerically process itself as aesftal coordinate. The reverse does not hold
because a sequence of real numbersrdgibe Euclidean. If the complemented
Type Il space ‘synthesizes’ itselbitihe 3-dimension, then there can be no
numerical ways by which descriptiomshie complemented Type Il space can be
mapped onto the 3-dimension. No reftegibetween two 3-dimensions themselves
can be put into numerical descriptid¥s two 3-dimensions themselves can relate
to each other because a 3-dimensseif is the self-description of Type | space.
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Two identical self-descriptions canrelate to each other because nothing has a
necessity to describe itself identictkice. The option for the reverse therefore
contradicts the initial condition.

3.2.3.3.4.3.1.1.1. The description of a point caly be a number. This is so because the meaning

of a number is identical with th&tagpoint and refers to its own
meaninglessness without a totalityclv is based upon a geometrical property.

3.2.3.3.4.3.1.1.2. Descriptions on the 3-dimens&mbe mapped onto the complemented Type Il

space if and only if those in thenptemented Type Il space are already
mapped onto the 3-dimension. Thisidecause the 3-dimension has no
descriptions by itself.

3.2.3.3.4.3.2. The 3-dimensional elliptic space lpambtained by Euclidean spheres. In the

3.2.3.3.4.4.

3.2.3.3.4.5.

Euclidean 3-dimensional space a sphemebe described to infinitely and

continuously vary in size. The 3-dimensil elliptic space can be obtained by
translating various continuous sizes irdrious continuous degrees of density. This
results in a single spherical spacehicivpoints become boundlessly denser toward
the boundary. However, such a spacengnbe an algebraic manipulation and does
not have any geometrical reality. TBis® because various continuous sizes can only
be ‘translated’ into various continualegrees of density within the meaning of
numbers.

The necessity to describe the 3-difoantself as a Euclidean sphere, is identical with
the necessity to demonstrate the deddifityeof this 3-dimension itself. The
3-dimension itself consists of an innitumber of points which are uniformly dense
and transpositional. It therefore alrehdids a one-one correspondence to the
complemented Type |l space. The descilibabf those points requires the
3-dimension itself to be identified walEuclidean sphere and to form a spherical x-y
coordinate. The 3-dimension (i.e. a Eledin sphere) is therefore the external
manifestation of the 3-dimension itssifthe algebraic necessity that every coordinate
is Euclidean. This algebraic necessityokinnate to the 3-dimension itself, but is
external to it ; for it is a geometrigmbperty of Type Il space. The 3-dimension is
therefore external to the 3-dimensioelitand need to be identified with the latter by
the latter. This identification is podsibecause Type | space transcendentally
manifests itself as a circle in Typephse. A sphere is the 3-dimensional relation of
circles which share a same centre. Argpisddentified with the 3-dimension itself by
the 3-dimension itself because both aaetiernally identically described as the locus
of points which hold at a certain lingent from a certain point. The 3-dimension
externally requires the 3-dimension ftbelcause a one-one correspondence cannot be
commanded to the x-y coordinate from imithis x-y coordinate. That is, a ‘sphere’
holds a one-one correspondence to theoeydinate and manifests itself as a sphere.
A sphere consists of as many points asthre 3-dimensional directions because it is
described as the locus of points whicld fad a certain distance from a centre. This
means that its boundary consists of &inii@ number of points. A sphere therefore
can be identified with a ‘sphere’ anddsoh one-one correspondence to the
complemented Type Il space.

The conditionalization of a dimens®based upon the innate necessity of a lower
dimension to be fully self-descriptiveedariptions hold within a dimension in order to
comply with the initial condition and poesent whatever that can be described within
that dimension. Descriptive means lintitatvcan be described within a dimension.
They are descriptive necessities withinmaterials of what has been already
conditionalized. What could not be desedi in a lower dimension, can be known by
its necessary schematic or dimensioniatence without which that dimension could
not have existed, but which could notlbscribed within that dimension. What could
not be described in a lower dimensiom, lza said to be described in a new dimension
if and only if this lower dimension cae 8escriptively seen in this new dimension ;
for a lower dimension self-describeslitas a new dimension.
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3.2.3.3.4.5.1. The 3-dimension is a descriptiomiwithe 3-dimension itself. This is so becauss it i
not itself the description of what coulot be described in the 2-dimension. The
3-dimension is, however, also not thecdption of the 3-dimension itself. The
3-dimension need to be identified witk B-dimension itself by the 3-dimension
itself in order to hold a one-one cop@dence to the complemented Type Il space.
This means that while the 3-dimensisalitis not yet described, the description of
the 3-dimension exists. The latter isdshupon a descriptive necessity within the
former and is therefore merely a desicnipwithin the former. Consequently, it does
not descriptively represent the fornTdre 3-dimension itself is the descriptive space
of the 2-dimensionality and manifessglf as the 3-dimension in order to describe
this 2-dimensionality. The 3-dimensierthie description of the 3-dimension itself by
means of an algebraic necessity. Therig®n of the 3-dimension itself by the
3-dimension itself, constitutes a nemeinsion.

3.2.3.3.4.5.2. The 3-dimension itself is not a gewital entity ; for it is neither a space nor a
spatial entity. The 3-dimension itsslttie space of Type | spaces and is a
self-contained space-entity. Conseqyetitt 3-dimension itself cannot be described
in terms of spatial relations. This ne#mat the schema of geometry ends at the
3-dimension itself. The description lnktspace-entity constitutes another dimension.
While the 3-dimension is the externahifestation of the 3-dimension itself by
means of an algebraic necessity, thisdiemension is the self-description of the
3-dimension itself. This new dimensiemécessary because that algebraic necessity
is external to the 3-dimension itseffdaherefore because the 3-dimension itself yet
need to describe itself from within ifs&uch a new dimension is the 4-dimension
and has a dimensional continuity aneswtic integrity to preceding dimensions
and schemata.

[l - iv. Schema of Physics

4. 4-Dimension : The 4-dimension is the self-dggwn of the 3-dimension itself. The
3-dimension itself differs from the 3-dimensiaonthe sense that the latter is the demonstration of
the describability of the former and is therefdescriptively contained in the former as its
internal structure. This fundamentally differsrfr the case of the other dimensions. In the 1- and
2-dimensions the describability of each dimensiould not be fully demonstrated within that
dimension and therefore necessitated the condiiation of another dimension such that
makes that dimension fully self-descriptive ie 8ense that it can see itself in its wholeness in
this conditionalized dimension. In contrast ts tihe describability of the 3-dimension itself is
fully demonstrable within the 3-dimension itsdlhe describability of the 3-dimension itself is
the existence of the 3-dimension itself. Thisaecause the 3-dimension itself is
conditionalized in such a way as to be able grdee itself by holding a one-one
correspondence to the complemented Type |l sgdwe3-dimension itself, however, differs
from the 3-dimension because its own existeneatisrnally constrained by the numerical
evaluativity, which is a geometrical propertyTgfpe Il space. That is, the necessity of forming a
spherical x-y coordinate requires the 3-dimengieif to give rise to the Euclidean
3-dimensional coordinate and to identify itseifhnthe 3-dimension (i.e. a sphere).
Consequently, the describability of the 3-dimenstself can be fully demonstrable within the
3-dimension itself if and only if the 3-dimensigelf is external to itself. This is so because t
3-dimension itself gives rise to the 3-dimensamid yet need to identify it with itself by itself.

4.1. The describability of the 3-dimension itssltiemonstrable within the 3-dimension itself.
Consequently, this new dimension is conditicmeal not to describe the 3-dimension itself but
to describe the relation between the 3-dimenigelf and the 3-dimension. The 3-dimension
is the external manifestation of the 3-dimensiself. This means that their relation is an
external self-relation and is identical witlyisg that the 3-dimension itself externally relates
to itself. That is, the 3-dimension itself ahe 3-dimension relate to each other by their
unilateral identity which externally holds frahre former to the latter. This is the relation
between a ‘sphere’ and a sphere.
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4.1.1. The 3-dimension is a sphere in the Eucliddmensional space and is the demonstration
of the 3-dimension itself. A sphere differsrfr a ‘sphere’ only in the sense that it is
numerically processed. If a ‘sphere’ is nuety processed by means of a one-one
correspondence to the complemented Type Hespghen it becomes merely identical with
this complemented Type Il space and therdhileto describe its own self. A ‘sphere’
holds a one-one correspondence to the compleahdype Il space and yet necessarily
differs from it. A difference can be descriliednd only if it can be compared between two
totalities. Therefore, the difference betwaeésphere’ and the complemented Type Il space
can be described if and only if either of thean descriptively differentiate the other from
within itself. This gives rise to two possitids of describing such a difference : on one
hand, a ‘sphere’ describes its difference fthencomplemented Type Il space, on the other,
the complemented Type Il space describesffreince from a ‘sphere’. The former,
however, does not hold because it has no n&fatescription. That is, the coordinate of a
‘sphere’ can only be either identical withttbathe complemented Type Il space or
numerically inevaluative. The latter holdssirch a way that the complemented Type I
space conditionalizes itself so as to be abescribe a ‘sphere’ within itself and then to
show its difference from a sphere. The diffiereof a ‘sphere’ is therefore described by a
sphere as the curvature of its coordinate lwhids against, and is determined by, the
Euclidean 2-dimensional coordinate. A sphsithérefore identified with a ‘sphere’ by a
‘sphere’ and holds a one-one correspondentieetoomplemented Type Il space. This also
means that a sphere is the external selfsgleere’ within a ‘sphere’. This is so because a
‘sphere’ necessitates the complemented Typpdte to conditionalize itself as the
Euclidean 3-dimensional space.

4.1.1.1. A sphere not only exists in the Eucliddatimensional space but also embodies it ; for
each of them underlies the other in terms ‘sphere’. On one hand, the Euclidean
3-dimensional space is conditionalized idenrto describe a ‘sphere’, on the other, a
sphere is identified with a ‘sphere’ by pHere’. The Euclidean 3-dimensional space
exists in order to describe a ‘sphere’. Efae, the description of a ‘sphere’ (i.e. a
sphere) descriptively embodies this Euclid@alimensional space. That is, a ‘sphere’ is
identical not with a sphere itself but wétlsphere as the embodiment of the Euclidean
3-dimensional space. The Euclidean 3-dinmradispace consists in and of such spheres
(i.e. point-spheres, which are identicahv@tdimensional points).

4.1.1.1.1. The Euclidean 3-dimensional space hagometrical reality because it is a product of
the numerical evaluativity. The same caisdid about the 3-dimensional elliptic space.

4.2. The 4-dimension is the self-description of 3hdimension itself. This is so because the
identification of a sphere with a ‘sphere’rigeirnally structural to the Euclidean
3-dimensional space. This means that whateegrla identified with the 3-dimension itself
in the Euclidean 3-dimensional space, it isatyarelating to itself. That is, the Euclidean
3-dimensional space is constructed necessariijich a way that a ‘sphere’ can be identified
with a sphere. Therefore, the description splaere in the Euclidean 3-dimensional space
merely amounts to a self-description. The Elggh 3-dimensional space is a space in which a
sphere can be described, and vice versa. Thendional continuity exists between the
3-dimension itself and the 4-dimension in teese that the 4-dimension is the self-description
of the 3-dimension itself.

4.2.1. A sphere is an entity with its own spaaar jifembodies a space in which it exists. Thaais,
‘sphere’ becomes a sphere and space. Itrieftire relativistic to itself in the sense that it
has nothing but itself to determine and ta@btermined. The description of such an entity is
identical with the necessary ways by whick #itity denotes itself.

4.2.2. There are two and only two ways by whicleatity can denote itself :

() If an entity exists in a space and embsdigethen it is identical with every possible énti
which exists in that space.

(1) If an entity exists in a space and emlesdt, then it is identical with that space itself.
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An entity which is identical with every entity a space, only embodies that space and exists
in it. However, an entity which is identicaitkva space, not only embodies that space and
exists in it, but is also embodied, and is&d in, by that space. Consequently, a space in
which an entity denotes itself as every pdeséntity in that space, is identical with an sntit
which denotes itself as its own space. Fartdason (1) is the way by which an entity which
denotes itself as its own space, denotes wéiin itself, while (11) is the way by which an
entity which denotes itself as its own spagsotes itself outside itself. (1) is therefore the
internal denotation of a space and the extel@reotation of an entity, while (ll) is the
external denotation of a space and the intelgr@otation of an entity. (1) is the description
of the way by which an entity exists in a gpéice. the way by which entities stand to one
another). (l1) is the description of the waghich a space exists in an entity (i.e. the way
by which spaces stand to one another), amdist®r the self-description of FX. The
Euclidean 3-dimensional space consists inadiuibint-spheres.

4.2.2.1. A sphere is identified with the 3-dimemsitself. A sphere is identical with every possible
entity in the Euclidean 3-dimensional spddss results in the conditionalization of a
4-dimension which consists in and of thelBean 3-dimensional space and the relation
holding among every possible entity in thgéice. This is so because every possible entity
is identified with one another in terms ofentity which exists in the Euclidean
3-dimensional space and embodies it.

4.2.2.1.1. A sphere holds at every possible carftdre Euclidean 3-dimensional space. In the
Euclidean 3-dimensional space every 3-dgimeral point can be a centre. A centre can
describe itself as a centre and becomesahiee. Consequently, every 3-dimensional
point is transpositional to one anothethia sense that any of them could have been the
centre. This is so because, on one hamy @+dimensional point is transpositional to
one another in Type Il space, on the ottway, Type Il spaces determine the Euclidean
3-dimensional space between them by holdinge-one correspondence to each other in
such a way that any two Type Il spacesbmasuch two determinant Type Il spaces if
and only if they have any 2-dimensionatatise between them. Consequently, a
3-dimensional point is a point such that ba determined if and only if the following
conditions are satisfied :

I) Any two intersecting 2-dimensional ditieos could have determined Type Il space.

I-i) Therefore, any 2-dimensional pointsitbhave been the centre and are therefore
transpositional to one another. That isetre becomes the centre if and only if it is
described as a centre.

II) Every 2-dimensional direction consiefsan identical number of 2-dimensional
points. That is, every 2-dimensional dii@tts identically intersectible by other
2-dimensional directions.

lI-i) Therefore, any two intersecting 2-dinsional directions consist of an identical
number of 2-dimensional points and desddeatically.

[II) Type Il space is identically determihby any two intersecting 2-dimensional
directions because any two determinantsetging 2-dimensional directions become
spatial only simultaneously as they intetrgach other and determine Type Il space.

l1I-i) Therefore, Type Il space is identigadescribed by any two intersecting
2-dimensional directions. This also meduas the description of Type Il space is due to
any one, but one and only one, of setsvofihtersecting 2-dimensional directions.

IV) Type Il space is uniformly dense bea@iiscan be determined by any two
intersecting 2-dimensional directions ameréfore has a spatiality such that complies
with the indiscriminateness of the inteti®lity of any two determinant intersecting
2-dimensional directions.
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IV-i) The uniform density of Type Il spatedescriptively simultaneous with the
spatiality of such two determinant intetsex 2-dimensional directions. Therefore, these
two intersecting 2-dimensional directionsb®dy this uniform density in their given
spatiality if and only if they are descively taken to determine Type Il space.

V) Whatever may exist in Type Il spacesdh be determined by such two determinant
intersecting 2-dimensional directions ; Tgpe |l space itself is determined by them.

V-i) Type Il space is determined by theatiein between two determinant intersecting
2-dimensional directions. This relation therefore determine anything in Type Il
space. This includes every other 2-dimeradidirection.

VI) This relation between two determinartersecting 2-dimensional directions is
spatial and simultaneously stands for thiéotm density of Type Il space.

VI-i) This relation forms the x-y axes agides rise to a 2-dimensional point which
describes itself as a centre and beconsesethtre. The x-y axes form the Euclidean
2-dimensional coordinate.

VII) There exists a totality which hold®ae-one correspondence to this coordinate and
need to be processed by this coordinate.

VII-i) Therefore, this one-one correspontkeholds between two of this coordinate and
identifies that totality between them.

VIII) This one-one correspondence formpace in such a way that the x-y coordinate
itself is freely and continuously transpiosial between two determinant x-y coordinates.
This is so because any two x-y coordinasagsbe those two determinant x-y coordinates
if and only if they have any 2-dimensiodatance between them.

VIII-i) This one-one correspondence holésaeen points of such two determinant x-y
coordinates. This means that a one-on@spondence between the centres of those two
x-y coordinates forms a new axis (i.e.zkaxis), and that along this new axis there exists
a freely and continuously transpositiongl coordinate.

IX) The centre of this space is the cebfrthis transpositional x-y coordinate. This x-y-z
axes can determine every point (i.e. 3-disienal points) in this space.

IX-i) Therefore, anything in this space dsndescribed by the x-y-z axes.

X) This centre is transpositional becausg &dimensional points could have been the
centre of this space.

X-i) If a sphere is identical with everygsible entity in this space, then it is located at
every 3-dimensional point of this space.

4.2.2.1.1.1. A sphere can be described at evewiljesentre of the Euclidean 3-dimensional
space and therefore holds at any 3-diraeabkpoints in this space. The size of a
sphere remains identical with that ofdifBensional point unless a centre describes
itself as a centre and becomes the cefltiie is so because a sphere can have a size if
and only if it can be described as ati@teof relations of 3-dimensional points which
can constitute a locus by means of tinairspositionability as determined from and by
the centre. If no centre is descriptivalyen as the centre, then a sphere is a
point-sphere and is identical with a Bieinsional point itself. The Euclidean
3-dimensional space can become a codedihand only if a centre is descriptively
taken as the centre. Solids and figuxest enly in a coordinate because they can only
be a relation, or a relation of relatioofs3-dimensional points. The size of a solid or
figure holds only as that of a locus #merefore can only be determined in a
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coordinate. The size which need not lagldhat of a locus is only that of a
3-dimensional point itself. This is scchase every 3-dimensional point is a centre and
exists on its own in the sense that iiddave determined an identical Euclidean
3-dimensional space. Any 3-dimensionahisocould therefore have been the centre
of the Euclidean 3-dimensional spacein3edsional points are the basis of a
Euclidean 3-dimensional coordinate amdfore can exist with or without being
determined by the centre. Every otheitye(ite. solids and figures) can only exist in a
coordinate.

4.2.2.1.1.1.1. Only the centre can be transpositidrhe transpositionability of the centre stands
for the meaning of a centre and thereflves not physically determine
3-dimensional points. That is, the cefgrtranspositional to any 3-dimensional
points in the sense that it descripgivepresents the uniform density of the
Euclidean 3-dimensional space and tbeedajives rise to a spatial location to every
3-dimensional point in their relationttds centre. This uniform density is
represented by what schematically detexsna point which is described as the
centre. Such a representation take®@adthe formation of axes and gives rise to a
coordinate. Therefore, a coordinate thedranspositionability of its centre stands
for the meaning of a space which coagi$uniformly dense centres. A coordinate is
the internal structure of such a spaxkgives rise to a spatial location to everything
in their relation to the centre. In thiternally determined space every entity is a
locus of a single identical point by meaf its transpositionability as determined
from and by the centre. The transpaséiulity of the centre therefore only means
the descriptive allocation of a spdtiahation to every 3-dimensional point in their
relation to the centre. Such a spaeegsometrical space.

4.2.2.1.1.1.2. This geometrical space becomes gdiyisiand only if no centre describes itself as a
centre and forms the centre. This ibetause if this space cannot be internally
determined and therefore cannot be detin terms of the geometrical property of
points (i.e. the transpositionabilitytbé centre), then it can only be described in
terms of some common descriptive prgpefrevery point or in terms of a
descriptive necessity for this spacelfit§hat is, this space can be described by
means of

(1) an entity which is identical withewy point in this space or
(1) an entity which is identical withis space itself.
(I1) descriptively recurs to (I) becadsstands for the self-description of FX.

4.2.2.1.1.2. A sphere identifies itself with evepnssible entity in the Euclidean 3-dimensional
space and therefore embodies and eridtslf the Euclidean 3-dimensional space
does not have the centre, then there iexikis space no entities except point-spheres,
which are identical with 3-dimensionaimie themselves. This is so because in such a
space only 3-dimensional points themseban be described and therefore exist.
Consequently, every sphere is identidtl ane another in terms of a sphere which
embodies and exists in this centrelesdidlean 3-dimensional space.

4.2.2.1.1.3. This centreless Euclidean 3-dimens$igpece is open, infinite and uniformly dense.
This is so because this space holdsdneasone correspondence between two Type |l
spaces with any 2-dimensional distand¢eden them. If no particular centre is taken
as the centre, then this space becomesptice of spaces such that consists in and of a
single 3-dimensional point. That issiidentical with a space in which every centre is
the centre and forms its own space iffoo centre is the centre, then every centre is
the centre. The centreless Euclideam®dsional space is identical with the space of
spaces every one of which consists inadradsingle centre.

4.2.2.1.1.4. A 4-dimension is therefore a spacewhonsists of spaces in every one of which
there is a single 3-dimensional pointeB\3-dimensional point is identical with one
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another in terms of a sphere insteati®trtanspositionability of the centre. Only this
sphere is 4-dimensional in the senseitlesbodies and exists in this centreless
Euclidean 3-dimensional space, whileratisional points exist only in those
sub-spaces. A 4-dimension is a spacehwduasists of spaces in any one, but one and
only one, of which there is this sphéeis is so because while a sphere is an entity in
each sub-space as well as in the spasecbfsub-spaces, a 3-dimensional point can
only be an entity in each sub-space. ®hato particular 3-dimensional point is in a
position to determine every other oneery\8-dimensional point exists only on its
own, but still determines the space &Fspaces, because they all determine an
identical space. This means that, onhamel, every 3-dimensional point is
3-dimensionally identical with a spheva,the other, any one, but one and only one,
of 3-dimensional points is 4-dimensiop&entical with a sphere. Therefore, in this
centreless Euclidean 3-dimensional spagghere is 3-dimensionally in every one of
sub-spaces, while it is 4-dimensionailyny one, but one and only one, of
sub-spaces. This is so because a 4-diareosnsists of sub-spaces, and therefore
because a sphere can only be 4-dimerisianane of such 3-dimensional
sub-spaces.

4.2.2.1.1.4.1. Every sub-space differs from ondlardecause a sub-space either coincides with,
or differs from, another sub-space. €rae as many sub-spaces as there are two
different intersecting 2-dimensionalketitions and different 2-dimensional distances.
In the Euclidean 3-dimensional spaceeane correspondence between two
2-dimensional points of two identicalpByll spaces determines a 3-dimensional
direction, while 2-dimensional directioremain identical and become 3-dimensional
directions. Such 3-dimensional directi@cquire their spatiality in accordance with
the uniform density of this space and datermine every other 3-dimensional
direction. Therefore, they form the x-goordinate without any axes and are
therefore identical with the x-y-z la#ti A unique set of three such determinant
3-dimensional directions is a ‘spacdieTotality of unique sets of three such
determinant 3-dimensional directionthis ‘absolute space’. The former is identical
with a sub-space and becomes a posititire absolute space. The number of
positions is infinite because thereareénfinite number of different determinant
3-dimensional directions. Therefores thbsolute space is infinite.

4.2.2.1.1.4.1.1. A coordinate becomes a lattiemdf only if it does not have axes. This is so
because without axes every directsoon its own and is therefore absolute. This
means that every direction must manifiee uniform density in their spatiality.

4.2.2.1.1.5. That entity (i.e. a sphere) whicldeniical with every 3-dimensional point, is
necessarily one, and one only. This ibestause if there are more than one such
entity, and if they are not identicallwé&ach other, then a unique set of three
3-dimensional directions can determingartban one 3-dimensional point. This entity
can be at any positions in so far astlaee different set of three 3-dimensional
directions. A single entity which candteevery different position, is in itself
manifold. However, an entity in one piagitis not descriptively identical with one in
another ; for two positions consist i arfi different set of three 3-dimensional
directions. The absolute space is thaitgtof unique sets of three 3-dimensional
directions and has one and only oneyemtiit. Consequently, it is identical with a
totality of positions such that any obat one and only one, of them is filled with an
entity. Every totality of such positiaidentical with one another in terms of this
absolute space ; for the meaning ofdbisolute space does not specify any positions
of this one and only one entity. Howehbe totality of such totalities is not
necessarily identical with one of suctalies. Therefore, this absolute space fails to
embrace such a totality of totalities.

4.2.2.1.1.5.1. This totality of totalities remaidentical with a totality if and only if an entity
remains occupying an identical positiSuch a totality of totalities is an inertia
system. Therefore, there are as mamyiangystems as there are different positions in
this centreless Euclidean 3-dimensispake.
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4.2.2.1.1.5.2. Within each totality of totalitidsat single entity makes positions relative to each
other. On one hand, there is a positthich is filled with this entity, on the other,
there are those which are not. Theseset® of positions are relative to each other
because each determines the otherslfipos are relative to each other in terms of
an entity, then there is a unilaterédtien which holds between any two of every
totality of positions. That is, if thetality of totalities is not an inertia system, rihee
totality relates to another totality eesarily in such a way that between them a same
position cannot remain filled with artign In other words, within a totality in its
relation to the totality of totalitieggitions relate to each other in terms of an entity
necessarily in such a way that a pasiiéed with an entity ‘becomes’ empty, and
one of empty positions ‘becomes’ filldh this same entity. Within the totality of
totalities this unilateral relation hsldecessarily and only between any two totalities.
This is so because positions relateathhether necessarily and only in terms of a set
of single position filled with an entind another set of every other position which is
empty. Therefore, if a position whictthe only element of the former set once
becomes an element of the latter, theretis nothing which necessitates it to retain
its former identity. This means that tbelity of totalities holds if and only if there
are no two succeeding totalities betwebith a same position remains filled with an
entity.

4.2.2.1.1.5.3. Within the totality of totalitiesgtunilateral relation holds between any two toiesi
and recurs itself 1-dimensionally. Tisiso because any two unilaterally related
totalities retains their identity in $ua way that one loses its identity in the other.
This means that totalities are 1-dimenaily related to one another in such a way
that one determines another and losadéntity in it. Therefore, this unilateral
relation can hold 1-dimensionally even holds between same two totalities and
repeats itself backward and forward sTimilateral relation is a ‘time’, while the
1-dimensional totality of recurring watiéral relations is the ‘absolute time’. A time
holds between two moments and refetaaounilaterally related totalities (i.e. two
unilaterally related absolute spacesngequently, the description of a moment and
that of an absolute space are identit@vever, a moment differs from an absolute
space in the sense that while a monsemigianingless on its own, an absolute space
is meaningful on its own. A moment nezgy presupposes a time. A time in turn
necessarily presupposes the absolute fitmerefore, a moment can only be a part of
a whole. A whole descriptively precedgsart. This answers Zeno’s paradoxes. This
absolute time is the 1-dimensional riité recurrences of a time. Either there is no
time, or time is 1-dimensionally infi@itThe former is the case if and only if the
absolute space is an inertia systeme@iilse, there necessarily exists the absolute
time, which starts with an absolute gpdhe absolute space gives rise to the
absolute time because unless it is artiansystem, it is necessary for the absolute
space to differentiate within it twosef positions which cannot retain their identity
to themselves and therefore give risenyptwo, but two and only two, different sets
of positions and lose their identitytiiem. The absolute space, in this sense,
becomes an absolute space.

4.2.2.1.1.5.3.1. An absolute space gives rised@bsolute time. This means that the totality of
times is given by the existence oftdtality of ‘divisibles’. Therefore, a time
exists between two ‘divisibles’ oniythe sense that it holds between two
unilaterally related absolute spaces.

4.2.2.1.1.6. If the absolute space is an inertiesy, then there are as many absolute spaces as
there are positions in it. However, sabBolute spaces cannot describe themselves
without conditionalizing the totality times. That is, if the absolute space is an inertia
system and remains so , then it is unabtiescribe itself. This is so because in the
absolute space every position is a ceckis not internally determinable in its some
absolute relation to every other. Consedjy, every inertia system is descriptively
identical with one another and has neriiefation among them. No description holds
among identical descriptions becauseetban be no descriptive necessity to repeat an
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identical description. This only meanattthe absolute space cannot remain an inertia
system without contradicting the initt@ndition and therefore necessarily
conditionalizes the absolute time. Thality of times is therefore conditionalized as
the description of the existence of dmite number of absolute spaces.
Consequently, the two and only two walythe existence of the absolute space are
necessitated to be related to each @hardescriptive necessity. The absolute space
is not either an inertia system or a terapexistence, but is both. It starts with itself
(i.e. as an inertia system) and resule temporal existence. This means that the
centreless Euclidean 3-dimensional spgikentical with an inertia system, and that
an inertia system conditionalizes itssifa temporal existence in order to describe
itself. An inertia system is thereforeowed’ into the totality of times by its own
self-imposed descriptive necessity. Gitrés necessity, an entity cannot resist being
put into an absolute space which exista moment. Once put into such a space, it
‘moves’ in the totality of times and th&re follows the infinite, 1-dimensional course
of times. Therefore, once released froengtate of inertia, an entity keeps on
‘moving’ 1-dimensionally in the infinit®tality of times. In the absolute space this
means that an entity does not stop ‘nghamce it has started. It infinitely ‘moves’ on
necessarily in such a way that a sameauatraf time always elapses between any two
moments. This is so because an entaiways put into a next moment by a same
descriptive necessity. The absolute isrtae infinite repetitions of such a relation
between two moments. That is, a momeetfidoes not present a time, and each
moment is temporally identical. Therefdf@ time holds necessarily between any two
moments, then every time must also betidal. The absolute time is the
1-dimensional totality of times which idieally hold between any two moments. An
identical time holds between any two motedecause every moment loses its
identity in another moment if and onlyh&y are not identical with each other. The
absolute time is therefore the uniforpe@ed elapses of an identical time. This
uniformity of the absolute time is coateld with that of an absolute space. An
identical time elapses between any twonemts because the describability of the
uniform density of the centreless absoigace makes it necessary for any two
moments to differ from each other. Anptmoments are necessitated to differ from
each other by an identical necessitythacefore hold an identical time between them.
This identical necessity is the same sg&iteby which an entity is released from the
state of inertia. The absolute spacetmnel are therefore coordinated in such a way
that an entity ‘moves’ from a positionaoother taking an identical space and time.
This is so because any two moments adernadiffer from each other by the
necessity which releases an entity froenstate of inertia and put it into a moment.
This necessity therefore spatially amdgerally quantifies itself as what spatially and
temporally holds, on one hand, betweempasitions, on the other, between two
moments. This necessity coordinates alpadisitions with temporal moments and
recursively, identically repeats itsé&hce released from the state of inertia, an entity
‘moves’ 1-dimensionally and infinitelyhik is so because an entity is released from
the state of inertia by its own self-irspd necessity and therefore embodies this
necessity in its spatial and temporahiifg. This means that an entity is internally
determined to externally follows the pedges of this coordinated absolute space and
time. The uniform density of the absolspace determines a ‘straight line’ as a
straight line. A straight line thereforanifests a spatial property of the absolute
space. Consequently, a straight lineesponds to the temporal 1-dimensionality of
the absolute time.

4.2.2.1.1.6.1. The ‘motion’ of an entity is the sgleand temporal identification of the
self-imposed necessity of an entitydiease itself from the state of inertia. An entity
is at first in the state of inertia ahdn imposes itself with the necessity to release
itself from it. This is so because atitgifinds itself unable to describe itself if it
remains in a same position where itisatiptively given. Such a ‘motion’ is
therefore accompanied with the poss$ibdf an infinite variety of ‘velocity’ because
an entity can be released from its gipesition to any other position if and only if it
1-dimensionally, infinitely repeats timdtial ‘motion’ by which it spatially and
temporally identifies itself. If it renms where it is descriptively found, then it gives
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rise to an infinite number of identickdscriptions and therefore contradicts the initial
condition ; for without the centre evegsition is descriptively identical with one
another in the absolute space.

4.2.2.1.1.6.2. If an entity moves on 1-dimensignatifinitely, taking a same amount of time for a

same amount of space and preservingia garection, then it can move backward
and forward between same two positiakBig a same amount of time for each
passage ; for a 1-dimension consisgithof two and only two directions. Such two
directions can be described if and d@inlyis 1-dimension is finite. Therefore, if two
positions have a finite amount of sple®veen them and are related to each other
necessarily in such a way that the erist of each position determines that of the
other in the coordinated absolute sgacktime, then two and only two directions
hold between them and are also mutwatgrminative. Two positions can be said to
determine each other if and only if tlesyst in that coordinated absolute space and
time and would identically relate to pwvether position. Such two positions are
physical and yet have no amount of spacktime between them.

4.2.2.1.1.6.2.1. Such two positions are hypothketieaause if they do exist spatially and

422.1.1.7.

42.2.1.1.8.

temporally, then they cannot identice¢late to every other position. This means
that an action-reaction can only heyigproximately in the coordinated absolute
space and time. An inertia systenide hypothetical because if it does exist, then
it necessarily entails the absoluteeti

An inertia system necessarily gives to the absolute time. However, it is necessary
for an inertia system to find that it nahdescribe itself without contradicting the
initial condition. An entity is self-imged with the necessity to move because if it
remains in the state of inertia, it carshescribe itself. The meaning of a ‘mass’ is that
an entity cannot move without appealimghie initial condition in order to find that it
cannot remain in the state of inertiaisTheans that it is necessary for an entity to be
initially in the state of inertia in ondi® have a necessity to release itself from it.
Therefore, an entity initially resistslieing ‘accelerated’. The ‘mass’ of an entity is
this necessity to resist. The existerfancentity and its property of having a ‘mass’
are identical with the existence of agriia system and its necessity to conditionalize
the absolute time in order to describelit Consequently, an entity becomes a
temporal entity if and only if it hasmass’. Without having a ‘mass’ an entity cannot
move. In the coordinated absolute spacetiane there is no entity without a ‘mass’.
Having a ‘mass’ is therefore a necespaoperty of an entity. In this sense a ‘mass’
can be neither created nor destroydd.dtdescriptive necessity.

An entity is, in itself, multiple iartms of a ‘mass’. This is so because an entityasele
itself from the state of inertia and caove from a given position to any other
position. To whichever position it maykaats initial movement and then carry on
along the same direction, an identicaktelapses between any two positions. An
entity is descriptively motivated to rase itself from the state of inertia and to move
to any other position by an identicalaggive necessity of making itself describable.
This means that this necessity can betickly satisfied if and only if an entity moves
from a given position to any other pasitiA time is the fulfillment of this necessity
and therefore identically holds regarsliekan infinite possible variety of initial
movements which an entity can make. Than identical time elapses whether an
entity moves to the nearest positiorodihe furthest position. This varies from an
infinitesimally near position to an infigly distant position. The ‘mass’ of an entity
therefore varies from infinity to infiesimal. The more resistant an entity is to its own
necessity (i.e. the more resistant inati entity has), the less distance it can travel.
One and only one entity exists in theohlde space and has an infinite variety of
‘masses’. The description of such antgititerms of its infinite variety of ‘masses’
results in an absolute space which lsdfilvith an infinite variety of ‘masses’.

4.2.2.1.1.8.1. Given an infinite variety of masshat identical necessity of an entity’s describing

itself gives rise to an infinite variaif/‘forces’. A ‘force’ is that necessity in its
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relation to the mass of an entity. Ade’ therefore works on a mass in such a way
that the stronger it is, the longeraliste a mass can travel taking a same amount of
time, or in such a way that the largenass is, the stronger ‘force’ it requires in
order to travel a same distance takisgrae amount of time. This correlation
between a ‘force’ and a mass is based tige internal multiplicity of an entity

which has a necessity to release ifsaffi the state of inertia and can identically
satisfy this necessity if and only ifibves to any other position.

4.2.2.1.1.8.2. A'linear velocity’ is the motion afmass which is described in terms of a force
which it requires in order to travelextain distance taking a same amount of time in
the coordinated absolute space and fiilne.magnitude of this ‘velocity’ can range
between infinitesimal and infinity incGerdance with the magnitude of a force which
is available. A mass is the inertia ofestity. Consequently, if an entity can have an
infinite variety of masses, then it @dso have an infinite variety of ‘velocities’. The
motion of a mass has a direction. Tlwreefa ‘linear velocity’ consists of a
magnitude and a direction. An entityréiere has a mass and a ‘linear velocity'. The
description of an entity in terms of ags and a ‘linear velocity’ is a ‘linear
momentum’. The ‘momentum’ of an entitythe state of inertia is identical with its
mass. A ‘momentum’ is identical betwélea product of the smallest mass and the
largest ‘velocity’ and that of the lasgenass and the smallest ‘velocity’. This is so
because the infinite variety of motiafi@n entity can only be based upon an
identical necessity of this entity’s deising itself. Therefore, such motions are only
based upon an identical force whoseewais inversely correlated with that of the
mass of an entity.

4.2.2.1.1.8.3. Once given, the mass of an entigsdmt change in the coordinated absolute space
and time. This is so because an ergigases itself from the state of inertia and
determines a mass depending upon tt@ndis of a position to which it makes its
initial motion. This initial motion, hawver, uniformly repeats itself in the totality of
times. Therefore, once given this ihiéieceleration, a mass is determined and
preserved. That is, a mass can onlyeberchined by this initial acceleration of an
entity from the state of inertia by thecessity of this entity’s describing itself. Once
determined, a mass physically repregbigentity. Any further accelerations and
decelerations can only be interactiogtsvben or among masses in terms of changes
in their velocity. The change of a momaemis therefore described solely in terms of
the change of a velocity (i.e. of a diifen and/or a magnitude). A mass is therefore
the self-description of an entity in t@rdinated absolute space and time. Within
this absolute space and time changesuigrtake place between masses, not in and
between that entity. A momentum candfare change if and only if the velocity of a
mass changes. Such changes can onlktémal and are caused by interactions
between or among masses. Masses argldesto interact with one another only in
terms of attraction. This is so becahgsecoordinated absolute space and time is
open, uniform and infinite and does pioysically interact with its substances once
they are determined by and from the emitity of this absolute space and time.
Attraction is the external relation arganasses and takes place only in such a way
as to preserve their total momenta. & because each mass is the description of
an identical entity, and because sueHation forms a system whose totality refers to
the totality of those descriptions ofidentical entity. Masses attract one another and
result in various changes of momentas Thso because, on one hand, their velocity
varies, on the other, they interact witie another by attraction.

4.2.2.1.1.8.3.1. The change of a momentum is de=ttiin terms of a time ratio. This is so because
this change occurs between absolueespin their relation to the absolute time.
The description of such a time rafiecltange of a momentum is identical with a
force. If a mass is constant, a fasdeentical with the description of an entity in
terms of its mass and an acceleration.

4.2.2.1.1.8.3.2. Masses attract one another bethegare all identifiable with one another in
their reference to that one and omig entity of this absolute space and time. This,
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however, means that masses are neperdlent from one another and give rise to
a self-imposed necessity for this &liecspace and time to interact with its
substances. Therefore, this absopaeesand time loses its descriptive necessity
to be as it is from within itself. Thause of attraction therefore cannot be
described within this absolute spawe time. Attraction can only be taken for
granted in this absolute space and.tim

4.2.2.1.1.9. A mass, a force and a velocity am@ed|to one another in such a way that given a
certain amount of force, an entity hasamentum depending upon its mass. This
means that

i) if the amount of a given force is sateen a smaller mass has a larger velocity,
ii) if a mass is same, a stronger forivega larger velocity,

iii) if a velocity is uniform, then a m@acquires this velocity from a force which is
initially given in order to release artignfrom the state of inertia.

An entity is initially in the state ofértia. The mass of an entity is constant because it
is innate to this entity. This also metra a mass is always finite, while a force and a
velocity can be infinite in magnitude.igis so because if an entity has an infinite
mass, then no force can release it ffmrstate of inertia.

4.2.2.1.1.9.1. The measurement of an entity cay lmmiin terms of a ratio. This is so because, on
one hand, every physical property oéatity (i.e. a mass, a force and a velocity) is
correlated with one another, on the gtéeery entity is identical. Consequently,
such properties can only be describeddiyg compared with one another. They can
be compared if and only if one of thextaken as a constant so that others can be
compared on this basis.

4.2.2.1.2. In the coordinated absolute space amelttiere descriptively exist an infinite number of
finite masses. This is originated in ond anly one absolute space with one and only
one entity. This entity necessitates itselfonditionalize such masses because if it stays
in the state of inertia, it cannot descitbelf without resulting in an infinite number of
identical descriptions of an inertia systemd therefore without contradicting the initial
condition. This entity remains one, and only, if and only if it imposes itself with a
necessity to conditionalize masses togetiiterthe absolute time. That is, this entity
does not contradict the initial conditiémamnd only if it is self-imposed with the necessity
to describe itself in terms of masses. @ylgelf-imposing such a necessity this entity
can remain one, and one only, and canistthe state of inertia without contradicting
the initial condition. Therefore, there danan inertia system without contradicting the
initial condition if and only if it is theystem of an entity which is self-imposed with such
a necessity. Such a system is the cause @bsolute time. This system has a necessity
to conditionalize masses. However, thisesyds not a part of the absolute time and
therefore has a necessity to describd itstin the absolute space and as a part of the
absolute time in order to complete its dpsiwe gap in its continuity with the absolute
time. That is, the cause of the absolute tnust be able to describe itself as a part of the
absolute time in order to describe itstietato as well as from the absolute time. This
means that this system must be describggtins of a mass instead of an entity ; for that
entity conditionalizes itself as masses thedefore do not itself exist in the absolute
time. Only masses exist in the absolute tiithin the coordinated absolute space and
time an inertia system can only be tharofnfinite mass. No force but its own
descriptive necessity can accelerate anit@fmass. Such an infinite mass can only be
formed as the totality of an infinite numloé finite masses ; for there exist only finite
masses in this absolute space and tims.mbans that finite masses have a necessity to
form such a totality. Such a necessitytexas the internal structure of a mass to interact
with every other mass in such a way astmfthe totality of an infinite mass.
Consequently, only this infinite mass igmpt from such an interaction. The
coordinated absolute space and time therdfolds between two inertia systems : one is
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that of an entity and is the descriptivaseaof the absolute time, the other is that of an
infinite mass and is the continuous, phalstause of the absolute time. The coordinated
absolute space and time infinitely reclesudeen these two inertia systems. This is so
because the second inertia system canbenlige final outcome of spatial and temporal
interactions among finite masses in thedioated absolute space and time. If an infinite
mass is exempt from such spatial and teatpateractions, then the absolute time does
not hold in that mass. There can be nosfarigich can accelerate an infinite mass. An
infinite mass therefore forms an inertiateyn and has no absolute time. Without the
absolute time no mass can descriptivelgtead a mass. An infinite mass is therefore
descriptively identical with that entity igh is self-imposed with a necessity to give rise
to finite masses and the absolute time.s€quently, those two inertia systems are
identical with each other in such a way #ech is the cause of the other. The
coordinated absolute space and time rdmivgeen them.

4.2.2.1.2.1. Therefore, an entity which has a rege® conditionalize masses, also has a necessity
to describe itself in terms of such mas3é&e former necessity is the descriptive
necessity of an entity in the absolutecep while the latter is the descriptive necessity
of an entity in the absolute time. Thielatherefore follows from the former. By the
latter necessity masses have a necegsapgrty of forming a totality among
themselves. This necessary property alsemis ‘gravitation’. ‘Gravitation’ is a
common property of masses. By ‘gravitatimasses form a totality among themselves
and become a single inertia system. Eaess is therefore a ‘gravitational mass’ and
relate with every other mass in termgdvitation’. The total ‘gravitational mass’ is
infinite and static, while each ‘gravitatal mass’ is finite and dynamic. ‘Gravitational
masses’ interact with one another andsdogioing, also interact with the coordinated
absolute space and time itself. Thimibescause ‘gravitation’ makes masses more and
more inertial.

4.2.2.1.2.1.1. Amass also has an ‘inertial mass"inertial mass’ determines its linear velocity
from a given force. A force is identigajiven to every mass. Therefore, a smaller
‘inertial mass’ has a larger linear ¢t Gravitation is a relational force which
works in order to form an inertia systeut of all masses and therefore must be
inversely proportional to the magnitude velocity. This is so because gravitation is
innately concentric and therefore musabwork inversely to a linear velocity.
Therefore, a larger inertial mass mastehmore gravitation at its disposal. This
means that a gravitational mass is idahvith an inertial mass. A larger inertial
mass means a smaller linear velocityatatger gravitational mass. That is, the
meaning of gravitation is indeed theeirse of that of a linear velocity. This is the
cause of the recursiveness of the saiederation of the coordinated absolute space
and time and complies with the self-irs@® necessity of this absolute space and
time.

4.2.2.1.2.1.2. A gravitational mass is a relatiebween a mass and every other mass. Therefore, its
measurement can only be in terms ofia.ra

4.2.2.1.2.1.3. A mass is linearly additive. Thisasbecause the coordinated absolute space and
time is uniform. That is, every positigrrelated to every other position by
uniformity. This also means that any bamtions of masses by means of gravitation
is also linearly quantitative.

4.2.2.1.2.2. Gravitation is a common necessarygitgpf every mass. Masses vary in their inertial
mass and therefore also vary in theivigaional mass. Consequently, some masses
have more gravitational mass than othéne.coordinated absolute space and time
initially consists of an infinite humbef momenta which are identical in magnitude
but differ in directions. The variouselitions of these momenta are, however,
disturbed, and their identical magnitedenes to differ from one another. This is
caused by attraction of masses becaugrawitation. A gravitational mass is
determined not by an inertial mass, mihletermine each other. Gravitation is at
work from the outset of the absolute til@menta therefore influence one another by
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gravitation from the outset of the absealime. In the coordinated absolute space and
time interactions among masses exist ftwenvery beginning. The identical
magnitude of momenta therefore holds anlhe descriptive beginning of this
absolute space and time and therefore doephysically hold. This absolute space
and time has an innate necessity of phy/self-degeneration. ‘Bodies’ are
conditionalized by this necessity tha #arious directions and identical magnitude of
momenta are physically distorted in adeace with the necessity for gravitation.
Gravitation works spatially and tempoyddetween every mass and every other mass
and is not symmetrical because of thénedsional topography of this coordinated
absolute space and time. That is, atyerinditionalizes a centre by forming masses
with an infinite variety of velocity. Thicentre makes gravitation asymmetrical.

4.2.2.1.2.2.1. Masses differ from one another iagrtand gravitationally and form bodies.
Equally, bodies differ from one anotheartially and gravitationally and form bodies
of a higher level. This process spatiafid temporally continues until there exists
one and only one body. This body posseas infinite inertial, gravitational mass as
a totality and is therefore itself amriia system. Except for in this final body masses
still exist in the absolute space antkti Therefore, in and among bodies other than
this final body there also exists thealbte space and time.

4.2.2.1.2.2.2. Gravitation therefore holds not arlyong bodies but also within bodies. A
gravitational mass is relational andef@re makes the motion of a body also
relational. Given two bodies, they amational in such a way that the centre of the
mass of each body is not identical wlith geometrical centre of each body and
deflects toward each other. Gravitatiofds not only between those two centres of
mass but also between every part of ady. While gravitation within each body
centres at its geometrical centre, ga#ioin between two bodies deflects those centes
toward each other. Bodies have a sizeé gaavitation holds between every mass or
body and every other mass or body ielig& proportion to their distance to one
another. This gives rise to a relatianation between those two bodies. This
relational motion is centred at those tieflected centres and is mutual and dynamic.
It is dynamic because if every partaéte body holds gravitation to every part of the
other body, then gravitation does ndtllsymmetrically between those two bodies.
Moreover every body has gravitationerg other body and makes such a motion
multi-relational. Such multi-relationdlynamic motions form rotations and
revolutions of celestial bodies in theredegenerating absolute space and time. A
gravitational mass is, by itself, dyneatfily relational and therefore innately has a
force. An ‘angular momentum’ is givendaych a force. Such an innate force is
inversely proportional to the lineara@ty of a mass. This is so because while a
linear velocity is inversely proportidna a gravitational, inertial mass, gravitation is
proportional to it. This also means thahass or body with a larger linear velocity
comes to have a smaller angular velocity

4.2.2.1.2.2.3. Gravitation holds in inverse projorto distance ; for it exists in the absolutecgpa
and time and therefore must comply i properties of the absolute space and
time. In the absolute space and timeyewess is initially given an identical force.
Consequently, a smaller inertial massé&nbarger linear velocity and is therefore
more distant from every other mass ahbd@ gravitational mass is identical with an
inertial mass because gravitation existeder to make this absolute space and time
an inertia system and is therefore cotrae Larger inertial masses have a smaller
linear velocity and are therefore claseone another. This is so because a single
entity conditionalizes every mass by mguo any positions in the absolute space
and time and therefore becomes the eefitthis absolute space and time.
Consequently, the possession of a laggeritational mass by a larger inertial mass
is inherently compatible with the seffdosed necessity of this absolute space and
time. Smaller gravitational masses andids have a larger linear velocity and are
therefore more distant not only fromttbantre but also from one another. Larger
gravitational masses and bodies haveadler linear velocity and are therefore
closer not only to that centre but dtsone another. The more concentrated
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gravitational masses and bodies arepibie gravitation they can exert upon those
which are not immediately a part of th@mherefore, the closer gravitational masses
and bodies are, the stronger they intewith one another. That is, the shorter
distance they have to one another,tloager gravitational interactions they possess
between or among them. This is so begdwsso doing, they can exert more
gravitational influence upon more distarasses and bodies, which would,
otherwise, have a weaker and weakeritgtaonal influence to one another. This
complies with the meaning of gravitatamd the self-imposed necessity of this
absolute space and time.

4.2.2.1.2.3. Between the two inertia systems, whighsymmetric in the sense that they have no
parts, the 4-dimensional topology isiingdly asymmetric and externally symmetric.
An infinite variety of momenta createdthg necessity to conditionalize masses
together with the absolute time, makes4tdimension inherently dynamic and hence
asymmetric. Asymmetricity is describeddgaamic process toward symmetricity
because at any points in a sequencenestasymmetricity is incomplete as a
description. That is, any descriptioniraet are by themselves asymmetric in the
sense that they are descriptions of mésnémy linear sequences are asymmetric.
Asymmetricity goes hand in hand with tlegeneration of the coordinated absolute
space and time and is a descriptive s#gesf an inertia system. Asymmetricity
recurs between two symmetric systems.

4.2.2.1.3. If no distinction is made between a naagbka body, then it looks as if they have both an
inertial mass and a gravitational masssgply. Therefore, a body is as necessary a
substance of the absolute space and tiraev@sss. A body is not a mere collection of
masses but a system of its own. It hascassary meaning of its own and is a necessary
existence in the absolute space and time.

4.2.2.2. In the absolute space and time a masattain an infinite velocity if and only if it is a
finite mass. This is so because the inemids of a mass is a property which is inherent to
this mass and is therefore independent &aralocity. A velocity is given to a mass by a
force which releases it from its initial tgt@f inertia. This force is conditionalized by a
descriptive necessity of an entity in theesof inertia so that this entity can describelfts
without contradicting the initial conditiofihat is, this entity has a necessity to accelerate
itself and to make itself a mass. This neitgss satisfied if and only if this entity moves
to any positions in the absolute space amditionalizes an identical absolute time. The
distance between this entity and such mostranges from infinitesimal to infinity and
therefore determines an infinite varietyradrtial masses of this entity ; for this entity is
moved by an identical descriptive necesaity therefore by an identical force and
determines an identical time. Every inentiglss has a velocity in such a way as to form
an identical magnitude of their momentumthiviithe absolute space and time an inertial
mass and a velocity are, however, indepdrfdem each other. This is so because their
coexistence is determined not within theollie space and time but by the necessity to
conditionalize this coordinated absolutecgpand time. This means that within the
absolute space and time no cause to rélate together can be found. Within the absolute
space and time a force can only be descaketh inherent constituent of a momentum.

4.2.2.2.1. A force cannot be itself described witthie coordinated absolute space and time. This is
so because this absolute space and tifteeisconditionalized by this force. This force
therefore can only coincide with the absokpace and time itself. The absolute space
and time is itself a whole. Such a wholigslf an entity which forms its own space. An
entity is spatially and temporally freatifs its own space. The absolute space and time
can be described to hold in this free gritd to bind it from within it if and only if this
entity can be descriptively identified wdhmass in the absolute space and time. Such a
free entity manifests a force within itsaifd by itself.

4.2.2.2.2. Amass in the absolute space and tiemines’ a free entity if and only if it comes to

coincide with the absolute space and tis®lfi A mass coincides with the absolute
space and time itself if and only if it atarates itself. A mass can accelerate itselfdf an
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only if a force is innate to this massa fforce is innate to a mass, then this mass is
innately kinetic. An innately kinetic massincides with the absolute space and time
because the conditionalization and coot#tinaf the absolute time by the absolute
space holds only in order to give riseht® acceleration of an entity in the state of imerti
so that this entity can describe itselhwitt contradicting the initial condition. If a mass
can accelerates itself and forms its owatepthen it can only have a finite velocity. This
is so because a mass is necessarily finttee absolute space and time. If a force is
innate to a finite mass, then it can ordyaliso finite and is proportional to that mass.
This innate force constitutes the inentiass and velocity of this finite mass. That iss thi
finite mass consists in and of its innateé and is descriptively identical with it.
Therefore, this innate force acceleratgdfit Such a self-acceleration can take place if
and only if this innate force can be aceakd by itself while accelerating itself. This
means that this innate force must transitseif into an inertial mass while accelerating
itself. The meaning of this innate foraeslin its being innately kinetic and therefore in
its being least possible inertial. This methat this innate force has a necessity to attain
the maximum possible self-accelerationsThnate force can attain such a
self-acceleration by transforming itsetbithe minimum possible inertial mass and the
maximum possible velocity. This innate foexcelerates itself and is accelerated by
itself. Therefore, its inertial mass antbeéy are correlated with each other in such a
way that an inertial mass increases in @riign to its velocity so that there comes a
balancing point where an inertial mass beeotoo large for its innate force to accelerate
further. It is necessary for an inertialssand its velocity to balance each other in this
way because in order to be acceleratecevetitelerating itself this innate force has a
self-imposed resistance to its accelerdtseif. Such a resistance is inherent to the
necessity of this innate force’s accelagtiself and grows in proportion as this innate
force accelerates itself more and mores Thso because the more this innate force
accelerates itself, the more it has todselerated and therefore resisted. This also
accounts for the wave-motion of a freetgniihis balancing action of an innate force
gives this innate force its maximum possiglocity. This self-imposed maximum limit
of velocity of an innate force is the vetgpof a free entity. Therefore, unlike in the
absolute space and time, an inertial mass dot become infinitely smaller and give rise
to a velocity which proportionally beconiefinitely larger. The product of the inertial
mass and velocity of a free entity starmsénergy’. ‘Energy’ is the descriptive
manifestation of an innate force. A freétgns a system in which its finite energy is
distributed in such a way as to form theaimum possible inertial mass and the
maximum possible velocity. This is desavigly the purest form of energy. The
necessary finiteness of an innate forcedstéor the ‘quantum’ of energy.

4.2.2.2.2.1. There is one and only one ideal amofimnate force. This is so because an innate
force is also itself a gravitational massl is subject to gravitation. A gravitational
mass therefore descriptively consistand of an inertial mass and its velocity and
consequently appears to increase in ptigmoas an inertial mass increases in the
process of self-acceleration. The laggemnate force is, the more it is gravitationally
related with every other innate force #metefore becomes more inertial. This means
that larger innate forces are more antereoncentrated and become more and more
inertial. Therefore, the smaller an imnftrce is, the larger maximum velocity it can
attain. A free entity therefore can obé/the smallest possible innate force.

4.2.2.2.2.2. The larger an innate force is, the fe=e it is from the absolute space and time. Bhis
S0 because it is made more inertial ©gitwvitational relation with that concentrated
region of gravitation and therefore hawgerinertial resistance to its own
self-acceleration. A larger innate foticerefore necessarily results in a larger inertial
mass and a smaller velocity. This mehasriothing can exceed the velocity of a free
entity. If there is anything whose vetgaxceeds that of a free entity, then its innate
force can only be negative and therefi@igher exists in the absolute space and time
nor forms its own space. Such an ergiipdescribable in the schema of physics.
Therefore, if such an entity exists, titezan only be an entity that describes itsed.(i.
FX).
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4.2.2.2.2.3. The larger an innate force is, theenilois subject to gravitation. This means that
larger inertial masses are more likelgttoact, and to collide with, one another. Such
collisions cause exchanges and emissibaesergy and formations of complex
systems. This is so because collidedtnfuaces prevent each other from attaining
their maximum possible velocity. Thisuks in each innate force’s not fully
transforming itself into an inertial masw a velocity. Such unused innate forces are
emitted as new innate forces and/or beld repelling force within the gravitational
relation between or among those collishedtial masses. This is the reason why
masses attract and, at the same timel oe another. The rest of energy is made into
the angular velocity of those collidedsses by their gravitational relation. Therefore,
a collision can cause two possible changesollided innate forces :

i) innate forces collide with each othed transform each other into new innate forces
by exchanging some of their energy waig® emitting the rest of their energy as new
innate forces,

i) innate forces collide with each othieind themselves by gravitation, and transform
themselves into a complex system by exgimg some of their energy, while also
emitting the rest of their energy as memate forces.

In either way the totality of their engiig conserved because the totality of innate
forces is inherently existent by its dgsto/e necessity and therefore can be neither
created nor destroyed by any other means.

4.2.2.2.3. If there exists the maximum limit ofmety, then anything with this maximum velocity
is a physically independent system ; foenergy can be externally transmitted to this
system. This system also consists of desingrtial mass because such an anything can
only be the smallest possible innate fofdgs system is therefore the system of a free
entity and is also the most basic physgatem in the sense that it is externally
independent from every other system othan that of the absolute space and time itself.
Every other system is either a complexesysdr a constituent of a complex system and
exists only within the absolute space ame tThat is, every one of them is in a
gravitational relation with every other cared forms the totality of gravitation. The
system of a free entity is in a gravitatibrelation only with this totality of gravitation,
but not with constituents of this totalifyhis is so because any innate forces larger than
the smallest possible one have their maxinaelocity within that maximum limit. They
can therefore have a medium among thentansequently can transmit energy among
them. Systems of a free entity, howeven, ltase no such medium. They are therefore
free from any gravitational relations natyowith those larger innate forces but also
among themselves. They nevertheless hgvavitational relation with the totality of
gravitation because the totality of gratiita stands for the absolute space and time
itself. The absolute space and time itiselfis within every system of a free entity. The
totality of gravitation and every systemadfee entity exist in each other in such a way
that the latter is free in the former, bat to the former. This is so because while the
former is one, and one only, there arenfinite number of the latter, which are
independent from one another. This meaaisettery one of the latter individually stands
for the former and makes themselves calleche meaning of this collective totality of
the latter is the former. Within this caflize totality systems of a free entity are not
related with one another and therefore &me independent from one another, but not
from this collective totality. They necesliestay within this totality. The system of a
free entity interacts only with the totaldf gravitation.

4.2.2.2.3.1. Innate forces larger than the smatlessible one not only exist within the totality of
gravitation, but are also not free argejpendent from one another. They exist in the
absolute space and time, but are notezkis by the absolute space and time. They
are necessarily under the influence af/igation among themselves and are therefore
made into parts of a body, which in thacomes a part of a body of a higher order.
This process continues until there cotoexxist one and only one body which
embodies the totality of gravitation. Fhatality of gravitation stands for the absolute
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space and time itself and is also thesead its self-imposed degeneration. Whatever
that exists in the absolute space and Linds themselves together and forms this
totality. The absolute space and timdrsetp degenerate from the very moment when
they come into existence. The degenayaisolute space and time has the same
boundary as the totality of gravitatittris therefore finite and uniformly curved

toward its centre. Whatever that existthe absolute space and time exists within this
boundary and can only have a finite vigoSystems of a free entity stay within this
boundary, but are free from any gravitadi relations within this boundary. The
velocity of a free entity not only starfds the maximum limit of velocity, but also
remains constant, while every other inérhass becomes more and more inertial. The
absolute space and time descriptivelgstaith the necessity of the absolute space’s
not contradicting the initial conditidmjt physically starts with innate forces. This is
S0 because it is self-imposed with theessity that it recurs to an inertia system and
therefore cannot remain infinite.

4.2.2.2.3.1.1. Within the absolute space and threestallest possible innate forces are free and
independent. This also means that theyrevariant ‘quanta’. The system of a free
entity therefore gives rise to two inaats : one is its velocity, the other is its imnart
mass. This inertial mass can also beeitgtional mass necessarily in its relation to
the totality of gravitation. It gravitanhally interacts only with this totality.

4.2.2.2.3.1.2. In the absolute space and timecefisrdescribed to be innate not to masses but to a
single entity in the absolute spacesTbice is the descriptive necessity of this
single entity’s describing itself withtazontradicting the initial condition. By this
necessity this single entity condition@ masses together with the absolute time and
therefore does not exist within the dibgospace and time. Consequently, given the
absolute space and time, a force canlmnbdescribed to be identically innate to
every mass. Innate forces are the oatessary way of describing a force within the
absolute space and time and descriptinggrate the physical cause of the absolute
space and time with its descriptive eaus

4.2.2.2.3.1.2.1. The system of a free entity regmtssthe purest form of energy. This is so because
it is free from any gravitational rétens other than that to the totality of
gravitation and consists in and oftiieimum inertial mass (i.e. the minimum
resistance to a self-acceleration)taedmaximum velocity. This means that it
consists in energy which has the mimmtonversion to a mass and the maximum
conversion to a velocity. Energy isfusnot as a mass but as a property of a mass.
Therefore, the system of a free eritgiso the most basic unit of kinetic energy
and stands for the maximum possiblevecsion of a given innate force into a
kinetic energy.

4.2.2.2.3.1.2.2. The meaning of such a unit ligdmds quantitative evaluation but in its being
necessarily an invariant. The quatiieevaluation (i.e. the measurement) of such
an invariant is tautological in thense that the evaluation of any spatial and
temporal quantities can only be bagssh such an invariant. A measurement is
the description of an invariant. Araniant is a descriptive necessity. Therefore,
the validity of an invariant lies imacessity for its conditionalization and can only
be appreciated as a part of the detrative self-description of FX.

4.2.2.2.3.1.2.3. The physically real space and tiolds between two inertia systems and infinitely
recurs between them. It is also tleeess of the self-imposed degeneration of the
absolute space and time. The absepaee has a single entity in it and is required
by a descriptive necessity of thidtgrib conditionalize and coordinate the
absolute time. In this absolute spawe time that single entity manifests itself as
an infinite number of identical momeemthich internally infinitely vary in terms of
the variation between an inertial masd a velocity. This absolute space and time,
however, does not have a physicalicaity with that absolute space with a single
entity and therefore gives rise taeaeassity for such a continuity. This is possible
if and only if that single entity igstribed within this absolute space and time.
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This means that in this absolute s@ancktime masses are related with one another
in such a way as to form a singlelitytén the state of inertia. This causes the
process of the self-degeneration efahsolute space and time. This degenerating
absolute space and time is a spatigpéeal continuum in which a space and a
time are related with each other ichsa way that a time element gradually
diminishes in proportion as massesspegially more and more closely related
with one another. A spatio-temporaitomuum is therefore a space-time in which
every mass other than free entitieobree more and more inertial, and which
recursively holds between a descréiptiertia system and a physical one. These
two inertia systems become identidaémevery mass is made into a single body
(i.e. when the physical inertia systeses all its spatial and temporal elements) ;
for without any spatial and tempoiraheents a physical inertia system is identical
with a descriptive one. A spatio-temgd@ontinuum therefore recurs in and
between these two identifiable inestjatems.

4.2.2.2.3.1.2.3.1. In the absolute space and tiagsas are related with one another so as to
become more and more inertial. Télation is gravitation. The necessity for
gravitation is also the necessityffee entities. This is so because if that single
entity in the absolute space mudaidsribed in the absolute space and time,
then its descriptive necessity nalst be described in the absolute space and
time. They therefore complement eattter in the absolute space and time. For
this reason neither of gravitatiom dree entities holds without the other. On
one hand, the existence of frediestmakes it possible for energy to be
transmitted among masses so thgtdhe form a totality, on the other, the
existence of gravitation gives tfisehe necessity for the maximum limit of
velocity in the absolute space amt

4.2.2.2.3.1.2.3.2. A force is the necessity foeatity in the absolute space to conditionalize and
coordinate the absolute time. Aratienforce therefore coincides with the
absolute space and time itself @ anly if it can give rise to an innately kinetic
entity which is free from any grational relations other than that to the totality
of gravitation. This is so becausetsan innately kinetic entity, in itself,
embodies the absolute time. Itdslitthe absolute space and time of its own
independently from a spatio-tempaaitinuum in which it exists. It is
therefore free in a spatio-tempemitinuum, but not from a spatio-temporal
continuum. An entity which is a dpaemporal continuum of its own in a
spatio-temporal continuum, is coaéirin the latter continuum in such a way
that it is not only free and indegent from every other continuum and mass
within that continuum, but also holib spatio-temporal forms of mapping with
that continuum. This is so becaoseone hand, no energy can be transmitted to
it within the latter continuum, dretother, it is required to remain constant by
the very necessity for the lattemtcmuum to degenerate into an inertia system.
A free entity is therefore relathicsin the sense that it forms its own
spatio-temporal continuum. Massedh @ivelocity sufficiently near the
maximum limit become more and mawertial in proportion to their velocity.
This is so because they come to fitngir own spatio-temporal continuum
which is free and independent witthia totality of gravitation. A mass with the
maximum velocity is itself an in@r8ystem and holds no time element. In the
totality of gravitation masses beeomore and more inertial. The absolute
space and time stands for such egz Coinciding with the boundary of this
totality of gravitation an absolgjgace becomes more and more confined, once
gravitational relations become dagminover linear accelerations of masses. A
time element diminishes in propartas masses and bodies become more
inertial. However, a mass whichreeffrom such internal gravitational relations
within the totality of gravitatiors also free from any spatio-temporal influences
within that totality. Consequentiyhen a mass comes to have a velocity very
near the maximum limit, it startsia its spatio-temporal relation with the
totality of gravitation and therefazomes to have no spatio-temporal location
within the totality of gravitatioA mass with the maximum velocity cannot be

113



spatio-temporally located in the elegrating absolute space and time of this
totality of gravitation. A mass witlo spatio-temporal location is an inertia
system because its motion spatiqataally does not exist in a spatio-temporal
continuum. The closer the velocityanass approaches to the maximum limit,
the more inertial this mass beco(hesthe less time element it comes to have).
A free entity has no time elemend &mitself an inertia system. When the
velocity of a mass approaches theimmam limit, this mass comes to form its
own spatio-temporal continuum in siaene way as the totality of gravitation. It
comes to be spatially more and ncorgined and comes have a less and less
time element ; for it spatio-temgbyrdanishes itself from the spatio-temporal
continuum of the totality of gravitan in proportion to its velocity. This is the
meaning of the spatio-temporal femadand independence of a mass with the
maximum velocity. A free entity is mertia system and therefore has no
spatio-temporal relations with aggtems within the totality of gravitation and
thus becomes relativistic. Consetlygtwo free entities cannot be described to
be nearer to each other at tintiean timet". The meaning of the measured
velocity of a free entity is tautgloal. It only refers to a condition which can be
measured against itself. The nuraéxialue of such a measurement has no
meaning of its own without assumngpatio-temporal continuum which allows
itself such a measurement to itSeift is, the measurement of an identical
spatio-temporal interval between vents differs from one continuum to
anther and only reflects the intéspatio-temporal structure of each
continuum. The degenerating spaiogoral continuum of the totality of
gravitation, in this sense, consistan immeasurable number of continuous but
different continua. A free entityshao time element and therefore records no
velocity to itself.

4.2.2.2.3.1.2.3.3. Free entities are free and iadépnt within the totality of gravitation. The
totality of gravitation becomes mared more inertial. This means that it
becomes spatially more and moreinedfand comes to have a less and less
time element. Free entities remede fand independent, but are necessarily
confined within the totality of giitation. They are therefore free and
independent within the totality whiis spatio-temporally ever-contracting.
When this totality becomes a sirigdely in the state of inertia, it contains such
free entities. Free entities, howeeannot stay free and independent within a
body which has no spatio-temporatent. Consequently, the final stage of
contraction of the totality of greation contradicts the necessary existence of
free entities and is therefore gmifosed with a necessity to expand again. This
final stage is therefore identicéhvthe centreless Euclidean 3-dimensional
space with one and only one entilty kasts extra-spatio-temporally. The
physical spatio-temporal continulmarefore infinitely recurs between two
identical inertia systems by its omatessity. This is the 4-dimension.

4.2.2.2.3.1.2.3.4. This recursiveness is due toitgtaion and free entities. They are therefore the
most fundamental driving force of tibove recursive process. The absolute
space and time degenerates and ésdaicelativistic space and time because of
gravitation. The existence of grati@n simultaneously gives rise to the
necessity for the maximum limit @lecity. Masses with the maximum velocity
are free and independent withintthiality of gravitation and therefore
contradict the meaning of gravitatat the final stage of gravitational
contraction. This induces an expamsind therefore recursively repeats the
whole process again. Space and dirmeherefore necessarily associated with
gravitation. Gravitation is a neégsamong masses to form a single body in the
state of inertia. Gravitation themef exists only where there are masses. This
also means that space and time erlgtwhere there are masses. Therefore, the
world is the recursive totality ofgitation. Within this totality space and time
form a continuum which continuoushanges in the course of gravitational
contraction. More and more massescancentrated toward the centre of this
continuum because larger masses texigrd the centre. The contraction of
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masses causes a more and more edrdjpace and a less and less time
element ; for the state of massesimes nearer and nearer to a single inertia
system. For the same reason a nmssscto have a more and more confined
space and a less and less time elewten its velocity approaches the
maximum limit. A larger inertial mameans a smaller velocity. This also means
more and more larger inertial magsést toward the centre of this continuum.
An inertial mass and a gravitatiomalss are identical because gravitation
makes masses larger toward the €e@travitation holds only among masses.
Therefore, the world is a closedeaysand holds the conservation of energy. It
is closed in such a way that itusved toward where there are more masses.
Therefore, the natural motion oeH-accelerating mass is necessarily a curved
one. That is, a ‘curve’ is spatimpeorally a straight line in this world.

4.2.2.2.3.1.2.3.5. The absolute space and timessarly degenerates and becomes a
spatio-temporal continuum. The pbghy real space and time is this continuum
which recursively repeats itselfvbetn two identical inertia systems. The
extra-physical (i.e. descriptivepalute space and time nevertheless holds
because gravitation can be at wbakd only if masses are conditionalized.
Masses, however, cannot be conditined unless an inertia system holds in
the centreless Euclidean 3-dimeradispace. This is so because an entity or
body in the state of inertia canditonalize masses if and only if it is already
made possible for this entity or yoadl be able to move before it actually starts
accelerating itself. The extra-phgsiabsolute space and time therefore holds
only descriptively. It cannot be pltally real because as soon as masses come
into existence, gravitation is athgat work. The degenerating absolute space
and time (i.e. a spatio-temporaltzarum) is approximately identical with this
extra-physical absolute space amd tivhen it is concerned with the description
of masses and bodies with a smadioity. This is so because the total amount
of energy of a mass or body withreals velocity is approximately identical
with that of an inertial mass.

4.2.2.2.3.1.2.3.6. A singularity is the way by whifree entity appears to everything else but
itself. This is so because a frettyenannot be located in a spatio-temporal
continuum of the totality of gravitm. Therefore, the nearer the velocity of a
mass approaches to the maximumpnibre it spatio-temporally appears
singular. The motion of a mass witlarge velocity can only be dealt with
probabilistically. That is, the déption of the motion of such a mass is
inherently subject to the degreemfroximation which an ever-degenerating
spatio-temporal continuum can attaiarder to internally measure itself against
itself. The internal measuremenrd @bntinuum can only be approximate
because, on one hand, this contincaimonly gather information about itself
by the medium of masses with a larglecity, on the other, it is itself
ever-degenerating. The motion ofassnwith a large velocity can only be
described approximately and prolistiihlly because, on one hand, masses
with a large velocity appear inheleringular to this continuum, on the other,
no information can be given by ayf@mass. This singularity, however, can be
described because masses becomdasirgly in proportion as their velocity
increases. This means that whilestiieema of physics can be precise, any
internal descriptions within thisieta can only be approximate.

4.2.2.2.3.1.2.3.7. Dimensions are conditionalizedéscriptive necessities. Descriptive necessities
are extra-physical. Therefore, thdimension (i.e. physical dimension) holds if
and only if every other dimensior.(geometrical dimensions) holds
simultaneously. Every dimensionésdfiptively coexistent. Entities of physics
also can only be descriptive ergisabject to various schemata of physics.
Il - v. Schema of Arithmetic

2'. The 4-dimension is self-descriptively complatel therefore gives rise to no descriptive
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necessity to conditionalize any further dimensidol he completeness of the 4-dimension can be
seen in the recursiveness of the 4-dimensioa.4Fimension is made to infinitely recur by the
spatio-temporal incompatibility between graviatand free entities. That is, this
incompatibility can make itself compatible obly spatio-temporally recycling itself.

Everything in the 4-dimension is either a gratiithal mass or a free entity. Therefore, in this
recursive 4-dimension nothing remains undesdrdreéndescribable. The 4-dimension is a
self-contained, recursive field of space-timealilmanifests both absolute and relativistic
features in it. The 4-dimension does not netassany further dimensions and is therefore the
last one. Whatever that can be described, cdoumel in the schema of logic or in
subsequently conditionalized dimensions. Thatvery other schema can be derived from
those schemata and therefore eventually frons¢hema of logic. A derivative schema is
therefore, if it is not logical, either geomedii or physical. The schema of arithmetic is a
derivative schema and is geometrical. The thebnumbers is therefore founded upon the
schema of geometry. The meaning of a numbezdsssarily geometrical.

2'.1. Numbers are found in the 2-dimension. Numbegghe description of 2-dimensional
geometrical properties. A type of numbers stdiod a geometrical property, while a number
refers to the descriptive form of a geometrpalperty. A number is a value of a set of
variables which satisfy the descriptive formaafertain geometrical property and therefore
has no meaning of its own without a totalityihich it exists. A number is applicable to
anything if and only if a totality in which éxists, is schematically applicable to a totality t
which this anything belongs. Therefore, a nunib@ot applicable to anything which is not
schematic.

2'.2. A geometrical property relates to other geiced properties. This is reflected in the way by
which a type of numbers relates to other tygfesumbers. Only types of numbers, and not
numbers themselves, can be described that ammaore fundamental than others. Type |
and Il spaces have some common geometricabpiep. Types of numbers which are based
upon such common properties, are therefore ammmboth types of space. None of them is
more fundamental than the others because ghreperties underlie one another. There are
other types of numbers which are based upaomgtrical property of either type of space
alone. These types are less fundamental tioee tivhich are common to both types of space,
and can only be based upon the latter. Ttde isecause the difference between Type |
and Il spaces can only be described based tligaridentity. Some geometrical properties are
more fundamental than others. However, eveoyrggrical property is necessary. Therefore,
some properties’ fundamentality over othery oeflects a descriptive order of
conditionalization and does not mean that s fiesdamental one can be constructed by them.
Every type of numbers is equally necessaryusmgue. Not every numerical relation within a
more fundamental type of numbers can find aerigal value within that type and therefore
gives rise to a necessity to generate a typeimibers such that can give a numerical value to
every numerical relation in that more fundaraétype of numbers. Such a necessity cannot
be constructed, but can only be construed. iStparallel to the way by which a
conditionalization proceeds. A less fundametyia® of numbers is therefore not constructed
by more fundamental types, but generated bscassity in order to describe what cannot be
described in and by existing types. A numbesrd# type relates to a number of another in
such a way as to reflect a descriptive negegsiich holds between these two types.
Therefore, a less fundamental type can onisupplementary to a more fundamental type.

2'.3. Within the 2-dimension the following geomediiproperties can be found :

() Type | and Il spaces are both (I-i) recuesi(l-ii) symmetrical and (I-iii) infinitely
divisible.

(I Type Il space (lI-i) forms a coordinatedail-ii) derives a fictitious space, which canals
be derived from Type | space.

(1-i), (I-ii) and (l-iii) are common to both pes of space because they are the 2-dimensional

description of the 1-dimension, which is idealiy common to both types of space. The
1-dimension is 2-dimensionally described, oa band, as the boundary of Type | space, on
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the other, as the x-y axes of Type Il spac8, (I-ii) and (l-iii) also underlie one another
because the 1-dimension cannot be reducegbants in any dimensions other than the
1-dimension and therefore manifests itself afale. Only Type Il space can have a
geometrical property which is not shared byhbigpes of space. This is so because Type |
space has no spatial substances other thhoutglary itself and therefore has no
geometrically spatial properties other tharsthmentioned above. Type Il space, on the other
hand, has spatial substances which can besesgeal in terms of a relation between its two
axes. Type Il space therefore numerically dostdype | space. This is also the reason why
the derivative space of Type Il space is, degpiits identity with that of Type | space, taken
as a geometrical property which gives rise tgpa of numbers.

2'.3.1. (I-i) Type | space is recursive because dosed in such a way that any points of its
boundary can be a starting-point as welhaithe same time, an ending-point between
which the 1-dimension is 2-dimensionally désed. Type | space manifests itself as the
boundary of its own. This boundary is forntgda descriptive space which becomes
boundlessly and uniformly denser away fragrcigntre. This boundary therefore consists of
boundlessly dense points. Points are degttibbe boundlessly dense if and only if they
are dense at their limit. At their limit noipts can be distinguished from any other point. A
‘limit’ is such that a point which can be distinguished at a stage before, becomes
indistinguishable from any other point andréfore becomes distinguishable indeed as any
points. Consequently, a recursiveness i®pauty of a point such that becomes
indistinguishable and therefore becomesntjsishable as a point which becomes
indistinguishable. That is, a starting-pagnindeed an ending-point if and only if every
point comes to be identical with one anothyebecoming so boundlessly and uniformly
dense that none of them can be spatiallgudifftiative from any other. Only on this basis it
does not make sense to identify a pointiims$eof a starting-point or an ending-point. This
boundary is therefore also closed because @aént is identical with every other point and
becomes a single totality. Such an idengtursively carries a point on and along this
boundary (i.e. Type | space) in such a way ithit should be distinguishable, then it is
distinguishable only as a point which becomdsstinguishable by becoming identical with
every other point. A uniformly closed spalecerefore recurs as many times as there are
points on its boundary (i.e. boundlesslyhia sense of the limit of the countability). In no
matter what order it may recur, it resultaimidentical sequence of recursive numbers.
This is so because the identity of a poig In every other point. Type Il space is recursive
because it consists of points every one a€lwis a center. Whichever point is taken as the
centre, Type Il space remains identical. @émtre of Type Il space is therefore
transpositional to any points in Type Il spand results in an identical Type Il space. This
means that Type Il space describes itsefitidally at every centre and therefore infinitely
recurs. The meaning of the centre standthfsrrecursiveness because the centre can
represent every point by its transpositiolitgbiT he centre is made transpositional by its
two determinant intersecting 1-dimensiondsT$iso because in Type Il space every
1-dimension is identically intersectible ther 1-dimensions and therefore consists of an
infinite number of uniformly dense pointsiwo of such 1-dimensions intersect each other
and determine a space and its centre bettheem then every point in this space can be
determined by the spatial relation betweesehtwo 1-dimensions. Consequently, the
transpositionability of the centre lies irtcBuwo determinant intersecting 1-dimensions.
That is, the recursiveness of Type Il spaaepresented by every point which constitutes
these two determinant 1-dimensions.

2'.3.1.1. (0, n, n+1)" is the descriptive formtbe recursiveness. ‘Natural numbers’ are formed by
its values. A point stands for a natural bemIn Type | space a point can be
distinguished as an indistinguishable p@iet as the single totality of the boundary of
this space). Consequently, it distinguisteedf as an indistinguishable self as many times
as there are points on this boundary. Atasif®’ if and only if it is taken as the
starting-point of this distinguishabilityr’‘is a point which is distinguishable as any
points. ‘n+1’ is every point and therefotargls for all points on the boundary of this
uniformly closed space. Therefore, ‘n+1’ @e boundless. (0, n, n+1) is recursive
because any points can be this startingtpeinich distinguishes itself as an
indistinguishable point by identifying itéglith and in terms of every other point. That is,
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to every point there is a ‘successor’ beeangry point is made identical with one another
by every point’s identifying itself with emeother point. This is made possible by any
points’ initially distinguishing itself asxandistinguishable point. Once such a point is
given, then it identifies itself with such #&self recursively. Once given a ‘0’, a number
stands for such a self-identity by meana mdcurrence. The number of numbers is
therefore the number of possible recurrenebich is the number of points that form the
boundlessly dense boundary of Type | spatee#r limit. The most primitive form of

such a recursive system is the binary sysierfiype 1l space points which constitute the
X-y axes, can determine every other poigp€lll space therefore recurs if and only if the
centre recurs at every point which congithe x-y axes. ‘0’ stands for such a centre. ‘n’
is any points on the x-y axes. These pa@ntsrelated to one another in such a way as to
indicate a 1-dimensional direction. Thisdsbecause Type Il space is dynamically
expanding. ‘n+1’ stands for such a relatibhnerefore, ‘0’ recurs from one point to
another so as to comply with such an irgiexpansion of this space.

2'.3.1.1.1. If a sequence of ‘natural numbersbised by any values which satisfy (0, n, n+1),
then it can be said that there could becuence which, for example, starts from ‘3’
instead of ‘0’, and therefore that the nieg of every number in the former sequence
would differ from that of equivalent numbén the latter sequence. However, this is
possible if and only if it is already knowow these two sequences correspond to each
other. In order for this to be possible theaning of each sequence must be already
known on its own account. This means ithiatpurely a matter of agreement to choose
either of them as a standard conventitiis & so because both sequences stand for
identical ‘natural numbers’. ‘3’ may me@hif and only if it is schematically so
agreed. ‘Natural numbers’ are applicabénd only if they are accepted as a totality.
Once a certain sequence of ‘natural nusilieaccepted as a totality, there can be no
necessity to have another. That is, tleafisnatural numbers’ is self-restricted by the
identical meaning of every possible toyadif ‘natural numbers’. Therefore, it is against
the initial condition to make a same omagior ordering of groups by using two
different sequences of ‘natural numberdéss it is already known that one is taken as a
standard convention.

2'.3.1.1.1.1. The totality of natural numbers isyapplicable to ‘things’ because an ordering or
ordering of groups can only be made feotatality of units. This also means that the
recursiveness can only be found amontg.uAiunit is meaningless on its own in the
same sense that a number is meaningidssuva totality. The meaning of a unit lies
in its relation to every other unit. Aitis anything which has no meaning of its own
and depends upon one another in ordee tmeaningful. The values of (0, n, n+1) can
only be units. Units exist only in a spat space-time. This is so because while the
logical space deals with the internalctinre of an entity, dimensions deal with the
existence (i.e. external structure) otatity. The meaning of a unit in a space or
space-time therefore lies in its extere#dtions to other units. These external relations
are spatial, spatial and temporal oriegamporal relations. In a space natural
numbers are therefore applicable by meédsstances and directions. Distances and
directions give rise to standpoints frany one of which a same sequence of ‘natural
numbers’ holds. Therefore, a sequencetifral numbers can represent every such a
sequence. If a time element is added,simply a sequence of sequences of natural
numbers. Natural numbers are, howevdrapplicable to free entities because they
only relate to one another relativistizalhe describability of natural numbers is
confined to the making of an orderingpattering of groups among units. Transfinite
numbers not applicable in a space orespiate because the totality of a space or
space-time cannot be described withihtitality by any means other than the
recursiveness.

2'.3.1.1.1.1.1. In the ordinary language naturahlpers make sense if and only if the ordinary
language assumes the schema of a spapace-time. However, one of the most
fundamental characteristics of the mady language is its inaccuracy. The ordinary
language is not a schema but a ‘melpiot) of inaccurate knowledge and
superstitions based upon ‘values ef.lithe use of the ordinary language is
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confined purely within superficial comnications between or among inaccurately
and poorly programmed ‘machines’ anthéefore utterly irrelevant to the
description and understanding of therld/ (i.e. FX and its conditionalizations).

2'.3.2. (I-ii) Type | space is symmetrical. Thissbecause Type | space becomes boundlessly and
uniformly denser away from its only centreasato form its own boundary. This space is
therefore uniformly closed and is symmetri€lery point of this boundary is a
starting-point as well as, at the same tiameending-point, of a recurrence. Consequently, a
set of two and only two unilateral relatiaighis recurrence holds in and between a same
point. That is, this recursiveness is twofdldt occurs once, then it may occur the other
way around at and from a same point. It mast st where it ends and therefore ends at
where it starts, and vice versa. Therefoagnal numbers are also twofold. Type Il space is
also symmetrical because it is determinetiloyl-dimensions which intersect each other
in such a way as to manifest the uniform dems this space. These two determinant
intersecting 1-dimensions therefore relateaoh other perpendicularly and becomes the
x-y axes. Each axis therefore consists ofttalities of natural numbers. In terms of this
symmetry in Type | and Il spaces the totadityatural numbers can have two and only two
identical selves. Such two identical selviaroidentical totality can be described because
they necessarily share one and only one pbms point is the point which recurs and
gives rise to natural numbers. ‘0’ is sugtoant. ‘0’ is therefore shared by two identical
totalities of natural numbers and infinitebcurs within each totality. The totality of such
two totalities of natural numbers is ‘intelgnambers’. ‘Integral numbers’ are therefore
natural numbers in the descriptive form oheyetry. Natural numbers are designated by
means of '+’ and ‘=’ in this form. The meagiof ‘+’ and ‘-’ lies in the twofoldness of an
identical totalities. '+’ and ‘-’ are there®identical with each other if they are not refate

2'.3.2.1. Integral numbers are applicable whenthesrecursiveness and symmetry are applicable.
The two identical constituents of integraimbers are related to each other in such a way
that each constituent, while sharing ‘Otnfig a totality of its own. Within each totality, if
it is applied, as is in natural numberspedering or ordering of groups, of units, holds. In
an ordering of groups comparisons of ‘quaedi hold. A ‘quantity’ is a group of units
and may be null. It is found in a spacepace-time and is based upon a certain spatial,
spatial and temporal or spatio-temporaltiefa(i.e. a geometrical figure or solid, a
physical body or system). These relatiomsateate a quantity from other quantities. A
guantity, however, cannot be found in a &etty despite of its being the most
fundamental quantum. This is so becauseedhntity is relativistic and is incomparable.
Quantities can be compared because thejngeetotalities of units which are countable
by means of an identical form of ordering.(a finite sequence of natural numbers). A
cardinal number is a form of ordering aneréffiore follows from an ordinal number.
Quantities are more intimate to one anotyiin a same totality of natural numbers than
between two different totalities ; for edolality of natural numbers is a totality of its
own. Therefore, there are two and only tvaysvof comparison of quantities ; one is
purely within a same totality, the othebé&tween two totalities. Quantities are ‘additively
comparable’ by intimacy if they are withisame totality. That is, they are, out of
themselves, to form a totality which complgith the identity of a totality to which they
both belong. Quantities are ‘subtractivedynparable’ by unifiability if they belong to two
different totalities. That is, they are, ofieach other, to form a totality which complies
with the necessity of every totality’s bedimg to either of those two infinite totalities. An
additive comparison holds as a necessaatioalbetween two different totalities of
natural numbers. This is so because suclirfivote totalities are, seen from a finite point
of view, so distinguishable only by an irgicy among finite totalities within each infinite
totality. Subtractive comparisons are maalkesjble by ‘0’. This is so because ‘0’ is the
only number which is shared by both infiridéalities, and makes two such infinite
totalities a single unified totality. Theoe#, whatever that belongs to this unified totality
necessarily belongs to either of those mtalities. A subtractive comparison may result
in ‘0’ because ‘0’ belongs to both of thage totalities. From this it follows that

(i) given two quantities of a same infinitgality, they are a totality in this same infinite
totality,
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2'3.2.2.

(ii) given two quantities of two differentfinite totalities, in and between them there is a
totality (i.e. including ‘0’) which belon@teither of those two infinite totalities.

Quantities are additively or subtractivetyrparable essentially between two quantities ;
for comparisons of two quantities can canttiany complex comparisons. Consequently,
two quantities are the base unit of a compar There is no ordering between two forms
of ordering because they do not exist ipace or space-time. This means that two
guantities are additively or subtractivebymparable in such a way as one with the other,
or vice versa. Nevertheless there can béiaglgt or subtractively one and only one

totality out of two quantities. This is sedause there is one and only one type of intimacy
or unifiability. Consequently, a comparissradditively or subtractively unilateral and
twofold and gives rise to an identical fnfbtality in either way. The relation which holds
in and between two such identical finiteatibies is the ‘equality’ in their quantity. Two
guantities are therefore ‘equal’ if and oifilthey consist of identical constituents, whose
additive or subtractive comparison is alwag#ateral and twofold. From this it also
follows that if a quantity consists of mahan two quantities, then those constituents are
additively or subtractively comparable arekfy associative and yet result in an identical
totality. This is so because an additiveutractive comparison is a unilateral operation.
Therefore, in so far as associations doviotate this unilateralness, they do not make any
difference in additively or subtractivelymparing quantities.

‘0’ is described as the starting-poinagécurrence. However, ‘0’ is not the startingApoi
of an ordering or ordering of groups, oftsnirhis is so because the starting-point of a
recurrence can only be assumed by thergggpbint of an ordering. ‘0’ is the unit of
recurrence and underlies whatever thatdsredve. It stands for the meaning of a unit.
Natural numbers are only applied to ‘thingsd are not found in ‘things’. Therefore, if
and only if ‘things’ are units, then theall identical with ‘0’, which recurs and
reproduces natural numbers in and among.umitings’ can be units if and only if they
‘exist’ and have no self-identity. Units dherefore in a space or space-time and are
unanimously identical with one another ia fense that they can only externally relate to
one another. A unit has no self-identitydiese the meaning of a unit lies not in itself but
in the way by which it exists in a spacepace-time. The 2-dimension determines the
meaning of a unit because it is the desgggiasis of the 3- and 4-dimensions. A ‘unit’
therefore exists only in the 2-dimension amahifests itself as every point on the
boundary of Type | space and as the ceififfeye Il space. In other dimensions only
units exist. A unit does not exist withouuait’. A ‘unit’, however, cannot exist in any
ways other than it does in Type | and licgsa This is the meaning of ‘0’. If a ‘unit’ is the
meaning of a unit, then it refers to thaliot of units. Only in this totality a unit is
meaningful. In a space or space-time ‘tHiegtst only as a totality because their meaning
lies in their external relations. This me#rs there exists no single ‘thing’ to which ‘@’ i
applicable on its own. A ‘unit’ is not a fitly’ but the totality of ‘things’. A ‘unit’ therefce
can only be assumed by every ‘thing’ if amdly if they have a totality. This accounts for
the reason why there may be ‘one thing’,rinita ‘null-thing’ in a space or space-time.
Type | and Il spaces give rise to the megoiiha unit because they are the space of the
totality of a ‘thing’. That is, on one hareljery point in Type | space merges into a single
totality by becoming indistinguishable frawery other point, on the other, the centre of
Type Il space is descriptively the sole saihse in that space. ‘0’ therefore can only be
described in Type | and Il spaces. In ewher space it can only be assumed as the basis
of a unit. Consequently, an ordering or ardgof groups, of units, only assumes ‘0’. ‘0’
is always assumed by every natural numbereaery type of numbers which is based
upon natural numbers. As an integral nuniés a quantity with no units and is shared
by both totalities of natural numbers. Capsmntly, ‘0’ is equally intimate to every
number of both totalities. From this it folls that

(i) no additive or subtractive comparisofi®’s hold (i.e. every comparison of 0’s results
in 0),

(ii) an additive or subtractive comparisdrdavith any other numbers results in that
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number which is so compared, for the sarasae that O cannot be additively or
subtractively compared.

2'.3.2.2.1. Quantities other than 0 consist ofia@munits. The minimum of such quantities is
additively or subtractively the descrigtivasis of every number other than 0. This is so
because every number other than 0 caomstricted from such a minimum quantity
by means of additive or subtractive corigmens. A quantity with no units, however,
cannot be constructed by the subtractiveparison of this minimum quantity ; for
every subtractive comparison assumegythasitity with no units. This minimum
quantity is a quantity with only a unitdais the successor of 0. Such a quantity is +1
and —1. Both infinite totalities of naturumbers can be, assuming 0, constructed
respectively from +1 and -1 by means afitace comparisons.

2'.3.2.2.2. Within a group of n units there ar@assible orderings. However, their form of
ordering remains identical because umisadl identical in their meaning. Such as
distances and directions are only exteiméiis identical meaning of units and
therefore bear no influence on the wawhich an ordering is made among units.
Consequently, units are identically cobigan a group. That is, their form of ordering
remains identical whichever unit is takerthe starting-point of an ordering.

2'.3.3. (l-iii) The boundary of Type | space cotsiaf a boundless number of points which are
densest at their limit. This means that qumihts are related to one another in such a way
that between any two points there necessaxists at least one point. This is so because
this boundary is a single totality and therefdoes not contain a space between points. The
x-y axes of Type Il space are also infinitehd uniformly dense and therefore consists of
points which are related to one another éndime way as above. This is so because a point
is conditionalized by two intersecting 1-dm@®ns, neither of which has any width. Even a
portion of a 1-dimension is therefore intetd®e by an infinite number of 1-dimensions.
Consequently, a point can only occupy amitd@simal portion of space. This means that
between any two succeeding natural numbereg thxists an infinite divisibility. That is,
this infinite divisibility between two idewtl recurring points stands for the spatial
magnitude of a point. The magnitude of a poam only be relatively determined. This is
so because the meaning of a point is nedbssgational and therefore underlies that of
every other point. This also means that atpzannot be described to have a size if it is on
its own. An ordinal natural number is therefmarked by a point whose magnitude is only
relatively determinant. A relatively determint point is, however, not itself divisible and
therefore stands for the unit of the infirdigisibility. It can therefore be a unit which
constitutes a quantity. The infinite dividityi of a cardinal number therefore stands for not
any divisibility of a unit but the descriptiform of the relatively determinant magnitude of
a unit. That is, a cardinal number is inBhjtdivisible so as to descriptively manifest the
magnitude of a unit which is the basic cdustit of a quantity referred by that number. The
meaning of a division of a cardinal numberéiore lies not in itself but in its relativeness
to every other division. A fraction is itselfily a relative quantity and is meaningless on its
own. The quantity of a division can only kesdribed in its association with natural
numbers and therefore essentially with adeliiomparisons of +1 or —1. it is for this
reason that if a natural number is infinitdlyided, then that number comes only as the
limit of the additive comparison of that nuenis infinitely divided selves. That is, a natural
number and the additive comparison of itgitdly divided selves are not equal but only
approximately associative unilaterally frdme former to the latter. This is the meaning of a
limit. Integral numbers are the unified tatabf two totalities of natural numbers.
Therefore, if the infinite divisibility holdsetween natural numbers, it also holds between
integral numbers. Integral numbers with thignite divisibility constitute ‘rational
numbers’. An identical and infinite numberrafional numbers holds between any two
succeeding integral numbers. In an infinit@lity a part is therefore equal to a whole.
Every rational numbers can be presentedramassociated with the magnitudes of
integral numbers and is called a fractiomaflonal number is always a fraction of an
integral number.

2'.3.3.1. A rational number consists of an integrahber and its divisor, which is any natural
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numbers. The magnitude of a rational nunfibsrin its association with an integral
number. Therefore, a rational number is etpuan additive comparison of an integral
number and any divisions which hold betw@eamd +1 or 0 and —1. This is so because
between any two succeeding integral numaerislentical infinite divisibility holds.
Between 0 and +1 and also between 0 andlis1nfinite divisibility holds in such a way
that it is always a division of +1 and —fbr, if an infinite divisibility stands for the
manifestation of the magnitude of a unigrtta quantity with no units has no such
divisibility. This means that any divisioos0 remains 0. The meaning of a division lies in
progression. The divisions of +1 and -1 pesg infinitely toward 0, as divisors increase
infinitely in their magnitude. This progré&ssis necessary because the possibility of a
division implies the possibility of everyhet division. From such progressive divisions of
+1 and -1 +1 and -1 must be constructedntgdalitive comparison of those divisions.
However, this is not possible by means oddditive comparison if the magnitude of a
divisor becomes infinitely large. The meanaf a ‘multiplication’ lies not in its being a
shorthand of an additive comparison butsrbeing able to make an additive comparison
possible without actually enumerating wisaoi be additively compared. That is, a
‘multiplication’ means the inverse of a diwin (i.e. the totality of whatever that is
divisible) and is therefore applicable ty aational numbers. However, the sense of a
‘multiplication’ remains identical with thaf an additive comparison. A multiplication is
therefore commutative and associative. Anitiplications by 0 or of 0 remain O ; for O is
not divisible. Any multiplications by +1 etl or of +1 or —1 are equal to a number which
is so multiplied or multiples ; for +1 and are the unit of units. On one hand, they are the
unit of divisions, on the other, they are thnit of quantities. Any multiplications of a
negative number by a negative number résatpositive number. This is so because
every number other than 0 is necessariheeipositive or negative. This means that if a
negative totality is divided into a negatimgegral number and a divisor, which is positive,
then by the sense of a multiplication ab@thand of an additive comparison this same
negative totality cannot be divided into tmegative constituents. This only leaves the
necessity that a multiplication of two négatonstituents results in a positive totality, in
the sense that, otherwise, there can beffevehce between positiveness and
negativeness. An additive or subtractive garison of two multiplications is identical

with the multiplication of a common consgitu of those two multiplications by the
additive or subtractive comparison of wisaeft of those two multiplications. This is so
because while an additive or subtractive ganmson holds unilaterally between or among
two or more totalities, a multiplication dslin a same totality.

2'.3.4. Three types of numbers are generated hgsadgeometrical properties which are common
to Type | and Il spaces. Type Il space diffieom Type | space in the sense that it is not
empty. Type Il space is descriptively presdriy two perpendicularly intersecting lines
(i.e. the x-y axes) which consist of poirmsl @xtend infinitely. The x-y axes represent and
embody every number so far generated. Pesitid negative rational numbers embrace the
meaning of natural and integral numbers. & because, on one hand, natural numbers
are incorporated into integral numbers, @ndther, rational numbers assume integral
numbers in the sense that an infinite divlisjholds between any two succeeding integral
numbers. Consequently, the x-y axes marnifieshselves as two intersecting sequences of
rational numbers. Everything in Type |l spaae be described by means of numerical
representations of spatial relations whichl li@tween the x-y axes. The two sequences of
rational numbers intersect each other in sualay as to represent each other’'s symmetry.
Therefore, their intersection holds at ‘@ is also the centre of Type Il space. Every point
in Type Il space can be represented by agbaational numbers, each from each sequence.
However this, within itself, holds an indebable. That is, while the area of a square can
be described by a rational number, not emergber which give rise to this numerical value
of the area of a square, can be represegtaddtional number. Such numbers are
‘irrational numbers’. ‘Irrational numbers’arefore refer to a certain spatial relation
between two intersecting sequences of rdtimmabers. These two sequences of rational
numbers have a geometrical necessity toset¢reach other and to spatially relate to each
other. This necessity is, however, not emdxldry geometrical properties which give rise to
natural, integral and rational numbers. timaal numbers’ are the description of this
necessity and therefore cannot be locatea seguence of rational numbers. This is the
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reason why the solution of quadratic equati@sults in square roots which are in general
not rational. ‘Irrational numbers’ hold be®vetwo spatially related sequences of rational
numbers and therefore can only be describégags’ on a sequence of rational numbers.
Such a ‘gap’ is only ‘pointed at’ as whatggibetween the upper limit and lower limit of
two infinite, regular sequences of rationainbers which have an identical limit by
infinitely converging toward this limit frompposite directions on an identical sequence of
rational numbers. Positive and negative naimumbers together with such ‘gaps’
constitute ‘real numbers’.

2'3.4.1.

Mathematical dimensions extend to n witlamy geometrical necessities. Therefore,
irrational numbers are not confined to squants.

2'.3.5. Type | and Il spaces derive a common izt space by contradicting themselves from
within themselves. This derived space istftais and, on its own account, serves no
descriptive purposes other than its own rfietéious existence. However, in its relation to
Type | and Il spaces it describes that thesetypes of space are related, in a way other
than that in terms of the transcendenceath ®ther in such a way that they are identical if
and only if they assume themselves conti@tieir own fundamental characteristics. This
derived space, however, can only be givemype Il space when numbers are concerned.
This is so because in numerical terms Tyggake is contained in Type Il space. Rational
numbers are represented in Type |l spacadh a way as to generate a new type of
numbers, while they remain on their own ipp@&y space. Therefore, on one hand, Type |
space is included in Type Il space in terifithe applicability of numbers, on the other,
they are identical in terms of the meaninguhbers. This is so because irrational numbers
hold as a spatial relation between two irteting sequences of rational numbers and
therefore need not materialize themselvesittametical entities. If Type Il space is
identical with Type | space in such a wayesncompass it without differing from it in
meaning, then that fictitious space is nuoaly described to be derived only from Type Il
space.

2'3.5.1.

2'.3.5.2.

This derived space is fictitious anchisréfore not necessitated by itself. The necegsity
this derived space lies in the possibilityassuming a space contrary to its fundamental
characteristics. A space can assume itealfary to its own characteristics if and only if
such an assumption is not partial and tioeedEads itself to a new, independent space. A
space and its derived fictitious space al&ed to each other in the same way as T and F ;
for their meaning lies in each other’s estigte and is, in itself, identical. The only
difference is that, unlike T and F, thidifious space has no descriptive necessity of its
own and therefore can only be initiated lypd'| or Il space. This space is not the
description of something which cannot becdbed in Type | or Il space. Consequently,
the necessity for this fictitious spaceas$ direct and is therefore not geometrical. This
fictitious space is therefore not a conditiived space but an internal self-description of
Type | or Il space. Therefore, the geomatnwoperties of this fictitious space can only
be identical with those of Type | or Il spdn such a way that they are the supposition of
an adversative to the latter, based upogithen meaning of the latter. In terms of a
numerical applicability this fictitious spacan only be derived from Type Il space ; for
Type Il space is identical with Type | spaoet has a wider numerical applicability. What
makes Type Il space geometrically diffenfrdype | space is numerically represented as
irrational numbers. This means that the egjipn of Type Il space contrary to its
fundamental characteristics, is identicahwine supposition of an adversative to the
describability of irrational numbers. Thatiff irrational numbers assume themselves
contrary to themselves, then it resultsnradversative such that cannot be described by
irrational numbers, but is based upon thanimg of irrational numbers.

Irrational numbers can be described éisdlgras positive or negative square roots of
positive rational numbers. This is so beeatsy are, if squared, necessarily positive in
accordance with the meaning of the multgilmn of a same number. Consequently, the
adversative in the meaning of irrational bens lies in numbers such that are, if squared,
not positive but negative. Such numbers otiba described by irrational numbers, but
are based upon their meaning. These nunalbergmaginary numbers’ and are positive or
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negative square roots of negative rationahlmers. This means that an imaginary number
is the multiplication of a positive or neigatreal number and the positive square root of
—1. This positive square root of -1 is tliere the unit of imaginary numbers.

2'.3.5.2.1. Imaginary numbers therefore form a eage, which is symmetrical, infinitely divisible
and extends infinitely. This sequence, &y, cannot be represented in Type Il space ;
for no real numbers can describe imaginaimbers, and vice versa. Imaginary
numbers differ from every other type ofmbers so far generated. Every other type of
numbers relate to one another in suchyathat the meaning of a preceding type is
always included in a newly generated typ@wever, this does not apply to imaginary
numbers because imaginary numbers aréfispélg designed so as to be contrary to
the meaning of existing types of numbbBraginary numbers are, however, related to
real numbers in such a way that once gitrezy coexist with real numbers. This is so
because their meaning lies in each otled'stence and is, in themselves, identical.
This coexistence is therefore the numénemifestation of the relation between Type |
or Il space and their common derivativacsp If real numbers and imaginary numbers
coexist, then a sequence of real numbedsiat of imaginary numbers have a one-one
correspondence between them ; for bothesszps are symmetrical, infinitely divisible
and extends infinitely. This one-one csp@ndence necessarily complies with the
symmetry of each sequence and is theréfatold. A twofold, symmetrical one-one
correspondence has a point at which itsnsgtry can be described to hold. This is
parallel to two intersecting sequencesatT by their twofold, symmetrical one-one
correspondence a sequence of real nurabdrghat of imaginary numbers can be
described to intersect each other anckterthine a space between them. Such a space
is the space of ‘complex numbers’. A ‘cdaxpnumber’ stand for a point which can be
determined by a one-one correspondeneesketsuch two intersecting sequences. The
unit of imaginary numbers can only be diegd in this space of complex numbers and
results in the numerical manifestationhaft derived, fictitious space, which is finite,
uniform and closed. If this unit is negatia same description still holds, but now
becomes twofold. The space of complex remnis a space in which Type Il space and
its derived space numerically coexistuatsa way as to show the derivability of the
latter from the former. The latter is tfere not presented in this space, but can only be
described in it. Complex numbers numelya@present the form of derivability in the
sense that they can describe that derfietifious space, based upon the numerically
processed Type Il space. Complex numbergaplicable whenever the form of
derivability holds. The space of complexnbers is the space of derivability.

2'.3.5.2.1.1. The form of derivability, for examplelds in time. This is so because time is derived
from space and from within space by aresghtive generated from within space.
Complex numbers are therefore applicabtbe description of time. Time is
represented in the description of the ahimaginary numbers.
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IV. Art ; The Manifestation of FX

1. A language without a standpoint is an art (\&itthouble meaning). If the logical space and
dimensions are the self-description of FX, therissthe manifestation of the wholeness of FX.
The self-description of FX is based upon the prgpof FX, which is identical with the
self-imposed necessity of FX to describe itsglitbelf and for itself. The wholeness of FX is the
existence of such a FX, which, if it is to be erslood, must be described through a
demonstration. However, a demonstration is nettidal with what is demonstrated. A
demonstration is an intrinsic property of whatetat exists. The property of being describable
and understandable is a tautological relatiowben what is existent and what is demonstrable.
The world is itself a demonstration and is therefdescribable and understandable by itself,
based upon its own necessary property. Consdyguehitever that is describable and
understandable, relies only upon itself for ks&nce. The wholeness of what is describable
and understandable, is therefore whatever thaeisent. Art is not a way of presentation but the
existence of whatever that is present in whatessss. The language of art is not describable
because art is not a demonstration. It is thguage of art itself that is an art. A work of art
cannot be described, but can only be seen ifatttiehat what sees it and what is seen are one
and the same (i.e. FX). What makes somethingri afoart, is merely the fact that ‘I’ and this
‘something’ are indeed identical. Therefore, &img can be a work of art if and only if ‘I
project ‘myself’ onto it and am therefore propty it onto ‘myself’ ; even a lying stone or a
falling leaf can be itself a work of art. Sucprajection is the language of art, which is bilater
and is therefore the manifestation of a wholenglsrefore, art is the way by which whatever
that exists, exists in that very way.

1.1. Art cannot be seen on or in or through mdtedad by materials. Art is the identity of
whatever that sees and is seen, and theréésrarlywhere except in museums, concert-halls
and libraries. The purest form of art is theality of the transitoriness of manifestations of a
wholeness, which constantly comes and goésthe distortion and, moreover, destruction of
art to try to catch and preserve it by matariahns. Whatever that is caught and preserved by
whatever means, is only half rotten stalenfess) which, if it is well-caught and -preserved,
its former liveliness can only be glimpsed sttee sadistic torture of the ‘intellect’ (i.e. the
self-describability of the world) which desdnly tries to reconstruct it despite of its
non-descriptiveness. Art cannot be describéé.l@nguage of art is the transitoriness of
moments of a wholeness, whose ‘beauty’ can baliappreciated’ at best by letting it come
and go. Art in a degenerate sense has littttaith art in the above sense. Art in a
degenerate sense relies upon materials andispetures of materials, which not only
imposes limitations upon itself as to what &doéd moments of a wholeness can be caught and
preserved, but also become impure in the siase¢hey are ‘ours’ of 'ours’. Anything is
‘ours’ of ‘ours’ if and only if it is filteredhrough and by the wholeness of ‘our language’.
‘Our language’, if it is not schematized, ord§lects limitations of its user-machines (i.e.
human body-mind machine). This is so becaugé prnogram, and are programmed by, ‘our
language’, so as to utilize ‘our’ given spatiad temporal limits to ‘our own’ maximum
spatial and temporal benefits. ‘Our languageherefore itself the language of art by which
its users attain a wholeness to their speeifit which is limited and imposed as a description
of the world. Humans are a way by which FX rfests itself based upon its wholeness and
are themselves a work of art. Art in a degeteesanse is ‘our art’ which is expressed by
means of ‘our language’.

1.2."as a FX and ‘I' as a human are only nosatively identical and therefore have
descriptively nothing to do with each other. il&lthe former ‘I’ can understand whatever that
exist, the latter ‘I', if it is so understoad,a mere existence which complies with its
necessities. An existence necessarily compiiggsits necessities and is therefore embedded
with a wholeness. It is therefore itself a woflart. Consequently, ‘our language’ is twofold ;
on one hand, it complies with its innate neitgssid schematizes itself, on the other, it can be
taken as such an existence. Every innate nigcesilentical and gives rise to an identical
demonstration. ‘We’ and ‘our language’ are #fiere internally identical. An existence is
based upon its wholeness. Every wholeness easdpciated with every other wholeness as a
description of the world. ‘We’ make the worlslir world’ through ‘our language’. Therefore,
the wholeness of ‘our language’ is associatigd 'wur wholeness’ in the sense that ‘we’ and
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‘our language’ are manifested in each othehsleness as a description of the world. ‘We’
and ‘our language’ interact toward a common &mds to be a description of the world (i.e.
S0 as to exist for the sake of an existendergpas an existence is imposed). ‘Our language’
is not descriptive as an existence ; for amglaxists either by describing itself or as such an
existence. On one hand, ‘we’ and ‘our langu&g&st as an existence if the world describes
itself, on the other, the world exists as aisterce if ‘we’ or ‘our language’ describes itself.
‘We’ use ‘our language’ in the former senselider to describe neither the world nor ‘us’ but
‘ourselves’. It is therefore not descriptivedads itself a work of art. ‘Our language’ in the
latter sense is identical with anything ; fdratever that exists is anything and described.itsel
Every self-description is identical becausergugnate necessity is identical.

1.3. The existence of the ordinary language (@et language’) lies in its use and therefore in the
existence of its user-machines. The use obttimary language results in a meaning which
can only be ‘appreciated’ in terms of its whnass and therefore by means of ‘ourselves’,
which is to see its specific end as a desoniptif the world. Every existence (and therefore
including such an existence as ‘ourselves’)itsaswn spatial and temporal limits imposed by
the way by which it exists in its wholenesseTise of the ordinary language gives rise to a
meaning which coincides with such limits. Thppreciation’ of such a meaning is the
manifestation of ‘our’ limits, which are setfiposed upon ‘our’ existence as a description of
the world. ‘I' as a human therefore apprechatman art because ‘my’ limits are identical with
those limits which are so imposed upon whatévarr ‘appreciates’ what ‘I’ appreciate. Art in
a degenerate sense derives itself from thenargdianguage, which is itself a work of art. Its
form of derivation is merely the disintegratiofithe wholeness of ‘our limits’ into the totality
of ‘our’ sets of a limit. Whatever that is bdagon such a form is therefore dependent upon
one another for its ‘appreciation’ ; for it che ‘appreciated’ if and only of it integrates Itse
back into the ordinary language. No single huaa can be ‘appreciated’ purely on its own
merits. The cause of such an ‘appreciatiofdus’ wholeness. The ‘appreciation’ of an art
lies in its embodiment of a human limit whishsingled out by that art and therefore makes it
more explicit for its need to reunite itselthvevery other limit. The ‘appreciation’ of artén
degenerate sense is identical with ‘our’ hum@stence which is so united by ‘our language’.

1.4. ‘My’ being as ‘I' am, is so caused by ‘our tprage’. However, ‘I’ describe and understand not
by ‘our language’ but by ‘my’ self-imposed nesiy. In this sense ‘our language’ is ‘myself’,
which exists and complies with FX. ‘My’ comphg with FX and ‘my’ being as ‘I’ am,
amount to say that ‘my’ describing and undeditag whatever that is existent, includes ‘me’,
but not ‘myself’. ‘Myself' can only be postuét from ‘my’ describing and understanding
whatever that is existent, which includes ‘méierefore, ‘myself’ is FX, which is a
wholeness self-imposed with a self-decribabiliflyself’, however, exists regardless of ‘my’
describing and understanding. This is so bexdydike everything else which is existent,
describe and understand according to an immetessity. This is the way by which the world
exists. If ‘myself’ is an art, art in its putderm cannot be descriptive ; for it can only be
described by its innate necessity and scheesaifizelf. Such a description, however, does not
represent a wholeness because a wholenesst tenseen from within a description.
Therefore, the very act of trying to describe anderstand art, distorts and destroys it. Art is
then a pseudoscience. It thus comes to bettaughiversities and becomes subjects of
examination, which are answered and markedhdset with an academic understanding of art.
Universities no wonder produce thousands dditgretists and writers.

2. The meaning of the ordinary language lies imitsleness. This means that no formal
systematization of the ordinary language can teavery meaning of the ordinary language ;
for the description of a whole is more than thfadll its constituents. A whole cannot be seen
from within the description of all its constitusrunless the completeness of all its constituents
can be described. Such completeness, howeverptthae described purely within a whole
unless every part of a whole is evaluative imteof its consistency with this whole. However, if
there is a means which enables a part to destsi#déto be consistent, then there required to
exist another means by which this means, beswitdelf a part, can be described to be
consistent. This therefore results in an infingrogression and the disintegration of a whole.
Consequently, if a whole is indeed complete, tihenwholeness of such a whole cannot be seen
from within that whole. The ordinary languagestxion its own and cannot have any appeals to
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any schemata, which might make a sentence eixgduiatcomparison to what is referred to by
that sentence. In the ordinary language the mgasfievery sentence holds by appealing to the
wholeness of the ordinary language, which coegidith the wholeness of human existence.
That is, a sentence can only mean something jpyading to a human wholeness. The ordinary
language is therefore, in its pure form, destuiiy non-productive in its applications. By
contrast the meaning of a schema does not lts iholeness ; for a schema is not the
description of a whole but a part of the demaigin of a whole. For this reason the consistency
and completeness of the schema of logic cantlmlyemonstrated, but cannot be ‘proved’. That
is, RAA is not described but conditionalized lthepon a descriptive necessity and therefore
cannot be ‘proved’ within the very structure ihigh it is a part. In the same sense truth-values,
if they are not simply borrowed from nowhere, eoim be on the same descriptive level as
operators. Therefore, the ‘proofs’ of the comsisy and completeness of the schema of logic are
themselves no more than a part of that schenparfof a schema assumes the wholeness of that
schema and is therefore based upon the deseripdivessities of a wholeness (i.e. FX), while a
sentence of the ordinary language assumes thie whordinary language in order to be
meaningful.

2.1. The necessity of a schema cannot be deschibeédan only be demonstrated. This is so
because except by descriptive necessities tha@@hing by which such a necessity can be
‘proved’ to be necessary. If, however, thereudth be, its necessity must also be ‘proved’.
Therefore, a necessity can only be demonstrateéd amounts to say thaf'‘is meaningless.
Necessities in a schema can only be showhégdntinuity of self-description (i.e. by the
fact that nothing is borrowed from nowhere).déblogic is completely meaningless unless it
is taken as a demonstration (i.e. unless itstanv its descriptive necessities). This is also to
say that only what is demonstrable, is demab#tr; for nothing is demonstrable unless it has
a descriptive necessity, which can only beioaiggd in the self-describability of FX.
Consequently, intuitionistic logic is complgtsluperfluous. The meaning of a variable is in
its descriptive necessity, and not in its "eaiwhich can only be conditionalized after the
schema of logic is completed.

2.2. If the ordinary language is not meaningfultypbcable in its pure form, then no schemata can
be derivable from the ordinary language irpitse form. This means that whatever may be
derivable as a schema in addition to thoselwaie conditionalized, it can only be a
descriptive interaction between existing ofid® space in which such interactions take place,
is the applied ordinary language. The applietinary language is, while the ordinary
language is purely subjective, an ordinary lege which is made pseudo-descriptively
communicable by the universality of schematge ealization of this pseudo-describability
results in such derived schemata as prediogte &nd many-valued logic. Descriptions by
this pseudo-describability result in pure apgleed sciences. Neither is, however, of any use
in describing the world. This is so becausg tive descriptively superfluous in the sense that
they can always be reduced into more fundarhents (i.e. conditionalized schemata).

2.3. For example, if entities, masses or bodiegereped in accordance with varying spatial
and/or temporal relations and are describech&gns of the schema of logic, it yields
predicate logic. Alternatively, if numbers g@uped in terms of types, relations among types
and properties within types and are descrilyeghéans of the schema of logic, it also yields
predicate logic. Many-valued logic follows iargllel to the conditionalization of the schema
of physics. That is, the logical space, onaemeted, becomes relativistic to itself and is
itself neither ‘true’ nor ‘false’ ; for T and feaningfully exist only within the logical space.
This property of being neither T nor F is usedescribe the logical space in the parallel way
by which spatio-temporal continua are descrivgdin a spatio-temporal continuum. The
logical space, if it is taken as its own spdmsomes its own constant, whose meaning is the
‘undecidability’. This ‘undecidability’, howevecan only be so meant if and only if it is seen
from the inside of the logical space, in whidbne everything is describable in terms of T or
F. The relation between the logical spacesiinside and that in its outside is parallel td tha
of the recursive space-time. That is, liketthe extremities of space-time the decidability and
undecidability cannot be related to each ollyemegation. They are mutually transformative
and therefore generate a new form of descriptidnich is based upon the decidability in the
same way by which space-time recurs betweendemtical inertia systems. The interaction
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between the schema of geometry and that dfraetic results in pure mathematics, while that
between the schema of physics and pure matfesmasults in applied mathematics and pure
physics. If applied mathematics or pure physicgpplied (i.e. if a ‘model’ is made from
applied mathematics or pure physics), it becareapplied science. A ‘model’ is
descriptively not necessary but arbitrarys Itd bind the general system of applied
mathematics or pure physics by certain numilyitanslatable and materially (i.e.
4-dimensionally) interpretational constraintsagpropriate to bring the human wholeness to
its specific end as a description of the wolébdels’ therefore reflect the human sense of
‘values’ (i.e. the human descriptions of thelwess). Constraints vary in accordance with what
is necessary and available. For example, sn@pplied science as aeronautical engineering
may disappear (i.e. become unnecessary) wiediftthg and moving of a body come to be
based upon a different principle such that daggequire a consideration into an air flow or
that does not depend upon chemical reactionsnt&raction between schemata is possible
because no schemata are exclusive of one andtierefore, if humans have an ability to
describe themselves so as to bring themsedviieir own specific end, then such interactions
may take place as human operations. HowevieGiples in applied sciences can be reduced
into those in pure sciences. Principles in [@aiences can be, in turn, reduced into those in
conditionalized schemata. Humans are a waytighnthe world describes itself in
accordance with the descriptive necessitidaxoénd within the schema of physics.
Therefore, the description of humans by hunisatready written in the schema of physics by
the self-describability of FX.

3. Metaphilosophy : Philosophy is not an art inskase already referred to. However, it may be,
in its own right, said to be the art of descoptivith a definite form, which makes it distinct
from every other art. It is the self-portraittbé atomic symbolic form, which takes itself as its
own form of description. Therefore, the wholegamtation of a philosophical system is the
descriptive manifestation of the atomic symbédian itself. The language which is employed in
a philosophical system only has a definite meaama whole. This meaning is namely the
demonstrative reference to the atomic symbolimfiiself. What amounts from this whole
description is only a tautology ; the atomic sytitbform is the world, and vice versa. This is
only tantamount to a single universally quandifieference to the atomic symbolic form and is
therefore only demonstrably meaningful and jigdtie. A philosophical form is therefore the
demonstration of a whole, which describes itSetie art of description with a philosophical
form is not an arbitrary construction but the ifestation of the standpoint of a description in
itself. Such manifestation is a self-descriptikris an art because the wholeness of a
demonstration can only be justifiable within tdatmonstration by the fact that nothing remains
undescribed. However, a demonstration itself oabe demonstrated for its justification. It can
only postulatedly claim that it follows its owourse which it sets for itself and by itself. Tiat
the validity of the atomic symbolic form liestime atomic symbolic form itself.

3.1. Philosophical methodology : Philosophy is eotiess, and everything else but philosophy has
a definite content, namely philosophy. Phildspfs a pure contentless science. It deals with
the method of description. The method of desicm is the only and very subject-matter of
philosophy. The method of description can leashas the description of a description. This
is so because a description is made possiblleebgroperties not of the contents of a
description but of a description itself. No ci§igtions can describe its own properties without
falling into an infinite retrogression. Conseqtly, an investigation into such properties can
only be based upon a postulation. A descrigsonsible only when it has contents. A
description without contents simply ceaseset@ lnescription because there is nothing to be
understood in that description (i.e. becauseetis no necessity for it to exist). Therefore, th
existence of a description is postulated tadkatical with whatever that can be described. If
there exists a description, and if this exiseecannot be refuted, then the properties of a
description are identical with the describaypitif whatever that is describable. This
describability is the necessary property of vibaecessarily existent ; for it exists nece$gari
on its own. The description of such describighi the demonstration of its existence, based
upon nothing but itself. Therefore, philosogay only be a demonstration (i.e. the
demonstration of method). The standpoint oéscdption in itself lies in its own postulated
existence. The postulatability of such an exise lies in ‘oneself’, which is necessarily either
to understand something or not to understagtheny. If the latter is the case, then no
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arguments follow. If the former is the caserthvhatever may follow, it is describable and
understandable solely on the ground that &texSuch an existence is a descriptive existence
and has no contingent properties ; for sucexastence is necessarily describable to be only
existent and is only so describable. Such @tence is ‘oneself’, which is, in order to
understand something, understood to exist asdte property of understanding something
(i.e. including ‘it’, but excluding ‘itself')This ‘itself’ can only be the whole of demonstratio
The property of understanding something istidahwith the property of something’s being
describable ; for a description is a descriptfand only if it is by itself understandable.érh
contents of a description is, whatever they iaythe concern of particular sciences. If
anything is left for philosophy, it can only femething which sciences cannot, and are not
equipped to, deal with. Sciences may not devdeductively, but are always formulated
deductively. Consequently, that from which scies are descriptively deductive, goes beyond
the scope of sciences. This and only this lyda the domain of philosophy and results in
the description of a description. The ‘proaft this is a philosophical demonstration. That is,
if there exists philosophy, it can only be st&nce of sciences and is also an art in the sense
that it is the manifestation of a whole, andlthe descriptive presentation of a part. A
philosophical demonstration is not arguments@ances but the exhibition of sciences and is
therefore also the embodiment of art.

3.2. Language : The description of a descriptidmaised upon the self-describability and therefore,
by and for itself, sets its own conditions efriy a description. Such conditions are
descriptive necessities. The language as tlamsnef descriptions is whatever that satisfies
those descriptive necessities. It is the stinecbf a whole. The ordinary language is the
wholeness of a whole and therefore can onlappreciated’ in its entirety.

3.3. Philosophy in its very degenerate sense (biu$m degenerate as to mean what is conceived to
be philosophy by professors of philosophy, wigre once good at examinations and are now
good at marking them, of which answers are toestd in their admirably profound
encyclopedic brains) is a human art in the eséimat it is not descriptions by descriptive
necessities but a literature, which cannotappreciated’ on its own. A philosophical theory
without descriptive necessities is purely adrit and therefore assumes a human wholeness
for its ‘appreciation’. That is, it is neithardemonstration nor a description but an appeal to
what is taken for granted as a human existenite wholeness. Such an appeal is always
piecemeal. This is so because a whole cantmnfyresented by a demonstration (i.e. by
descriptions in a demonstration). Otherwisghidosophical theory can only be based upon
some standpoint which, if it is not that ofesdription in itself, can only be that of a
description or of art. If the former is the eathen it is a science, and not philosophy. If the
latter is the case, then it is merely a wahjch the world describes itself in accordance
with descriptive necessities and is therefaritime description of the world but a ‘face’ of the
world. The arbitrary construction of a theogwvar presents the world in its entirety and
therefore always assumes parts which are msepted. A human existence is a ‘face’ of the
world.

4. Anyone who try to describe FX via his life, iz artist. The greater the approximation between
art and life, the greater artist he is. At tmeitiof approximation, however, he will destroy
himself ; for an artist himself remains undesedmtherwise. Part of life, that is a describer,
have to remain so if he is to describe at allsThthe very part that cannot be described wholly
The describer, if he should manage to describmséif, will need an audience. This audience is
the wholeness of FX, if there is one. A ratioadist can only be a failed artist ; to the extamt
artist is there to describe something, he can faill The essence of art is a failure to be
appreciated. Only in true art art merges intatddaut an artist will never see it. For an audéenc
it is a demonstration of the undescribed FX.

4.1. A non-descriptive entity is a mystery, whitht remains non-schematic, is only to
demonstrate. Undescribed, non-logical FX dernates life by death ; for the ultimate work
of art can only be life itself. That is, thex@nnot be any sane artist if he tries to describe
something that is not logically describable.

4.2. There are only three kinds of human existercdescriber, who is either a schematizer or
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doomed-to-fail philosophizer, a manifestor, vidhan artist, whose medium of expression is,
if he is sane and mediocre enough to want tebegnized, synchronous appeal to
communality, and an audience, which is a si@mtner (a receptacle of FX shared through
the ordinary language). The last category amsif almost entire human existence including
notational technicians, paradigm refiners, albed ‘scientists’, data gatherers, historians of
ideas, philosophy teachers, arty craftsmergarmercializers and all those who exist for the
sake of existence - pejoratively but revealirgdlled economic animals, but it is nevertheless
indispensable for the first two categoriesxiste They together form the wholeness of FX.
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