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Recently, a genetic-based random key generator (GRKG) for the one-time pad (OTP) cryptosystem has been proposed in the
literature which has certain limitations. In this paper, two main characteristics (speed and randomness) of the GRKG method are
significantly improved by presenting the IGRKG method (improved genetic-based random key generator method). The proposed
IGRKG method generates an initial pad by using linear congruential generator (LCG) and improves the randomness of the initial
pad using genetic algorithm. There are three reasons behind the use of LCG: it is easy to implement, it can run efficiently on
computer hardware, and it has good statistical properties. The experimental results show the superiority of the IGRKG over GRKG
in terms of speed and randomness. Hereby we would like to mention that no prior experimental work has been presented in the
literature which is directly related to the OTP key generation using evolutionary algorithms.Therefore, this work can be considered
as a guideline for future research.

1. Introduction

Recent years have witnessed use of information in many
areas including financial accounts, military and political.
Security of this information in both storage and transit is
crucial as it may be compromised resulting in financial loss,
disclosure of military or commercial secrets, and even the
loss of life. Cryptography is one set of techniques for pro-
viding information security. Historically, cryptography is
commonly connected with surveillance, warfare, and the
similar applications. However, with the advent of information
civilization and digital revolution, cryptography is also useful
in the peaceful lives of common people, for example, when
buying something over the Internet through credit card,
withdrawing money from the ATM machines using smart-
cards, and locking and unlocking luxury cars.

Cryptography is related to the design of cryptosystems.
Cryptosystems have two divisions: symmetric key and asym-
metric key. In the case of symmetric-key cryptosystem,
encryption function takes a text message (plaintext) as input
and transforms it into an unreadable text (ciphertext) with

the use of a secret key [1]. The decryption function converts
the ciphertext back to the plaintext using the same secret
key. If any flaws or oversights exist in the cryptosystem, it
can be exploited by the attacker [1]. The attacker can recover
the plaintext from the ciphertext without knowing the secret
key because of openness of cryptographic algorithms and
the encrypted data transfers via the insecure public com-
munication channel. For this reason, sensitive applications,
for example, financial domain, demand perfect security that
can only be achieved by one-time pad (OTP) symmetric-key
cryptosystems in which the key used for encryption once is
never used anymore at any time [1]. For achieving perfect
security, an obvious choice is random generation of the key
via truly random sources. However, this choice is inefficient
(generation of truly random numbers from hardware-based
physical phenomena, for example, elapsed time between
emissions of particles during radioactive decay; thermal noise
from a semiconductor diode or resistors; sound from a
microphone or video input from a camera, and so on; and
generation of truly random numbers from software-based
process, for example, the system clock; elapsed time between
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Figure 1: Block diagram of the proposed generator: IGRKG.

keystrokes or mouse movement; and operating system values
such as system load and network statistics are impractical
choices for practical cryptographic applications, i.e., large
sized keys for each encryption [1]). Therefore, for sensitive
applications pseudorandom generation of the key is the only
option to make the scheme practical. Recent years have
witnessed large use of computationally secure OTP all over
the world, typically during financial transactions. Hereinafter
OTP key means computationally secure pseudorandom key
and original OTP key means truly random key. In this
work, we present a genetic-based scheme for automatically
generating OTP keys.

2. Related Work and Our Contributions

Several things in the world are naturally encoded, for exam-
ple, genomes of animals [2]. This motivates us to utilize
(genotype) genetic algorithms in development of determinis-
tic scheme that can generate the OTP keys rapidly. In 2013,
Sokouti et al. [3] have demonstrated a significant use of
genetic algorithm for automatically generating OTP keys.
They have proposed and compared two genetic-based OTP
key generators, namely, 10P-GRKG and the GRKG.The com-
parison results in [3] show that the GRKG method is much
better than the 10P-GRKG method in terms of speed and
randomness. However, it is observed that the GRKGmethod
has certain limitations which needs improvements. In this
paper, we propose an improved genetic-based random key
generator (IGRKG). As compared to GRKG, the proposed
IGRKG generator generates the OTP key rapidly and the
degree of randomness of the generated keys is better. In the
literature, a prior attempt in OTP key generation using evolu-
tionary technique has been addressed only in [3]. Therefore,
this paper can present a detailed comparison between GRKG
and IGRKG generators. We also compare the Diehard scores
of GRKG and IGRKG with some existing pseudorandom
number generators. It is important to note that, except GRKG
and IGRKG generators, the other pseudorandom generators
have not been developed to generate OTP key.

It should be noted that speed and randomness are the
main objectives of a designer behind the design of a pseu-
dorandom key generator. For achieving these objectives the
following novelties and modifications are introduced which
are our major contributions:

(1) UnlikeGRKGwe use a comparatively short secret key.
(2) Unlike 𝑀𝑎𝑥𝐺𝑒𝑛 parameter employed in GRKG, a

new𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 variable is proposed, where the essence
of the parameter is the minimum generations in
which the initial pad is obscured almost entirely.

(3) For determination of the crossover point, rather
than using modular arithmetic over addition, we
introduce a new approach of modular arithmetic over
subtraction. The advantage of this approach is that it
improves the randomness of the pad and makes the
scheme faster.

(4) For evolving existing generation, a new and efficient
approach is introduced that updates two variables 𝜋1
and 𝜋2. These variables are employed in Algorithm 1,
Steps (6)–(14), to decide crossover and mutation
points. This idea increases the randomness of the
existing pad and evolves the obscure final pad rapidly.

(5) For increasing the speed of encryption and decryp-
tion, amore efficient encryption and decryption func-
tion is suggested.

Figure 1 shows the block diagram of the proposed work.
Figure 1 shows that four integer values are taken as input
corresponding to the short secret key: 𝑋−1, 𝑐, 𝑚, and 𝑀. It
should be noted that the values of these parameters are taken
only once in the presence of both the sender and receiver.
Also, all the values must be “truly random” which is referred
to as seed.This seedmust be generated from the truly random
sources, because it is utilized by GA techniques in order to
generate larger sized keys. As shown in Figure 1, the seed
is first processed by one of the existing statistical sound
generators, namely, LCG.Through feedbackmechanisms, the
initial pad equal to the size of the plaintext is generated. That
is, 𝑋−1 is used to generate 𝑋0, 𝑋0 is used to generate 𝑋1,
and so on, where for each computation the remaining secret
key parameters, that is, the multiplier 𝑚, the increment 𝑐,
and the modulus𝑀, remain unchanged. The initial pad 𝑋 =(𝑋0, 𝑋1, . . . , 𝑋𝑛) is then converted into a population of indi-
viduals 𝑃𝑜𝑝𝑢 = (𝑃𝑜𝑝𝑢0, 𝑃𝑜𝑝𝑢1, . . . , 𝑃𝑜𝑝𝑢𝑛), where Popu0 is a
binary equivalent of integer 𝑋0, 𝑃𝑜𝑝𝑢1 is a binary equivalent
of integer𝑋1, and so on. Afterward, the population is evolved
by three evolutionary operators: selection, crossover, and
mutation (all these operators have been discussed in detail
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(1)Data: 𝐾𝐸𝑌 = 𝑋−1, 𝑚, 𝑐,𝑀, 𝑃𝑐𝑚, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛.
(2) Result: one-time pad of size𝑁, where𝑁 is the size of the plaintext.

Remark 1: Generate an initial population Popu of size𝑁, where 𝑖th chromosome is represented as binary string equivalent to 𝑋𝑖.
Here the initial vector𝑋 = 𝑋0, 𝑋1, . . . , 𝑋𝑛 is computed via LCG equation, where 𝑛 = 𝑁 − 1. That is:

(3) for𝑖 from 0 to 𝑛do
(4) Set𝑋𝑖 ← (𝑋𝑖−1 ∗ 𝑚 + 𝑐)mod (𝑀)
(5) end for

Remark 2: Initialize two positive integers: Number of selection of chromosome pairs for crossover (𝑁𝑜𝑝𝑐) and Number of
selection of chromosomes for mutation (𝑁𝑜𝑚) by “1”. Sometime, we refer𝑁𝑜𝑝𝑐 and𝑁𝑜𝑚 as crossover and mutation rates,
respectively.

(6) Set𝑁𝑜𝑝𝑐 ← 1,𝑁𝑜𝑚 ← 1
Remark 3: Update crossover and mutation rate, if the size of population is more than or equal to 10. That is:

(7) if𝑁 ≥ 10 then
(8) Compute𝑁𝑜𝑝𝑐 ← ⌈𝑃𝑐𝑚 ∗ 𝑁⌉
(9) if𝑃𝑐𝑚 > 0.3 then
(10) Compute𝑁𝑜𝑚 ← ⌊(𝑃𝑐𝑚 ∗ 𝑁)/2⌋. To maintain low probability mutation in case of large sized population.
(11) else
(12) Compute𝑁𝑜𝑚 ← ⌈𝑃𝑐𝑚 ∗ 𝑁⌉
(13) end if
(14) end if
(15) Initialize 𝜋1 ← (𝑋𝑛 ∗ 𝑚 + 𝑐)mod (𝑀)
(16) 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1
(17) repeat

Remark 4: Select a pair of chromosome and determine a point of crossover. Repeat the process till counter reached𝑁𝑜𝑝𝑐.
(18) for 𝑖 from 1 to𝑁𝑜𝑝𝑐 do
(19) Set 𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝜋1 (mod)𝑁
(20) Compute 𝜋1 ← (𝑚𝜋1 + 𝑐)mod (𝑀)
(21) Set 𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝜋1 (mod)𝑁
(22) Compute 𝜋1 ← (𝑚𝜋1 + 𝑐)mod (𝑀)
(23) Set 𝐶point ← |𝑋𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 − 𝑋𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒|mod (𝑁󸀠), where 𝐶point denotes the starting bit position of the chosen

chromosomes to be reproduced. Here𝑁󸀠 = 8, since a maximum integer value equivalent to its binary representation could
be 255 (i.e., 28 − 1).

(24) Perform single point crossover between pairs of selected chromosomes. That is between Popu𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 and
Popu𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 with probability 𝑃𝑐𝑚, where the starting point for mating is denoted by 𝐶point.

(25) end for
(26) Set 𝜋2 ← 𝜋1

Remark 5: Select an individual from the mated population and perform a single bit complement mutation for each of the
following iteration, where the new population was generated in the previous steps (18)–(25).

(27) for 𝑖 from 1 to𝑁𝑜𝑚 do
(28) Compute 𝜋2 ← (𝑚𝜋2 + 𝑐)mod (𝑀)
(29) Set 𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝜋2 (mod)𝑁
(30) Set𝑀point ← 𝑋𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (mod)𝑁󸀠, where𝑀point denotes the position of a bit of the selected chromosome,

Popu𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒.
(31) Change a bit of Popu𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 located at position𝑀point.
(32) end for
(33) Update 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 1
(34) Set 𝜋1 ← 𝜋2
(35) Update 𝜋1 ← (𝑚𝜋1 + 𝑐)mod (𝑀)
(36) until{𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 counter reached 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛}

Algorithm 1: Pseudocode of the IGRKG method.

in Sections 5.1, 5.2, and 6). The probability of crossover and
mutation is controlled by a common probability parameter𝑃c𝑚. However, for each instance of the problem, the rate
of mating and mutation may be different; we determine
these rates by a deterministic mathematical procedure (for
details, see Algorithm 1, Steps (6) to (14)). The selection of
individuals for mating, crossover point𝐶point, choice of genes
for mutation, and mutation point 𝑀point are also controlled
by a deterministic mathematical procedure (see Algorithm 1,

Steps (19) to (23) and (28) to (30)). Finally, we get an obscure
final pad𝐾 = (𝑘0, 𝑘1, . . . , 𝑘𝑛), where 𝑘𝑖 is an integer equivalent
of the corresponding binary individual. The number of
generations is controlled by a parameter, namely, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛
(for details about this parameter, see Section 5.2, Step (2)).
Advantages of IGRKG over GRKG. (1) IGRKG generator is
much faster than the GRKG generator; for instance, in gener-
ating large sized secure pad (e.g.,𝑁 = 1000), the average time
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taken by the IGRKG generator is about 2.432 seconds, while
the GRKG generator takes 9.747 seconds (for details, see
Section 6.4).These results indicate that the IGRKG generator
is four times faster than the GRKG generator. Consequently,
in the case of exchange of a significant number of encrypted
messages, the OTP-IGRKG system will outperform the OTP-
GRKG system. (2) In terms of randomness, the quality of
the IGRKG generator is significantly better than the GRKG
generator (see statistical and randomness testing results in
Section 6.5).

We organize the remainder of the paper as follows: in
Section 3, we present some of the previous valuable research
work in the field of cryptology where the genetic algorithm
has been utilized. In Section 4, we present basics of the one-
time pad and associated challenges. In Section 5, we propose
the IGRKG method followed by comparison with previously
proposed Sokouti et al. GRKG method. In Section 6, statisti-
cal testing and cryptanalysis results are discussed followed by
conclusion in Section 7.

3. Genetic Algorithm

The origin of evolutionary algorithms (EAs) is an attempt to
mimic some of the process taking place in natural evolution.
Although the details of biological evolution are not com-
pletely understood (even nowadays), there exist some points
supported by strong experimental evidence [5]. Genetic
algorithm (GA) is one of themost popular EA techniques that
has emerged based on the concept of imitating the evolution
of a species [6]. In the case of GA, a population of individuals
(or chromosomes) is generated using an intelligentmethod or
a randommethod [6–8]. Each of these individuals is encoded
as a binary string that represents a possible candidate solution
to the problem at hand. In each iteration, the survival strength
of each candidate solution is measured by a fitness function
[6–9]. Afterward, the evolutionary process is constrained by
three genetic operators: selection, crossover, and mutation.
Through selection procedure, individuals are selected that
enter into the crossover process.The crossover operator alters
two or more parents to create offspring, where a probabilistic
crossover rate is usually used to generate offspring [7, 8, 10].
Mutation operator produces one child from one parent by
flipping a bit (s) of the parent. A probabilistic mutation rate
is usually used to determine whether a particular change
occurred or not within an individual [7, 8, 10].

There are some important characteristics of crossover
and mutation operators that are not captured by the other.
Błażej et al. [11] mentioned that it has never been theoretically
shown that mutation is in some sense less powerful than the
crossover and vice versa. Mutation serves to create random
diversity in the population while crossover serves as an
accelerator that promotes emergent behavior from compo-
nents [11, 12]. The metaissue, then, is the relative importance
of diversity and construction. It is impossible for muta-
tion to simultaneously achieve high levels of construction
and survival [11, 12]. This would appear to be important
since one without the other may not be extremely useful.
High construction levels are accomplished at the expense of
survival (e.g., mutation rate 0.5), while good survival is at

the expense of construction (e.g., mutation rate 0.01) [11, 12].
In our study, we get the highly constructive results with
0.25 to 0.3 mutation rates. That is, 25% to 30% parents are
affected in our study by mutation operation (see Section 5.1
for details). GA parameters can be controlled in three
different ways: deterministic [13, 14], adaptive [13–15], and
self-adaptive [13, 14, 16]. The deterministic parameter control
technique takes place when the value of strategy parameters
(e.g., 𝑁𝑜𝑝𝑐 and 𝑁𝑜𝑚 in our study) is altered by some
deterministic rule.This rule modifies the strategy parameters
deterministically without using any feedback from the search
[13, 14, 17].

Applications of GAs in Cryptographic Applications. GAs have
been applied successfully to solve real-world optimization
and search problems [9]. These techniques have also shown
good potential in the domain of cryptology. Here wemention
some of the good works that have been carried out in the last
decade. An interesting work in the domain of cryptographic
protocol design has been carried out by Park and Hong [18]
and Zarza et al. [19] in 2005 and 2006, respectively. Wang et
al. (2012) [20] have proposed a novel method based on the
genetic algorithm and chaotic map for designing substitution
boxes (S-boxes). Jhajharia et al. (2013) [21] have utilized GAs
for cryptographic key generation. Jain and Chaudhari (2014)
[22] have proposed an improved GA method to attack the
knapsack based cryptosystems. Faraoun (2014) [23] has pro-
posed a block cipher design using GA and cellular automata.
Recently, GA and CGP techniques have been utilized in [24]
for determining strong cryptographic Boolean functions. Jain
and Chaudhari (2015) [25] have proposed improved GA
for automated cryptanalysis of the substitution ciphers. In
[3] Sokouti et al. (2013) have proposed a GA technique for
automatically generating OTP keys that we improve in this
paper.

4. One-Time Pad Cryptosystems

One-time pad cryptosystems are based on the concept of
stream cipher. In stream cipher, a short secret key is used to
generate a keystream (i.e., a string of bits) [1]. The keystream
bits are XORed with the plaintext bits in the usual way to
produce the ciphertext [1]. At the receiver end, the ciphertext
is XORed with keystream to get the original plaintext [1].
However, in stream cipher, a keystream is generated from
a short secret key [1]. Therefore, these ciphers can be com-
promised if not used carefully. The advantage of stream
ciphers is that they are much faster in hardware and therefore
mostly employed in resource-constrained devices. However,
the original OTP is used in those applications where the
primary objective is perfect security rather than speed [1].The
conventional OTP cryptosystem combines a plaintext sized
key with the given plaintext code as modulo addition “26”
and thereby generates the ciphertext. An example is shown
in Table 1. The fact is that the plaintext message can consist
of not only English alphabet, but also ASCII characters.
Therefore, in this paper we consider that the encryption and
decryption of plaintext will be done on “modulo 256” rather
than “modulo 26.” As a result, each plaintext character will
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Table 1: Encryption and decryption process of conventional OTP cipher using modular arithmetic 26. 𝑃: plaintext, 𝑃𝑐: plaintext code,𝐾𝐸𝑌:
secret key, 𝐾𝑐: key code, 𝐶: ciphertext, 𝐶𝑐 = (𝑃𝑐 + 𝐾𝑐)mod (26) and 𝐶󸀠𝑐 = (𝐶𝑐 − 𝐾𝑐)mod (26). From 𝐶󸀠𝑐, 𝑃󸀠𝑐 is obtained as follows: 𝑃󸀠𝑐 = 𝐶󸀠𝑐 if𝐶󸀠𝑐 is +ve; otherwise 𝑃󸀠𝑐 = 𝐶󸀠𝑐 + 26.
Encryption𝑃 O N E T I M E P A D𝑃𝑐 14 13 4 19 8 12 4 15 0 3𝐾𝐸𝑌 V M C E A P H I N R𝐾𝑐 21 12 2 4 0 15 7 8 13 17𝐶𝑐 9 25 6 23 8 1 11 23 13 20𝐶 J Z G X I B L X N U
Decryption𝐶 J Z G X I B L X N U𝐶𝑐 9 25 6 23 8 1 11 23 13 20𝐾𝐸𝑌 V M C E A P H I N R𝐾𝑐 21 12 2 4 0 15 7 8 13 17𝐶󸀠𝑐 −12 13 4 19 8 −14 4 15 0 3𝑃󸀠𝑐 14 13 4 19 8 12 4 15 0 3𝑃 O N E T I M E P A D

consist of 8 bits (i.e., each plaintext character will be in the
range [0, 255]).
5. Genetic Algorithm for Generating OTP Keys

There are two main challenges for developing original OTP
cryptosystem: (1) The OTP cryptosystem must generate a
key of length equal to the length of the plaintext. (2) The
key should be truly random for achieving perfect security.
Plaintexts are variable sized and often their size is large.
Therefore, it is impossible to generate a truly random key of
the size of the plaintext.

An efficient option for solving this kind of problem is
the utilization of pseudorandom key [1]. However, it is not
trivial to generate pseudorandom key equal to the length of
the plaintext. In this context, Sokouti et al. (2013) [3] have
proposed theGRKGmethod.GRKGgenerator accepts a fixed
size short secret key as an initial key and thereby generates
the pseudorandom key 𝐾. Here, we point out each time a
different key 𝑘 (𝑘 ∈ 𝐾) is generated.

We have two popular pseudorandom generator choices as
a base generator: LCG and Mersenne Twister, because of the
good statistical properties [26]. However, for cryptographic
security only the use of a statistical sound generator is not
sufficient.Therefore, we can employ either LCG orMersenne
Twister for generating initial pad and then genetic algorithm
is used to improve the randomness of the initial pad. As a
result, an obscure and appropriate OTP key is generated. In
this research, we have decided to use LCG method because
it is easy to implement and runs efficiently on computer
hardware [26]. Most importantly, its use allows us to give a
fair comparison between two methods, GRKG and IGRKG,
since LCG has also been employed in the GRKG method.

5.1. IGRKG: The Proposed Method. Consider initial key𝐾𝐸𝑌 = {𝑋−1, 𝑚, 𝑐,𝑀, 𝑃𝑐𝑚, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛} which consists of LCG
and GA parameters, and the details are as follows.

Parameters Related to LCG

𝑀: the modulus (𝑀 > 0)
𝑋−1: an initial positive integer number for generating
another integer number using (1), where (0 ≤ 𝑋−1 <𝑀)
𝑚: the multiplier (0 < 𝑚 < 𝑀)
𝑐: the increment (0 ≤ 𝑐 < 𝑀).

Parameters Related to GA

𝑃𝑐𝑚: combine probability of crossover and mutation
𝑁𝑜𝑝𝑐: number of selections of chromosome pairs for
crossover
𝑁𝑜𝑚: number of selections of chromosomes for mu-
tation
𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛: minimumnumber of iterations to generate
a sufficient secure OTP key

𝑋𝑖 ←󳨀 (𝑋𝑖−1 ∗ 𝑚 + 𝑐) mod (𝑀) . (1)

Algorithm 1 (Description). Pseudocode for the proposed
IGRKG method is shown in Algorithm 1. Input to the algo-
rithm is𝐾𝐸𝑌, where𝐾𝐸𝑌 is a secret key decided by commu-
nicating parties once. Using first four𝐾𝐸𝑌 elements,𝑋−1,𝑚,𝑐, and 𝑀, the initial pad 𝑋 = {𝑋0, 𝑋1, . . . , 𝑋𝑛} is generated
via LCG method, where 𝑛 = 𝑁 − 1 and 𝑁 is the size of the
plaintext. The initial pad is then converted into its equivalent
binary representation (see Remark 1).

GA Operators. The binary initial pad which is generated by
LCG method is modified by applying selection, crossover,
and mutation that are deterministically [14] controlled. That
is, crossover and mutation will be not performed at random
positions of individuals; rather positions are determined
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Table 2: Genetic parameters for the IGRKG method.

Step number Parameter/operator Value/type
(1) Population size (𝑁) Size of the plaintext
(2) Crossover Single point crossover
(3) Mutation Single bit mutation

(4) Rate of crossover, that is, % of parents mated 50% if 10 < 𝑁 ≤ 150
60% if𝑁 > 150

(5) Rate of mutation, that is, % of parents mutated 25% if 10 < 𝑁 ≤ 150
30% if𝑁 > 150

(6) Selection method (a parent & survival EA deterministic selection strategy [4])
Deterministic (see Algorithm 1,
Steps (19) to (23) and Steps (28)

to (30))

using deterministic procedure. It is emphasized that the same
secret key is possible at both ends iff identical evolutionary
operations are applied. If we use fitness function then this
constraint will be violated. Therefore, this work does not
require any fitness function; however, for generating secure
OTP keys intelligent selection, crossover and mutation oper-
ators have been designed.

Deciding Values of 𝑁𝑜𝑝𝑐 and 𝑁𝑜𝑚. If the initial pad length𝑁 < 10, then selection of one pair of chromosomes (i.e.,𝑁𝑜𝑝𝑐 = 1) and a single chromosome (i.e., 𝑁𝑜𝑚 = 1) is
sufficient for reproduction and mutation, respectively (see
Remark 2). However, for the initial pad of size𝑁 ≥ 10,𝑁𝑜𝑝𝑐
and 𝑁𝑜𝑚 are determined deterministically by utilizing 𝑃𝑐𝑚
and 𝑁 (see Steps (7) to (14)). 𝑃𝑐𝑚 is a common probability
parameter for crossover and mutation.

Fine-Tuning of Crossover and Mutation. We have tested
certain type of mutation and crossover operators, but the best
results have been obtained using simplemutation (which flips
a selected bit) and single point crossover. In the literature it
has also been shown that, among all the crossover operators,
themost successful one is single point crossover [27]. A deter-
ministic procedure is developed for deciding crossover and
mutation points (see Steps (23) and (30), resp.). The number
of chromosomesmutated is defined as fixed percentage of the
total number of chromosomes (see Steps (10)–(12)).

Finding best combination of crossover rate and mutation
rate is an important step in GA. In [28, 29], it is investigated
that generally low mutation rates (0.01 to 0.1) and compar-
atively high crossover rates (0.5 to 0.7) perform very well.
However, in [8], it is mentioned that the modern view of
EAs admits that specific problem types require specific EA
setups.Therefore, different crossover andmutation rates have
been experimented to investigate their capability to find good
solutions (the conditional optimal values of crossover and
mutation rates are shown in Table 2). Note that there is no
prior experimental work of this kind, so this work should be
considered as a guideline for future research.

Use of 𝜋1 and 𝜋2 Variables. For the initialization of 𝜋1, we
use the last element 𝑋𝑛 of the initial pad only once (see Step(15)). That is, in the evolutionary process, we will never use

𝑋𝑛 again due to security reasons, but the GRKGmethod uses𝑋𝑛 more than once, which is one of the drawbacks of the
GRKG method (see Table 3, Steps (6) and (7)). Steps (19)
and (21) show that an integer variable 𝜋1 is used to select
a chromosome pair for mating, where each time possibly a
different chromosome pair is mated (see Steps (23) and (24)).
In each iteration the mating operation is performed “𝑁𝑜𝑝𝑐”
times (see Remark 4 and Step (18)). Step (29) shows that
another integer variable 𝜋2 is used to select an individual
for mutation, where each time possibly a different individual
is mutated (see Steps (30) and (31)). For each iteration the
mutation operation is performed “𝑁𝑜𝑚” times (see Step(27)). By repetitive applications of mating and mutation,
a new population is generated. During evolution of the
population through crossover, variable 𝜋1 is itself updated
(see Steps (20) and (22)). Similarly, during evolution of the
population through mutation, variable 𝜋2 is itself updated
(see Steps (28) and (35)). In both cases, the LCG method is
used. In each iteration, after crossover and mutation, 𝜋2 and𝜋1 are assigned the updated value of 𝜋1 and 𝜋2, respectively
(see Steps (26) and (34)).This strategy has been introduced in
this research for the purpose of generating robust and secure
OTP key (for detailed information, see Section 5.2, Step (3)).
Use of 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 Variable. Until the termination condition is
not satisfied, the new population is fed back in the evolution-
ary process. 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 is an integer variable that indicates the
minimum number of generations till the pad is entered in the
evolutionary process (see Section 5.2, Step (2)).
5.2. Comparison between GRKG and IGRKG Generators. In
this section, we compare the proposed IGRKG method with
Sokouti et al.’s GRKG method [3]. A table of comparison
based on the features of both the generators is shown in
Table 3. In this table, we have underlined the values of IGRKG
features that are different form their GRKG counterparts. A
detailed list of proposed improvements is as follows:

(1) Rather than the secret key of size “seven,” IGRKG
uses a short secret key of size “six.” This is possible
because the crossover andmutation probabilities have
been combined in a single parameter 𝑃𝑐𝑚. However,
the algorithm is designed in such a way that the same
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Table 3: A comparison between features of GRKG and IGRKG (PGU: previous generation updated, CGU: current generation updated).

Step number Features GRKG IGRKG (our approach)
(1) Size of secret key 7 6
(2) Secret key parameters 𝑋−1, 𝑚, 𝑐,𝑀, 𝑃𝑐, 𝑃𝑚,𝑀𝑎𝑥𝐺𝑒𝑛 𝑋−1, 𝑚, 𝑐,𝑀, 𝑃𝑐𝑚, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛
(3) Population size (𝑁) Size of the plaintext Size of the plaintext

(4) Number of genes in each
chromosome 8 8

(5) Method for generating initial
population LCG method LCG method

(6)
Initialization of parameter for
evolution of first generation (via
crossover)

𝜋1 ←󳨀 (𝑋𝑛 ∗ 𝑚 + 𝑎)mod (𝑀) 𝜋1 ←󳨀 (𝑋𝑛 ∗ 𝑚 + 𝑎)mod (𝑀)

(7)
Initialization of parameter for
evolution of first generation (via
mutation)

𝜋2 ←󳨀 (𝑋𝑛 ∗ 𝑚 + 𝑎)mod (𝑀) 𝜋2 ←󳨀 CGU(𝜋1)

(8)
Determination of number of
chromosome pairs for crossover
(𝑁𝑜𝑝𝑐)

𝑁𝑜𝑝𝑐 ← 𝑃𝑐 ∗ 𝑁 (no default
setting) 𝑁𝑜𝑝𝑐 ← ⌈𝑃𝑐𝑚 × 𝑁⌉ (by default: 𝑁𝑜𝑝𝑐 fl 1)

(9)
Determination of number of
chromosomes for mutation
(𝑁𝑜𝑚)

𝑁𝑜𝑚 ← 𝑃𝑐 ∗ 𝑁 (no default
setting)

If (𝑃𝑐𝑚 > 0.3) then 𝑁𝑜𝑚 ← ⌊(𝑃𝑐𝑚 ∗ 𝑁)/2⌋
Otherwise 𝑁𝑜𝑚 ← ⌈𝑃𝑐𝑚 ∗ 𝑁⌉ (by default: 𝑁𝑜𝑚 fl 1)

(10)

Selection of index of
chromosomes pairs for
reproduction
(𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 and𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒)

Set 𝜋1 ← PGU(𝜋1) and
update it as (𝜋1 ∗ 𝑚 + 𝑎)mod
(𝑀)
Then 𝜋1 (mod)𝑁

Set 𝜋1 ← PGU(𝜋2) and
update it as (𝜋1 ∗ 𝑚 + 𝑎)mod (𝑀)
Then 𝜋1 (mod)𝑁

(11)
Selection of index of
chromosomes for mutation
(𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒)

Set 𝜋2 ← PGU(𝜋1) and
update it as (𝜋2 ∗ 𝑚 + 𝑎)mod
(𝑀)
Then 𝜋2 (mod)𝑁

Set 𝜋2 ← CGU(𝜋1) and
update it as (𝜋2 ∗ 𝑚 + 𝑎)mod (𝑀)
Then 𝜋2 (mod)𝑁

(12) Crossover mode Single point Single point

(13) Computation of Crossover point
(𝐶point)

(𝑋𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 +𝑋𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒) (mod) 8 (|𝑋𝑖𝑛𝑑𝑒𝑥1𝑠𝑡 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 − 𝑋𝑖𝑛𝑑𝑒𝑥2𝑛𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒|) (mod) 8

(14) Mutation mode Single bit complement Single bit with low probability

(15)
Computation of mutation bit
position
(𝑀point)

𝑋𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (mod) 8 𝑋𝑖𝑛𝑑𝑒𝑥𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 (mod) 8

(mean performance time) if

(16) 𝑁 = 1000,𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 = 𝑀𝑎𝑥𝐺𝑒𝑛 = 1000 9.747 seconds 2.432 seconds

Comparison of encryption and
decryption function

(17) Encryption function (obtain
ciphertext)

𝑄𝑖 = 𝐾𝑖𝑃𝑖 , 𝑅 = 𝐾𝑖 (mod) 𝑃𝑖
𝐶𝑖 = {𝑄𝑖, 𝑅𝑖} 𝐶𝑖 = 𝑃𝑖 ⊕ 𝐾𝑖

(18) Decryption function (recover
plaintext)

𝑃𝑖 = (𝐾𝑖 − 𝑅𝑖)𝑄𝑖 𝑃𝑖 = 𝐶𝑖 ⊕ 𝐾𝑖

probability parameter is utilized for performing both
crossover and mutation operations (see Table 3, steps
(1) and (2)).

(2) Unlike 𝑀𝑎𝑥𝐺𝑒𝑛 parameter used in GRKG, IGRKG
uses 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 parameter. The essence of the𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 parameter is the minimum generations in
which the initial pad is obscured almost completely.
The IGRKG scheme has been tested with different

values of𝑃𝑐𝑚 and𝑁. It is observed that 50 generations
are sufficient to completely obscure the initial
pad. However, after each communication the
variable 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 is increased in order to achieve
computationally high security.

(3) For evolving the existing generation, a different ap-
proach is proposed which is based on the effective
updates of 𝜋1 and 𝜋2. In the GRKG method, the
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same initial value (i.e., PGU(𝜋1)) is used for evolving
current generation (see Table 3: Column 2, Steps (10)
and (11)). The limitation of this approach is that the𝑁𝑜𝑚 number of individuals that were improved by
crossover is once again selected for mutation. Due
to this reason, the GRKG method requires a large
number of generations for evolving the remaining
individuals. This limitation is resolved by assigning
the updated value of 𝜋2 to 𝜋1 and by assigning
updated value of 𝜋1 to 𝜋2 (i.e., 𝜋1 ← PGU(𝜋2) and𝜋2 ← CGU(𝜋1), see Table 3, Column 3, Steps (10)
and (11), resp.). This phenomenon gives the chance
to remaining individuals that were not improved by
crossover, that is, improvement in the same current
generation throughmutation.Themain benefit of this
approach is that there is a high probability of selection
of chromosomes for mating that were not selected in
mutation and vice versa. This idea increases random-
ness of the pad with the increase in iteration. That is,
due to this strategy the IGRKG method produces the
more randomized pad in less number of iterations as
compared to the GRKG method.

(4) In order to determine crossover points, GRKG
method uses modular arithmetic over addition. This
approach makes the GRKG scheme conceptually
weak. The fact is that the sum of two chromosome
values (i.e., sumof integers) before and after crossover
will always be the same. That is, if two chromosomes𝐴 and 𝐵 are mated and converted into 𝐴󸀠 and 𝐵󸀠,
respectively, whenever in the next generation 𝐴󸀠 and𝐵󸀠 are selected for crossover, the result will be the
original chromosomes, that is, again 𝐴 and 𝐵 (see
Table 3, Step (13)). Clearly, this phenomenon is a big
obstacle in increasing randomness of the input pad.
In this paper, we resolve this weakness by suggesting
the use of modular arithmetic over subtraction rather
than addition. Due to this strategy, even though the
same pair will be selected in the next generation, the
different crossover points will be selected because the
subtraction of two chromosome values before and
after crossover operation is different. This approach
improves the practical efficiency of the generator.

(5) We have critically examined that the encryption and
decryption functions suggested by Sokouti et al. [3]
are not appropriate for use in cryptography. The
design of encryption and decryption functions is
not a part of the OTP key generator. However, as a
complete OTP scheme, we advise simple encryption
anddecryption functions that are oftenused in stream
ciphers (see Table 3, Steps (17) and (18)).

6. Results

For the purpose of comparison between GRKG and IGRKG
generators in terms of speed, we have implemented both
generators in Java 2.0 with Intel Quad-Core processor i7
(@3.40Ghz).We present the results of both the generators on
the text “cryptology.” The size of plaintext “cryptology” is 10;

that is,𝑁 = 10. Consider𝑃𝑐𝑚 = 𝑃𝑐 = 𝑃𝑚 = 0.2.That is, in each
iteration “two pair (𝑁𝑜𝑝𝑐 ← ⌈0.2∗10⌉ = 2)” of chromosomes
and “two (𝑁𝑜𝑚 ← ⌈(0.2 ∗ 10)⌉ = 2)” chromosomes will be
affected by the crossover andmutation, respectively.Note that
this example has been considered by Sokouti et al. [3] in their
work. Therefore, for a fair comparison between GRKG and
IGRKG generators, we demonstrate our work on the same
example.

6.1. Common Computation. Consider secret key = (𝑋−1 = 9,𝑚 = 5, 𝑐 = 7, 𝑀 = 256, 𝑃𝑐 = 𝑃𝑚 = 𝑃𝑐𝑚 = 0.2,𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 = 𝑀𝑎𝑥𝐺𝑒𝑛 = 10). Using this short secret key an
initial pad is generated iteratively via LCG method. That is,𝑋0 = (9 ∗ 5+ 7)mod (256) = 52,𝑋1 = (52 ∗ 5+ 7)mod (256)
= 11, 𝑋2 = (11 ∗ 5 + 7) mod (256) = 62, and so on. Finally,𝑋 = {52, 11, 62, 61, 56, 31, 162, 49, 252, 243}. A population of
size 10 is initialized, where 𝑖th chromosome will be binary
equivalent of the 𝑖th element of𝑋. This population is input in
the GRKG and IGRKG generators for generating OTP keys.

6.2. Results Obtained Using the GRKG Method. In this
section, we determine the OTP key from the initial pad
using the GRKG generator, where the initial pad ={52, 11, 62, 61, 56, 31, 162, 49, 252, 243}. Table 4 shows the
working of the GRKG method. Initially 𝜋1 = 243, that is, the
last element of the initial pad.

Mating. Initially, for mating, 8th and 9th chromosome pairs
are selected, where the selection of chromosomes is deter-
mined as follows: (𝜋1, i.e., 243 ∗ 5 + 7) mod (256) = 198
(mod) 10 = 8 and (updated 𝜋1, i.e., 198 ∗ 5 + 7) mod (256)
= 229 (mod) 10 = 9. The mating is performed in between
8th and 9th indexed chromosomes at the 7th indexed-gene
position. The index is computed as follows: (𝑋8 i.e., 252
+ 𝑋9 i.e., 243) mod (𝑁󸀠 i.e., 8) = 7. Similarly, the second
mating operation is performed in between 0th and 5th
indexed chromosomes, where the mating starts from 3rd
“(52 + 31) mod (8) = 3” indexed-gene position. Following
such selection and crossover mechanisms, the initial pad{52, 11, 62, 61, 56, 31, 162, 49, 252, 243} is transformed into{28, 11, 62, 61, 56, 55, 162, 49, 252, 243}.
Mutation. The mutation operation is performed using vari-
able 𝜋2 = 243 (here, we point out that the initial value
243 is used again for the selection of chromosomes for
mutation, which is one of the drawbacks of the GRKG
method). As shown in Table 4, the first mutation operation
changes 4th “252 (mod) 8 = 4” indexed bit of the 8th indexed
chromosome and the second mutation changes 3rd “243
(mod) 8 = 3” indexed bit of the 9th indexed chromo-
some. In this way, after first iteration, the intermediate pad{28, 11, 62, 61, 56, 55, 162, 49, 252, 243} is transformed into{28, 11, 62, 61, 56, 55, 162, 49, 236, 251}.

Table 4 also shows the recomputation (Re) phase which
is one of the limitations of the GRKG method, where
recomputation appeared due to the selection of the same
chromosome again (i.e., 8th one). Similarly, during themuta-
tion operation, if the same chromosome is selected again,
then the GRKG method performs the recomputation. Here
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Table 4: Working of the GRKG method (U: updated, SPE: selected pad element).

𝑚 = 5, 𝑐 = 7,𝑀 = 256, and initially 𝜋1 = 243
Update 𝜋1 as (𝜋1 ∗ 5 + 7) mod (256) Index
Element selection: 𝜋1 mod 10. Compute 𝐶point U(𝜋1) Pad state 7 6 5 4 3 2 1 0 SPE
GRKG: transformation of an initial pad to an obscure pad

Initial pad:
(52, 11, 62, 61, 56, 31, 162, 49, 252, 243)

(243 ∗ 5 + 7)mod (256) = 198 (mod) 10 = 8 198 Before crossover 1 1 1 1 1 1 0 0 252
(198 ∗ 5 + 7)mod (256) = 229 (mod) 10 = 9 229 1 1 1 1 0 0 1 1 243
𝐶point = (𝑋8 + 𝑋9)mod (𝑁󸀠) = (252 + 243) mod (8) = 7 After crossover 1 1 1 1 1 1 0 0 252
That is, starting point for mating is 7 1 1 1 1 0 0 1 1 243

(52, 11, 62, 61, 56, 31, 162, 49, 252, 243)
(229 ∗ 5 + 7)mod (256) = 128 (mod) 10 = 8 128 Before crossover 0 0 1 1 0 1 0 0 52
Re: (8 + 1) mod (10) = 9, (9 + 1) mod (10) = 0 (Re: 0) 0 0 0 1 1 1 1 1 31
(128 ∗ 5 + 7)mod (256) = 135 (mod) 10 = 5 135 After crossover 0 0 0 1 1 1 0 0 28
𝐶point = (𝑋0 + 𝑋5)mod (𝑁󸀠) = (52 + 31) mod (8) = 3 0 0 1 1 0 1 1 1 55
Initially 𝜋2 = 243. Compute𝑀point

Update 𝜋2 as 5𝜋2 + 7 (mod) 256
Element selection: 𝜋2 (mod) 10 U(𝜋2) (28, 11, 62, 61, 56, 55, 162, 49, 252, 243)
(243 ∗ 5 + 7)mod (256) = 198 (mod) 10 = 8 198 Before mutation 1 1 1 1 1 1 0 0 252
𝑀point = (𝑋8)mod (𝑁󸀠) = (252)mod (8) = 4 After mutation 1 1 1 0 1 1 0 0 236

(28, 11, 62, 61, 56, 55, 162, 49, 236, 243)
(198 ∗ 5 + 7)mod (256) = 229 (mod) 10 = 9 229 Before mutation 1 1 1 1 0 0 1 1 243
𝑀point = (𝑋9)mod (𝑁󸀠) = (243) mod (8) = 3 After mutation 1 1 1 1 1 0 1 1 251

After first generation:
(28, 11, 62, 61, 56, 55, 162, 49, 236, 251)

Repetition of the above process iteratively (eight more times) results in the following pad state along with updated 𝜋1:
2nd-generation input: {𝜋1 ← 135} and {Pad: (28, 11, 62, 61, 56, 55, 162, 49, 236, 251)}
3rd-generation input: {𝜋1 ← 219} and {Pad: (140, 171, 62, 61, 56, 55, 2, 49, 236, 115)}
4th-generation input: {𝜋1 ← 239} and {Pad: (12, 163, 62, 61, 56, 55, 2, 49, 252, 243)}
5th-generation input: {𝜋1 ← 195} and {Pad: (52, 163, 62, 61, 56, 15, 2, 49, 236, 251)}
6th-generation input: {𝜋1 ← 87} and {Pad: (52, 163, 62, 29, 57, 15, 50, 1, 236, 251)}
7th-generation input: {𝜋1 ← 171} and {Pad: (52, 51, 62, 29, 169, 15, 246, 1, 236, 51)}
8th-generation input: {𝜋1 ← 191} and {Pad: (52, 171, 238, 29, 59, 15, 246, 1, 60, 51)}
9th-generation input: {𝜋1 ← 147} and {Pad: (52, 171, 238, 29, 51, 15, 246, 33, 28, 59)}

Pad state and updated 𝜋1 after 9th generation: {𝜋1 ← 39} and {Pad: (12, 43, 238, 21, 51, 15, 246, 33, 28, 187)}
Performance time: 1.918msec.

we emphasize that this phenomenon needs improvement
because, in the case of large sized plaintext, the efficiency
of the scheme will degrade. This paper resolves this issue
by removing recomputation phase and keeping updating the
resulting pad through crossover, where the crossover is per-
formed usingmodular subtraction rather thanmodular addi-
tion.

6.3. Results Obtained Using the IGRKG Method. In this
section, we determine the OTP key from the initial pad
using the IGRKG generator, where the initial pad is equal
to {52, 11, 62, 61, 56, 31, 162, 49, 252, 243}. Table 5 shows the
working of the IGRKGmethod. Initially 𝜋1 = 243, that is, the
last element of the initial pad.

Mating. First of all, 8th and 9th indexed chromosome pairs
are selected for mating.Themating is started from 1st “|252−243| (mod) 8 = 1” indexed-gene. The second matoperation
is performed in between 8th and 5th indexed chromosome
pairs of the output pad generated in the previous step, where
the mating starts from 3rd “(52 + 31) mod (8) = 3” indexed-
gene positions. Following such selection and crossovermech-
anisms, the initial pad {52, 11, 62, 61, 56, 31, 162, 49, 252, 243}
is converted into {52, 11, 62, 61, 56, 247, 162, 49, 26, 253}.
Mutation. The mutation operation is performed using var-
iable 𝜋2 = 135 (i.e., updated 𝜋1). As shown in Table 5,
the 8th indexed chromosome is mutated at 4th “252
(mod) 8 = 4” indexed-gene position and 9th indexed
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Table 5: Working of the IGRKG method (U: updated, SPE: selected pad element).

Initially 𝜋1 = 243. Compute 𝐶point

Update 𝜋1 as 5𝜋1 + 7 (mod) 256 Index
Element selection: 𝜋1 (mod) 10 U(𝜋1) Pad state 7 6 5 4 3 2 1 0 SPE
IGRKG: efficient transformation of an initial pad to a more-obscured pad

Initial pad:
(52, 11, 62, 61, 56, 31, 162, 49, 252, 243)(243 ∗ 5 + 7)mod (256) = 198 (mod) 10 = 8 198 Before crossover 1 1 1 1 1 1 0 0 252(198 ∗ 5 + 7)mod (256) = 229 (mod) 10 = 9 229 1 1 1 1 0 0 1 1 243𝐶point = |𝑋8 − 𝑋9|mod (𝑁󸀠) = |252 − 243|mod (8) = 1 After crossover 1 1 1 1 0 0 1 0 242

That is, starting point for mating is 1 1 1 1 1 1 1 0 1 253
(52, 11, 62, 61, 56, 31, 162, 49, 242, 253)(229 ∗ 5 + 7)mod (256) = 128 (mod) 10 = 8 128 Before crossover 1 1 1 1 0 0 1 0 242(128 ∗ 5 + 7)mod (256) = 135 (mod) 10 = 5 135 0 0 0 1 1 1 1 1 31𝐶point = |𝑋8 − 𝑋5|mod (𝑁󸀠) = |252 − 31|mod (8) = 3 After crossover 0 0 0 1 1 0 1 0 26

1 1 1 1 0 1 1 1 247
Initially 𝜋2 = 135. Compute𝑀point

Update 𝜋2 as 5𝜋2 + 7 (mod) 256
Element selection: 𝜋2 (mod) 10 U(𝜋2) (52, 11, 62, 61, 56, 247, 162, 49, 26, 253)
(135 ∗ 5 + 7)mod (256) = 170 (mod) 10 = 0 170 Before mutation 0 0 1 1 0 1 0 0 52𝑀point = (𝑋0)mod (𝑁󸀠) = (52)mod (8) = 4 After mutation 0 0 1 0 0 1 0 0 36

(36, 11, 62, 61, 56, 247, 162, 49, 26, 253)(170 ∗ 5 + 7)mod (256) = 89 (mod) 10 = 9 89 Before mutation 1 1 1 1 1 1 0 1 253𝑀point = (𝑋9)mod (𝑁󸀠) = (253) mod (8) = 5 After mutation 1 1 0 1 1 1 0 1 221
After first generation:

(36, 11, 62, 61, 56, 247, 162, 49, 26, 221)
Repetition of the above process iteratively (six more times) results in the following pad state along with updated 𝜋1:

2nd-generation input: {𝜋1 ← 89} and {Pad: (36, 11, 62, 61, 56, 247, 162, 49, 26, 221)}
3rd-generation input: {𝜋1 ← 239} and {Pad: (52, 11, 62, 61, 56, 247, 218, 49, 26, 133)}
4th-generation input: {𝜋1 ← 53} and {Pad: (244, 11, 62, 29, 57, 55, 218, 49, 130, 29)}
5th-generation input: {𝜋1 ← 171} and {Pad: (244, 3, 62, 29, 59, 55, 24, 219, 130, 53)}
6th-generation input: {𝜋1 ← 209} and {Pad: (244, 187, 62, 29, 11, 55, 24, 219, 2, 21)}
7th-generation input: {𝜋1 ← 39} and {Pad: (100, 187, 62, 157, 11, 55, 24, 3, 218, 53)}

Pad state and updated 𝜋1 after 7th generation: {𝜋1 ← 45} and {Pad: (116, 187, 52, 221, 11, 183, 24, 3, 154, 63)}
Performance time: 0.743msec.

chromosome is mutated at 3rd “243 (mod) 8 = 3”
indexed-gene position. In this way, the intermediate
pad {52, 11, 62, 61, 56, 247, 162, 49, 26, 253} is converted into{36, 11, 62, 61, 56, 247, 162, 49, 26, 221}.
6.4. Discussion on the Speed of GRKG and IGRKG Generators.
It is observed from Tables 4 and 5 that the OTP key is
generated by GRKG and IGRKG in “nine” and “seven”
iterations, respectively. That is, the IGRKG method obscures
the initial pad in less number of generations than the GRKG
method. In other words, if we run the IGRKG generator
for two more generations, it will result in the enhancement
of the randomness. As evident from the results, the relative
time performance of the IGRKG method is significantly
better than the GRKG method. The time taken by the
GRKGmethod and the IGRKGmethod for the above-solved
instance is 1.918 and 0.743 milliseconds, respectively. For an

accurate comparison between the speeds, we have tested both
the generators on the large data set.

We have taken 𝑀 = 256 and 𝑃𝑐𝑚 = 𝑃𝑐 = 𝑃𝑚 = 0.2 so
that 𝑁𝑜𝑝𝑐 = 𝑁𝑜𝑚 = 2 and 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 = 𝑀𝑎𝑥𝐺𝑒𝑛 = 1000.
Afterward, both the generators have been run 100 times for
the plaintext of length of 1000 characters along with various
settings of (𝑋−1, 𝑚, 𝑐). We have examined that the average
time taken by the IGRKGmethod for 1000 generation is 2.432
seconds, while the GRKG method takes 9.747 seconds. This
result indicates that the IGRKG generator is approximately
four times faster than the GRKG generator.

6.5. Statistical Results. This section presents some statistical
tests to analyze the security of GRKG and IGRKG generators
that are purported to be random bit generators. A random
bit generator is a device or algorithm which outputs a
sequence of statistically independent and unbiased binary
digits. According to [1], it is impossible to give amathematical
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proof that a generator is a random bit generator; the tests
described here help to detect certain kinds of weaknesses the
generators may have. From both the generators, we take a
sample output binary sequence 𝑠 of length 𝑛 = 20000 bits and
subject it to four statistical tests designated as 𝑇𝑒𝑠𝑡1, 𝑇𝑒𝑠𝑡2,𝑇𝑒𝑠𝑡3, and𝑇𝑒𝑠𝑡4.The conclusion of each test is not definite but
rather probabilistic. If the sequence passes all of the statistical
tests, the generator is “not rejected” [1]. Here, we emphasize
that normal and 𝜒2 distribution (goodness of fit test) tests
can be used to compare the observed frequencies of a
sequence to their expected frequencies under a hypothesized
distribution. The 𝜒2 distribution with V degrees of freedom
arises in practice when the squares of V independent random
variables having standard normal distributions are summed.
For detailed information on normal and 𝜒2 distributions, we
refer readers to [1]. In the following sections, we present the
formal definition of each of the four statistical tests and the
results of statistical testing on the output sequence 𝑠.
6.5.1. Frequency Test. The objective of this test is to examine
whether the numbers of 0s and 1s in 𝑠 are approximately the
same, as would be expected for a random sequence. Let 𝑛0,𝑛1 denote the number of 0s and 1s in 𝑠, respectively. We use
these statistics as [1]:

𝑇𝑒𝑠𝑡1 = (𝑛0 − 𝑛1)2𝑛 , (2)

which approximately follows an 𝜒2 distribution with 1 degree
of freedom.

6.5.2. Serial Test. The objective of this test is to examine
whether the numbers of occurrences of 00, 01, 10, and 11
as subsequences of 𝑠 are approximately the same, as would
be expected for a random sequence. Let 𝑛0, 𝑛1 denote the
number of 0s and 1s in 𝑠, respectively, and let 𝑛00, 𝑛01, 𝑛10,
and 𝑛11 denote the number of occurrences of 00, 01, 10, and 11
in 𝑠, respectively, where 𝑛00 +𝑛01 +𝑛10 +𝑛11 = 𝑛− 1, since the
subsequences are allowed to overlap. We use these statistics
as [1]:

𝑇𝑒𝑠𝑡2 = 4𝑛 − 1 (𝑛200 + 𝑛201 + 𝑛210 + 𝑛211) − 2𝑛 (𝑛20 + 𝑛21)
+ 1,

(3)

which approximately follows an 𝜒2 distribution with 2
degrees of freedom.

6.5.3. Autocorrelation Test. The purpose of this test is to
check for correlations between the sequence 𝑠 and (noncyclic)
shifted versions of it. Let 𝑑 be a fixed integer, 1 ≤ 𝑑 ≤ ⌊𝑛/2⌋.
The number of bits in 𝑠 not equal to their 𝑑-shifts is 𝐴(𝑑) =∑𝑛−𝑑−1𝑖=0 𝑠𝑖 ⊕ 𝑠𝑖+𝑑. We use these statistics as [1]:

𝑇𝑒𝑠𝑡3 = 2 (𝐴 (𝑑) − (𝑛 − 𝑑) /2)√𝑛 − 𝑑 (4)

which approximately follows a normal distribution with
mean of zero and standard deviation of 1 if 𝑛 − 𝑑 ≥ 10.

6.5.4. Poker Test. Let 𝑟 be a positive integer such that ⌊𝑛/𝑚⌋ ≥5 ⋅ (2𝑟), and let 𝑘 = ⌊𝑛/𝑚⌋. Divide the sequence 𝑠 into𝑘 nonoverlapping parts each of length 𝑟, and let 𝑛𝑖 be the
number of occurrences of the 𝑖th type of sequence of length 𝑟,1 ≤ 𝑖 ≤ 2𝑟. The poker test determines whether the sequences
of length 𝑟 each appear approximately the same number of
times in 𝑠, as would be expected for a random sequence. We
use these statistics as [1], which approximately follows an 𝜒2
distribution with 2𝑟 − 1 degrees of freedom:

𝑇𝑒𝑠𝑡4 = 2𝑟𝑘 ( 2
𝑚

∑
𝑖=1

𝑛2𝑖) − 𝑘. (5)

For a significance level of 𝛼 = 0.05, threshold value for𝑇𝑒𝑠𝑡1 = 3.8415, 𝑇𝑒𝑠𝑡2 = 5.9915, 𝑇𝑒𝑠𝑡3 = 1.6449 and 𝑇𝑒𝑠𝑡4
value is different for different degree of freedom which is
computed using different size subsequences (see Table 10).
The calculated 𝑇𝑒𝑠𝑡𝑗 (1 ≤ 𝑗 ≤ 4) results clearly indicate
that the statistical results obtained via the IGRKG generator
are consistently superior to the GRKG generator (see Tables
7–10).

In addition to the above-discussed statistical tests, we
have tested large output sequence 𝑠 of both the generators
on the more stringent batteries of statistical test: Diehard,
NST, and “ENT” [30]. For this purpose, we have generated
two separate files of 250MB corresponding to the output of
each of the generators over a low entropy input, and then
each file was analyzed with each of the batteries. Note that
250MB data is a vast binary sequence 𝑠 generated by using
input parameters 𝐾𝐸𝑌1 to 𝐾𝐸𝑌4. Table 11 shows the results
of the ENT test. As evident from the ENT results, the output
of the GRKG and the IGRKG generators successfully passes
all the tests. However, it is clear from the results that the
ENT test results are superior in the case of the proposed
IGRKG scheme. Diehard results are shown in Table 12. The
tests are treated as successful if 𝑝 value is greater than 0.05.
IGRKG passes all the tests with significantly better results
than GRKG. It is important to note that GRKG has failed in
monkey test OPSO and overlapping sums test.

In the case of NIST test, 100 𝑝 values have been evaluated
for each test; the proportion of successful results are presented
in Table 13. The tests are treated as successful if 𝑝 value is
greater than 0.959 (except discrete Fourier transformation
and binary matrix ranks 6 ∗ 8 tests). In these two tests the𝑝 value should be in between 0.051 and 0.990 for success [31].
Results presented in Table 13 show that the IGRKG generator
passes all the tests; however, the GRKG generator has failed in
longest-run test and binary matrix ranks 31 ∗ 31 and 32 ∗ 32
tests.

6.6. GRKG and IGRKG Quality Assessment

6.6.1. Diehard Scores. Although GRKG and IGRKG genera-
tors have been developed and reported in the literature for
OTP key generation, we compare the performance of both
the generators with several other existing pseudorandom
number generators. The generators that we are comparing
to GRKG and IGRKG are of various types: pure linear
congruential generators (rand [32], rand1k [33], and pm
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Table 6: Parameter values corresponding to (𝑋−1, 𝑚, 𝑐, 𝑀, 𝑃𝑐𝑚, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛) for generating four different 20000-bit binary sequences to be
tested for examining randomness property of two generators: GRKG and IGRKG.

Step number Parameter
name Parameter values Remark

(1) 𝐾𝐸𝑌1 (9, 5, 7, 256, 0.5, 50) For an initial value of 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛, 2000 bits are generated and then we increment𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 by one, for the incremented value again 2000 bits are generated, and so on.
For instance, in the case of 𝐾𝐸𝑌1 the last parameter is incremented up to 10 with step
size +1, so that the last value will be 59. In this way, 20000 bits are generated, that is, a
concatenation of 2000 bits ten times, where for each𝐾𝐸𝑌 a different 20000-bit-long
sequence is generated.

(2) 𝐾𝐸𝑌2 (9, 5, 7, 256, 0.6, 60)
(3) 𝐾𝐸𝑌3 (46, 9, 7, 256, 0.5, 50)
(4) 𝐾𝐸𝑌4 (46, 9, 7, 256, 0.6, 60)

Table 7: 𝑇𝑒𝑠𝑡1 values for a binary sequence 𝑠 of size 𝑛 = 20000, where 𝑠 is generated individually from both the GRKG and the IGRKG
generators corresponding to four different input𝐾𝐸𝑌 parameters that have been mentioned in Table 6.

Method name
(𝑛 = size of 𝑠 in bits)

Initial key
parameters

Numbers of 0s and 1s in 𝑠 Computed𝑇𝑒𝑠𝑡1 values Threshold value at𝛼 = 0.05 [1]𝑛0 𝑛1
GRKG
(𝑛 = 20000)

𝐾𝐸𝑌1 10089 9911 1.5842

3.8415

𝐾𝐸𝑌2 9991 10009 0.0162
𝐾𝐸𝑌3 10040 9960 0.32
𝐾𝐸𝑌4 10047 9953 0.4418

IGRKG
(𝑛 = 20000)

𝐾𝐸𝑌1 10073 9934 0.9660
𝐾𝐸𝑌2 9993 10007 0.0098
𝐾𝐸𝑌3 10012 9988 0.0288
𝐾𝐸𝑌4 9986 10014 0.0392

Table 8: 𝑇𝑒𝑠𝑡2 values for a binary sequence 𝑠 of size 𝑛 = 20000, where 𝑠 is generated individually from both the GRKG and the IGRKG
generators corresponding to four different input𝐾𝐸𝑌 parameters that have been mentioned in Table 6.

Method name
(𝑛 = size of 𝑠 in bits)

Initial key
parameters

Number of 0s and 1s in 𝑠 and number of occurrences
of 00, 01, 10, and 11 in 𝑠 Computed𝑇𝑒𝑠𝑡2 values Threshold value

at 𝛼 = 0.05 [1]𝑛0 𝑛1 𝑛00 𝑛01 𝑛10 𝑛11
GRKG(𝑛 = 20000)

𝐾𝐸𝑌1 10089 9911 5051 5037 5056 4855 4.0422313

5.9915

𝐾𝐸𝑌2 9991 10009 4961 5030 4995 5013 0.5067761
𝐾𝐸𝑌3 10040 9960 5064 4976 5040 4919 2.2466783
𝐾𝐸𝑌4 10047 9953 5024 5023 4906 5046 1.9696706

IGRKG(𝑛 = 20000)
𝐾𝐸𝑌1 10073 9927 5066 5007 4993 4933 0.7228394
𝐾𝐸𝑌2 9993 10007 4979 5013 4995 5012 0.1459578
𝐾𝐸𝑌3 10012 9988 5037 4975 5014 4973 0.5549792
𝐾𝐸𝑌4 9986 10014 4972 5013 4996 5018 0.2193629

[34]), multiply-with-carry generators (mother [35]), additive
and subtractive generators (add [32], sub [34]), compound
generators (shsub [32], shpm [34], and shlec [34]), feedback
shift register generators (tgfsr [36], fsr [37]), Tausworthe
generators (tauss [38]), and GP based generator (Lamar [31]).
For the comparison purpose, Johnson’s scoring method [39]
is used. We have generated 50 different 10MB files from
GRKG and IGRKG using the same method as mentioned
in Table 6, and then scores have been assigned using results
of the Diehard tests. The score corresponding to different
generators has been taken from [31]. Since Diehard tests
produce one or more 𝑝 values, categorizing them as rejected,
suspect, or good, a 𝑝 value is called rejected if 𝑝 ≥ 0.998
and suspect if 0.95 ≤ 𝑝 < 0.998; all other 𝑝 values are
considered to be good. Two points, one point, and zero
points have been assigned for rejection, suspect, and good,

respectively. Finally, the addition of these points produces
a global Diehard score for each generator. The average has
been taken over the 50 evaluations in the case of GRKG
and IGRKG generators. In Table 14, low scores indicate good
quality generators. From Table 14, it can be noted that the
IGRKG generator is comparatively better than Lamar and
significantly superior to the rest of the generators.

6.6.2. Changes in Population. For the purpose of demonstra-
tion of behavior of the proposed IGRKGmethod, we present
some experimental analysis. For instance, consider that the
secret key equals (𝑋−1 = 46, 𝑚 = 9, 𝑐 = 7, 𝑀 = 256,𝑃𝑐𝑚 = 0.2, 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 = 10) and size of the plaintext is 10.
Figure 2 shows the changes in population for each iteration,
where the initial pad (165, 212, 123, 90, 49, 192, 199, 6, 61, 44)
is indicated by the 0th generation. Figures 2(a), 2(b), and 2(c)
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Table 9: 𝑇𝑒𝑠𝑡3 values for a binary sequence 𝑠 of size 𝑛 = 20000, where 𝑠 is generated individually from both the GRKG and the IGRKG
generators corresponding to four different input𝐾𝐸𝑌 parameters that have been mentioned in Table 6.

Method name
(𝑛 = size of 𝑠 in bits)

Initial key
parameter

For 𝑑 = 4000𝐴(𝑑) fl Computed
autocorrelation value

Threshold value
(normal distribution)

at 𝛼 = 0.05 [1]
GRKG (𝑛 = 20000)

𝐾𝐸𝑌1 7903 −0.485

1.6449

𝐾𝐸𝑌2 8007 0.035
𝐾𝐸𝑌3 7922 −0.39
𝐾𝐸𝑌4 7971 −0.145

IGRKG (𝑛 = 20000)
𝐾𝐸𝑌1 7897 −0.515
𝐾𝐸𝑌2 8001 0.005
𝐾𝐸𝑌3 7992 −0.04
𝐾𝐸𝑌4 8002 0.01

Table 10: 𝑇𝑒𝑠𝑡1 values for a binary sequence 𝑠 of size 𝑛 = 20000, where 𝑠 is generated individually from both the GRKG and the IGRKG
generators corresponding to four different input𝐾𝐸𝑌 parameters that have been mentioned in Table 6.

Method
(𝑛 = size of 𝑠 in bits)

Subseqs.
size 𝑟
(in bits)

Number of
subseqs. 𝑘 Deg. of

freedom
(2𝑟 − 1)

Computed 𝑇𝑒𝑠𝑡4 values for
different keys Threshold value at𝛼 = 0.05 [1]𝐾𝐸𝑌1 𝐾𝐸𝑌2 𝐾𝐸𝑌3 𝐾𝐸𝑌4

GRKG
(𝑛 = 20000)

4 5000 15 14.3217 12.5282 13.0562 11.7293 24.9958
5 4000 31 31.8201 28.8756 28.6031 26.9173 44.9853
7 2857 127 103.2013 88.2361 90.4128 85.1043 154.3015
8 2500 255 211.921 193.2073 188.7217 189.6553 293.2478

IGRKG
(𝑛 = 20000)

4 5000 15 11.2961 10.2332 9.5024 8.1945
5 4000 31 23.191 19.9245 21.1387 24.2046
7 2857 127 82.1302 78.7643 72.9932 69.9462
8 2500 255 171.9173 142.108 138.3213 132.3265

Table 11: Results obtained by ENT batteries of statistical test (GRKG versus IGRKG).

Test Result by GRKG Result by IGRKG
Entropy 7.399413 bits/byte 7.999999 bits/byte
Compression rate 0% 0%

Monte Carlo estimation 3.120513826 3.141524737
(error 0.1%) (error 0%)𝜒2 (goodness-of-fit) 217.14 248.126

Arithmetic mean 119.1214 127.3974
(127.5: random) (127.5: random)

Serial correlation coefficient −0.00013 −0.00007
(uncorrelated = 0.0) (uncorrelated = 0.0)

represent the behavior of the algorithm for first three (0 to 2),
second three (3 to 5), and the last three (6 to 8) generations,
respectively, where 0th generation indicates the initial pad
status and 8th generation represents the final pad status. The
1st and 2nd generations pad status can be seen in Figure 2(a)
which are (37, 52, 115, 94, 209, 192, 199, 134, 61, 44) and (37, 52,
91, 126, 209, 192, 199, 198, 61, 44), respectively. The 3rd, 4th,
and 5th generations pad status can been seen in Figure 2(b)
which are (37, 52, 195, 126, 209, 193, 71, 94, 61, 44), (37, 52, 203,
126, 209, 195, 71, 94, 61, 44), and (37, 52, 195, 126, 209, 195,
47, 94, 61, 65), respectively. The 6th, 7th, and 8th generations
pad status can been seen in Figure 2(c) which are (223, 36,

195, 126, 209, 195, 47, 36, 61, 65), (223, 36, 35, 222, 209, 195,
175, 52, 61, 65), and (95, 36, 53, 60, 209, 203, 175, 34, 223,
65), respectively. Although after 8th generation the initial pad
is completely changed (see Figure 2(d)) and transforms to
(95, 36, 53, 60, 209, 203, 175, 34, 223, 65), further iterations
increase the randomness of the pad. Figure 2(d) shows a
comparison graph of the initial and final population (output
at the 8th generation), where we can clearly see that there is
no similarity at any element positions of initial and final pads.
In other words, initial and final pads are independent of each
other; that is, without knowing the secret key, the initial pad
is very difficult to recover.
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Table 12: Results obtained using Diehard suite (𝑇𝑒𝑠𝑡5: birthday
spacings,𝑇𝑒𝑠𝑡6: GCD,𝑇𝑒𝑠𝑡7: overlapping permutations,𝑇𝑒𝑠𝑡8: mon-
key test OPSO,𝑇𝑒𝑠𝑡9: monkey test OQSO,𝑇𝑒𝑠𝑡10: monkey test DNA,𝑇𝑒𝑠𝑡11: count the 1s in a stream of bytes, 𝑇𝑒𝑠𝑡12: count the 1s in the
specific bytes, 𝑇𝑒𝑠𝑡13: parking lot test, 𝑇𝑒𝑠𝑡14: minimum distance
test, 𝑇𝑒𝑠𝑡15: random spheres test, 𝑇𝑒𝑠𝑡16: the squeeze test, 𝑇𝑒𝑠𝑡17:
overlapping sums test, 𝑇𝑒𝑠𝑡18: runs-up-and-down test, 𝑇𝑒𝑠𝑡19: the
Craps test).

Test 𝑝 value (GRKG) 𝑝 value (IGRKG)
𝑇𝑒𝑠𝑡5 0.812 0.912𝑇𝑒𝑠𝑡6 0.702 0.812𝑇𝑒𝑠𝑡7 0.893 0.982𝑇𝑒𝑠𝑡8 0.043 0.286𝑇𝑒𝑠𝑡9 0.593 0.673𝑇𝑒𝑠𝑡10 0.692 0.809𝑇𝑒𝑠𝑡11 0.814 0.903𝑇𝑒𝑠𝑡12 0.778 0.879
Overall p value (GRKG) 0.312
𝑇𝑒𝑠𝑡13 0.461 0.513𝑇𝑒𝑠𝑡14 0.683 0.811𝑇𝑒𝑠𝑡15 0.492 0.686𝑇𝑒𝑠𝑡16 0.738 0.762𝑇𝑒𝑠𝑡17 0.047 0.252𝑇𝑒𝑠𝑡18 0.356 0.381𝑇𝑒𝑠𝑡19 0.903 0.987
Overall 𝑝 value (IGRKG) 0.373

6.7. Basic Cryptanalysis of GRKG and IGRKG. This section
discusses resistance results against some of the basic cryptan-
alytic attacks that are as follows:

(1) Input-Based Attack. In order to distinguish between
random outputs and GRKG or IGRKG outputs, if it is
possible to use control or knowledge of the generator,
thenwe say that the generator is not resistant to input-
based attack.

(2) State Compromise Extension Attack. Assuming that a
state 𝑆1 has been recovered by the adversary through
successful efforts (e.g., due to inadvertent leak, a
cryptanalytic success, etc.), an attack which tries to
extend the advantage of state 𝑆1 is called state com-
promise extension (SCE) attack. SCE attack succeeds
when the attacker is able to distinguish between
random outputs and generator outputs before 𝑆1 was
compromised. Due to insufficient starting entropy the
generator can be started from an insecure guessable
state; at that time there is a highest probability of SCE
attack to work. SCE attack can also work when 𝑆1 has
been compromised by any of the attacks mentioned
below.

(a) Backtracking Attack. In order to acquire pre-
vious generator values, the backtracking attack
uses the compromise of the state 𝑆1 at time 𝑡.

(b) Permanent Compromise Attack. As soon as the
attacker negotiates 𝑆1 at time 𝑡, all past and

Table 13: Results obtained using NIST suite (𝑇𝑒𝑠𝑡20: frequency,𝑇𝑒𝑠𝑡21: block frequency, 𝑇𝑒𝑠𝑡22: cumulative sums, 𝑇𝑒𝑠𝑡23: runs,𝑇𝑒𝑠𝑡24: longest run, 𝑇𝑒𝑠𝑡25: rank, 𝑇𝑒𝑠𝑡26: FFT, 𝑇𝑒𝑠𝑡27: overlapping
templates, 𝑇𝑒𝑠𝑡28: nonoverlapping templates, 𝑇𝑒𝑠𝑡29: binary matrix
ranks 31 ∗ 31, 𝑇𝑒𝑠𝑡30: binary matrix ranks 32 ∗ 32, 𝑇𝑒𝑠𝑡31: binary
matrix ranks 6∗8,𝑇𝑒𝑠𝑡32: discrete Fourier transform,𝑇𝑒𝑠𝑡33:Maurer,𝑇𝑒𝑠𝑡34: Apen, 𝑇𝑒𝑠𝑡35: linear complexity, 𝑇𝑒𝑠𝑡36: random Excursions,𝑇𝑒𝑠𝑡37: random excursions variant, 𝑇𝑒𝑠𝑡38: serial).
Test Proportion (GRKG) Proportion (IGRKG)
𝑇𝑒𝑠𝑡20 0.9700 1.0000𝑇𝑒𝑠𝑡21 0.9800 1.0000𝑇𝑒𝑠𝑡22 0.9800, 0.9800 1.0000, 1.0000𝑇𝑒𝑠𝑡23 1.0000 1.0000𝑇𝑒𝑠𝑡24 0.9550 0.9800𝑇𝑒𝑠𝑡25 1.0000 1.0000𝑇𝑒𝑠𝑡26 0.9700 0.9950𝑇𝑒𝑠𝑡27 0.9720 1.0000𝑇𝑒𝑠𝑡28 0.9680 1.0000𝑇𝑒𝑠𝑡29 0.9520 0.9742𝑇𝑒𝑠𝑡30 0.9423 0.9659𝑇𝑒𝑠𝑡31 0.2250 0.4529𝑇𝑒𝑠𝑡32 0.9732 0.9900𝑇𝑒𝑠𝑡33 0.1342 0.4563𝑇𝑒𝑠𝑡34 1.0000 1.0000𝑇𝑒𝑠𝑡35 0.9800 1.0000

𝑇𝑒𝑠𝑡36
0.9732, 0.9732 1.0000, 0.9822
0.9656, 0.9656 0.9900, 0.9900
1.0000, 1.0000 1.0000, 1.0000
1.0000, 1.0000 1.0000, 1.0000

𝑇𝑒𝑠𝑡37
1.0000, 1.0000, 1.0000 1.0000, 1.0000, 1.0000
0.9859, 0.9859, 1.0000 1.0000, 1.0000, 1.0000
0.9718, 0.9718, 0.9718 0.9859, 1.0000, 1.0000
1.0000, 1.0000, 1.0000 1.0000, 1.0000, 1.0000
0.9656, 0.9656, 0.9718 0.9859, 0.9859, 1.0000𝑇𝑒𝑠𝑡38 0.9732, 0.9732 0.9900, 0.9900

Table 14: Pseudorandom number generators Diehard scores.

Pseudorandom number generators Total score Mean
rand1k 2129 66.53125
rand 9337 291.78125
pm 1619 50.59375
mother 602 18.8125
add 577 18.03125
sub 655 20.46875
shsub 548 17.125
shpm 799 24.96875
shlec 751 23.46875
fsr 573 17.90625
tgfsr 584 18.25
tauss 935 29.21875
lamar 377 11.78125
GRKG 578 18.46125
IGRKG 374 11.74125
True random variable 371.072 11.596
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(d) Initial and final pad status

Figure 2: Changes in population with increase in generations (𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 = 10, 𝑃𝑐𝑚 = 0.2).

future 𝑆1 values are susceptible to attack which
is a permanent compromise attack.

(c) Iterative Guessing Attack. If the inputs collected
between times 𝑡 and 𝑡 + 𝜖 are guessable by
the attacker, then this type of attack is called
iterative guessing attack.

(d) Meet-in-the-Middle Attack. A combination of
backtracking and iterative guessing attacks is
calledmeet-in-the-middle attack. Knowledge of𝑆 at times 𝑡 and 𝑡 + 2𝜖 allows the attacker to
recover 𝑆1 at time 𝑡 + 𝜖.

A binary sequence 𝑆 of size 20000 bits is generated individ-
ually from both the GRKG and the IGRKG generators cor-
responding to four different input𝐾𝐸𝑌 parameters that have

been mentioned in Table 6. Afterward, cryptanalysis against
all the above-mentioned attacks has been performed. The
cryptanalytic results have beenmentioned inTable 15. Results
obtained indicate that the IGRKG method is resistant to all
the attacks; however, the GRKG method is not resistant to
backtracking, iterative guessing, andmeet-in-middle attacks.

7. Conclusion and Avenues for
Future Research

This paper has presented an improved and efficient genetic-
based OTP key generator. The proposed method is a sig-
nificant improvement in the GRKG method. The proposed
IGRKG generator has successfully passed the simple statisti-
cal tests such as frequency, serial, autocorrelation, and poker
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Table 15: Cryptanalytic results.

Generator
Attacks

Input-based
attack

Backtracking
attack

Permanent compromise
attack

Iterative guessing
attack

Meet-in-the-middle
attack

GRKG Resistance Nonresistance Resistance Nonresistance Nonresistance
IGRKG Resistance Resistance Resistance Resistance Resistance

tests. IGRKG generator has also passed ENT, Diehard, and
NIST batteries of statistical tests. IGRKG is also resistant to
basic cryptanalytic attacks. These tests indicate that IGRKG
generator does not have any weakness and implementation
bugs. Additionally, the statistical quality of the IGRKG gen-
erator has been compared with other existing pseudorandom
number generators throughDiehard scores, and the obtained
scores indicate that IGRKG is the acceptable pseudorandom
number generator. In terms of speed, IGRKG generator is
four times faster than the GRKG generator.

It is important to note that, in the case of the IGRKG
method, there are various trade-offs to run and produce
the next pad. For instance, in the next communication, the𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 variable can be increased by “1.” Another practical
approach can be designed by an appropriate use of secret key
parameters 𝑐 and𝑚, and that can be decided by communicat-
ing parties once. Indeed, if the 𝐿𝑒𝑎𝑠𝑡𝐺𝑒𝑛 variable is correctly
handled, this may result in computationally high security.

This paper has used linear congruential generator for
generating initial pad and then genetic algorithm is used to
improve the randomness of the initial pad. Instead of linear
congruential generator, Mersenne Twister can also be used.
However, how will the use of Mersenne Twister be effective
and efficient in generation of OTP key? We left it as an
open problem. Also, an extensive cryptanalysis is required to
ensure computational security of the proposed generator.
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[13] Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms,” IEEE Transactions on Evo-
lutionary Computation, vol. 3, no. 2, pp. 124–141, 1999.

[14] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Parameter
Control in Evolutionary Algorithms: Trends and Challenges,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 2,
pp. 167–187, 2015.

[15] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of
crossover and mutation in genetic algorithms,” IEEE Transac-
tions on Systems, Man and Cybernetics, vol. 24, no. 4, pp. 656–
667, 1994.

[16] J. E. Smith and T. C. Fogarty, “Adaptively parameterised evolu-
tionary systems: Self adaptive recombination and mutation in a
genetic algorithm,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 1141, pp. 441–450, 1996.

[17] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring
and analyzing evolutionary algorithms,” Swarm and Evolution-
ary Computation, vol. 1, no. 1, pp. 19–31, 2011.

[18] K. Park and C. Hong, “Cryptographic protocol design concept
with genetic algorithms,” in Knowledge-Based Intelligent Infor-
mation and Engineering Systems, pp. 483–489, Springer, 2005.

[19] L. Zarza, J. Pegueroles, M. Soriano, and R. Martnez, “Design of
cryptographic protocols by means of genetic algorithms tech-
niques,” in SECRYPT, pp. 316–319, 2006.

[20] Y. Wang, K.-W. Wong, C. Li, and Y. Li, “A novel method to
design S-box based on chaotic map and genetic algorithm,”
Physics Letters A: General, Atomic and Solid State Physics, vol.
376, no. 6-7, pp. 827–833, 2012.

[21] S. Jhajharia, S. Mishra, and S. Bali, “Public key cryptography
using neural networks and genetic algorithms,” in Proceedings
of the 2013 6th International Conference on Contemporary
Computing, IC3 2013, pp. 137–142, Noida, India, August 2013.

[22] A. Jain and N. S. Chaudhari, “Cryptanalytic results on knap-
sack cryptosystem using binary particle swarm optimization,”
Advances in Intelligent Systems and Computing, vol. 299, pp.
375–384, 2014.



Complexity 17

[23] K. M. Faraoun, “A genetic strategy to design cellular automata
based block ciphers,” Expert Systems with Applications, vol. 41,
no. 17, pp. 7958–7967, 2014.

[24] A. Jain and N. S. Chaudhari, “Evolving highly nonlinear bal-
anced boolean functions with improved resistance to DPA
attacks,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 9408, pp. 316–330, 2015.

[25] A. Jain and N. S. Chaudhari, “A new heuristic based on the
cuckoo search for cryptanalysis of substitution ciphers,” Lecture
Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
9490, pp. 206–215, 2015.

[26] S. William andW. Stallings, “Cryptography and Network Secu-
rity, 4/E,” Pearson Education India, 2006.

[27] S. Picek, M. Golub, and D. Jakobovic, “Evaluation of crossover
operator performance in genetic algorithms with binary rep-
resentation,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6840, pp. 223–230, 2011.
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