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Abstract

It is nearly impossible to open a textbook on Newtonian mechanics
without encountering the concept of inertial frames: the frames that
are privileged by the theory’s dynamics. In this paper, I argue that
extant definitions of inertial frames are unsatisfactory. I criticise two
common definitions of inertial frames: law-based definitions, according
to which inertial frames are simply those in which the laws are true,
and structure-based definitions, according to which inertial frames are
those that are ‘adapted’ to spatiotemporal structure. I then offer a
new, symmetry-based definition of inertial frames. This definition of-
fers a non-conventional way of specifying the dynamically privileged
frames. The result clarifies the foundations of Newtonian mechanics
and accounts for the empirical success of coordinate-dependent formu-
lations of it.
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§1 Introduction

But no person whose mode of
thought is logical can rest
satisfied with [Newton’s law]...
How does it come about that
certain [frames of reference]...
are given priority over other
[frames of reference]...? What is
the reason for this preference?

Einstein (1954, pp. 71–2)

1 Introduction

Newton’s laws are not just true (insofar as they are true) tout court. Rather,
they hold true within certain frames of reference: ‘inertial’ ones. Consider a
coordinate-dependent formulation of Newton’s second law: F = ma. With-
out further information, this is incomplete in the same way that the state-
ment “the house is on the left” is without further context: a point of view
is required to evaluate this expression. In the case of Newton’s laws, this
‘point of view’ is a frame of reference (hence the expression, sometimes used,
of ‘referring’ the laws to a certain frame). The full statement of the theory
is: within (and only within) the inertial frames, Newton’s laws are satisfied.

I claim that the usual definitions of inertial frames are insufficient to
‘complete’ coordinate-dependent formulations of Newton’s laws. I will dis-
tinguish two types of definitions. On the first, inertial frames are grounded
in the laws: they are those frames in which Newton’s laws are satisfied (§3).
This definition is too liberal: for almost any world there exists some frame
of reference in which Newton’s laws are satisfied. On the second type of
definition, inertial frames are grounded in spatiotemporal structure: they
are frames that are ‘adapted’ to said structure (§4). Again, however, almost
any world turns out to satisfy the laws in some adapted frame. This would
trivialise Newton’s theory.

I will offer a different, symmetry-based definition of inertial frames: in-
ertial frames are those frames that ‘mesh’ with the dynamical symmetries
of the theory (§5). On this view, inertial frames are jointly grounded in
dynamical and spatiotemporal structure.

Foundational discussions of classical mechanics typically involve coordinate-
free formulations in the language of differential geometry (Friedman, 1983;
Malament, 2012). The correct definition of inertial coordinates may seem
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§1 Introduction

irrelevant. But coordinate-based versions of classical mechanics are both
historically and philosophically significant: discussions of mechanics have
proceeded, both in the past and often at present, in terms of coordinates.1

Despite their coordinate-dependence, these formulations seem to correctly
identify the content of Newtonian mechanics. Of course, such formulations
presume certain geometric concepts, such as that of a vector quantity. But
their equations relate those quantities as expressed in a system of coordi-
nates. If I am correct that common definitions of inertial frames fail, then
it is a puzzle how coordinate-dependent versions of Newtonian mechanics
could work. This paper offers a solution to that puzzle.

Before I move on, I will clarify ‘Newtonian mechanics’: it is a theory
that describes the motion of point-like massive particles under forces. The
kinematics of the theory are that of ‘Galilean’ spacetime.2 We can thus
represent spacetime as a differentiable manifold, M , on which are defined
a spatial ‘metric’ hab, a temporal ‘metric’ tab and an affine connection ∇.
For any pair of points one can meaningfully speak of the duration between
them, and for any pair of points at the same time one can meaningfully
speak of the distance between them. But there is no meaningful notion of
distance between points at different times, and so one can say neither how
far nor how fast particles move across time. The connection does, however,
provide an objective standard of acceleration. It is of course also possible to
define Galilean spacetime directly in terms of coordinates (Wallace, 2019).

The dynamics of Newtonian mechanics consist of Newton’s laws (Morin,
2008, 51):

1. NI: A body moves with constant velocity (which may be zero) [insofar
as] acted on by a [net external] force (dvdt = 0).3

2. NII: The time rate of change of the momentum of a body equals the
[net external] force acting on the body (F = ma).

3. NIII: For every force on one body, there is an equal and opposite force
on another body (F12 = −F21).

The coordinate expressions of these laws hold only when referred to a cer-
tain class of privileged frames. In a rotating frame, for instance, F = ma

1For a defence of coordinate-based approaches, see Wallace (2019).
2Or, perhaps, ‘Maxwellian’ spacetime; cf. Saunders (2013).
3Hoek (2022) convincingly argues that ‘insofar as’ is a more faithful translation of

the original Latin than the standard ‘unless’, but the difference does not matter for the
purposes of this paper.
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§2 Frames and Coordinates

fails to hold due to the presence of so-called ‘fictitious forces’. It is true that
one can alter the form of the laws to account for such forces: the altered
laws hold for a particular class of non-inertial frames. These expressions are
syntactically more complex than the standard ones due to the presence of
additional terms. Strictly, then, Newton’s laws hold true in their simplest
form only when referred to inertial frames. The inertial frames are of partic-
ular interest because within them Newton’s laws are afforded a particularly
simple formulation.4

Without any force law Newtonian mechanics is just a framework, not a
theory. The law of universal gravitation determines the gravitational force
F12 that one particle exerts on another, given their masses m1,m2 and
positions x1,x2:

F12 = G
m1m2

|x2 − x1|3
(x2 − x1) (1)

where G is the gravitational constant. When one conjoins the law of univer-
sal gravitation to Newtonian mechanics, the result is Newtonian Gravitation.
Of course, there are other forces than gravity, but I will not consider those
here.

2 Frames and Coordinates

I first draw a distinction between (inertial) frames and (inertial) coordinates.
I mostly follow Earman and Friedman’s (1973) account.5 The only point of
departure lies in the definition of inertial coordinates.

Firstly, define:

Frame of reference: an identification of points of space over time,
i.e. a time-like vector field X which ‘threads’ the manifold M .

In effect, a choice of frame amounts to a choice of which bodies to regard as
being at rest.

Secondly, define:

Coordinate system: a smooth and injective function xµ from the
manifold M into R4, such that x0 is constant across surfaces of
simultaneity.

4Weatherall (2021) criticises this notion of a ‘simplest form’ of an equation, partly for
the same reason that I object to law-based definitions below.

5For different ways of drawing this distinction, see Torretti (1983, §1.4) or Brown (2005,
§2.3).
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§2 Frames and Coordinates

This definition assumes the existence of a foliation of spacetime into hy-
perplanes of simultaneity, which follows from the requirement that forces
cannot act backwards in time (Brown, 2005, §2.2.3).

Coordinate systems are connected to reference frames as follows:

Adapted coordinates: a coordinate system xµ is adapted to a
frame of reference F iff xi = constant (i = 1, 2, 3) along the
integral curves of X.

Put differently, coordinates are adapted to a frame whenever the spatial
coordinates of the bodies that are considered at rest within that frame are
constant over time.

With this connection between frames and coordinates, it is now possible
to define inertial frames. Following Earman and Friedman:

A frame of reference F is inertial iff there exists an inertial co-
ordinate system adapted to F .

This definition appeals to inertial coordinates, which I have not yet defined—
their definition is the topic of this paper. Earman and Friedman define them
in terms of an affine connection stipulated to vanish in inertial coordinates.
This is a structure-based definition of inertial coordinates, which I will dis-
cuss in §4.

The notion of inertial coordinates is prior to that of inertial frames:
the latter are defined in terms of the former. So, although physicists often
speak of the laws holding within inertial frames, it seems more appropriate
to speak of the laws holding within a system of inertial coordinates. It is a
consequence of the invariance of Newtonian mechanics under Galilean trans-
formations that if the laws hold in one inertial coordinate system adapted
to F , then so they do in any other. The difference therefore does not matter
much in practice. Indeed, Brown (2005, 2.3) simply defines inertial frames
as equivalence classes of inertial coordinates systems. For this reason, I will
use the expressions ‘inertial frame’ and ‘inertial coordinates’ interchangeably
in what follows.

In what follows, I will use the notational convention that the spatial
coordinates of a particle i at time t in a coordinate system xµ are represented
by a position vector xi(t) = (x1i (t), x

2
i (t), x

3
i (t)). The velocity of i is then

defined as vi(t) := dxi
dt ≡ (

dx1i
dt ,

dx2i
dt ,

dx3i
dt ), so vi is the coordinate derivative

of xi with respect to t. Acceleration is likewise defined as the coordinate
derivative of vi with respect to t: ai(t) := dvi(t)

dt
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§3 Law-Based Definitions

These vector quantities are by definition coordinate-dependent. For
x and v this is no surprise, since absolute position and velocity are not
Galilean-invariant. But acceleration is invariant, so it may seem odd to de-
fine it as the derivative of a coordinate-dependent quantity. After all, the
kinematical structure of Galilean spacetime enables one to define accelera-
tion ‘intrinsically’ as an invariant tensorial quantity. Once so defined, an
equation such as F = ma is independent of coordinates. It simply equates
two tensor fields. Yet acceleration is not treated this way in the standard
formulation of classical mechanics under discussion. For if acceleration is
defined intrinsically, the second law will hold no matter what coordinates
are used. This would contradict the fanukuar claim that F = ma only holds
in inertial coordinates, because otherwise one has to account for fictitious
forces. Indeed, inertial frames are often defined as those in which the laws, in
their simple form, hold true. But if those laws are coordinate-independent,
they will hold true in any arbitrary frame. Therefore, a coordinate-based
formulation of classical mechanics must define acceleration in a coordinate-
dependent way. Whenever a occurs in this paper, then, it is the second
coordinate derivative of a position vector.

3 Law-Based Definitions

On law-based definitions, inertial frames are defined in terms of the satisfac-
tion of the laws. In particular, it is common to see inertial frames defined
as those in which Newton’s first law holds true. This is the standard view
found in many physics textbooks (Blagojevic, 2001; Morin, 2008; Pfister
and King, 2015), as well as foundational philosophical works (Nagel, 1961;
Brown, 2005).

3.1 Laws and Inertial Frames

In more detail, the standard view holds that Newton’s first law defines (or
allows one to construct) a class of inertial frames, namely those in which
force-free bodies move (or would move) uniformly. It is not the first law
by itself that defines inertial frames, since a force-law is also required to
identify the force-free bodies. Another way to see this is that NI is invariant
under projective transformations, whereas inertial frames are related by the
subset of Galilean transformations. How to identify these force-free bodies
independently remains a subtle question. For the sake of argument, I will
assume that one can independently characterise force-free bodies, for exam-
ple as those far away from each other; see Eisenbud (1958); Pfister (2004);
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§3.2 Too Many Inertial Frames

Brown (2005) for further discussion.
Having found the inertial frames, one can evaluate the second and third

law with respect to them. This view expressed well by Morin’s (2008, 52)
limerick:

For things moving free or at rest,

Observe what the first law does best.

It defines a key frame,

‘Inertial’ by name,

Where the second law then is expressed.

In fact, NI does more than just offer a definition: it also asserts that in-
ertial frames exist (this entails the actual or counterfactual possibility of
free particles). This provides a sense in which the first law is more than a
definition.

In summary, a law-based approach defines inertial coordinates as follows:

Inertial coordinate system (law-based): a coordinate system in
which force-free bodies move with constant velocity (i.e. dv

dt = 0
for them).

The inertial frames are those that admit of inertial coordinates. One can
refer the second and third law to them. For example, the second law will
read:

NII-LAW: Within those frames in which force-free bodies move
with constant velocity (i.e. dv

dt = 0 for them), F = ma.

On this view the first law is not a consequence of the second law. The first
law asserts that there exist certain frames with respect to which the second
law is supposed to hold. The second law thus does not even make sense
without the first law to define those frames.

3.2 Too Many Inertial Frames

Unfortunately, this popular definition of inertial frames fails. It is too liberal:
there are inertial frames in which NII-LAW holds true even for patently non-
Newtonian worlds.

Consider the following pair of worlds:
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§3.2 Too Many Inertial Frames

• W : a world in which n free particles each move with uniform velocity
(with respect to the affine background structure);

• W ∗: a world exactly like W , except that one of the particles—call it
‘Curvy’—moves haphardly about in a non-linear fashion (with respect
to the affine background structure).

The first world, W , is Newtonian by stipulation. The second world, W ∗, is
clearly not Newtonian. As Morin (2008, 52) puts it: “we can’t have a bunch
of free particles moving with constant velocity while another one is doing a
fancy jig”. But that is exactly what Curvy is doing in W ∗. If the law-based
account correctly identifies the inertial frames, however, then W and W ∗

will both satisfy Newton’s laws even in their simplest form—as I will now
show. Therefore, law-based definitions do not correctly identify the inertial
frames.

It is helpful here to distinguish between a particle’s coordinate accel-
eration and its physical acceleration. The former refers to the value of a
for some particle within a coordinate system xµ, while the latter refers to
the particle’s acceleration with respect to the affine structure independently
from any coordinate system. The same physical acceleration has different
coordinate representations in different coordinate systems.

Consider first W . Since the physical acceleration of all free particles in
W is zero, W is Newtonian. Suppose that it is possible to construct an
inertial coordinate system xµ such that the coordinate accelerations of all
particles are zero: ai = 0 for all i. By stipulation, Fi = 0 too, and hence
Fi = mai for all i. NII-LAW is satisfied; W is Newtonian.

Consider W ∗ next. It may seem that NII-LAW must fail to hold in W ∗

when referred to the same coordinates. But since xµ is a function defined on
the points of W and not those of W ∗, it is impossible to compare (coordi-
nate) accelerations in W and W ∗ directly. Instead, one must independently
construct a coordinate system for W ∗. The problem is that it turns out to
be possible to construct an inertial coordinate system for W ∗ within which
NII-LAW is satisfied. To see this, assume that there exists a diffeomorphism
(i.e. a smooth bijection between spacetime points), φ, that maps the linear
trajectory of Curvy in W onto the haphazard trajectory of the same parti-
cle in W ∗.6 If γ(τ) represents the trajectory of Curvy in W , then Curvy’s
trajectory in W ∗ is represented by γ∗(τ) := φ ◦ γ(τ), where τ is a dimen-
sionless parameter. Next, define the coordinate system x′µ := xµ ◦ φ−1. By

6This assumption is without (much) loss of generality: it requires only that W and W ∗

concur on whether Curvy’s trajectory intersects the trajectories of any other particle.
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§3.2 Too Many Inertial Frames

construction, the coordinates xµ assigns to γ(τ) are the same as those that
x′µ assigns to γ∗(τ). It follows that the coordinate accelerations of the free
particles in W ∗ with respect to x′µ are the same as those of the particles
in W with respect to xµ, namely zero. Thus x′µ is an inertial coordinate
system for W ∗. Because F = 0 = ma in this coordinates system, NII-LAW
is satisfied in W ∗.7

But this verdict is clearly incorrect: W ∗ is a world in which the physical
acceleration of a force-free particle, Curvy, is not zero, contrary to the first
law! This is a reductio ad absurdum of the law-based definition of inertial
frames.

The above story may seem to rest on a confusion: acceleration should be
defined with respect to the affine structure, which is unaffected by coordinate
transformations.8 But as I pointed out in the previous section, this implies
a coordinate-free expression of the second law which is true independently
from one’s chosen coordinates. Such a coordinate-free expression equally
cannot privilege xµ over x′µ. The law-based approach therefore fails either
way.

The objection to law-based definitions generalises: one can apply an
arbitrary diffeomorphism to the particle trajectories of a Newtonian world—
even ones subject to forces, unlike in the above toy example. There is
always a coordinate transformation that ‘undoes’ this diffeomorphism, such
that Newton’s laws hold in the same form with respect to the ‘primed’
coordinates. Pooley (2013, fn. 88) notes this possibility:

Suppose, for example, that the only spatiotemporal information
one retains is that which is common to all coordinatizations of
the particle trajectories obtainable from an initial inertial co-
ordinate system by smooth but otherwise arbitrary coordinate
transformations that preserve the timelike directedness of the
trajectories. [...] Many Newtonian worlds involving complex
histories of relative distances and interactions will be topologi-
cally equivalent to histories where all particles maintain constant
distance from one another.

However, Pooley’s objection is slightly different from mine. Pooley argues
that if arbitrary coordinates are allowed, Newton’s laws are not the simplest

7If you are inclined to think that x′µ is obviously faulty because it is not ‘adapted’ to
spacetime’s affine structure—such a claim is characteristic of structure-based definitions,
which I discuss in the next section.

8I thank an anonymous reviewer for this point.
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§4 Structure-Based Definitions

ones. For example, one can almost always find coordinates such that all
trajectories ‘seem uniform’, in which case the simplest law is that v = 0
for all particles. The present objection, on the other hand, applies even if
Newton’s laws are the simplest ones in some arbitrary coordinate systems.
The problem is rather that it is too easy to find coordinates in which the
laws are at least as simple as those of Newton.

The advocate of a law-based definition might adopt a form of functional-
ism in response, such as Knox’s (2013) ‘inertial frame functionalism’. This
type of functionalist claims that force-free bodies define inertial trajecto-
ries, so that there is no real sense in which Curvy’s trajectory in W ∗ is not
uniform; force-free bodies provide a ‘coordinative definition’ of the world’s
inertial structure (DiSalle, 1990). This entails that there just are no worlds
that differ only over whether some force-free particle moves inertially or not.
This position is more radical than simple relationism, since W and W ∗ differ
over the distance between Curvy and the other particles. I do not find it
plausible that such worlds could not exist, and so will not further discuss
this approach here.

4 Structure-Based Definitions

I noted that a diffeomorphism between W and W ∗ need not preserve spa-
tiotemporal structure. In particular, it need not preserve metrical structure.
But the distances between particles in W according to xµ are the same as
the distances between particles in W ∗ according to x′µ, so if the former cor-
rectly represents distances then the latter must misrepresent them. And if
the x′µ coordinates misrepresent distances, surely one should not evaluate
the laws with respect to them.

The requirement that appropriate coordinates do not only make the laws
true but also match the world’s metrical structure is expressed by Brown
(2005, 18):

The coordinates xµ are special not just because the equation of
motion expressed in terms of them takes [a] special simple form
[...]; the coordinates xi (i = 1, 2, 3) should also be special in
relation to the metrical properties of space. When Newton talks
of uniform speeds, he means equal distances being traversed in
equal times, and these distances are meant in the sense of Euclid.

On structure-based definitions, inertial frames are partially defined in terms
of some spatiotemporal structure, such as the Euclidean metric.
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§4.1 Structure and Inertial Frames

It seems that historical definitions of inertial frames due to Neumann,
Lange and Mach are in part structure-based, as they require inertial coordi-
nates to respect the metrical structure of space. Of Neumann’s construction,
Barbour (1989, 669) writes that it is “explicitly constructed from the ob-
servable relative distances and relative velocities”, and of Mach that he “ac-
cepted distance measurements as given” (685). Since the aim of this paper
is not historical, however, I will not further comment on these matters.

In more detail, procedure of a structure-based definition is to (i) stipu-
late some spatiotemporal structure, (ii) claim that certain coordinates best
represent this structure, and (iii) restrict the inertial coordinates to just
those ones.

I am sceptical of step (ii): I see no reason to believe that certain numeri-
cal representations of, say, metrical structure are intrinsically—that is, inde-
pendent of dynamical considerations—better than others.9 This means that
the satisfaction of the laws becomes dependent on one’s choice of representa-
tional convention. Just as law-based definitions, structure-based definitions
of inertial frames fail to distinguish worlds in which Newtonian mechanics
is true from worlds in which it is false.

4.1 Structure and Inertial Frames

The claim that certain coordinates are ‘adapted’ to spatiotemporal structure
is widespread:

Every spacetime will have a preferred set of frames that reflects
the structure inherent in the spacetime. (Earman, 1989, 29)

The intrinsic geometrical structure of space and time according
to Newton entails that special sets of coordinates exist. [...] the
existence of such convenient coordinates [...] follow[s] from the
spacetime structure itself. (Maudlin, 2012, 31-2)

Both substantivalists and relationalists will view certain coordi-
nate systems as kinematically privileged in the sense of being
optimally adapted to the particular spatiotemporal quantities
that they each recognize. (Pooley, 2013, 528)

As the final quote illustrates, such claims are neutral between substantival-
ism and relationism. Of course, these positions disagree over which spa-

9I should note that Brown may well concur with this point, since on his dynamical
approach spacetime structure depends on dynamical structure.
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§4.1 Structure and Inertial Frames

tiotemporal structure inertial coordinates are adapted to. The substanti-
valist posits an affine connection; a coordinate system is adapted to the
connection whenever trajectories that are straight with respect to this con-
nection are parametrised by linear equations. The relationist, meanwhile,
typically only posits a weaker Leibnizian spatiotemporal structure, which
consists just of a temporal and spatial metric.10

It would seem that substantivalism and relationism must differ over the
definition of adapted coordinates. But the issue is more subtle. Earman and
Friedman (1973, 339) show that these procedures pick out the same class
of frames: either (i) one stipulates that xµ is adapted to affine structure
(i.e. the connection vanishes); or (ii) one stipulates that xµ is adapted to
Leibnizian structure and that the first law holds within these coordinates.11

Therefore, regardless of whether or not a connection is posited one can define
inertial frames as those that are adapted to metrical structure and in which
force-free bodies move uniformly. Since adaptation to metrical structure is
common between substantivalism and relationism, I will focus on it in what
follows.

The remainder of this paper concerns the definition of ‘Leibnizian coor-
dinates’: coordinates adapted to metrical structure. I also focus on the spa-
tial metric, for simplicity; adaptation to the temporal metric is to be treated
analogously. Once one has defined a class of ‘Leibnizian’ coordinates, one
can define the class of inertial coordinates by appeal to the first law. But I
claim that structure-based definitions cannot even correctly characterise the
Leibnizian coordinates, which dooms their effort to define inertial frames.

In summary, a structure-based approach defines inertial coordinates as
follows:

Inertial coordinate system (structure-based): a coordinate system
that is adapted to metrical structure, and in which force-free
bodies move with constant (coordinate) velocity.

The inertial frames are again those that admit of inertial coordinates. The
second law then reads:

NII-STR: Within those frames adapted to the metric and in
which force-free bodies move with constant (coordinate) velocity,
F = ma.

10The fact that relationism takes seriously spatiotemporal structure does not mean that
it believes in the existence of spacetime; cf. North (2018).

11In their paper, these correspond to Def. 4 and Def. 6 of inertial frames respectively.
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§4.2 Which Metric?

Because NII-STR is stronger than NII-LAW, it promises to rule out the
problematic coordinate systems discussed in the previous section.

4.2 Which Metric?

It is still unclear what it means for a coordinate system to be ‘adapted’
to the metric. I believe that there is no unequivocal notion of adaptation.
Whether coordinates are adapted to metrical structure depends on the way
this structure is represented. This is a matter of convention. I resist the
claim that certain coordinate systems are intrinsically better adapted to
some structure than others. On different conventions, different coordinates
are adapted to the same metric. Problematically, for some of these conven-
tions there exist adapted coordinate systems within which Newton’s laws
are satisfied even in patently non-Newtonian worlds.

Unfortunately, little has been written on this crucial notion of adapta-
tion. Sometimes, it is suggested that coordinates adapted to the Euclidean
metric are such that the physical distance between points should equal their
Pythagorean distance:

In Euclidean space, a frame is ‘adapted’ to some reference body
if it is at rest at the origin of the frame, the axes are orthogonal
and distances along the axes equal to the distances from the
body. (Huggett, 2006, 46)

The ways in which a coordinate system can be adapted to these
quantities is straightforward [...] spatial coordinates are chosen
so that, for all particles i, j and for all times, |xi − xj | = rij ,
where rij is the instantaneous inter-particle distance between i
and j. (Pooley, 2013, 529)

Both authors claim that within an adapted coordinate system, the Pythagorean
distance |xi − xj | :=

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 should equal the

physical distance between particles (in some chosen unit), where xi and xj
are the position vectors in coordinates xµ of particles i and j respectively.
Call a coordinate system xµ adapted to the Pythagorean metric iff, for any
pair of particles i, j, the distance between i and j in some chosen unit is equal
to |xi − xj |. (I will shortly explain why I call this metric ‘Pythagorean’
and not ‘Euclidean’.) The coordinates adapted to the Pythagorean met-
ric are the familiar Cartesian ones. The requirement that coordinates are
adapted to this metric thus rules out the problematic coordinate systems
from the previous section. If it could be shown that Cartesian coordinates
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§4.2 Which Metric?

are uniquely well-adapted to the world’s metrical structure, the structure-
based approach might succeed.

But the issue is more complicated. Distinguish between metric functions
and their coordinate representations. A metric function on a space X is a
function d : X ×X → R from pairs of points into real numbers such that:12

d(i, j) = 0 ⇐⇒ i = j (2)

d(i, j) = d(j, i) (3)

d(i, k) ≤ d(i, j) + d(j, lk) (4)

The value of d(i, j) then represents the distance between i and j as expressed
in some particular unit.

In addition to these axioms, the Euclidean metric also satisfies Ptolemy’s
inequality:

d(i, j) · d(k, l) + d(j, k) · d(i, l) ≥ d(i, k) · d(j, l) (5)

The Euclidean metric represents distances in a Newtonian world, since the
geometry of three-dimensional hyperplanes of simultaneity of Galilean space-
time is Euclidean.

This definition is independent of coordinates: d is a function from points
themselves to real numbers, not from their coordinates. In particular,
the Euclidean metric defined here is not the Pythagorean metric discussed
above, although they are often identified. The former is a function of pairs
of points, the latter of pairs of position vectors. It is the former metric that
codifies the theory’s physical content, namely the physical distances between
points or particles. The latter metric only defines their coordinate distance.

However, it is often convenient to represent a metric as a function on
coordinates. We will say that a function r : R3×R3 → R represents a metric
d in a coordinate system xµ iff r(xi,xj) = d(i, j). If d satisfies the axioms
for a metric then so does r, so r itself is a metric on R3—but not on X.

It is easy to see that r represents the Euclidean metric in a coordinate
system xµ iff xµ is adapted to r. Therefore a representation r of a met-
ric d defines a class of adapted coordinates, namely those in which r does
represent d. For the Pythagorean metric, this is the class of Cartesian coor-
dinates: if d assigns to each pair of points their Euclidean distance in some
particular unit, then the function r(xi,xj) := |xi − xj | represents d iff xµ is

12The space X here is a hyperplane of simultaneity of the manifold M .
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§4.2 Which Metric?

a Cartesian coordinate system. This explains why the authors quoted above
focus on the Pythagorean metric.

However, the Pythagorean metric is not the only representation of Eu-
clidean distance. Given an arbitrary diffeomorphism φ of X, one can define
another representation as follows. First, notice that φ induces a coordinate
transformation xµ → x′µ such that x′µ(p) = xµ(φ(p)). In brief, x′µ assigns
the same coordinates to p as xµ does to φ(p). Second, define a function
rφ such that rφ(x′i,x

′
j) ≡ r(xi,xj). By construction, rφ represents the Eu-

clidean metric in x′µ iff r represents the same metric in xµ. Conversely, this
means that rφ defines a different class of coordinates from r. Whenever φ
is not an isometry of the metric space 〈X, d〉, the coordinates adapted to rφ
are distinct from those adapted to r. The upshot is that which coordinates
are adapted to the Euclidean metric depends on the way one numerically
represents that metric. Although this point is mathematically trivial, it is
not often noted by philosophers; van Fraassen (1970, §1.3) is an exception.

The central problem for structure-based definitions is that whether NII-
STR is satisfied depends on the way in which Euclidean distance is repre-
sented. If one chooses to represent physical distances by the Pythagorean
metric, then NII-STR is satisfied in certain worlds. But if one chooses to
represent physical distances by some other metric, NII-STR may fail to hold
in those very same worlds. Whether those worlds count as Newtonian, by
the light of the structure-based definition of inertial frames, thus depends
on which numerical representation one chooses. (If you believe that there is
no problem here because one of those representations is clearly superior: I
address that response below.)

For an illustration, consider again the pair of worlds presented in §3:

• W : a world in which n free particles each move with uniform velocity;

• W ∗: a world exactly like W , except that one of the particles—call it
‘Curvy’—moves haphardly about in a non-linear fashion.

W is a Newtonian world; W ∗ is not. We have seen that F = ma is true in
W with respect to the coordinates xµ, but that it is also true in W ∗ with
respect to the coordinates x′µ. The structure-based definition must there-
fore rule that x′µ is inadmissible because it does not reflect the Euclidean
distances between particles. This is indeed the case if one were to impose
the condition that d(i, j) = |xi − xj |. But recall that x′µ = xµ ◦ φ−1 for
some diffeomorphism φ from W to W ∗. If one instead were to impose the
condition that d(i, j) = rφ(xi,xj), then it is xµ that is inadmissible. Un-
der that condition, NII-STR is satisfied not in W but in W ∗. There is no
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physical reason to use r rather than rφ: both functions represent the same
Euclidean metric, so the choice between them is only a matter of repre-
sentational convention. Just like the law-based definition discussed in the
previous section, then, structure-based definitions run the risk of erroneously
classifying certain patently non-Newtonian worlds as Newtonian.

The core of this objection to structure-based definitions is that no repre-
sentation is better than any other. Before I move on to my symmetry-based
proposal for the definition of inertial frames, let me discuss two responses
that would privilege certain representations. First, the pragmatist response
claims that Cartesian coordinates are simpler or more convenient. Maudlin
(2012, 31-2), for instance, writes that “[i]n the most convenient coordinatiza-
tions of Newtonian space and time, the acceleration of a trajectory through
time is proportional to the second derivative of the spatial coordinates with
respect to the time coordinate.” But how does one characterise simplicity
here? One cannot define the simplest coordinates as those in which the laws
have their simplest form, as that would reduce to a law-based definition.
The most straightforward definition of simple coordinates is that they are
the most convenient: “[b]y a convenient frame, I mean one in which the
calculations will be easy to do” (Maudlin, 2012, 171). But whether calcu-
lations are easy seems to provide a merely subjective account of simplicity,
which should not play a role in our formulation of the theory. It does not
seem unlikely, for example, that some alien community of scientists finds
it much easier to carry out calculations in non-Cartesian coordinates. Al-
though convenience may explain why we prefer Cartesian coordinates, it
does not explain why the laws are true in their simple form in just those
coordinates.

The second, naturalist response is that certain coordinates ‘naturally’
represent Euclidean distance. North (2021), for instance, believes that
Cartesian coordinates are more natural because they “have straight, mutu-
ally orthogonal coordinate axes”, and that their “numerical values reflect the
relative locations of the points in a particularly clear manner.” Sometimes,
‘naturalness’ seems to reduce to simplicity. But other times, North states
that certain coordinates ‘respect’ spatiotemporal structure better than oth-
ers. For example, she writes that it is “better to use coordinate systems
whose continuity matches the continuity structure—the topology—of the
space” (cf. Maudlin (2012, 27)). It is not just easier to use continuous co-
ordinates, North believes, but such coordinates more perspicuously reflects
the continuity of space itself. Likewise, Cartesian coordinates are said to
more perspicuously reflect the Euclidean metric.
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I find this response unsatisfactory for several reasons.13 Firstly, the
notion of ‘naturalness’ is far from clear. What reason is there to believe
that some alien community of scientists would not find non-Cartesian co-
ordinates more natural? Secondly, North’s claim that certain coordinates
better ‘reflect’ some structure seems to presuppose a representational con-
vention of that very structure. Consider a map of the Earth. The map
seems to misrepresent Earth’s curvature: the Earth is spherical, the map
is flat. It is well-known that as a consequence, maps must distort features
such as relative land mass. The Mercator projection, for instance, distorts
the relative size of the continents. North would presumably say that the
‘map-coordinates’ cannot reflect the geometry of the Earth perspicuously.
But there is a sense in which any map offers an entirely accurate represen-
tation of the Earth—once one has adopted an appropriate representational
convention. Nguyen (2020, 1027) makes this point for the Mercator pro-
jection: “Features like ‘being of equal area’ on the map, don’t have to be
interpreted as representing ‘being of equal area’ on the Earth’s surface. In
fact, if one had a sufficiently good understanding of the projection used to
create the map, then one could provide an interpretation function that de-
livered truths about area properties of the Earth, despite the dissimilarities
between these and the area properties of the map.” On the convention that
the area of a continent on the map is proportional to the area of a continent
on Earth, the map’s coordinatisation of the Earth’s surface is mal-adapted.
But on the alternative convention that the proportionality depends on the
continent’s latitude, the map’s coordinates are perfectly well-adapted. The
map-coordinates only seem unnatural when one tries to judge the relative
area of the continents by a convention not appropriate to the map. The same
is the case for the topological features of space. On the convention that a dis-
continuity in coordinates represents a discontinuity in spacetime, the map’s
coordinates are mal-adapted to spacetime’s topological structure. But on
the alternative convention that the −180◦ and 180◦ coordinates represent
adjacent locations, the map does represent the Earth as round. (Compare
this to a clock face: the fact that the number 1 does not come after the num-
ber 12 does not mean that one o’clock does not follow noon!) Therefore, an
appeal to natural representation cannot save the structure-based approach.

13For another critical response to North, see Barrett (2022).
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§5 Symmetry-Based Definitions

5 Symmetry-Based Definitions

In response to the failure of standard definitions of inertial frames, I want to
propose a different definition: a symmetry-based one. As far as I am aware,
this type of definition has not been suggested before. The account that
comes closest Landau and Lifshitz’s (1976, 5) definition of an inertial frame
as one “in which space is homogeneous and isotropic and time is homoge-
neous”. But it is left unclear what it means for space to be homogeneous
or isotropic ‘in’ an inertial frame. The symmetry-based account I propose
elucidates what it means for a frame to possess these features.

Moreover, it is unclear what justifies this demand that coordinates are
homogeneous and isotropic. I base this demand on the dynamical sym-
metries of Newtonian mechanics, namely the invariance of the laws under
translations and rotations. Put more precisely, the account I propose jus-
tifies the choice of the Pythagorean metric as a privileged representation
of Euclidean distance within the context of Newtonian mechanics because
it meshes with the theory’s dynamical laws. Unlike structure-based defini-
tions, it does not claim that certain spatiotemporal structures are intrinsi-
cally better represented by some coordinates. Rather, certain coordinates
mesh better with the dynamics. If the dynamics were different, different co-
ordinates would be privileged—even if structure of spacetime is kept fixed.
If the laws were spherically symmetric around a dynamically special point,
for example, then spherical coordinates would mesh better with the theory’s
dynamics even if space were still Euclidean. Similarly, the appropriate met-
ric for Lorentz’s aether theory is one that is invariant under the theory’s
relativistic symmetries—the Lorentz transformations—despite the fact that
this theory was set on a classical spacetime (cf. Bradley (2021)). For these
reasons I consider the symmetry-based account a novel approach that suc-
ceeds where the above definitions fail.

5.1 Symmetry Constraints

Recall that the laws of Newtonian mechanics (in their simple form) are
invariant under spatial and temporal translations, as well as under spatial
rotations. It does not matter for the satisfaction of the laws whether one
uses some set of coordinates xµ or a different set of coordinates x′µ related
to the first by a transformation of the ‘Newton group’ (Pooley, 2013):

x→ Rx + c; t→ t+ d (6)
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where c and d are constant and R is an orthogonal matrix with determinant
±1. If the laws are true when referred to a coordinate system xµ, then
so they are when referred to a coordinate system related to xµ by these
transformations.14

Crucially, this is true even when one uses non-standard coordinates,
such as the ones adapted to rφ from the previous section. This is because
the translation- and rotation-invariance of Newtonian mechanics is a con-
sequence of the form of the laws themselves. So, if there is some world in
which the laws of Newtonian mechanics are satisfied in certain non-Cartesian
coordinates, then the laws of Newtonian mechanics remain satisfied when
those coordinates are translated or rotated.

The fact that the laws are invariant under these transformations means
that it should not matter which coordinates are chosen from an equivalence
class closed under the action of the Newton group. This is true for the stan-
dard Cartesian coordinates. In particular, the Pythagorean metric is itself
invariant under translations and rotations in that |xi−xj | = |x′i−x′j | when-
ever xµ and x′µ are related by a Newtonian transformation. For example, it
is invariant under a translation x→ x+c since |(xi+c)−(xj+c)| = |xi−xj |.
When one uses the Pythagorean metric to represent distances, then, it does
not matter whether one uses one system of coordinates or another one re-
lated to the first by a translation or rotation.

But the same is not the case for alternative representations of the metric.
Consider an arbitrary representation rφ as defined above. Generally—when
φ is not an isometry—the effect of a translation or rotation on a coordinate
system is to change the distances between particles: the distance between i
and j as determined by rφ in a non-Cartesian coordinate system xµ is differ-
ent from the distance between i and j as determined by the same rφ in the
transformed coordinate system x′µ. In arbitrary coordinates the difference
between transformed coordinates does matter, contrary to the fact that these
transformations are symmetries of Newtonian mechanics. In other words,
non-Cartesian representations make it seem as if certain coordinate sys-
tems are better adapted to the distances between particles than others even
when those coordinates are symmetry-related, contrary to the symmetry-
invariance of the dynamics. Yet another way to make the point is that it
is desirable for the theory’s active symmetries (symmetries of the laws) to
match the theories passive symmetries (coordinate transformations): this is

14Of course, the laws are also invariant under boosts, which leads to the Galilei group.
But since I have restricted the discussion to Leibnizian structure only, I will set these aside
for now.
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§5.2 Derivation of the Pythagorean metric

the case whenever the representation of the metric is invariant under the ac-
tion of the Newton group.15 It is on this basis that non-standard coordinates
are ruled out on the symmetry-based approach.

5.2 Derivation of the Pythagorean metric

Based on the dynamical symmetries Newtonian mechanics, it is reasonable
to constrain the coordinate representation of Euclidean distance as follows:

Translation Invariance: r(xi,xj) = r(xi + c,xj + c).

Rotation Invariance: r(xi,xj) = r(Rxi,Rxj).

From Translation Invariance, it follows that r(xi,xj) ≡ f(xi−xj). From
Rotation Invariance it follows that the distance does not depend on the
direction but only on the magnitude of the difference xi−xj , so r(xi−xj) ≡
g(|xi − xj |). 16

These invariance principles do not yet yield the Pythagorean metric.
For example, the discrete metric r(xi,xj) = 1 for i 6= j and 0 otherwise
also satisfies them. But with one further assumption one can derive the
Pythagorean metric up to a proportionality factor:

Absolute Homogeneity: r(αxi, αxj) = |α|r(xi,xj).

This principle states that the metric scales with coordinates. This may
seem controversial: scaling transformations are not dynamical symmetries
of Newtonian mechanics.17 The effect of a scaling is to increase the distance
between all particles by a constant factor. But if all particles were, say,
twice as far away from each other, then the gravitational attraction between

15See Gomes (2022) for a similar idea applied to the diffeomorphism invariance of GR.
16There is a more technical way of putting this point. Instead of a function r(xi,xj),

we can think of a metric as represented by a tensor that assigns at any point p a scalar
to every pair of vectors Xp, Yp from the tangent space at p. The Euclidean metric
tensor as represented in Cartesian coordinates is invariant under translations, rotations
and reflections. But not all metric tensors are so invariant. The spherical metric, for
instance, varies under translations because it has a distinguished origin. The requirement
that the representation of the metric is invariant under rotations and translations is then
equivalent to the requirement that the metric tensor in adapted coordinates is proportional
to diag(1, 1, 1). This is just the requirement put in by hand by Earman and Friedman
(1973), but they have not justified it on the basis of symmetries or in another way.

17But see Gryb and Sloan (2021) for a different perspective, calling such transformations
‘dynamical similarities’.

20



§5.3 Defining Inertial Frames

them would be weaker. The trajectories of the particles would differ as a
result.

However, scalings are symmetries when considered as passive transfor-
mations. A passive transformation is a mere change of units, say from metres
to inches. It does not affect the actual trajectories. Importantly, the value
of the gravitational constant, G, changes under a passive scaling because it
has dimensions proportional to [L]3. The increase in distances is therefore
balanced by a higher value for G. Because we are now concerned with pas-
sive transformations, the numerical representation of the metric itself must
also transform. This just amounts to a change of units. If the scale factor
is equal to 100, for example, the transformation is a change from metres
to centimetres. When we conceive of scaling transformations as passive,
Absolute Homogeneity is uncontroversial.

It is easy to see that r(|xi−xj |) satisfies Absolute Homogeneity iff r(|xi−
xj |) ≡ k|xi−xj |, which is just the Pythagorean metric up to a multiplicative
constant. The constant k reflects our freedom to choose a unit of length.

We have thus derived that in symmetry-adapted coordinates the distance
rij between particles i and j as measured in some unit is proportional to the
Pythagorean distance |xi − xj |. This is just the requirement formulated by
Huggett and Pooley, but here it is justified rather than asserted. The notion
of adaptation is defined in terms of invariance under dynamical symmetries.
The coordinates for which this is the case are the familiar Cartesian ones.
Therefore, the Cartesian coordinates are uniquely adapted to the Leibnizian
structure of spacetime, given the dynamics of Newtonian mechanics. The
Cartesian coordinates are preferable for purely physical reasons.

Let me briefly compare this account to that of Wallace (2019), who
uses the passive symmetries of dynamical equations in a somewhat similar
manner. Where Wallace uses dynamical symmetries to determine a theory’s
spacetime structure—metric incluis—my approach assumes the existence of
a metric function and uses dynamical symmetries to constrain the coordinate
representation of this function. Although our approaches have a similar
spirit, they answer slightly different questions.

5.3 Defining Inertial Frames

The above procedure gives us only a class of ‘Leibnizian’ coordinates. In or-
der to define inertial frames, it is also required that coordinates are adapted
to spacetime’s inertial structure. But recall that Earman and Friedman of-
fered a definition of inertial frames as those that are adapted to Leibnizian
spatiotemporal structure and in which Newton’s first law is satisfied. This
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definition was problematic because their particular notion of adaption—
essentially the demand that coordinates are Pythagorean—was left unmoti-
vated. But now that this demand is justified it is possible to follow suit and
define the inertial coordinates as follows:

Inertial coordinate system (symmetry-based): a coordinate sys-
tem that is adapted to a symmetry-invariant metric, and in which
force-free bodies move with constant (coordinate) velocity.

The inertial frames are those frames that admit of inertial coordinates
adapted to them. The second law then reads:

NII-SYM: Within those frames that are adapted to a symmetry-
invariant metric and in which force-free bodies move with con-
stant (coordinate) velocity, F = ma.

I have thereby shown that any inertial coordinate system is adapted to the
metrical structure of spacetime, in the sense that physical distances between
particles as measured in some unit are proportional to the Pythagorean
distance between their coordinates. From the dynamical symmetries of a
theory one can construct a coordinate system that is unique up to time-
dependent translations and rotations. The additional stipulation that the
first law must hold constrains this to an equivalence class of frames that is
closed under time-independent translations and rotations as well as boosts:
the Galilean transformations. These frames are the inertial ones, and within
them the laws hold true in their simplest form.

What if one were to consider the laws in a more complex form? It is
possible that those expressions have different symmetries than the Galilean
ones. In that case the coordinate representation of the Euclidean metric
must also remain invariant under different transformations, so different co-
ordinate systems are adapted. This does not pose a problem: of course an
expression of the laws in different coordinates requires a different coordinate
representation of the metric! The form of the laws and the inertial frames
are determined jointly. I leave it open whether there is any reason other
than convenience to prefer one expression of the laws over another. Given
an expression of the laws, however, there is always a uniquely privileged
class of inertial coordinates relative to it, determined by its symmetries.

6 Conclusion

I have discussed three definitions of inertial frames. The first two definitions—
law-based and structure-based ones—are typically found in foundational
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treatments of classical mechanics, but both are deficient: they fail to pick
out the correct space of physically possible worlds. I then presented a novel,
symmetry-based definition which does pick out the correct space of possibili-
ties. In particular, symmetry considerations uniquely determine a numerical
representation of the Euclidean metric, from which one can define the class
of Cartesian coordinates.

In close, recall that problems with the inertial frame concept have led
some philosophers to move away from a coordinate-dependent formulation of
Newtonian mechanics towards a coordinate-independent formulation. But
this disregards the fact that physics has used the inertial frame concept
successfully for centuries.18 To quote Brown (2005, 23):

In their influential 1973 article on Newton’s first law of motion,
John Earman and Michael Friedman claimed that no rigorous
formulation of the law is possible except in the language of 4-
dimensional geometric objects. But the appearance of systematic
studies of the 4-dimensional geometry of Newtonian spacetime
is relatively recent [...]. It is curious that so much success had
been achieved by the astronomers in applying Newton’s theory
of universal gravity to the solar system [...] well before this date.
How could this be if the astronomers were unable to fully artic-
ulate the first law of motion, and hence the meaning of inertial
frames? [...] How tempting it is in physics to think that precise
abstract definitions are if not the whole story, then at least the
royal road to enlightenment.

I concur with Brown that the history of physics has shown that it is far
too easy to dismiss the inertial frame concept. However, I am more positive
about the possibility of ‘precise abstract definitions’. I hope to have shown
that one can offer a precise and correct definition of inertial frames, based on
fairly abstract symmetry principles. These results put coordinate-dependent
formulations of Newtonian mechanics on a surer footing and further empha-
sise the central role of symmetries in physics.
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