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The research program of general equilibrium theory originated with Adam Smith’s vision
of the emerging world economy. It evolved through a long series of efforts by economists and
mathematicians. However, a major challenge arose with the discovery that the shape of Wal-
rasian excess demand functions makes unique stable equilibria the exception rather than the
rule. This has led to a highly problematic disconnect between modeling for policy support and
the understanding of the world economy that is actually available. A promising route to over-
come these difficulties has been opened by recent research on the dynamics of social norms,
building on the theory of perturbed dynamical systems. This work could lead to a fruitful new
reading of Adam Smith. The marginal analysis of current general equilibrium theory can be
successfully applied to processes within a historically established basin of attraction, and it
can be complemented by the “inframarginal” study of historical transitions from a given basin
of attraction to one of several future possibilities.

1. Adam Smith’s metaphor

Less than two decades before the French revolution, Adam Smith – a Scotsman
who had travelled France extensively – coined the metaphor of the invisible hand of the
market. His basic idea was that attempts by governments to control society as a whole
were futile and counterproductive, because it was much better to leave markets work out
the directions of economic activities by themselves.

He saw important exceptions where government intervention was appropriate, e.g.
to avoid cartels and monopolies or to make sure that people do not get trapped in lives
where they can only exercise an extremely narrow range of skills. But as a rule, he argued
that if people pursue whatever legally accepted interests they may wish to, competitive
markets will lead to a highly desirable outcome that would be impaired by government
intervention.

Smith thought that the requirements of production define a natural price for every
good and that market prices will lie below or above natural prices if supply exceeds de-
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mand or falls short of it. This difference will then induce investors to change their plans,
so as to expand or contract capacity, and then production until supply equals demand.

He also thought that production costs will fall as markets expand, because larger
production allows for lower unit costs thanks to greater division of labor. Just as he
saw domestic economic interventions of governments as usually counterproductive, he
considered restrictions on free trade as harmful because they restrict the size of mar-
kets.

More generally, Smith saw the growth potential of actual economies as constrained
by the size of the market. He took that size as given by historical circumstances, advocat-
ing free trade as a means to increase it. An important implication of this view is that the
world economy evolves beyond the control of nation states – a reality and a challenge
that has become more and more important since the days of Smith (1776).

2. Walras and the origins of mathematical economics

About a century later, Walras (1874, 1877) argued that Smith’s ideas should be
elaborated in mathematical terms. He was a French economist who had to work in Lau-
sanne, Switzerland, because his Parisian colleagues found little interest in his ideas.
According to his proposal, the basic functioning of markets is to be represented by eco-
nomic agents trading bundles of goods. There are j = 1, . . . , n possible goods, and their
quantities are to be represented by nonnegative real numbers, so a bundle of goods is a
point in R

n
≥0. Each good has a price, and all prices are represented in terms of some good

or bundle of goods used as numéraire. A price pattern p then is a list of nonnegative real
numbers with p ∈ R

n
≥0 and the price of the numéraire equal to one.

There are i = 1, . . . ,m agents; they have initial endowments ωi ∈ R
n
≥0 and can

demand any bundle of good in the set {x : x ∈ R
n
≥0, ωi · p = x · p}, i.e. any bundle of

good they could afford by selling their initial endowment. The interests of the agents are
represented by utility functions ui : Rn

≥0 → R.

It has become customary to consider functions with ∂ui
∂xj

> 0 everywhere and with
strictly convex indifference curves as paradigmatic examples. With functions of such
shape, at each price pattern each agent will select exactly one optimal demand xi. By
considering demand as a function of prices one obtains individual demand functions, by
adding those over all agents one obtains an aggregated demand function fD : Rn

≥0 →
R
n
≥0. An aggregated supply function can be construed by simply adding all individual

endowments over all agents – this function is constant for all prices. Walras that there
is a price pattern at which these functions intersect, so that supply is equal to demand
on all markets, and that market dynamics converges towards that situation, known as a
general economic equilibrium. Proving or disproving that conjecture turned out to be a
major challenge, as mathematicians in those days did not have the instruments to treat
problems of this kind.
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Having defined how he wanted to analyze the functioning of markets, Walras added
production by introducing profit-maximizing firms that can use given technologies to
transform input goods into output goods. He also made suggestions for how to include
money and credit into the kind of scheme he was proposing, but despite a wealth of
proposals it is fair to say that until today it is not really clear how this can be done.

As for economic growth, in a Walrasian perspective it is driven by the desire for
greater consumption and constrained by the resources available. Growth potential then
depends on the relation between existing resources and outputs available for net invest-
ment. However, this relation is not easy to capture, as any measure of economic growth
requires prices to compare different goods.

Here, Walras remained ambiguous: sometimes he imagined that in equilibrium
goods are traded at prices that are fully consistent with future economic developments
(that will affect the amount of inputs and also the technologies available), sometimes
he imagined that trade takes place at non-equilibrium prices in such a way as to con-
verge towards equilibrium. As we will see, this ambiguity is still relevant for economic
analysis today.

3. Fixed points and equilibria: Brouwer and von Neumann

A few years before World War I, the Dutch mathematician Brouwer proved that any
continuous function from a bounded, closed, convex set to the same set has at least one
fixed point (Border, 1989, gives an excellent overview of the relevance of fixed points
for economics). A simple example of such a set is the unit interval [0, 1] on the real line,
and it seems rather obvious that a continuous function f from the unit interval to itself
will cross the identity line y = x at lest once, and so has at least one fixed point.

The unit interval is a 1-simplex. More generally, a n-simplex is a construction
based on n+1 points in R

n that do not fit Rn−1 (the points 0 and 1 on the real line do not
fit R0, i.e. a single point): it is the smallest convex set containing these n+ 1 points (i.e.
their convex hull). A simplex is always bounded and closed, and so Brouwer’s theorem
holds for all of them.

An important property of simplexes is captured by Sperner’s lemma, discovered
in 1928. For a 1-simplex like the [0, 1] interval, it says that if the endpoints are marked
red and blue, and one then adds red and blue points in arbitrary order, at each step one
will get either a smaller red-blue subsegment or two additional red-blue subsegments
(a simple drawing is sufficient to see why). More generally, if one colors the corners
of a n-simplex with n colors and then subdivides it into subsimplexes whose corners
are colored with whatever sample from the same n colors, there will always be an odd
number of subsimplexes whose corners have n different colors.

Sperner’s lemma yields a proof of Brouwer’s theorem. Consider a 1-simplex S
and a continuous mapping f : S → S. Imagine S as a horizontal line segment, cut it
in two halves, call its left endpoint A, its middle point B and its right endpoint C. If
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f(X) = X , X ∈ {A,B,C}, then X is a fixed point and the theorem applies. If none
of the three points is a fixed point, color it red if it moves to the right under f and color
it blue if it moves to the left. The endpoints are bound to move in different directions,
and as a trivial application of Sperner’s lemma one of the two subsegments will have
endpoints of different colors. Repeat the procedure for that subsegment and so on. Then
either the procedure runs into a fixed point after a finite number of steps or it produces
a sequence of nested subsegments converging on a single point that will then be a fixed
point. An analogous argument holds for arbitrary n-simplexes and then for sets that are
topologically equivalent to those, as an arc is to a straight line segment.

In the years before World War II, the Austrian mathematician Karl Menger (son of
economist Carl Menger) organized a mathematical colloquium in Vienna that brought to-
gether mathematicians, economists and philosophers. In 1937, John von Neumann wrote
a paper for the colloquium showing the crucial relevance of Brouwer’s theorem for the
analysis of general economic equilibria (published in English as von Neumann, 1945).

He designed a model of a growing economy involving n different goods and k > n
possible activities. Each activity requires specific quantities, ahj , h = 1, . . . , k, j =
1, . . . , n, of different goods to produce specific quantities bhj of those goods. With n
goods there are n prices. By choosing as numéraire a bundle consisting of one unit of
each good, the sum of the prices is always equal to one, and the set of possible prices is a
n−1 simplex, Sp. Each activity can be operated at different activity levels, xj , including
zero for activities not used. By focussing on the case where the sum of activity levels is
equal to one, the possible activity levels form a k − 1 simplex, Sx.

von Neumann now looks at a general equilibrium as a situation where supply
matches demand for each good and where the economy evolves through time with-
out changing the relations between prices. For this purpose, he introduces a function
φ : Sp × Sx → R characterizing any pair of prices and activity levels:

φ(p, x) =

∑k
h=1

∑n
j=1 xh bhj pj

∑k
h=1

∑n
j=1 xh ahj pj

. (1)

He remarks: “A direct interpretation of the function [. . . ] would be highly desirable.
Its role appears to be similar to that of thermodynamic potentials in phenomenological
thermodynamics; it can be surmised that the similarity will persist in its full phenomeno-
logical generality (independently of our restrictive idealizations)” (p. 1, loc. cit.).

In fact, the function has a double economic interpretation. On one hand, it gives
a measure of the growth potential implied by any set of activity levels and prices. The
potential will be realized if all profits are reinvested. And at given prices, it may or may
not be possible to increase economic growth by changing activity levels. On the other
hand φ gives a measure of the average rate of profits. If some producers make profits at
a rate that is higher than average, competitors may be able to undercut them by offering
the same product at a lower price.
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Against this background, von Neumann looks for pairs of activity levels and prices
such that φ reaches a maximum with regard to activity levels and a minimum with regard
to prices, i.e. a saddle-point of φ.1 For this purpose, one can define a point-to-set mapping
Φ by associating to each pair of activity levels and prices a set of prices and activity levels
as follows. For any pattern of prices, define the set A(p) of all patterns of activity levels
at which φ reaches a maximum; for any pattern of activity levels, define the set B(x) of
all prices for which it reaches a minimum. Define Φ : Sp ×Sx → P(Sp×Sx), where P
denotes the power set, and Φ(p, x) = A(p)×B(x).

The saddle-point to be found then is a fixed point in the sense that (p, x) ∈ Φ(p, x).
von Neumann generalized Brouwer’s fixed-point theorem so as to be able to tackle this
problem and showed that indeed a general equilibrium of this kind can be found. In that
equilibrium, the economy grows at a uniform rate φ(p, x). It is equal to the rate of profit,
because net investments in this equilibrium are equal to total profits.

4. Arrow-Debreu and the great existence proof

After World War II, in an important sense science had moved from Europe to Amer-
ica. There, the American Ken Arrow and the French Gérard Debreu developed what was
soon to be seen as the core representation of Smith’s invisible hand (Arrow & Debreu,
1954). Building on the work of Walras, Brouwer, von Neumann and many others, they
were able to prove the existence of a fixed point that can be interpreted as a Walrasian
general economic equilibrium.

To capture the basic idea, let there be n goods and represent price patterns as points
on the unit sphere in R

n, so that p · p = 1 (I follow an exposition due to Saari, 1995).
The relation between any two coordinates of such a point then represents the relative
prices of the corresponding two goods. As prices are non-negative, only R≥0 matters,
and the resulting portion of the sphere is topologically equivalent to a n− 1-simplex.

There are i = 1, . . . ,m agents, each with her initial endowment ωi and all con-
fronted with prices p. The set {x ∈ R

n : ωi · p = x · p} of possible demands of agent
i is a hyperplane – the budget line in Fig. 1 – including the initial endowment and or-
thogonal to the price vector, as represented in Figure 1 (it is orthogonal to p because the
intercepts must be inversely proportional to the relation between the coordinates of p).
Optimal demand xi is given by the unique tangent point between the budget hyperplane
and an indifference curve. Individual excess demand zi is the difference xi − ωi. As all
arrows with the same direction and length can be considered representations of the same
vector, individual excess demand can be represented by an arrow starting at the endpoint
of the price vector and orthogonal to it.

1 It was through the study of general economic equilibrium that von Neumann came to realize that the
saddle-points characterizing equilibria in game theory are related to similar fixed points (see the footnote
on p. 5, loc. cit.).
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Figure 1. Individual excess demand (based on Saari, 1995).

If in Figure 1 the price vector moves closer to the axis representing good 1, the
excess demand vector gets steeper. On the other hand, if the price vector moves close
enough to the axis representing good 2, excess demand gets flat and points in the other
direction. As the steepness of excess demand can be represented by points on the unit
arc used to represent prices, this defines a continuous function on a compact, closed set.
By Brouwer’s theorem, somewhere in between excess demand will be zero and agent i
will see her initial endowment as optimal.

This reasoning carries over to aggregate excess demand: if the price vector gets
close enough to one of the axes, the sum of all individual excess demands will yield a
vector pointing away from that axis. By Brouwer, then, somewhere on the price simplex
lies a point where aggregate excess demand will be zero – a general equilibrium. As
long as agents do not all have the same utility function and the same initial endowment,
individual excess demands will not be zero in general equilibrium, but they will cancel
out in the aggregate.

The argument can be expanded in many ways, introducing firms producing new
goods, investment in the course of time, uncertainties about future events, external effects
leading to sub-optimal outcomes etc. As for growth potentials, we are back to Walras:
very little of interest can be said as long as one does not introduce drastic simplifications
like a population of identical agents dealing with a single capital good. In order to assess
these simplifications, however, a challenging question must be investigated: how can
equilibrium actually be reached?
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5. The challenge of multiple equilibria: Sonnenschein-Mantel-Debreu

There is a suggestive image of how markets balance supply and demand: if excess
demand is positive, prices increase, lowering demand and increasing supply; if excess
demand is negative, an opposite dynamics sets in. This implies

ṗ = f(ζ(p)) (2)

where ṗ is the time derivative of prices, ζ : Rn
≥0 → R

n the aggregate excess demand
function, and f : Rn → R

n some monotonous function with f(0̄) = 0̄.
In the early 1970s, three economists – the American Hugo Sonnenschein (1973),

the Argentinian Rolf Mantel (1974) and the French Gérard Debreu (1974) – showed
that as long as the number of agents is not smaller than the number of goods and prices
are larger than an arbitrarily small ε, the excess demand function can have any shape
whatsoever, as long as it satisfies the following three conditions:

• ζ is continuous
• the value of total demand is equal to the value of total supply, i.e. p · ζ(p) = 0
• it depends only on relative prices, i.e. ζ(λ · p) = ζ(p), ∀λ ∈ R

n
>0.

Before looking into why this is so, two remarks are appropriate. First, the Sonnenschein-
Mantel-Debreu (SMD) theorem implies that as a rule Walrasian economies have more
than one equilibrium. From a purely mathematical point of view, the set of excess de-
mand functions with an infinite number of equilibria is smaller than the one with a finite
number of equilibria (in the sense in which the set of rational numbers is smaller than
the one of transcendental numbers), but so is the set of functions with exactly one equi-
librium. Multiple equilibria are the rule, single equilibria the exception – and even where
there is only one equilibrium the shape of the excess demand function may make that
equilibrium unstable, driving the economy in an on-going cycle or a chaotic dynamics.

Second, the form of f is quite irrelevant, as it cannot reduce the number of equi-
libria, and given the variety of possible shapes of ζ, it cannot increase the stability of
equilibria either.

To understand why the suggestive image mentioned at the beginning of this section
is misleading, consider an arbitrary function ζ : Rn

>0+ε → R
n, with ε as small as you

like, let ζ be twice differentiable and let it satisfy the three conditions mentioned above.
Any such function is a possible excess demand function.

Consider prices on the unit sphere as before, and for each agent pick a function
Vi : R

n
>0+ε → R. Each Vi shall satisfy a set of differentiability conditions that can easily

be met and are economically reasonable (see theorem 6 in Chiappori & Ekeland, 2004).
In particular, for each p the convex hull of the derivatives of Vi, i = 1, . . . ,m shall
include 0̄ ∈ R

n.
In economic terms, the functions Vi are indirect utility functions, giving the max-

imum utility achievable by an agent at any given set of prices. The condition on the
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convex hull of the derivatives means that a small change of prices can increase the ex-
cess demand of at least one agent while decreasing it for at least one other agent. Such
divergent effects result from the combination of substitution and wealth effects: if oil
gets more expensive, European agents may reduce their oil consumption, while agents
in Saudi Arabia may increase theirs because their income is increasing.

For any set of functions Vi fulfilling these conditions, it is always possible to write
the function ζ as a weighted average of the derivatives of the functions Vi, where the
weights μi(p) change with p:

ζ =
m∑

i=1

μi ·DpVi. (3)

Here, DpVi is the derivative of Vi, and μi ·DpVi is the excess demand of agent i. Finally,
individual utility functions can be constructed from the functions Vi and μi.

The SMD theorem has three major implications:

• any explanation of prices in terms of supply and demand must be supplemented
by an explanation of equilibrium selection that cannot again rely on supply and
demand;

• even if a satisfactory explanation of equilibrium selection should be available, the
stability of any given equilibrium needs an explanation that involves more than the
difference between supply and demand;

• economic analyses that consider only one possible equilibrium can only be valid
under special circumstances whose definition depends on the previous two points.

These implications are directly relevant for the assessment of growth potentials: in
a Walrasian setting, multiple equilibria are likely to imply multiple growth potentials.

6. Gintis, Bouchaud and the dynamics of social norms

The SMD theorem triggered a large literature (see Rizvi, 2006, for an overview),
but the problems it raised remain unresolved. Economic models used for policy advice
simply ignore them – not a very satisfactory approach, of course, but a strategy to keep
going.

A promising breakthrough, however, has been achieved by Gintis (2007). He starts
with the observation that goods traded at uniform prices are rarely observed: even the
price of a cup of coffee varies across coffee-shops. Moreover, no economic agent can
perceive more than a sample of all the transactions taking place in the economy as a
whole. Gintis then simulates a Walrasian economy with production, but without growth,
in which randomly matched agents engage in transactions on the basis of rules of thumb
about what prices they consider appropriate – in line with the terminology of game
theory, I call these rules price strategies.

Agents modify these strategies in two ways: first, they observe random samples of
all transactions and try to adjust their strategies to what they see, and second from time to
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Figure 2. Potential functions for financial markets with heterogeneous trading strategies (C is a parameter
driving market dynamics via expectations. Fig. 1 in Wyart & Bouchaud, 2007).

time they modify strategies at random, perhaps to experiment or simply by mistake. He
then shows that in many cases a population starting with widely differing price strategies
converges rather quickly on a situation where these differences fluctuate within a narrow
environment of some equilibrium. This kind of price dynamics can be investigated with
techniques that have been developed to study the dynamics of social norms.

That the dynamics of social norms can be helpful in studying markets with multi-
ple equilibria is confirmed by work on financial markets by Wyart & Bouchaud (2007).
Figure 2 represents three possible regimes of a financial market where strategic and non-
strategic traders operate in the face of uncertain price dynamics and some exogenous sig-
nal unrelated to technologies, preferences, or endowments. Wyart and Bouchaud show
how a potential function can be constructed that captures the multi-equilibrium dynam-
ics of such markets. The key feature of the system is the possibility of different norms or
conventions shaping the trading behavior.

There is no need to go as far as Lewis (1969) and argue that conventions are in fact
the building blocks of the social universe; but it seems reasonable to pay more attention
to conventions, social norms, and the like in the study of economic phenomena.

For this purpose, consider a group of m agents each of which chooses a strategy
and each of which has preferences over the possible combinations of strategies. Let
S = (S1, . . . , Sm) be a tuple of finite sets; an element si ∈ Si is called a pure strategy,
an element s = (s1, . . . , sm) ∈ S a pure strategy profile. Let F = (f1, . . . , fm) be
a tuple of functions fi : S → R; a number fi(s) is a utility index representing the
preferences of agent i, it is usually called a payoff. The ordered pair (S, F ) is a game.

A mixed strategy of agent i is a probability distribution over Si with at least two
non-zero probabilities. The payoff of a mixed strategy profile for agent i is the weighted
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average that results by weighting the values of fi for each element of S with the joint
probabilities of all agents.

A Nash equilibrium is a strategy profile whose utility index cannot be increased for
any agent by modifying only the strategy of that agent. A coordination game is a game
with more than one Nash equilibrium.

To analyze norm dynamics, start with a coordination game where the strategy of
each agent is taken from the same set of possible strategies, Si = Sj , ∀i, j (more com-
plex coordination games can easily be introduced). I call this the small game, because
a much larger coordination game based on iterations of the small game will now be
constructed as follows.

First, let the agents play the small game at times t = 1, . . . ,∞. Each agent remem-
bers the last τ , 1 < τ < ∞ iterations. For initialization, all agents have a memory of
τ realizations of the small game. On that basis, each agent chooses a pure small-game
strategy that is a best reply to her memory, i.e. a strategy that would deliver an optimal
result if she would play it while the other agents would do a replay of the last τ small
games she has observed (if there are several best replies, let her choose one by an arbi-
trary deterministic rule). This defines a large game G1 where each agent has only one
strategy, namely the best reply function from τ realizations of the small game to the
strategy set of the small game. This large game in turn defines a deterministic dynamic
system with a finite state space, namely the set of all memories of all agents. Depending
on its structure and the initial conditions – i.e. the initial memories of the agents – the
system will either reach a fixed state after a finite number of iterations or enter a cycle
that it will follow forever. As the small game is a coordination game, the only possible
fixed states under a best reply dynamics will be the Nash equilibria of the small game.
However, the non-Nash strategy profiles may still result in cycles.

Second, introduce a large population of M > m agents. Their preferences are such
that whenever m of them engage in the small game, the set of Nash equilibria of the
small game is preserved. At times t = 1, . . . ,∞, a sample of κ agents, m < κ < M , is
selected by some random process, together with a subsample of exactly m agents. The
subsample plays the small game and the whole sample observes how it plays out. This
defines a large game G2 with a much larger state space and a stochastic dynamics. As
the state space is still finite, the result is a finite Markov chain. Now, the Nash equilibria
of the coordination game provide the basis for the only possible absorbing states of
that chain: if all agents have a memory of τ small games played with the same Nash
equilibrium, their best replies will reproduce that equilibrium. The non-Nash strategy
profiles may or may not lead to stationary distributions, so that the strategy profiles may
eventually evolve in a random fashion according to the probabilities defined by such a
distribution.

Third and last, let each agent play her best response only with probability 1 − ε,
while playing the remaining strategies with probability ε

ν−1 , where ν = |Si|. Here, ε is
a parameter of the large game G3. It represents the probability that agents experiment



C. Jaeger / Shaking an invisible hand 101

with strategies that they do not consider as optimal at first sight – perhaps by chance,
or because they understand that their assessments of optimality might be misleading. ε
can be generalized to monotonous functions of ε that yield different values for different
strategies and different agents. G3 is a perturbation of G2, and can be studied with
techniques that build on the theory of perturbations in dynamical systems due to Freidlin
& Wentzell (1984). In the study of social norms, these techniques have led to a rich
literature (see Young, 2006, for an overview).

A key result is that under plausible conditions the large game will be characterized
by long stretches where it sticks to one of the Nash equilibria of the small game and short
stretches of transition between such small-game-equilibria. Those small-game equilibria
that will be played in the large game for long stretches (at least longer than τ ) are social
norms.

There are two reasons why it seems promising to look at prices from a perspec-
tive of norm dynamics. First, the multiplicity of general economic equilibria does lead
to a coordination game: in each equilibrium, each agent is in a position that she can-
not improve as long as the other agents stick to their strategies, and so the selection
among multiple general equilibria is indeed akin to the problem analyzed in studies on
norm dynamics. Second, the suggestion that agents operating out of equilibrium trade
at different prices is highly plausible both on empirical and on theoretical grounds; at
the same time the “law of one price” expresses the fact that heterogeneous prices for
homogeneous goods are no Nash equilibria and so will hardly be stable. The simulations
by Gintis seem to capture the resulting dynamics quite well, and as Mandel et al. (2009)
have shown, they can be generalized to the case of multisectoral growth.

7. Xiaokai Yang: Adam Smith reloaded

Against this background, it is time to read Adam Smith again, with fresh eyes.
Yang (2001) has suggested that the kind of marginal analysis that forms the core of
current economics captures only a part – if an important one – of Smith’s view of the
world economy. It misses the “inframarginal” dynamics by which a given economic
equilibrium gives way to one of several possible successors.

“We categorize business decisions into two classes: marginal decisions of resource
allocation and inframarginal decisions of economic organization. Marginal decisions in-
volve the extent to which resources are allocated to a pre-determined set of activities.
Inframarginal decisions are about what activities to engage in” (Cheng & Yang, 2004,
p. 138). General equilibrium theory in its present form knows only marginal decisions,
and equilibrium selection becomes a mystery.

In the approach to norm dynamics discussed above, inframarginal decisions corre-
spond to the ε-events, to those “mutations” that can drive a social system from one basin
of attraction to another one. Looking at markets with a perspective of norm dynamics
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Figure 3. The reality of supply and demand.

leads to the view of supply and demand sketched in Figure 3. Once some equilibrium has
been established in the course of history, business decisions are mainly of the marginal
kind. They operate in the basin of attraction of that equilibrium, responding to chance
events like those leading to a new match between provider and customer of some good
or service.

From time to time, however, some set of inframarginal decisions drives the whole
system beyond the basin of attraction it was operating in. These decisions may happen
spontaneously, or they may respond to exogenous shocks in non-marginal mode (Jaeger
et al., 2011, as well as Zhang & Shi, 2011, independently consider possibilities to take
advantage of the climate challenge as a possible shock of this kind).

Yang (2001) emphasizes that for Adam Smith the most important driver of such
transitions were changes in the division of labor, and suggests that such changes are of
the utmost importance in the present world economy. If one focusses less on subdivisions
of tasks among unskilled workers and more on the specialization of professional skills
that lies at the core of the so-called knowledge economy (Abbot, 1988), this claim has
considerable plausibility.

Drawing on models of norm dynamics to address the problem of equilibrium se-
lection in economics offers a remarkable opportunity to move towards a stronger inte-
gration of the social sciences. Certainly, the dynamics of professional specialization is
closely intertwined with the dynamics of social norms. If Yang’s conjecture about the
key role of the division of labor for inframarginal business decisions should be corrobo-
rated, this might foster stronger synergies between economics and management science.
In particular, the resistance of scholars of management to wholeheartedly embrace the
optimization perspective underlying most of contemporary economics may be quite in-
telligible once on accepts the relevance of inframarginal decisions in actual management.
Progress in the study of equilibrium selection as an instance of norm dynamics could en-
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hance both the analysis of economic systems and the practice of management that has
become a vital part of these systems.
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