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Abstract
This paper deals with Gärdenfors’ theory of conceptual spaces. Let S be a conceptual
space consisting of 2-type fuzzy sets equipped with several kinds of metrics. Let a
finite set of prototypes P̃1, . . . , P̃n ∈ S be given. Our main result is the construction of
a classification algorithm. That is, given an element Ã ∈ S, our algorithm classifies it
into the conceptual field determined by one of the given prototypes P̃i . The construc-
tion of our algorithm uses some physical analogies and the Newton potential plays
a significant role here. Importantly, the resulting conceptual fields are not convex in
the Euclidean sense, which we believe is a reasonable departure from the assumptions
of Gardenfors’ original definition of the conceptual space. A partitioning algorithm
of the space S is also considered in the paper. In the application section, we test our
classification algorithm on real data and obtain very satisfactory results. Moreover, the
example we consider is another argument against requiring convexity of conceptual
fields.
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1 Introduction

1.1 General Overview of the Paper

In his pioneering book (Gärdenfors, 2000) Gärdenfors introduced the theory of some
geometric structures which he called the conceptual spaces and showed their appli-
cation to knowledge representation. More formal definition of the conceptual space
is given in Sect. 2 (see also Rickar 2006; Rickard et al. 2007 for more informa-
tion). A conceptual space is a multidimensional (usually metric) space S such that
its every dimension (or a finite set of dimensions) is understood as some measurable
(or observable), numeric (or symbolic) information/property and is called a quality.
Pairwise disjunct regions in S are called concepts (or conceptual fields). This notion
originate from the prototype theory of Kamp and Partee (1995). Following (Kamp &
Partee, 1995) and linguists’ language the most representative subset of a concept is
called its prototype. Typically, in most of the literature the prototype is considered as
a point but here we relax this constraint because it is more natural in our setup. The
motivation for this decision will become clear later.

Since the beginning of Gärdenfors theory one of the most controversial constraint
in his definition concerns convexity of the conceptual fields. One side of this dispute,
with Gärdenfors at the helm, proclaimed that if two objects O1, O2 belong to the
same concept C then all objects located between them (in the geometric sense) should
also have the same properties and therefore be inside C . The others like (Bechberger
& Kühnberger, 2017; Hernández-Conde, 2017) reject this claim. Here we present
solution that fit somewhere in between.We recommend reading recent paper (Strößner,
2022), which considers several versions of convexity in the context of conceptual
spaces.

In this paper we consider a conceptual space S whose elements are tuples con-
structed from a point x in some (metric) space X and a fuzzy number x∗ ∈ F1([0, 1])
(the set of type-1 fuzzy sets with their supports in [0, 1]). Collection of such elements
(where x are distinct) can and will be considered as type-2 fuzzy sets (which were
defined by Zadeh in 1975 in Zadeh (1975a, b, c)).

Specifically, this paper considers the problem of classification of a given type-
2 fuzzy set Ã into the conceptual field defined by one of the given prototypes P̃i ,
1 ≤ i ≤ n. Since every point of S is a fuzzy set it is more natural for a prototype to
be also a fuzzy set and not just a crisp number.

Typical procedure of assigning an object to some concept is based on the Voronoi
tessellation method (Okabe et al., 2011). In this paper in order to divide the space S
into partitions we use fuzzy Newton’s potential operator, type-2 and type-1 fuzzy sets.
The concepts obtained by our algorithm are convex but only in amore general geodesic
sense. Basically in our setting the conceptual space is equipped with additional fuzzy
information - the degree of membership. It can be treated as a density of the mass
spread across some region in the space. Then it seems natural for computing the
shortest path between two objects to use method that takes into account gravitation of
the space. Specifically, the metric space most commonly used in applications is the
Euclidean space. But Euclidean space is a space equipped with geometry related to

123



Type-2 Fuzzy Sets and Newton’s Fuzzy Potential… 391

the zero-curvature metric. It is an example of one of the simplest Riemannian space.
In this space a curve connecting two points and having the shortest length (so called
geodesic curve) is a segment (a fragment of a straight line). The convexity becomes
a geodesic convexity in Riemannian spaces (see do Carmo 1992). For a set in a non-
Euclidean space to be geodesically convex is far from being just convex in Euclidean
sense.

The novelty of this work is that although our conceptual space can be equipped
with different metrics, in the algorithm classifying the elements of conceptual space
into the concept fields we do not use metrics directly. Instead, we use a function of
the metric - namely generalized Newton’s potential (or more appropriately - fuzzy
Newton’s potential). In this way, our partition of the conceptual space into conceptual
fields is significantly different from the partitioning obtained by means of the classical
Voronoi diagram method.

Considering such a space and finding analog of fuzzy Newton’s potential defined in
Urban and Grzelińska (2017) for our structure which, in turn, allowed us to construct
a classification algorithm is the main achievement of this work. Our approach (cf.
Urban and Grzelińska 2017) involves a fundamental departure from the convexity
of dimensions and/or conceptual fields. This departure is also shared by Hernández-
Conde (2017) (see Gärdenfors’ answer to Hernández-Conde Gärdenfors (2019)).

In a broad sense, the problem of classifying a given object into appropriate domain
is closely related to the problem of data classification (Gordon, 1999). Recently, the
theory and application of data classification has attracted the interest ofmany scientists
from different areas, who are working on related problems, e.g. statistics, economics,
sociology, psychology, linguistics, and AI (see e.g. Aggarwal 2015; Dougherty 2013;
Suthaharan 2016).

Our algorithm, as we will show, can also be used to obtain a partitioning of a
given space into concept fields for the prototypes consisting of a finite set of type-2
fuzzy sets. But as in classical approaches problem of unclassified boundaries remains
unresolved (cf. Douven et al. 2013; Dietz 2003.)

1.2 WhyWe Gave Up Strict Euclidean Convexity?

We say that a subset X ⊆ R
D is convex if for all x1, x2 ∈ X its convex combination of

the form αx1+(1−α)x2 is in X for all α ∈ [0, 1]. In our setup we are considering sets
fromS = R

D×F1([0, 1]). One can think about the second component of theCartesian
product above as a space of errors measurement or (un)certainty degree expressed by
the fuzzy number. Sometimes taking a linear combination of fuzzy numbers can make
sense but as we show in Sect. 5.2 more natural is to treat fuzziness as a “weight” or
“density”. As we will see, then the Euclidean convexity is lost.

1.3 Why doWe Use Type-2 Fuzzy Sets as Prototypes?

In Urban and Grzelińska (2017) D-dimensional type-1 fuzzy prototypes were consid-
ered and using the theory of gravitation partitioning algorithmwas constructed. Such a
generalization has many applications. Consider the following example from cognitive
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science (cf. Jäger 2009). Not all people see colors in the same way. For this reason,
the prototype of a given color for one person will not necessarily be the prototype
for another person. Moreover, everybody has a tendency to view the prototype of the
color, say red, not as a one object described by three parameters (wavelength, satura-
tion, and hue), but rather by a spectrum of red colors. Why? Those color dimensions
are continues which means that for any value one can select another point within arbi-
trarily small ε-range. In reality human perception is not that precise and some values
can be indistinguishable. So the prototype of the color red is simply a subset of the
3-dimensional conceptual spaceR3. This example can be very easily considered using
a Voronoi diagram. However, it was observed in Urban and Grzelińska (2017) that
even this generalized model is still inadequate. Although someone may see the color
red as a spectrum, he or she is also able to show that some red colors from the prototype
set are ’redder’ than the others. For example we could consider some environmental
factor influencing on observation of redness. Taking this into account a completely dif-
ferent method which solves the case described above by using D-dimensional type-1
fuzzy sets was proposed in Urban and Grzelińska (2017). The characterizing function
evaluated at a given point shows to what extent this point represent the concept.

In this workwe go a step further andwe use prototypes being D-dimensional type-2
fuzzy sets.

We continue with the example of colors.
Suppose we have a given prototype of the color red. That is, we are given a certain

region R in R
3. Now assume that perfect red has weight 1. Let us choose any point

(color) r from R. In our model we introduce an additional fuzzy effect by saying that
the weight of r is not a number but the interval contained in [0, 1]. In other words we
are given a mapping w defined on R which assigns to each point r ∈ R an interval
[ar , br ] ⊂ [0, 1]. The interval [ar , br ] can be thought of as a fuzzy interval number.
Hence we have to deal with type-2 fuzzy sets.

1.4 Structure of the Paper

The paper is organized as follows. In Sect. 2we recall the basic concepts and definitions
related to conceptual spaces. In this section we also review some literature about
conceptual space theory. Definition of Voronoi diagrams is given.

Fuzzy sets of type-1 and 2 are considered in Sect. 3. In particular arithmetic oper-
ations on type -1 fuzzy sets are introduced via α-cuts.

We recall the methods of ranking the fuzzy sets of type-1 according to the review
paper by Brunelli and Mezei (2013).

Finally, we recall a few methods of integration of fuzzy set valued functions.
In Sect. 4 we define our conceptual space S which is the space of fuzzy sets of

type-2 in RD and define some metrics in S.

Finally, in Sect. 5 we define our classification algorithm, introduce the concept of
Newton’s fuzzy potential, as well as provide motivation for its definition and ade-
quacy to the problem under consideration. In Sect. 5.2 we present a realization of our
algorithm.
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Fig. 1 Representation of color
mapped on HSV space

In Sect. 6we apply our classification algorithm to the real data containing recordings
of birdsongs.

Finally, Sect. 7 contains summary and conclusions.

2 Conceptual Spaces

Since Gärdenfors introduced in Gärdenfors (2000) conceptual space (cf. also Gärden-
fors 1988; Gärdenfors 1996 and his monograph Gärdenfors 2017) to the cognitive
sciences, the generalization of conceptual space as well as the reformulating of the
original structure has appeared in literature; see e.g. (Rickard, 2006) and (Rickard
et al., 2007). What we understand as a conceptual space is given in the following
definition.

Definition 1 Aconceptual spaceS is a subspace of somemetric space (X , d), together
with family of prototypes P = {P1, . . . , Pk}, where every Pi ⊂ S ⊂ X .

The spaceS is divided on k partitions called concepts. An element Pi which belongs
to i−th concept and is its “most representative example” is called a prototype. Usually
Pi are singleton sets and such partitions are usually obtained using Voronoi diagrams
(see Okabe et al. 2011). That is the concept Ci corresponding to the prototype Pi is
the set

Ci = {x ∈ S : d(x, Pi ) < d(x, Pj ) for all j �= i},
where d(x, A) = inf{d(x, a) : a ∈ A}.
Remark 2.1 Notice that Voronoi tessellation gives a convex partitioning as a result.

Let us continue with a classical HSV color space example. Imagine a space [0, π)×
[0, 1] × [0, 1] where dimensions are hue, saturation and brightness accordingly and
prototypes are {(0, 1, 1), (π

3 , 1, 1), ( 2π3 , 1, 1)}. They are the most typical red, green
and blue. Now for a given point x for some partitioning we classify it as for example
red or green depending on in which concept x lies (see Fig. 11).

1 https://commons.wikimedia.org/wiki/File:HSV_color_solid_cone_chroma_gray.png
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2.1 Conceptual Spaces: Some RelateWorks

The notion of conceptual space—an idea originally introduced to cognitive studies and
philosophy byGärdenfors (1988, 1996) has foundmyriad applications in various fields
of science over the years. Even as seemingly exotic asmusic theory (Gärdenfors, 1988;
Forth et al., 2010) or application to the study of the concept of metaphor (Gärdenfors,
1996).

For a reformulation of the notion of conceptual space see the works of Rickard
(2006), Rickard et al. (2007) and Bechberger and Kühnberger (2017).

Interested reader in the applications of conceptual spaces in various fields of science
can find a lot of information in the proceedings of the conference devoted to the
applications of conceptual spaces (Kaipainen et al., 2019; Zenker&Gärdenfors, 2015)
and in the references contained therein.

The problem under current consideration comes from the area of cognitivism. Cog-
nitivism is an interdisciplinary science whose main aim is to analyze and model the
brain activity of human beings (see e.g. Kriegeskorte and Kievit 2013 for some appli-
cation of conceptual spaces in this area), as well as their senses. Cognitivism also
constitutes a basis for other sciences. One example of this is cognitive linguistics,
which is relevant to the problems discussed in this paper, see e.g. (Gärdenfors, 2011).

The most common in applications isRD with the �2-metric (i.e. Euclidean one) and
the partitioning is obtained by the use of theVoronoi diagram. This creates the problem
of points lying on the edges of the respective conceptual fields. Attempts to solve this
problem can be found in the works of Dietz (2003) and Douven et al. (2013), where
the authors introduced a new type of Voronoi diagrams (with “thinner” and “fuzzy”
boundaries of polygons). Abandoning the request for convexity we found in Urban
and Mróz (2019) a quite natural conceptual space, in which we do not encounter such
a problem.

Conceptual space representing knowledge is a very attractive tool in applications.
On the other hand, we should notice that the whole theory of conceptual spaces built
by Gärdenfors is also an extremely elegant theory. However, one of the weak points of
the notion of conceptual space is the difficulty to find an easy and automated procedure
that would be able to reproduce reality on its geometric representation.

Recently there has been a lot of work devoted to this problem. There have been
published works presenting how conceptual spaces are created in a knowledge-driven
manner, relying on prior knowledge how to form concepts. To mention a few papers
that treat this type of problemswewrite (Alshaikh et al., 2019; Bouraoui&Schockaert,
2018; Banaee et al., 2018; Jameel et al., 2017; Jameel & Schockaert, 2016, 2018).

3 Type-1 and Type-2 Fuzzy Sets

There are multiple definitions of fuzzy sets (See Viertl 2010; Viertl and Hareter, 2005).
For our convenience we use one describing them by their characterizing function. It
is necessary to emphasize what operations we mean when we say “integrate fuzzy
function” or “compare fuzzy numbers” since a lot of such procedures are available.
One can think it is a weakness but we claim the opposite. Since many definitions are
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available we can seek throughout them and choose the one that suits our purposes the
best. It is worth to mention that our algorithm is parameterized by those methods and
therefore very flexible.

Definition 2 An n-dimensional fuzzy set A∗ in X ⊆ R
n is a function A∗ : X → R

satisfying:

(1) A∗ : X → [0, 1],
(2) ∃!x ∈ X such that A∗(x) = 1,
(3) for every α ∈ (0, 1] α-cut A∗

α of the fuzzy set A∗,

A∗
α = {x ∈ X : A∗ ≥ α}

is a non-empty, compact, and convex set. We also assume that the following set

A∗
0 := {x ∈ X : A∗(x) > 0} = supp A∗

has the same properties.

Remark 3.1 For n = 1 fuzzy sets defined in this way are often called fuzzy numbers.
So for arbitrarily n we can think of them as a fuzzy points.

The set of all n-dimensional fuzzy sets with X ⊆ R
n is denoted by F1(X).

Remark 3.2 Note that in the definition of a n-dimensional fuzzy set the set X con-
tained in Rn can be replaced by any set contained in any metric space or even in any
topological space. However, in our work we will not consider such generalizations.

Definition 3 Let X ⊆ R
n be an arbitrary set. Type-2 fuzzy subset of X denoted by Ã

is a map of the form

Ã : X → F1([0, 1])

The support of the function Ã2,

supp Ã = {x ∈ X : Ã(x) �≡ 0}

is called the base of the type-2 fuzzy set Ã. The base of Ã is a subset of Rn for which
the map Ã is non-trivial (See also Mendel and Bob John, 2002).

In other words, the type-2 fuzzy set is a map from the set X into the family of
fuzzy numbers having their supports contained in the interval [0, 1]. The family of all
type-2 fuzzy sets in X contained in R

n is denoted by F2(X). It is worth seeing that
F2(X) ⊂ X × F1([0, 1]).
2 To be more precise by �≡ 0 we mean that it is �= F(0) where F(0) is natural embedding of number into
fuzzy numbers defined in(4)
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3.1 Operation on Fuzzy Sets

We start with the Minkowski arithmetic performed on subsets of Rn .

Definition 4 Let A, B ⊂ R
n and λ ∈ R. Then

A + B := {a + b : a ∈ A, B ∈ B},
A · B := {ab : a ∈ A, b ∈ B},
λ · A := {λa : a ∈ A}.

The Minkowski arithmetic of sets immediately induces an arithmetic of n-dimen-
sional vectors from F1(R

n) via their α-cuts:

Definition 5 The sum x∗ ⊕ y∗ and multiplication x∗  y∗ of two n-dimensional fuzzy
sets x∗ and y∗ are defined via their α-cuts as follows

(x∗ ⊕ y∗)α = x∗
α + y∗

α,

(x∗  y∗)α = x∗
α · y∗

α.

Similarly, the multiplication of a fuzzy set x∗ by a crisp real number λ, λ  x∗ is
defined by the equation

(λ  x∗)α = λ · x∗
α.

3.2 RankingMethods for Fuzzy Numbers

Comparison of 1-dimensional fuzzy numberswill play an vital role in the description of
our algorithm.Herewe present only a fewmethods in order to illustrate our partitioning
algorithm.More examples and details on comparingmethods can be found for example
in Brunelli and Mezei (2013).

There are basically two approaches to the problem. Fuzzy and crisp. We will con-
sider the second method since everything can be applied to the first method without
any problem (see Brunelli andMezei 2013, p. 629). The crisp method of ranking fuzzy
numbers F1(R) use an appropriate map which sends element of F1(R) into the real
line R. Thus we are given a map M : F1(R) → R and we say that a fuzzy number x∗
is not greater than y∗ (we denote this by x∗ � y∗) if M(x∗) ≤ M(y∗).

In the fuzzy method fuzzy binary relation is used. That is we are given function
M : F1(R) × F1(R) → [0, 1]. If A∗, B∗ ∈ F1(R) then M(A∗, B∗) ∈ [0, 1] is
interpreted as the degree to which A∗ is greater than B∗. Fuzzy numbers are ranked
(with respect to M) in the following way

M(A∗, B∗) ≥ M(B∗, A∗) then A∗ �M B∗.

Herewe list only two examples of crispmethods. For ranking based on fuzzy binary
relation see the mentioned paper (Brunelli & Mezei, 2013).
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• Adamo’s method (Adamo, 1980). One simply evaluates the fuzzy number based
on the rightmost point of the α-cut [aα, aα] for a given α:

ADα(A∗) = aα.

• The center of gravity of a fuzzy number was introduced in Østergaard (1976) as

CoG(A∗) =
ˆ +∞

−∞
x A∗(x)
A∗(x)

dx .

3.3 Integrals of Fuzzy Set Valued Function

Since we want to define our fuzzy Newton potential as an integral from a fuzzy set
valued function, we are interested in methods of integrating of such functions. It turns
out that there is a lot of definitions of integrals of fuzzy set valued functions.

In this section we recall several types of integrals of the functions taking values in
the set of type-1 fuzzy sets.

Let f̃ be a fuzzy set valued function, i.e. f̃ : Rn → F1(R).

We start with the most natural definition given in Viertl (2010).
For 0 < α ≤ 1 and x ∈ R

n , consider α-cuts of f̃ (x). Since by our assumption
α-cuts are convex and compact thus α-cut is an interval. Therefore we can write, for
every α ∈ (0, 1],

( f̃ (x))α = [
f
α
(x), f α(x)

]
.

The real valued functions f
α
(·) and f α(·) are called α-level functions.

Definition 6 Let f̃ be a type-1 fuzzy valued function defined on the measure space
(X ,B, μ), where B is a σ -field of Borel subsets of X , and μ is a measure on B. If all
α-level functions f

α
(·) and f α(·) are integrable with finite integrals ´X f

α
(x)dμ(x)

and
´
X f α(x)dμ(x), then the generalized integral

ffl
X f̃ (x)dμ(x) is the fuzzy number

J ∗ whose α-cuts J ∗
α are defined by

J ∗
α = [Jα, Jα] :=

[ˆ
X
f
α
(x)dμ(x),

ˆ
X
f α(x)dμ(x)

]
, α ∈ (0, 1].

By the representation lemma (Viertl 2010, Lemma 2.1) the characterizing function
of the fuzzy integral J ∗ is, for every x ∈ X , given by

J ∗(x) = sup
{
α1[Jα,Jα](x) : α ∈ [0, 1]

}
.

The resulting fuzzy integral is denoted by

 
X
f̃ (x)dμ(x) = J ∗.
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There are many other integrals that one can use (Jang et al., 2004; Bongiorno
et al., 2012). Just as an example, let’s take the Henstock-Kurzweil integral (HK)
(Yeong, 2011), which is a generalization of the Riemann integral. The generalization
of the integral (HK) to fuzzy functions (fHK) is given in Bongiorno et al. (2012). In
Bongiorno et al. (2012), functions with a 1-dimensional domains of the form [a, b] ⊂
R are considered.

To make the definition of (fHK) for functions with multi-dimensional domains is
possible with the help of the monograph (Yeong, 2011; see also Hai and Gong, 2003).

At this pointwe omit both the definition of the integral (HK) and leave out the details
leading to the object (fHK) because in the examples that we are going to present the
integral turns into a sum and the whole theory of the integral is not needed.

4 Metrics onS
A number of metrics can be introduced in S. We will show couple of natural metrics
in this space. Since any object Ã ∈ F2(X) can be thought of as a curried 3 function
of two arguments (one from X and another from [0, 1]) first what comes to mind is
some kind of supremum metric. But since X -parts of domains of two objects which
(in our case) going to be disjoint (5.1) taking supremum on both arguments would
not take X -part into consideration. Hence another approach is needed but it is also
very natural. One can simply take a linear combination of metric on X and metric on
F1([0, 1]).

d(w1,w2) = w1dX + w2dF1 , where w1 + w2 = 1.

It is easy to check that d(w1,w2) is a metric when dX and dF1 are metrics.
For the X part of a space the most natural is to take some standard �p-metric d�p for

some p ≥ 1. More interesting is a fuzzy part where one could use for example supre-
mum metric d∞ but a better solution is to construct a special metric using Hausdorff
metric and α-cuts.4

Now, let A∗, B∗ ∈ F1([0, 1]), we define

d1H (A∗, B∗) =
ˆ 1

0
dH (A∗

α, B∗
α)dα,

d2H (A∗, B∗) = sup
α∈[0,1]

dH (A∗
α, B∗

α).

It is easy to check that (F1([0, 1]), d1H (X)) and (F1([0, 1]), d2H (X)) are metric
spaces.

In a sense our space is just an Euclidean space where every its point is equipped
with fuzzy number.

3 Curring is a transformation of a function that takes multiple arguments into higher-order function with
single argument.
See: https://en.wikipedia.org/wiki/Currying
4 A brief introduction to properties of those metrics can be found in “Appendix”.
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We use the following notation. If x̃ ∈ S, then (by Definition 3) x̃ = (x, x∗), where
x ∈ R

n and x∗ : [0, 1] → [0, 1].
So to obtain metric d(w1,w2) on that space we simply substitute some �p-metric for

dX and one from {d∞, d1H , d2H } for dF1 and apply the to appropriate parts of arguments.
E.g.

d(
1
2 , 12

)(x̃, ỹ) = 1

2
d�2(x, y) + 1

2
d1H (x∗, y∗).

In our opinion Hausdorff derivative metrics d1H and d2H are “better” in a way.
Consider natural embedding F of usual, real numbers intoF1(R) defined as follow5

F : R → F1(R),

F(x) = 1{x}.

Now let x∗, y∗ ∈ F(R) then

d∞(x∗, y∗) =
{
0 if x = y,

1 otherwise.

So d∞ restricted to F(R) acts like a discrete metric. It may be undesired since more
natural metric on real line is simply distance between numbers |x − y|.

Now by substituting d(x, y) := |x − y| in definition (7) and taking x∗, y∗ ∈ F(R)

we get:

dH (x∗
α, y∗

α) = max{δ(x∗
α, y∗

α), δ(y∗
α, x∗

α)}
= δ(x∗

α, y∗
α) = sup{δ(x, y∗

α)|x ∈ x∗
α}

= δ(x, y∗
α) = inf{d(x, y)|y ∈ y∗

α}
= d(x, y) = |x − y|.

It is therefore true for α ∈ [0, 1] that

d1H �F(R) (x∗, y∗) = d2H �F(R) (x∗, y∗) = |x − y|.

Moreover we can also achieve discrete metric between numbers using diH as in d∞
case, simply by taking d to be discrete metric. (Proof is similar).

5 Classification Algorithm

In this section we present two algorithms one for classification of a given point in the
space to the specific conceptual field and a second one for partitioning the space. But
before we need to see how fuzzy Newton’s potential operator looks like in our setting.

5 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
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5.1 Type-2 Fuzzy Newton’s Potential

Let P = {P̃1, P̃2, ..., P̃k} consists of n type-2 fuzzy sets with the corresponding base
sets Pi ⊂ R

n . A fuzzy prototype is each type-2 fuzzy set P̃i contained in P.

For every x̃ = (x, x∗) ∈ S, whose base x does not intersect with any base Pi ,
i = 1, . . . , k i.e.

{x} ∩
k⋃

i=1

Pi = ∅,

we can compute fuzzy Newton’s potentials with the analogy of the situation where
elements P̃i were of type-1 (this case was considered in Urban andGrzelińska (2017)).
The i-th potential has the following form

	i (x̃) =
{

− ffl
Pi
ln(d(x̃, ỹ))  y∗dy if n = 2,

− ffl
Pi
d(x̃, ỹ)2−d  y∗dy for n ≥ 3.

(5.1)

In analogy with the classical case we can think that the fuzzy numbers 	i (x̃)
indicates the energy of the potential field at point x, which is generated by the mass
concentrated in the domain Pi with the fuzzy density P̃i .

5.2 Algorithm

The algorithm finds best concept domain for every element x̃ = (x, x∗) ∈ S such that
{x} ∩ ⋃k

i=1 Pi = ∅ and works as follows.

Algorithm x̃ ∈ S concept domain assignment algorithm
Require: x̃ = (x, x∗) ∈ S
Require: P = {P̃1, P̃2, . . . P̃k } � Set of prototypes
Require:

ffl : P(S) × (Rn → F1([0, 1])) → F1([0, 1]) � Fuzzy integral
Require: � ⊂ F1([0, 1]) × F1([0, 1]) � Fuzzy number ranking
Ensure: {x} ∩ ⋃k

i=1 Pi = ∅
1: for P̃i ∈ P do
2: P1 ← supp P̃i
3: if n = 2 then
4: 	i ← − ffl

Pi
ln(d(x̃, ỹ))  y∗dy

5: else
6: 	i ← − ffl

Pi
d(x̃, ỹ)2−d  y∗dy

7: end if
8: end for
9: j ← index of max�{	i | 1 ≤ i ≤ k}
10: return P̃j � Return prototype of assigned concept domain
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Remark 5.1 In the step 9, if there are several indices towhich correspond themaximum
integrals, the element x̃ cannot be classified6. Elements on the edges of Pi cannot be
qualified to any concept domain.

Now, when classification is defined one cannot easily partition the space S. Both
components (strict and fuzzy) can be infinite. So simple checks for all elements can-
not be always done. But we can easily construct approximate partition. Just select
some representative points and run classification for them. For strict X subspace one
can divide it to finite number of sets. Then construct the set X by choosing arbitrary
representative form each of them. Fuzzy part is a functional space therefore parti-
tioning it can be tricky. Therefore we could select representatives as a Dirac’s deltas
{F(x0), . . . ,F(xn)} for some x0, . . . , xn ∈ [0, 1]. The procedure looks like this. .

Algorithm S partitioning

Require: P = {P̃1, P̃2, . . . P̃k } � Set of prototypes
Require:

ffl : P(S) × (Rn → F1([0, 1])) → F1([0, 1]) � Fuzzy integral
Require: � ⊂ F1([0, 1]) × F1([0, 1]) � Fuzzy number ranking
1: for x̃ = (x, x∗) ∈ X × {F(x0), · · · ,F(xn)} do
2: if {x} ∩ ⋃k

i=1 Pi = ∅ then
3: Assign domain to x̃
4: end if
5: end for

However, this algorithm has some deficiencies. This algorithm is undefined for
some points in the S-space. We have two cases.

(1) Procedure does not assign any domain to any point from prototype supports. We
have to assume that they are pairwise disjoint. Then every point in base belongs to
prototype domain. If it not the case we could simply compare their fuzzy values at
the intersection pointswith� relation. But in case of equalitywe remain undefined.

(2) Similar problem occurs on the boundary of two domains when “attraction” ofmore
than one prototype is equally strong.

6 Example

In this section we present motivating, real data example. It should clarify why we use
fuzzy numbers and why relaxation on convexity condition is needed. Dataset we are
going to use comes from Kaggle7 and contains recordings of birdsongs from different
bird species that can be found inBritain. From it we going to use recordings themselves
as well as information about location where recording wasmade and name of recorded
bird. The idea is as follows.

Chose some set of birds. For each species select one recording to be a prototype
and one as a test sample. Prototypes embedded in some metric space gives fuzzy

6 This type of situation also occurs in the case of partition obtained using the Voronoi diagram method.
7 https://www.kaggle.com/rtatman/british-birdsong-dataset.
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conceptual space. For each test sample song run a classification algorithm and check
whether it matches proper prototype.

Lets think about how we can represent those data in our abstract, fuzzy setup.
We want to construct conceptual space S that is a subspace of RD × F1([0, 1]).
First part is easy. Since we have access to geographic location lets take S2 ⊂

R
3 which is a sphere representing a globe. Obviously we set the points in S2 to

be longitude and latitude. So now we know that desired conceptual space is S =
S2 ×F1([0, 1]). Only downside of choosing such a space is a difficulty of having nice
visual representation of fuzzy part. We could only draw points on a globe but to justify
our setup we selected very small coefficient for Euclidean part so such picture would
not give us much information.

Next we need second component, namely a fuzzy number. For that we choose
scaled Fourier transform of the recording. Frequency spectrum has some really nice
properties like:

• It doesn’t depend on the length of recording.
• It isolates the dominant frequency so we can expect that same species should have
pretty similar spectra.

• For real-world signal it is never a single frequency and it resembles a fuzzy set.

For our example we have chosen seven prototypes and seven matching birdsong.
Following table presents file ids chosen for prototype and test sample respectively.

Bird species Prototype Test sample

Eurasian Treecreeper 146,753 70,129
Corn Bunting 125,777 123,167
Common Wood Pigeon 94,614 130,993
European Nightjar 27,039 67,229
Common Reed Bunting 102,048 102,803
European Greenfinch 99,155 124,013
Rook 143,002 27,145

But before we could run an algorithm we needed to adjust the data by doing some
preprocessing.

First of all the files contain a lot of noise so some denoising procedurewhere needed.
It was done by hand in Audacity8 but details are beyond scope of this paper. So for
example after this step Eurasian Treecreeper song form file looked like in Figs. 2, 3
and 4.

Secondly one of conditions from Definition 2 is that all α-cuts have to be convex.
In other words our spectrum have to be concave. We ce achieve that by losing some
points and connecting local maxima and the result can be seen on Sect. 6.

Lastly concaved frequency spectra had to be normalized. Notice that in our setup
F1([0, 1]) is a set of bounded functions of type [0, 1] → [0, 1]. So for domain we have
to have set [0, 1]. We normalize it by interval [0Hz, 18, 000Hz] which we accept as a
8 www.audacityteam.org.
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Fig. 2 xc146753.flac denoised spectrum

Fig. 3 Concaved spectrum

band audible to the average human. Vertical axis were normalized for every spectrum
separately (by taking global maximum as 1). Since one of the conditions of being
fuzzy number is to have exactly one global maximum equals to 1. See Sect. 6.

At the end we got the fuzzy number. So the set of prototypes consists of tuples(
(xi , yi ), fi

)
where xi , yi , fi are longitude, latitude and concaved normalized spec-

trum of the i-th birdsong.
Now for selected prototypes and some other songs of a species matching one of the

prototype we can run an classification algorithm with the following parameters:

• Center of gravity ranking method.
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Fig. 4 Concaved and normalized spectrum

• Fuzzy integral defined in this paper.
• Metric d(0.01,0.99)

(
(x, x∗), (y, y∗)

) = 0.01 · d�2(x, y) + 0.99 · d1H (x∗, y∗)

As one can see we put only small weight to the Euclidean distance since birds are
verymobile creatures and it had a lot of sense to do so. It is easy to see that the obtained
concepts are not Euclidean convex.

In this classification example six out of seven birds were classified correctly to its
corresponding prototype. The result really depends on how well the actual birdsong
were isolated from a noisy sample. But even when the first (denoising) step was done
a bit loosely or wasn’t done at all, the success rate was greater than 75%.

This example should also justify why having “multiple points” prototype is useful.
We can have two or more birdsong in one species like one for fighting another for
mating. All of them belong to same prototype but can have entirely different spectra.

7 Summary and Conclusions

In this paper we generalized notion of the Gärdenfors conceptual space by two ideas.
To begin with, we added fuzziness into the values contained inside conceptual space.
Then this notion allowed us to treat those values as ‘blurred’ and consequently consider
them as with some density added. Density spread across some space gives us a notion
of a mass. In such a context the shortest paths between points are not necessarily a
strait line cause ’heavier’ object attracts stronger and it may cause curving the path.We
believe that this simple construct can have a significant impact on theory of conceptual
spaces. And we hope that this paper could raise again the issue whether the concepts
need to be convex.Our position is clear—convexity is necessary but in itsmore general,
geodesic sense (see do Carmo 1992.)
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The classification algorithm in theS space does a bit of sophistication at first glance.
Thus, it becomes even more interesting and unexpected to some extent that the a priori
sophisticated and complicated algorithm is applicable to the most ordinary possible
problem of classifying bird species based on their songbirds.
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Appendix

�p Metrics

Let X ⊆ R
n . The most natural approach is to consider some metric from the class of

metrics defined for any parameter p ≥ 1 as:

d�p : X × X → R,

d�p (x, y) =
(

n∑

i=1

di (xi , yi )
p

)1/p

.

It is obvious that this class contains Euclidean (p = 2), maximum (p = ∞) and taxi
metrics (p = 1).

SupremumMetric, d∞

The definition of the supremum metric in space F1([0, 1]) is a simple consequence
of the fact that it is the space of bounded functions from [0, 1] to [0, 1] what follows
from definition (2).
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Let B(X ,Y ) be the set of all bounded functions from a set X into the metric space
Y equipped with the supremum metric d∞,

d∞ : B(X ,Y ) × B(X ,Y ) → R,

d∞( f , g) = sup
x∈X

| f (x) − g(x)|.

One can easily check that (B(X ,Y ), d∞) is a metric space. Clearly, F1([0, 1]) is
the space of bounded functions, then with the usual supremum metric F1([0, 1]) is a
metric space.

Hausdorff Metrics

Let (Y , d) be a metric space. Consider the family C(Y ) of non-empty compact subsets
of X , i.e.

C(Y ) = {A ⊆ Y | A �= ∅ and A is compact}.

We introduce metric in the space C(Y ). For x ∈ X and A, B ∈ C(Y ) define

δ(x, A) = inf{d(x, y) | y ∈ A},
δ(A, B) = sup{δ(x, B) | x ∈ A}.

The Hausdorff metric is the following function

dH : C(Y ) × C(Y ) → R,

dH (A, B) = max{δ(A, B), δ(B, A)}

The next is the very well known theorem which says that dH is in fact a metric in
the space C(Y ).

Theorem 7.1 (Kigami 2001, Proposition 1.1.5) The Hausdorff space (C(Y ), dH ) is
a metric space. Moreover, if (Y , d) is a complete metric space then (C(Y ), dH ) is a
complete metric space.

Proof sketch
We only prove that dH is a metric. For completeness of the Hausdorff space

(C(Y ), dH ) see e.g. more advanced textbooks on topology or fractals; e.g. (Kigami
2001, Proposition 1.1.5).

Clearly, dH is symmetric and dH (A, B) = 0 if and only if A = B.

In order to prove the triangle inequality it is enough to write, for any a ∈ A, c ∈ C,

δ(a, B) = inf
b∈B d(a, b) ≤ inf

b∈B (d(a, c) + d(c, b))

= d(a, c) + δ(c, B) ≤ d(a, c) + δ(C, B).
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Minimizing over c gives δ(a, B) ≤ δ(a,C) + δ(C, B). Maximizing over a gives
δ(a, B) ≤ δ(A,C) + δ(C, B). As a consequence δ(A, B) ≤ δ(A,C) + δ(C, B).

Interchanging the role of A and C in the above calculation shows that δ(B, A) ≤
δ(B,C) + δ(C, A) and the triangle inequality follows. ��
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