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Abstract

The distinction between dimensions and units in physics is common-
place. But are dimensions a feature of reality? The most widely-held
view is that they are no more than a tool for keeping track of the val-
ues of quantities under a change of units. This anti-realist position is
supported by an argument from underdetermination: one can assign
dimensions to quantities in many different ways, all of which are empir-
ically equivalent. In contrast, I defend a form of dimensional realism,
on which some assignments of dimensions to quantities better describe
reality than others. The argument I provide is a form of inference
to the best explanation. In particular, the technique of dimensional
analysis is explanatory, but it is only successful for certain systems of
dimensions. Since these dimensional systems support scientific expla-
nations, we have reason to believe that they are real.
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1 Introduction

The world was not made of mathematics. In it we find not abstract num-
bers, but concrete quantities such as mass, charge, velocity, blood pressure,
productivity, and happiness. What distinguishes these quantities from pure
numbers is that they have a dimension. Dimensional quantities measure the
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§1 Introduction

amount of some ‘stuff’ in the world. For example, mass is a quantity whose
dimensions are primitive: we simply say that mass has ‘dimensions of mass’
(M). This near-truism relays important information, for it means that mass
quantities measure the amount of some physical stuff of a particular sys-
tem, rather than some merely abstract feature of it. Other quantities have
complex dimensions: velocity, for instance, has dimensions of length over
time (L/T).1 This means that velocity measures the amount of some stuff
that is, in a particular way, related to distance and duration. Any investiga-
tion of our concrete, palpable, physical world must start with dimensional
quantities.

Yet, the very notion of dimensionality is little discussed by either physic-
sts or philosophers.2 The implicit—but dominant—take on dimensions is
anti-realist: they are seen as no more than a bookkeeping device for keeping
track of changes of units of measurement. The main purpose of dimen-
sions, namely their use in the technique of dimensional analysis discussed
below, is likewise considered no more than a helpful tool to simplify certain
calculations. Langhaar (1951, 51), in his textbook on dimensional analysis,
makes this consensus explicit: ‘The general conclusion that emerges from the
discussions is that the concept of dimensions is of little importance to philos-
ophy. On the other hand, dimensions serve a mathematical purpose. They
are a code for telling us how the numerical value of a quantity changes when
the basic units of measurement are subjected to prescribed changes. This is
the only characteristic of dimensions to which we need ascribe significance
in the development of dimensional analysis.’ In other words, dimensions do
not animate the lifeless world of mathematics; they are just another way to
churn out numbers.

The observation underlying this anti-realism is that the dimensions of
quantities are underdetermined. I just said that velocity has dimensions
of L/T, but there are in fact self-consistent dimensional systems in which
these and other quantities are assigned different dimensions than the ones
they standardly have. These systems are empirically equivalent: there is
no experiment that could rule out one or rule in another. The anti-realist
case against dimensions is thus a traditional form of underdetermination of
theory by experiment. The conclusion looms that any particular assignment
of dimensions is a matter of conventional choice. This is indeed the stance

1 I prefer the term ‘complex quantity’ to the more common ‘derived quantity’, because
the latter seems to imply that such a quantity is less fundamental.
2 The work of Susan Sterrett (2009, 2019, 2021) is an exception, as are recent papers by

Lange (2009), Skow (2017) and Jalloh (forthcoming).
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§2 The Function of Dimensions

of the Bureau International des Poids et Mesures in the 9th edition of the
SI brochure (2019, 24): ‘Physical quantities can be organized in a system of
dimensions, where the system used is decided by convention.’

The aim of this paper is to offer a defence of realism about dimensions.
The realist rejoinder to underdetermination is an inference to the best ex-
planation: some dimensional systems are more explanatory than others.
Specifically, the technique of dimensional analysis offers explanations of the
functional dependence between quantities; but only if particular dimensional
systems are used. The best explanation for the explanatory success of those
systems is that they more closely track the truth about the dimensionality
of the quantities involved. The exact form of realism is thereby left open—I
will not further discuss the ‘metaphysics’ of dimensions here.

Of course, many an anti-realist is not moved by this type of abductive
inference. But I do not set out to convince the committed sceptic. My
more modest aim is to convince those already sympathetic to some form
of realism, that their realism should also encompass dimensions. There are
matters of fact about dimensions that we can come to know, albeit indirectly.
Moreover, dimensional analysis can help explain the way in which physical
quantities hang together. Dimensions are thus of significant importance to
philosophy.

2 The Function of Dimensions

First, an abbreviated account of the formal machinery of dimensions:3 let a
system of dimensions consist of

(a) an ordered n-tuple D of base dimensions, denoted by Roman capitals
such as M, L and T; and

(b) a dimension function [·] : Q → Zn from the set Q of quantities into
n-tuples of integers, which are called the ‘ddimensional exponents’ of
the quantity in question.

The nth item of [Q] indicates how many of the nth base dimension Q has. For
a concrete example, suppose that the base dimensions are mass, length and
time: D = 〈M,L,T〉. Then [m] = 〈1, 0, 0〉 since mass (m) has dimensions of
mass; and [v] = 〈0, 1,−1〉, since velocity (v) has dimensions of length over

3 For various more complete axiomatisations of dimensional systems, see Guggenheim
(1942); Whitney (1968); Bunge (1971); Sharlow (2009); Raposo (2018); Zapata-Carratala
(2022). For more on the history of dimensions, see De Clark (2017) and Mitchell (2017).
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§2 The Function of Dimensions

time. I will use the ‘mechanical’ dimensions M, L and T to illustrate certain
claims, but the argument of this paper applies equally to the wider class of
dimensions that includes temperature of electric current.

It is often more convenient to write out the dimensions of a quantity
as a product of powers of base dimensions, such that [v] = L1T−1 or even
[v] = L/T. The assumption that the dimensions of any quantity are a
product of powers of the base dimensions is known as ‘Bridgman’s lemma’.
I will continue to write out the dimensions of quantities in this way in the
rest of the paper.

That was a formal account of dimensions. But what are dimensions?
The International Vocabulary of Metrology (VIM, 2008) issued by the Joint
Committee for Guides in Metrology defines the dimension of a quantity as
follows:

expression of the dependence of a quantity on the base quantities
of a system of quantities as a product of powers of factors corre-
sponding to the base quantities, omitting any numerical factor.

This definition does not get us very far. Firstly, it is silent on the dimen-
sions of the ‘base quantities’ themselves. What does it mean to say that
[m] = M? The VIM definition at most entails that mass depends on it-
self. Secondly, as pointed out by Grozier (2020), the definition does not
define what is meant by a ‘correspondence’ between dimensional factors and
base quantities. Finally, it is left completely open what ‘dependence’ here
means—we will see below that what it means depends on whether one is a
realist or an anti-realist.

It is more helpful to proceed with how dimensions are used in science.
What is the function of dimensions? I will not give an explicit definition of
dimensions in this paper, but an implicit definition in terms of their func-
tional role. This will suffice to characterise dimensions for our purposes. I
will emphasise three functions in particular: the relation between dimensions
and units; the behaviour of complex quantities under changes of unit; and
the so-called ‘quantity calculus’. These functions are uncontested between
realists and anti-realists.

Firstly, to every base dimension is associated a class of units of measure-
ment. The dimension M, for instance, is associated to a class of units that
includes the pound, the gram and the kilogram; the dimension L is associ-
ated to a class of units that includes the inch, the metre and the kilometre.
Therefore, the fact that mass has dimensions of mass already tells us that it
can be measured in pounds or grams, but not in inches. The necessity of a
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§2 The Function of Dimensions

choice of unit is one of the ways in which dimensional quantities differ from
pure numbers.

Secondly, the units for quantities with complex dimensions are derived
from those with basic dimensions. Thus, the possible units for velocity,
which has dimensions of L/T, are the km/h, km/s, m/s, etc. This is one
way in which to understand the ‘dependence’ of the VIM definition. This
dependence becomes relevant when one changes from one system of units
to another. Suppose one were to use seconds instead of hours as the unit
of time. Every time-quantity is then multiplied by 3600, since there are
3600 seconds in an hour. But one must also change the numerical value of
velocity, since the units of velocity depend on those of time. From [v] = L/T
it follows that one must divide every velocity quantity by the conversion
factor between the old and the new units of time. So, 1 km/h becomes
1/3600 km/s. The dimension symbols ‘L’ and ‘T’ here represent change-
ratios: ratios between units. The dimensions of a quantity then determine
the factor by which its value will change as a function of these ratios. Skow
(2017) calls this the ‘dimension function’ of a quantity. If Langhaar’s anti-
realism is correct, this function is the ‘only characteristic of dimensions to
which we need ascribe significance’.

Finally, it is possible to carry out arithmetic with dimensional quantities,
but only if certain rules are followed (the ‘quantity calculus’).4 These are as
follows:

1. It is possible to add or subtract quantities with the same dimensions
only;

2. It is possible to multiply and divide quantities of any dimension with
each other; the dimension of a product of powers is [Qp1

1 Q
p2
2 ...Q

pn
n ] =

[Q1]
p1 [Q2]

p2 ...[Qn]pn ;

3. Any other operation (sin, exp, etc.) applied to a dimensional quantity
is undefined.

There is more to say about the justification of these rules—why couldn’t
I add the mass of the Eiffel Tower to the distance between London and
Edinburgh?—but for my purposes here it suffices to note that they are widely
accepted within the physics community.

So far, I have covered common ground between realist and anti-realist
accounts of dimensions. But there is a difference between the function of

4 For a history of the quantity calculus, see de Boer (1995).
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dimensions, and whatever actually realises that function. It is here that
realism and anti-realism come apart.

3 Dimensional (Anti-)Realism

The anti-realist account of dimensions was already hinted at in the intro-
duction: it holds that dimensions are no more than a useful tool for keeping
track of unit changes. The base dimensions just are change-ratios, and the
‘dependence’ in the VIM definition solely concerns the numerical dependence
of the change in value of a complex quantity on these ratios. This account
comes close to Fourier’s conception of the dimension of a complex quan-
tity as a ‘conversion factor’ (De Clark, 2017). The operationalism of Percy
Bridgman committed him to a similarly deflationary view. The anti-realist
claims that a quantity’s dimensions does not track reality. This leaves room
for the peaceful coexistence of incompatible dimensional systems, which as-
sign different dimensions to the same quantities.

The existence of incompatible dimensional systems is one of the main
motivators for anti-realism, so I will now discuss it in more detail. The
point is that there are many different ways to assign dimensions to quanti-
ties, all of which are both consistent with the relevant dynamical equations
and compatible with the same empirical evidence.5 It follows that the di-
mensions of quantities are underdetermined. I identify three ways in which
they are underdetermined: by the choice of base dimensions; by the free-
dom to eliminate dimensions; and by the freedom to increase the number of
dimensions.

With respect to the first point, we have already seen that it is customary
to distinguish between base and complex quantities. But there is no reason
one must adopt M, L and T as base dimensions. It is also possible, for
example, to let the set of base dimensions consist of M, T and V—D =
〈M,T,V〉—where the latter is a dimension of velocity: [v] = V. It would
then follow from v = x/t that [x] = VT, rather than L. As the term ‘base
dimension’ suggests, this is akin to a different choice of basis for a linear
space.6 The new system of dimensions seems to express equally well the
way in which distance, duration and velocity depend on each other. It is,
moreover, empirically equivalent to the system on which M, L and T are
the base dimensions. After all, equations such as v = x/t carry a theory’s

5 This claim is found inter alia in Bridgman (1931); Dingle (1942); Langhaar (1951); Ellis
(1964); Pankhurst (1964).
6 I thank an anonymous reviewer for pointing out the terminological resemblance.
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empirical content, and such equations are preserved across different choices
of base dimensions.

The second element of underdetermination consists of the freedom to
eliminate dimensions. To stick with velocity as a simple example, one could
decide to eliminate the dimension L so that D = 〈M,T〉, and set [x] = T.
This means that distances are measured in units of time. For example, one
could choose units in which one light-year is equal to one year. It follows
that [v] = [x]/[t] = T/T = 1: velocity becomes ‘dimensionless’. Unlike
in the previous case, this system of dimensions may seem decidedly worse.
Previously, [v] = L/T expressed the way in which velocity depends on both
distance and duration, whereas [v] = 1 seems uninformative of the relation
between velocity, length and time. However, recall that for the anti-realist
the notion of ‘dependence’ is merely mathematical. The relation [v] = 1
only expresses the fact that in this reduced system of dimensions the value
for v does not vary when one chooses a different unit for time: a particle
that moves one light-year per year has the same velocity as one that moves
one light-second per second. It is the equation v = x/t that expresses
the physical relation between velocity, length and time, but that equation
itself remains the same. Therefore, these dimensional systems are again
empirically equivalent.

Finally, it is also possible to increase the number of dimensions. For ex-
ample, one could introduce a base dimension [v] = V for velocity in addition
to M, L and T, so that D = 〈M,L,T,V〉. This doesn’t quite work, because
now [v] = V 6= L/T = [x]/[t]. But this is easily fixed by the introduction
of a novel proportionality constant, c, with dimension [c] = VT/L. One
can then set v = cx/t, so that [v] = V = VLT

LT = [c][x]/[t]. The notion
of a dimensional constant is familiar: the gravitational constant G and the
spring constant k likewise carry dimensions. For an anti-realist, the only
role played by such constants is to fix the conversion factor between quanti-
ties of different dimensions. In this case, c converts values for distance and
duration into a value for velocity. One may object as before that [v] = V is
uninformative of the dependence of velocity on length and time, but as we
saw above the anti-realist does not require the dimensions of v to provide
any such information. In addition to the choice of base dimensions, then,
the number of base dimensions is also underdetermined by the empirical
evidence.

The core thesis of anti-realism about dimensions is that all of these
systems of dimensions describe reality equally well. There is no fact of the
matter as to whether [v] = V or [v] = L/T; there are just different ways of
keeping track of changes of units. This position is similar to conventionalism
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about spacetime geometry. Just as spacetime conventionalism says that
there simply is no matter of fact as to the true geometry of spacetime, so
dimensional conventionalism says that there is no matter of fact as to the
true dimensions of quantities.7 Another author of a textbook on dimensional
analysis, Ipsen (1960, 44), explicitly calls dimensions ‘conventional’.

Perhaps there are reasons to reject some non-standard systems, for ex-
ample because they are in tension with further theoretical commitments. In
this vein, Jalloh (ms.) argues that although operationalism considers the
number of dimensions conventional, it holds that there is a privileged choice
of base dimensions in terms of our fundamental measurement procedures.
This would attenuate the anti-realist’s conventionalism, but not overcome
it. Likewise, the geometric conventionalist may hold that on any adequate
account, space is three-dimensional (in the sense, unrelated to the dimen-
sions discussed in this paper, that at least three coordinates are required to
specify any point on it), but deny that there are any further facts about the
geometry. In either case, there remains a significant element of convention.

For the realist, on the other hand, dimensions are something more than
just a code. The dependence relation of the VIM definition is metaphysically
weighty. If [v] = L/T, for example, then it is in the nature of velocity to
be related to space and time in a particular way. This was the notion of
dimensions held in most of the 19th-century before Fourier (De Clark, 2017),
as well as that of Richard Tolman (1917).

What is this ‘something more’? I am not aware of any comprehensive re-
alist account of dimensions. Perhaps dimensions are second-order properties
of quantities, which in turn stand in second-order relations to each other.
Or perhaps the function of dimensions is to classify quantities into natural
kinds, such as the kind of mass quantities and the kind of length quanti-
ties. On this view, dimensions make for similarity and dissimilarity between
quantities.8 Yet another possibility is what Skow (2017) calls ‘Construction’,
namely the view that the values of complex quantities are ‘constructed from’
the values of some simple quantities. Thus, velocity values are constructed
from distances and durations. This of course requires a privileged set of
fundamental quantities. Skow raises an issue for Construction, namely that
it presupposes—falsely, Skow believes—that the units of these fundamental
quantities uniquely determine the correct units of the complex quantities.

7 For a recent revaluation of geometric conventionalism, see Dürr and Read (2023).
8 However, note that although identity of dimensions is often seen as a necessary condition

for identity of kind, it is not a sufficient condition: heat capacity and entropy have the
same dimensions, but are of a different kind.
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The realist may need to parry this objection.
I will not consider these various possibilities here. Instead, I define di-

mensional realism more broadly as any view on which some select class
of systems of dimensions more closely represents reality than others. The
claim is not just that some systems of dimensions are better than others;
anti-realism may concur that some systems are simpler or more fruitful.
The claim is rather that some systems of dimensions are closer to the truth.
This form of realism is not committed to the claim that there is a unique
system in which quantities have their ‘true’ dimensions. Some aspects of the
choice of dimensions may remain conventional even for the realist, if that
conventionalism is limited in scope.

There isn’t so much a sharp divide between realism and anti-realism,
then, as a spectrum. On one far end, the full-blown anti-realist espouses
wholesale conventionalism: no system of dimensions, however contrived, is
worse than any other. On the other extreme, the committed realist claims
that there is a unique true system of dimensions. I believe that the in-
termediate position I will defend in this paper is closer to realism than to
anti-realism. On this position, the second and third aspects of underdeter-
mination described above are not purely conventional. There are matters of
fact about the dimensional relations between quantities, such as whether a
pair of quantities have the same dimensions or not. This form of realism is
sufficiently robust to rebuke the accusation of conventionalism.

4 Primer on Dimensional Analysis

The argument from underdetermination is predicated on the claim that it
makes no difference which system of dimensions one employs. This is true
insofar as empirical adequacy is concerned: the predictions of a theory re-
main the same whatever the dimensions of the quantities involved are. But
the realist’s rejoinder to underdetermination has typically focused on ex-
planatory differences. While there are many empirically equivalent theories,
some of them offer better explanations of the observed phenomena than oth-
ers. They deserve our realist commitment on that basis. The anti-realist has
often rejected this form of argument by assimilating explanatory strength
to the pragmatic virtues (van Fraassen, 1980). It is not my intention to
rehearse that debate here. I will assume the validity of abductive inferences.
The more specific question then is whether this type of inference can be
applied successfully to dimensions: are some dimensional systmems more
explanatory than others? I answer in the affirmative. In particular, I be-
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§4 Primer on Dimensional Analysis

lieve that the technique of dimensional analysis is explanatory, but only once
certain dimensions are adopted. By an inference to the best explanation, I
conclude that those dimensions better describe reality.

I will elaborate on this argument in the next section, but first I must
introduce dimensional analysis itself. In a nutshell, dimensional analysis is
a technique to determine the functional relation between some quantities
from just their dimensions—without any derivation from dynamical laws.
Suppose one wanted to know the relation between the period P of a mass m
attached to a spring with spring constant k suspended in a gravitational field
of strength g. The quantities involved are standardly assigned dimensions as
follows: [P ] = T; [m] = M; [k] = M/T2; and g = L/T2. The crucial insight
then is that there is a unique product of powers of m, k and g in dimensions
of T only:

√
m/k. To see this, first note that g is the only quantity with

dimensions of L. Therefore, no product that features g can have dimensions
of T only, so g does not feature in the sought-after expression. The only
other quantity with dimensions of T is k, but because it also has dimensions
of M one has to divide k by m. This yields the expression k/m, which
has dimensions [k]/[m] = 1/T2. From there one can immediately infer that
P = α

√
m/k, where α is a dimensionless constant.

This may not seem like the most exciting result. Yet the importance of
dimensional analysis lies in the fact that one can find this expression without
deriving it from the equations of motions. Although far from difficult, it is
a little more involved to derive the period directly from Hooke’s law, ma =
−kx. For more complex systems such a derivation may prove intractable.

Dimensional analysis does require antecedent knowledge of the relevant
laws. Those laws tell us which quantities are involved in the first place. We
know that P may depend on m because the relevant force law contains m.
Moreover, the dimensions of complex quantities themselves are ultimately
derived from the laws in which they occur. Given the dimensions of m, a and
x, for instance, it follows from Hooke’s law that [k] = [m][a]/[x] = M/T2.
Campbell (1924) and Ellis (1964) criticise dimensional analysis on this basis.
If we already know the relevant equations, why not just solve them directly?
Of course, dimensional analysis may sometimes be simpler to carry out, but
a derivation from dynamical laws seems more fundamental—hence more
explanatory. Whilst I do not dispute that knowledge of the laws is normally
required to carry out dimensional analysis, I will argue in the next section
that this does not mean that the latter technique is less explanatory. Indeed,
dimensional analysis is often more explanatory than a ‘differential analysis’
of the equations of motion.

Before that, however, I first present a more formal account of dimensional
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analysis. The theorem that powers dimensional analysis is known as the
‘Buckingham Π-Theorem’:

Theorem 1 (Buckingham Π-Theorem). Any law f(Q1, ..., QN ) = 0 in
terms of N quantities Q of n base dimensions can be rewritten as a law
f(Π1, ...,Πm) = 0 in terms of m := N − n dimensionless quantities Π.

The Π-terms are products of powers of the Q-terms.
For an example of the Π-theorem in action, consider once more the period

of a spring. There are four quantities (P , m, k and g) in three dimensions
(L, T, M), so the Π-theorem entails that there is one dimensionless Π-term.
This term is our kP 2/m, which is unique up to a dimensionless proportion-
ality factor. Therefore, the law that relates these quantities is of the form
f(kP 2/m) = 0, from which it follows that P is proportional to

√
m/k.

The Buckingham Π-theorem relies on three assumptions (Jalloh, forth-
coming):

1. Any law that relates the quantities Q is expressible as a function
f(Q1, ..., Qn) = 0;

2. The dimension of any quantity is a product of powers of the base
dimensions (Bridgman’s lemma);

3. The law f is dimensionally homogeneous: each term has the same
dimensions.9

I will adopt these assumptions in what follows.
However, is dimensional realism really entitled to these assumptions, in

particular dimensional homogeneity? Typical justifications of dimensional
homogeneity are based on an anti-realist account of dimensions. The main
motivation for homogeneity is that it ensures that an equation remains valid
under an arbitrary change of units. As Maxwell (1873, 1-2) wrote: ‘The
formulae at which we arrive must be such that a person of any nation, by
substituting for the different symbols the numerical values of the quantities
as measured by his own national units, would arrive at a true result.’ The
unit-independence of the laws is a reasonable requirement: the validity of
the laws should not hinge on an arbitrary choice of units!

Ths justification assumes the viewpoint of dimensions as a bookkeeping
device. If, as dimensional realism asserts, dimensions are (for example)

9 Lange (2009) calls this condition ‘dimensional consistency’, whereas he defines dimen-
sional homogeneity as the weaker condition that an equation holds for any choice of unit.
I will not follow Lange in his non-standard choice of terminology.
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§5 How Dimensions Explain

real properties of quantities, one may wonder what such properties have to
do with unit changes. Fortunately, dimensional realism can offer a deeper
justification of homogeneity. For a dimensional realist, equations satisfy
dimensional homogeneity because the dimensions of a quantity determine
its kind, and only quantities of the same kind can have the same value. If
an equation is inhomogeneous it equates quantities of different kinds, so it is
trivially false. This justification of dimensional homogeneity can be traced
back to Lodge (1888, 47): ‘I have recently been laying stress on the fact
that the fundamental equations of mechanics and physics express relations
among quantities and are independent of the mode of measurement of such
quantities; much as one may say that two lines are equal without enquiring
whether they are going to be measured in feet or metres; and indeed, even
though one may be measured in feet and the other in metres.’ Because I
do not wish to consider in detail the metaphysical nature of dimensions,
I will not say more on this issue here. However those details turn out, it
seems clear that dimensional homogeneity is also justified—perhaps even
more so—on a realist conception of dimensions.

Therefore, the realist can rely on the Π -theorem just as much as the anti-
realist. This means that the path is free to appeal to dimensional analysis
in my defence of dimensional realism.

5 How Dimensions Explain

I now return to the realist’s rejoinder to the anti-realist’s argument from
underdetermination in the form of an inference to the best explanation.
The inference runs as follows:

1. Dimensional analysis, when successful, is explanatory;

2. Dimensional analysis is successful only when quantities are assigned
particular dimensions;

3. If dimensional analysis is explanatory only when quantities are as-
signed particular dimensions, then those are the quantities’ true di-
mensions;

4. Therefore, those are the quantities’ true dimensions.

I will comment on each of the premises in turn.
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§5.1 Dimensional analysis, when successful, is explanatory

5.1 Dimensional analysis, when successful, is explanatory

The first premise says that dimensional analysis not only delivers true re-
sults, but is also explanatory. In the previous section, I mentioned one
reason to believe that this premise is false: for dimensional analysis to work,
knowledge of the fundamental laws is necessary. With that knowledge one
could just as well derive the sought-after expression directly by solving a set
of differential equations. The putative explanation from dimensional anal-
ysis is ‘screened off’ by this more fundamental differential analysis of the
system’s dynamics.

Lange (2009) has argued, to my mind convincingly, that this objection is
unsuccessful. He shows that dimensional analysis is often more explanatory
than direct derivation. I have little to add to his results, so I will simply
summarise them here.

Lange identifies at least four senses in which dimensional analysis is often
more explanatory than differential analysis:

1. Dimensional analysis abstracts away from explanatorily redundant fea-
tures. It is often the case that a differential analysis contains more
detail than needed. For example, it is possible to derive from the law
of universal gravitation that the period of a planet’s elliptical orbit of
radius r around a massive star is inversely proportional to r3/2. But
this would hold even if the law of universal gravitation were different,
for example if the value of G were different or if Fg were proportional
to M2 instead of M . To the extent that dimensional analysis is insen-
sitive to such details it offers a better explanation.

2. Dimensional analysis explains distinct features of the same system in
distinct ways. The explanation offered by differential analysis is often
the same even for distinct explananda. For example, suppose one
wants to know both (i) why T is proportional to

√
m/k, and (ii)

why it does not depend on g. In order to explain these features by
differential analysis, one simply derives the equation P = α

√
m/k

from the equations of motion: both (i) and (ii) follow immediately.
Dimensional analysis, on the other hand, offers distinct explanations:
(i) is explained by the fact that m must be divided by k to cancel out
the mass dimension M, whereas (ii) is explained by the fact that g is
the only one of these quantities that has dimensions in L. Dimensional
explanations are better because they are more fine-grained.

3. Dimensional analysis explains similar features of different system in
similar ways. Different systems may involve similar dimensional de-
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particular dimensions

pendencies; dimensional analysis allows one to unify these features in
a way that differential analysis does not. For example, the expressions
for the wave speed of a (longitudinal) sound wave and of a (transver-
sal) wave in a piece of rope are physically similar, despite the fact
that the dynamical equations governing these systems are quite differ-
ent. Dimensional analysis offers a more unified explanation of these
expressions.

4. Dimensional analysis explains distinct features of different systems in
distinct ways. Conversely, similar systems may involve different di-
mensional dependencies; dimensional analysis allows one to track these
differences. For example, the expressions for the period of a pendu-
lum and that of a spring look similar, but the former depends on g
whereas the latter does not. Differential analysis cannot explain this
dissimilarity beyond the brute fact that one eventually arrives at dif-
ferent expressions. But dimensional analysis can locate the difference:
the period of a pendulum, unlike that of a spring, may depend on the
length l, so here it is not the case that g is the only quantity with di-
mensions in L. Again, dimensional explanations are often more precise
than brute calculations.

Based on these results I take the first premise to be firmly established.

5.2 Dimension analysis is successful only when quantities
are assigned particular dimensions

Lange does not pay particular attention to the second premise, since it is
not his aim to defend dimensional realism (in fact, he seems to operate
with a broadly anti-realist conception). But the effectiveness of dimensional
analysis depends on the choice of dimensions. The realist can use this fact
to privilege a select class of dimensional systems.

The crucial fact is that dimensional analysis is most effective when m,
that is, the number N of quantities involved minus the number n of base
dimensions, is minimised. This follows directly from the Π-theorem, which
states that any law can be re-expressed as a function of m dimensionless
quantities. The smaller m, the fewer terms are involved in this function,
and so the more determinate it becomes. In the case where m = 1 there is a
unique dimensionless product Π, such that f(Π) = 0. From the dimensional
homogeneity of f it then follows that Π is equal to some dimensionless
constant, c. In that case the relation between the original quantities is known
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uniquely up to a proportionality factor. Therefore, dimensional analysis is
most ‘powerful’ when m is minimised.10

I will now show that m is minimised, and hence the power of dimensional
analysis is maximised, only for certain dimensional systems. In particular, m
is determined by the number of base dimensions. I will use the period of the
spring as a case study throughout the remainder of this section. When that
example was presented in the previous section, there were four quantities
(P,m, k and g) in three dimensions (M, L and T). So, N = 4, n = 3, and m =
N−n = 1. Therefore, there is a unique dimensionless product of the relevant
quantities, kP 2/m, which means that their relation is fully determined up
to a proportionality constant. For different choices of dimensional system,
dimensional anlysis fails to yield such a specific result.

Consider first the elimination of a dimension. Concretely, suppose one
were to eliminate the mass dimension by setting [m] = L. It would then
follow from the dimensional homogeneity of the equations of motion that
[g] = [k] = L/T2. In this system of dimensions there no longer is a unique
dimensionless product of the quantities involved. For there are now four
quantities (N = 4) but only two dimensions (n = 2), so the Π-theorem
entails that there are m = 2 dimensionless Π-terms. These are kP 2/m and
gP 2/m. Therefore, dimensional analysis at most yields the result that ei-
ther T = α

√
k/m ∗ f(gP 2/m) or T = α

√
g/m ∗ f(kP 2/m), where α is a

dimensionless constant and f is an arbitrary function. This is less infor-
mative than the previous result in two ways: firstly, there are two distinct
expressions to choose from; and secondly, the form of f is left completely
open. The correct result is only recovered if f is identically set to 1 in the
first expression. It is therefore clear that the elimination of a dimension
reduces the explanatory power of dimensional analysis.

Now consider the introduction of a new dimension. Here, one can show
the inverse: the introduction of a further dimension can increase the power
of dimensional analysis. For example, suppose one had started out with L
and T as the only two base dimensions. We have just seen that in that
case dimensional analysis does not yield a unique expression for the period,
because m = 2. The introduction of a base dimension M for mass would de-
crease m to 1 to yield a unique dimensionless product, namely kP 2/m—this
is just the result derived in the previous section. Just as the elimination of
dimensions can reduce the power of dimensional analysis, then, the intro-

10 What if m = 0? Then there is no functional dependence at all between the quantities
involved. Since [x] = L and [t] = L, for example, there simply is no functional dependence
of x on t only. I am only interested in cases where m > 0.
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duction of a new dimension can increase it.
But it is not always better to introduce a dimension. Consider a dimen-

sional system in which force, F , has a base dimension [F ] = F in addition to
M, L and T. This would violate the dimensional homogeneity of Newton’s
second law, F = −ma, since [m][a] = ML/T2. This is easily fixed: introduce

a novel dimensional constant h with dimensions [h] = FT2/ML
2
, and modify

the equation of motion to read F = hma. Then dimensional homogeneity
is restored. This constant may seem mysterious: what does it represent?
But it does no more than codify the proportionality between F and ma, in
the same way that k codifies the proportionality between F and x. There
is now an additional dimension, F, so n = 4; but there is also an additional
quantity, h, so N = 5. The difference m therefore remains the same, and
so the Π-theorem dictates that there is a unique dimensionless product of
T, k,m, g and h. This is kP 2/hm, from which it follows that T is propor-
tional to

√
hk/hm. This is essentially the same result as before, except for

the presence of the novel constant. The addition of a further dimension has
therefore not increased the explanatory power of dimensional analysis. Con-
versely, it would not decrease the power of dimensional analysis to eliminate
the F-dimension.

The broader conclusion is this: if the introduction of a dimension also
involves the introduction of a novel constant, or if the elimination of a dimen-
sion also involves the elimination of a constant, then dimensional analysis
remains equally explanatory. In such cases, the change in n is compensated
for by an equal change in N , so m is kept constant.

It may thus seem that there is no overall preference for a system with
four rather than five dimensions. This would pose a problem for realism,
which aims to remove elements of conventionality. The presence of fewer di-
mensional constants, however, is preferable on broadly Occamian principles.
The literature is divided on the nature of constants of nature—but whether
they are physical quantities, aspects of the laws, properties of interactions or
kinematical structures, they would seem to come at some ontological cost.11

Even a deflationary account of constants must consider laws without them
as syntactically simpler. Bridgman, for instance, held that ‘the dimensional
constants are to be regarded as an evil, to be tolerated only if they make
possible more information about the physical variables’ (1931, 49). If it
makes no difference to dimensional analysis whether there is an additional
constant, the correct choice is to opt for one fewer constant and hence one

11 For example, on the account offered in Jacobs (2022) such constants represent funda-
mental cross-value space structure.
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fewer dimension.
I therefore posit this maxim: first minimise the difference m between the

number N of quantities and the number n of dimensions; then minimise the
number n of dimensions itself. If an additional dimension decreases m, the
explanatory power of dimensional analysis is enhanced; if it leaves m the
same, Occam’s razor disfavours the additional constant. The ‘Goldilocks’
assignment of dimensions is thus the one that is most parsimonious of the
ones that are maximally explanatory. Dingle (1942, 338) already expressed
a similar insight: ‘The net result of these considerations, then, is that if we
wish to give the greatest scope of usefulness to the principle of dimensional
homogeneity, we must choose sufficient fundamental magnitudes to prevent
two or more magnitudes from having the same dimensions, but not so many
that indeterminable ‘constants of nature’ are forced into our equations.’
Yet Dingle does not draw the conclusion that dimensions correspond to an
element of reality. I argue that the optimal system of dimensions deserves
our realist commitment.

I do not claim, however, that there is a unique optimal system. Although
the above maxim fixes the number of dimensions, it does not fix the choice
of base dimensions. For example, a system of dimensions in which K is a
base dimension instead of M is equally explanatory. I will comment on the
significance of this at the end of this section, but first let me briefly discuss
the final premise.

5.3 If dimensional analysis is explanatory only when quan-
tities are assigned particular dimensions, then those
are the quantities’ true dimensions;

The final premise is simply a statement of the validity of inference to the best
explanation. If the ‘Goldilocks’ dimensions were not the true dimensions of
the quantities in question, the explanatory power of dimensional analysis
when exactly these dimensions are adopted would seem miraculous.

But isn’t the explanatory power of dimensional analysis also miraculous
if dimensional realism is correct? How does a dimensional system fix the
lawlike relation between a set of quantities? In a traditional inference to
the best explanation, the explanation is often causal. Thus, we believe
that alpha particles exist because their existence provides the best causal
explanation of the observed track in the cloud chamber. Dimensions do not
seem to possess any causal powers. So, how can dimensions explain?

I intend to leave this question open, because the answer will ultimately
depend on a broader metaphysical account of dimensions. For my argu-
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ment’s validity, it is enough to have established that dimensional analysis
is explanatory one way or another. But let me offer a sketch of a possible
answer. We saw earlier that dimensional homogeneity is a core assump-
tion in Buckingham’s Π-theorem. The realist justifies this assumption by
thinking of quantities with different dimensions as being of different kinds.
This makes homogeneity a physical principle, rather than a merely formal
requirement. Dimensional homogeneity acts as a constraint on the way in
which quantities can hang together: it is impossible for a mass quantity to
be equal to a length quantity in somewhat the same way that it is impossi-
ble for a square peg to fit into a round hole. In the words of Susan Sterrett
(2021, 674): ‘[t[he fact that physical equations (equations of physics) must
satisfy the requirement of dimensional homogeneity, provides an explanation
of how mathematical equations as used in physics can be informative about
the world.’12 This is how the dimensions of quantities explain why they can
only depend on each other in a particular way.

The staunch anti-realist may not have much faith in this style of expla-
nation, but it is not my hope to convince the sceptic. For a realist, the
argument presented here establishes the conclusion that some dimensional
systems better describe reality than others, namely those that first min-
imise m and then minimise n. Although the choice of dimensional system
is underdetermined by the data, it is constrained by a theory’s explanatory
commitments.

I have not yet discussed the third element of conventionality: the choice of
base dimensions. That is because this choice has no effect on the power
of dimensional analysis. In the example of the spring, one could as easily
have chosen L, T and F as base dimensions, where F is a dimension of force.
Then [P ] = T, [k] = F/L, [m] = FT2/L, and [g] = L/T2. There are still four
quantities in three dimensions, m = 1, and the only dimensionless product
is kP 2/m as before. This is no surprise: a change in base dimensions affects
neither the number of dimensions n nor the number of quantities N , so m
is left the same. Therefore, the inference to the best explanation does not

12 Sterrett thinks of dimensional homogeneity as akin to a grammatical rule, so that an
inhomogeneous equation is ill-formed. This interpretation does not lend itself as well to
realism—and seems inconsistent with her claim above—since grammatical constraints are
formal rather than physical. I do not believe it is correct to think of homogeneity as
grammatical: a law such as F = m is well-formed, but false. Lange (2009, §8) likens the
principle of dimensional homogeneity to ‘meta-laws’ such as symmetry principles. It has
the status of a general law that explains the more specific first-order laws. This analysis
is more amenable to realism, but it carries metaphysical commitments that not all realists
may want to accept.
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yield a unique set of true dimensions for a set of quantities.
This is not a problem for realism as I have defined it, which does not

require a unique dimension for any quantity but only a restricted class of
privileged dimensional systems. The latter suffices to reject anti-realism.

Nevertheless, this intermediate position may not seem to deliver on the
promise of dimensional realism, namely that the dimensions of a quantity
reflect their nature. I concur: dimensional analysis does not reveal the
nature but the dimensional structure of quantities. As such, the realism I
defend is best understood as a version of structural realism.13 The structure
in question consists of the dimensional relations between quantities. By this,
I mean relations of the form [F ] = [m][a] or [P ] = [

√
m/k], that is, relations

that say that the dimension of some quantity is a particular function of the
dimensions of certain other quantities. On the one hand, these relations are
preserved under changes of base dimensions. For example, whether I choose
force or mass as a base dimension, it remains the case that [F ] = [m][a].
On the other hand, they are not preserved under a change in the number
of base dimensions. For example, [g] = [k] is false in a system with three
base dimensions, but true in a system with only two. The claim that there
is a fact of the matter as to the dimensional relations between quantities
certainly goes beyond the conventionalism of Bridgman, Langhaar and the
SI.

Importantly, only the dimensional relations are relevant for dimensional
analysis. The principle of dimensional homogeneity, for example, only re-
quires identity of dimensions; it does not matter which dimensions the terms
in an equation have. The key result, that there are m dimensionless Π-terms,
is likewise insensitive to a change of dimensional basis.

Like with structural realism in philosophy of science, there are two va-
rieties of structural dimensional realism: epistemic and ontic. The first
position says that while quantities have a unique set of true dimensions, we
cannot know what they are. All that is accessible to us are their dimensional
relations. The latter position, meanwhile, says that the dimensional rela-
tions are all there is. There just is no fact of the matter whether [v] = L/T
or V; the relation [v] = [x]/[t] expresses all there is to know about the dimen-
sions of v, x and t. The former position is perhaps easier to make sense of,
because it is not committed to ‘dimensional relations without dimensions’.
But the latter position is more parsimonious, since the dimensional rela-

13 Johnson’s (1997, Ch. 4) view is an early precursor of dimensional structuralism. Jalloh
(ms.) defends a similar position, which he calls ‘functionalism’. A functionalist analysis
is one way to obtain a form of structuralism, but it is not the only one; I therefore prefer
‘structuralism’ as a more neutral term.
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tions are the working posits of dimensional analysis whereas the dimensions
themselves are idle.

The argument that I have presented, however, is neutral between the
difference between ontic and epistemic structural realism. I therefore leave
a discussion of their respective merits to future work.

6 Dimensions and Fundamental Laws

In the previous section I established that certain dimensional system in-
crease the explanatory power of dimensional analysis and therefore deserve
our realist commitment. However, this only works if it is the same system
(up to a choice of base dimensions) in each instance that affords successful
dimensional analyses. If it were the case that different dimensional analy-
ses require different, incompatible dimensional systems, then an inference
to the best explanation yields inconsistent results. In this section, I discuss
a putative case of such non-uniqueness and show that it does not threaten
dimensional realism. The key point is that in order to find out the most
fundamental dimensional system, one has to consider the most fundamental
applications of the laws.

The most famous example of non-uniqueness is the ‘Rayleigh-Riabouchinsky
paradox’.14 In 1915, Lord Rayleigh showed that dimensional analysis could
yield the equation for the heat transfer from a stream of fluid to a solid
rod. In his analysis, Rayleigh assumes that heat and energy have different
dimensions. Riabouchinsky pointed out in a response that kinetic theory
allows one to equate their dimensions. But it turns out that this reduces
the number of dimensions without a reduction in the number of quantities,
so dimensional analysis yields a less determinate result. The maxim from
the previous section would therefore rule that heat and energy have different
dimensions. This may not seem problematic, except for the fact that other
applications of dimensional analysis are most successful when the dimen-
sions of heat and energy are equal. If incompatible dimensional systems are
equally explanatory, then an inference to the best explanation cannot favour
one over the other.

In order to tackle this problem I will consider a slightly simpler exam-
ple that does not concern heat, namely whether force is a base dimension
in addition to M, L and T. We have seen in the previous section that an
additional base dimension F for force necessitates the introduction of an ad-
ditional constant, leading to an overall less parsimonious system. It would

14 For more on this paradox, see Jalloh (ms.) and references therein.
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thus seem that it is inadvisable to include force as a base dimension. Bridg-
man (1931), however, discusses a case in which dimensional analysis becomes
more explanatory when a dimension of force is added. The explanandum
of Bridgman’s example is the expression for the velocity v of a small mas-
sive droplet falling under the influence of gravity in a viscous liquid. The
relevant quantities are six in number: the velocity v; the diameter of the
droplet, D; the densities d1 and d2 of both the droplet and the liquid; the
viscosity of the liquid, f ; and the gravitational field, g. If one chooses M, L
and T as base dimensions, such that [f ] = M/LT, then there are 6− 3 = 3
dimensionless quantities. In that case dimensional analysis does not yield
any useful results. If, on the other hand, one includes F as a base dimension
for force, such that [f ] = FT/L2, then there are only 6 − 4 = 2 dimen-
sionless quantities: vf/gd1D

2 and d1/d2. Since v only occurs in the first
expression one can infer that v = gd1D

2/f × θ(d1/d2), where θ is an ar-
bitrary function. This is not far off from the correct result, namely that
v = gD2(d1 − d2)/f .15 Unlike in the case of the spring, here a system with
an additional base dimension for force is more explanatory. By an inference
to the best explanation, we should conclude that force is a base dimension
after all.

The problem of underdetermination seems to have returned in full force.
There is a way out: the former example is, in a sense to be made precise,
more fundamental than the latter. Bridgman already notes that the analysis
of the droplet is essentially a problem in statics. The droplet does not accel-
erate, because at every point in time the gravitational force on the droplet
is equal to the upwards pressure of the liquid. It follows that the second
law F = ma plays no role in the derivation of the droplet’s velocity. On the
other hand, the spring-load does accelerate, so it is a dynamical problem
that requires the second law to derive the period. Dynamics includes statics
as a special case, namely when all net forces are zero. Because dynamics is
more general than statics, it is also more fundamental.16

Lange uses this fact to explain the Rayleigh-Riabouchinsky paradox.
Lange’s point is that the choice of F as an additional base dimension does
not ignore the information that [F ] = [ma], but rather reflects our knowl-
edge that the dependence of F on m and a is irrelevant to the problem at
hand. It is possible to put this in modal terms: the expression for v would
remain the same even if force were not proportional to mass times accelera-

15 Indeed, if one were to consider only the difference in densities (d1 − d2), dimensional
analysis would yield exactly this expression!
16 See Hunt et al. (2023) on the claim that more general theories are more fundamental.
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tion, for instance if F were proportional to m2a instead. Since the relation
between the dimensions of F and those of m and a are irrelevant, we may
assume that force has a base dimension unrelated to M, L and T. The same
is not the case for the period P of a pendulum, since the derivation of P
from the equations of motion relies on the second law. Likewise, distinct
dimensions for heat and energy do not reflect our ignorance of kinetic the-
ory, but rather our knowledge that in Rayleigh’s example no thermal heat
is converted into mechanical energy. Even if heat and energy were not in-
terconvertible, Rayleigh’s expression for heat transfer would have remained
the same.

I agree with Lange that this correctly explains why it is legitimate to use
base dimensions for heat or force in certain cases. But this does not answer
the non-uniqueness objection, and in fact may seem to make it worse: if dif-
ferent choices for the number of dimensions are justified in different cases,
how can one of those choices more closely match reality? To solve this
puzzle, I return to the claim that dynamics is a more fundamental branch
of mechanics than statics. In order to find out the fundamental system of
dimensions, one should look at the most fundamental applications of dimen-
sional analysis. This means that one should prefer the dimensional system
that best explains the period of the spring over one that best explains the
velocity of the droplet. To put this point differently, the latter explanation
would have worked even if the world’s laws were different from what they
actually are. If we are interested in the actual dimensions of quantities, we
should consider the actual laws that relate those quantities. If the second
law were false, force may have had its own base dimension. But we wish to
know the actual relation between the dimension of F and those of m and
a, so we must consider the second law. After all, it is the second law that
determines how F , m and a are related in the actual world. The dimen-
sional analysis of the period does rely on the second law, and it tells us that
[F ] = [m][a].

The uniqueness objection is therefore answered by the claim that in or-
der to discover the fundamental dimensional relations between quantities,
one should consider the most fundamental dimensional explanations. As far
as I am aware, those explanations always presuppose the same dimensional
relations. Of course, I have not proven this: it remains possible that there
are pairs of equally fundamental dimensional analyses that nevertheless use
dimensional systems that differ over more than just the choice of base di-
mensions.17 If Lange’s explanation of the Rayleigh-Riabouchinsky paradox

17 One possible counterexample concerns directions in space. There are some applications
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is correct, however, then there is no reason to expect such cases to occur, for
Rayleigh-Riabouchinsky-style paradoxes occur exactly when a dimensional
analysis leaves out some fundamental law.

7 Conclusion

I have defended the claim that the dimensions of quantities—or, more pre-
cisely, the relations between the dimensions of quantities—track a real fea-
ture of the natural world. Although it is possible to assign the same set of
quantities different dimensions, some of those assignments are more explana-
tory than others. The best explanation for this fact is that those dimensional
systems better describe reality.

But dimensional analysis does not uniquely determine a dimensional sys-
tem. In particular, it leaves open the choice of base dimensions. Therefore,
my account is neutral as to which individual dimensions are real. It does not
say, for example, that L, M and T are more fundamental than F. It does,
however, say that there are exactly three mechanical dimensions, and that
[F ] = [m][a]—contrary to consensus conventionalism.

I have defined dimensional realism in broad brushstrokes: it simply con-
sists of the claim that some dimensional systems better describe reality
than others. This leaves it almost completely open what dimensions are.
I hope that my defence of dimensions will spur on philosophers to anwer
this question. In addition to the intrinsic interest in what kind of entities
dimensional realism commits one too, the answer to this question also bears
on the choice between epistemic and ontic structural dimensional realism.
For example, if dimensions are conveived of as higher-order properties of
quantities, then it would seem that each quantity must ultimately possess a
unique true dimension—a ‘nature’ that we cannot know. Skow’s (2017) ac-
count of dimensions in terms of a ‘definitional connection’ explicitly assumes
a privileged choice of base dimensions. Other accounts are better suited to
ontic structuralism. In this vein, Jalloh (ms.) has recently developed a func-
tionalist account of dimensions, on which dimensions are relationally-defined
nomic roles.

Finally, dimensional realism provides a sense in which reality is truly
made of physical stuff: of masses, charges, velocities, and so forth. Dimen-

of dimensional analysis on which it is advantageous to assign distinct dimensions to dis-
tances in orthogonal directions. If those applications are fundamental, we should conclude
that there are in fact three distinct length-dimensions. I lack the space to discuss this
example in more detail.
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sions are an indication that these quantities are distinct from pure num-
bers. The dependence of the effectiveness of dimensional analysis on the
choice of dimensional system indicates that it matters which quantities are
made of which kind of stuff. It will not do to throw every quantity on the
same heap—assign every quantity the same base dimension, or none at all—
because then dimensional analysis is silent on their mutual relations. This
realisation should serve as an antidote to recent proposals in favour of a
fully dimensionless physics (Whyte, 1954; Duff, 2015; Barbour, 2021).18 If
dimensional realism is correct, such a physics is all but physical.
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