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Within structural equation modeling, the most prevalent model to investigate
measurement bias is the multigroup model. Equal factor loadings and intercepts
across groups in a multigroup model represent strong factorial invariance (absence of
measurement bias) across groups. Although this approach is possible in principle, it is
hardly practical when the number of groups is large or when the group size is relatively
small. Jak et al. (2013) showed how strong factorial invariance across large numbers of
groups can be tested in a multilevel structural equation modeling framework, by treating
group as a random instead of a fixed variable. In the present study, this model is extended
for use with three-level data. The proposed method is illustrated with an investigation of
strong factorial invariance across 156 school classes and 50 schools in a Dutch dyscalculia
test, using three-level structural equation modeling.
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INTRODUCTION
The purpose of this study is to show how three-level structural
equation modeling (SEM) can be used to test for measurement
invariance across the Level 2 and Level 3 clustering variables.
The method is illustrated by testing measurement invariance
across school classes and schools in a dyscalculia screening
instrument.

MEASUREMENT INVARIANCE
In order to meaningfully compare test scores across groups, the
test should be measurement invariant with respect to group mem-
bership. When a test is measurement invariant, the differences in
test scores across groups can be attributed to differences in the
constructs that were intended to be measured. The importance
of measurement invariance is widely recognized (Mellenbergh,
1989; Millsap and Everson, 1991; Meredith, 1993; Vandenberg
and Lance, 2000). In order to establish whether a test is mea-
surement invariant across groups, one should test the equality
of measurement parameters across groups. With continuous nor-
mally distributed test scores and continuous normally distributed
latent variables (factors), the linear factor model is the suit-
able measurement model (Mellenbergh, 1994). If the relation
between the factors and the test scores are equivalent across
studies (i.e., if factor loadings are equal across groups), weak
factorial invariance (also labeled as metric invariance) holds. If
in addition the intercepts are equivalent across groups, strong
factorial invariance (also labeled as scalar invariance) holds.
With strong factorial invariance, the means of the factors can
be meaningfully compared across the groups. If in addition the
residual variances are equivalent (strict factorial invariance), the
observed means can be compared across groups (Meredith, 1993;
Widaman and Reise, 1997). In this study I focus on strong
factorial invariance.

STRONG FACTORIAL INVARIANCE ACROSS MANY GROUPS
With a small number of groups, multigroup confirmatory fac-
tor analysis can be used to test the equality of measurement
parameters (e.g., Wicherts and Dolan, 2010). If the number of
groups is large, it may be convenient to view group as a ran-
dom mode of variation, and use multilevel modeling (De Jong
et al., 2007; Fox, 2010). See Muthén and Asparouhov (2013) for
an overview of several fixed and random approaches to the study
of measurement invariance across many groups.

Jak et al. (2013) showed how invariance restrictions across
groups in a fixed model imply across level restrictions in a mul-
tilevel model. In a multilevel structural equation model, the
covariance matrix is modeled as the sum of the covariance matri-
ces at different levels (Muthén, 1990; Rabe-Hesketh et al., 2004).
For a two-level model (for example, if the test scores are from stu-
dents nested in school classes), the total covariance matrix can be
decomposed in two independent covariance matrices:

�TOTAL = �LEVEL2 + �LEVEL1. (1)

The (pooled, within class) differences between students’ scores are
modeled by �LEVEL1. The average score of the school classes may
also differ, these differences are modeled by �LEVEL2. At the dif-
ferent levels, distinct measurement models can be used to describe
the covariances between the test scores. In this study we use linear
factor models:

�LEVEL2 = �LEVEL2�LEVEL2�
t
LEVEL2 + �LEVEL2, (2)

�LEVEL1 = �LEVEL1�LEVEL1�
t
LEVEL1 + �LEVEL1.

With p observed variables and k common factors, �LEVEL2 and
�LEVEL1 are k by k covariance matrices of common factors,
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�LEVEL2 and �LEVEL1 are p by p (diagonal) matrices with resid-
ual variances, and �LEVEL2 and �LEVEL1 are p by k matrices with
factor loadings at Level 2 and Level 1, respectively.

METHODS
STRONG FACTORIAL INVARIANCE IN TWO-LEVEL MODELS
As explained by Jak et al. (2013), with two-level data, strong
factorial invariance across clusters implies:

�LEVEL2 = ��LEVEL2�
t,

and

�LEVEL1 = ��LEVEL1�
t + �LEVEL1. (3)

This means that if there is strong factorial invariance across clus-
ters (so the factor loadings and intercepts are equal across school
classes), the factor loadings are equal across levels, and there is
no residual variance at Level 2 (�LEVEL2 = 0). All differences at
the cluster (school class) level are thus differences in the common
factor(s). If strong factorial invariance does not hold (i.e., if the
intercepts differ across clusters), this results in residual variance
at Level 2 (�LEVEL2 �= 0). Strong factorial invariance across clus-
ters can thus be investigated by testing the significance of Level
2 residual variance in a factor model with equal factor loadings
across levels. This test is denoted the test for cluster bias. The
cluster bias model can test whether strong invariance holds, but
cannot differentiate between violations of weak and strong fac-
torial invariance. The focus of this study is therefore on testing
whether strong factorial invariance holds.

STRONG FACTORIAL INVARIANCE IN THREE LEVEL MODELS
With three-level data, such as test scores from students, nested
in school classes, nested in schools, one may employ three-level
structural equation modeling (Rabe-Hesketh et al., 2004). The
total covariance matrix can be decomposed into three covariance
matrices:

�TOTAL = �LEVEL3 + �LEVEL2 + �LEVEL1. (4)

Here, �LEVEL3 refers to the covariance matrix of school averages,
�LEVEL2 refers to the covariance matrix of class deviations from
the school average, and �LEVEL1 is a covariance matrix of students
deviations from the class average.

In a three-level factor model, the common factors also exist
(have variance) at the third level. For example, with data from
children in school classes in schools, the school averages in the
test scores may be different. If strong factorial invariance across
schools and across school classes holds, then the following model
holds:

�LEVEL3 = ��LEVEL3�
t,

�LEVEL2 = ��LEVEL2�
t,

and
�LEVEL1 = ��LEVEL1�

t + �LEVEL1, (5)

Where �LEVEL3 is a k by k covariance matrix of the common fac-
tors at Level 3. In this model, the common factor is the only source
of variance at the class and at the school level (Rabe-Hesketh et al.,
2004). If other variables than the common factor have influence
at the school level, this will lead to residual variance at Level 3
(�LEVEL3 �= 0), which means that measurement invariance across
schools does not hold.

ILLUSTRATION
INTRODUCTION
Testing measurement invariance across in three-level models
will be illustrated by testing strong factorial invariance across
school classes and across schools in a dyscalculia screening
test. Developmental dyscalculia is a learning difficulty specific
to mathematics learning (Butterworth, 2005; Devine et al.,
2013). Children with developmental dyscalculia have deficits in
understanding basic concepts such as quantity conservation and
reversibility, despite otherwise typically developing mental abili-
ties (Kosc, 1974; Gross-Tsur et al., 1996). Dyscalculia is estimated
to affect between 1.3 and 10% of the population, which is equiv-
alent to the prevalence of dyslexia (Devine et al.). The screening
of dyscalculia will often take place in the school, where a teacher
administers the test to all children in the class. This way, the
teacher can have influence on the test scores of the children. For
example, one teacher may give better instructions than the other,
leading to better test scores (less findings of dyscalculia) in the last
school class. If this happens, the test is not measurement invari-
ant across school class, as differences in test scores are not fully
attributable to differences in dyscalculia (but to differences in
quality of the instruction). At the school level, the school system
may have influence on the test scores. For example, one school
may have a curriculum that involves a different method to teach
mathematics than another school. Or some schools may use more
paper and pencil tests than other schools, leading to more expe-
rience of the students with a testing situation than others. If this
is the case, two students that are equal in their levels of dyscalcu-
lia, may score differently on a screening test, depending on the
school they are in. It is therefore important to establish mea-
surement invariance of an instrument across school classes and
schools. In this example, strong factorial invariance of a Dutch
screening instrument for dyscalculia is tested across school classes
and schools.

METHODS
Data
Respondents were 4527 students from 156 school classes in 50
schools in the Netherlands, of which 20 secondary schools and
30 primary schools. In all schools, the parent-teacher association
or the teacher gave permission for the administration of the test.
The test was administered by the teacher during regular school
time. The students were in the first grade of the secondary school,
or in the last 3 years of primary school. The schools were located
across the country in a way that is representative of the distribu-
tion of people living in The Netherlands. For some schools, the
class identifier was missing, in which case we treated all observa-
tions to be in one cluster. The average number of respondents per
class was 29.02, the average number of respondents in each school
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was 90.54. The mean age of the students was 11.42 (SD = 1.27),
and 49.1% was a boy.

Instrument
The NDS (Nederlandse Dyscalculie Screener; Milikowski and
Vermeire, 2013) is a screening instrument for dyscalculia. The
screening instrument consists of eight subtests with a large set of
items. For each subtest, the respondents try to answer as much
items correctly as possible within 1 min. The score on each sub-
test is the amount of items answered correctly. The tests are long
enough to ensure that no one can finish all questions in 1 min. See
Appendix A for an overview of the content of the eight subtests.
Before the respondents made the eight subtests they performed
a control task, which does not involve numbers, to practice with
the testing situation. The higher the score on each subtest, the
lower the level of dyscalculia is assumed to be. As the scores are
not recoded, the common factor that is assumed to underlie the
test scores is actually the opposite of dyscalculia.

Analysis
All analyses were performed in the program Mplus 7 (Muthén and
Muthén, 1998–2012) using full information maximum likelihood
estimation. In addition to the χ2 - statistic, the root mean squared
error of approximation (RMSEA) and the comparative fit index
(CFI) were used as measures of overall goodness-of-fit. RMSEA
values smaller than 0.08 are satisfactory, values smaller than 0.05
indicate close fit (Browne and Cudeck, 1992). CFI values over 0.95
indicate reasonably good fit (Hu and Bentler, 1999).

First, the intraclass correlations and the significance of the
variance at the class level and school level were inspected to decide
whether multilevel modeling is actually necessary. Next, a mea-
surement model is constructed at Level 1, with a saturated Level
2 and Level 3 model, so that all misfit stems from Level 1. Based
on the final measurement model, a model with equal factor load-
ings across the three levels is fitted. Next, the significance of the
Level 2 residual variance for all indicators is tested, by fixing all
residual variance at Level 2 at zero. A significant chi-square dif-
ference in comparison with the free model indicates significant
measurement bias across school classes. Finally, significance of
Level 3 residual variance is tested by comparing the fit of a model
with the residual variances at Level 3 fixed at zero with the model
from the previous step. All tests are performed using a significance
level of 5%.

Testing variances with the chi-square difference test in this way
is not strictly correct Stoel et al. (2006). Correct testing requires
the derivation of an asymptotic distribution of the likelihood ratio
test statistic, which is a complex mixture of chi-square distribu-
tions. As this is beyond the scope of this work, I accept that the
testing procedure is not correct, and keep in mind that it leads to
an overly conservative test.

RESULTS
The intraclass correlations at the class level varied between 0.19
(Test 4) and 0.43 (Test 8), meaning that 19% to 48% of the vari-
ance in test scores is at the class level. At the school level the
ICC’s were much smaller, varying between 0.4% (Test 5) and 2%
(Test 8). All variables showed significant variance at the class level,

but not at the school level. Based on these results, one could
decide to use two-level modeling instead of thee-level model-
ing. For the purpose of illustration, and because the interest is
in differences between schools, I will continue the analyses using
a three-level model.

First, the goal was to construct a measurement model at Level 1
with a saturated Level 2 and Level 3 model. Unfortunately, the
model estimation did not converge when the Level 3 model
was saturated, presumably because the saturated Level 3 model
was overparameterized (i.e., some Level 3 correlations are actu-
ally zero). As a solution, the measurement model was specified
with a saturated Level 2 model, and with corrections on the
chi-square and standard errors to account for the dependency
due to the school level (using “Type = Twolevel Complex” in
Mplus). A one-factor model fitted the data satisfactory accord-
ing to the RMSEA, χ2

(20) = 304.51, p < 0.05, RMSEA = 0.056,
CFI = 0.93. There was a modification index of a size 10 times
larger than the others for the relation between Test 1 and Test 2.
These tests are indeed quite similar (they both involve choos-
ing the largest number, see Appendix A), so it seems to make
sense that these tests share some specific variance. Adding a
residual covariance between Test 1 and Test 2 leads to a bet-
ter fitting model, χ2

(19) = 135.69, p < 0.05, RMSEA = 0.037,
CFI = 0.97, with close fit according to the RMSEA and good fit
based on the CFI. This model was accepted as the measurement
model. Because it is not possible to model residual correlations
at the higher levels in the next steps, the model was reparam-
eterized by adding a factor on which Test 1 and Test 2 loaded.
This factor was uncorrelated with the common factor, and both
factor loadings are fixed at 1, so the model is equivalent with
the model containing the correlated residuals (the estimate of
the factor variance will be equal to the estimate of the residual
covariance).

Using this measurement model, strong factorial invariance
across school classes and schools is investigated. A model with
equal factor loadings across levels fitted the data satisfactorily (see
Model 1 in Table 1). Fixing the Level 2 residual variance at zero
deteriorated the model fit significantly [�χ2

(8) = 2089.82, p <

0.05], indicating that strong factorial invariance across school
classes does not hold. Constraining the residual variance at Level 3
to be zero (and freely estimate Level 2 residual variance) did not
lead to a significant deterioration of model fit, �χ2

(8) = 6.50,
p = 0.59. This indicates that strong factorial invariance across
schools holds. The Mplus syntax for the final model can be found
in Appendix B.

Table 1 | Fit measures of the three-level models.

Model df χ2 RMSEA CFI

1. Baseline model
(equal factor loadings
across levels)

71 731.95 0.045 0.96

2. Strong factorial
invariance at Level 2

79 2821.77 0.088 0.84

3. Strong factorial
invariance at Level 3

79 738.45 0.043 0.96
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Figure 1 shows the final model (Model 3) with unstandard-
ized parameter estimates. By inspecting the significance of the
residual variance for each indicator at Level 2, it appears that there
is significant measurement bias across school classes for Test 1,
Test 6, and Test 7. Using the parameter estimates, it can be calcu-
lated how much of the variance in these indicators is caused by

class level variables other than (dys)calculia. The proportion of
residual variance with respect to the total Level 2 variance is calcu-
lated as: Residual variance at Level 2/Total variance at Level 2. For
Test 1 for example, the total variance at Level 2 is: 0.01+ 0.682×
0.56 + 0.02 = 0.28, and the Residual variance at Level 2 is 0.02,
so the proportion would be 0.02/0.28 = 0.071. The proportion of

FIGURE 1 | A three-level factor model with equal factor loadings across levels and no residual variance at Level 3. Parameter estimates are

unstandardized. Non-significance is indicated by an apostrophe (′).
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residual variance with respect to the total variance is calculated
as: Residual variance at Level 2/Total variance at Level 1 + Level
2 + Level 3. Table 2 gives an overview of these proportions for the
three biased tests. Test 6 shows the most bias, followed by Test 7
and Test 1. However, the proportions of bias can be considered
quite small in all tests.

Equality of factor loadings brings the factors on the same scale
across levels, which means that the ICC of the factor can be cal-
culated (Mehta and Neale, 2005; Kim et al., 2012). The ICC at
Level 2 is equal to 0.56/ (1 + 0.56 + 0.003) = 0.358, indicating
that 35.8% of the variance in dyscalculia is at the school class level.
At the school level, the ICC is 0.003/ (1 + 0.56 + 0.003) = 0.002,
so only 0.2% of the variance in dyscalculia is at the school level.

CONCLUSION
The analyses indicated that the screening instrument for dyscal-
culia cannot be considered fully measurement invariant across
school classes. That is, in three of the eight subtests, differences
across school classes cannot be fully attributed to differences in
the average level of dyscalculia in the school classes. An expla-
nation for the measurement bias can be found by looking at the
content of the tests, and trying to distil the class level biasing
factor. This is seldom easy, especially if the bias is small. In the cur-
rent example, an explanation for class level bias in general could
be the quality of the instruction that the teachers gave to the chil-
dren. This is supported by the fact that Test 1 and Test 2 are quite
similar (crossing out the largest number) and Test 7 and Test 8 are
quite similar (subtraction and addition), but measurement bias
across school classes is only found for the first tests of these pairs.
In the second tests of each pair, the children already practiced with
the type of assignment, rendering quality of the instruction less
influential. Test number 6 is about filling in a number on a line,
which can be viewed as a different from the other tests in that it
forces respondents to visualize numbers on a straight line, which
may not match the way students learn mathematics from their
teacher. These is no cluster bias detected at the school level. As
the number of schools, as well as the number of classes per school
in this dataset are very small, a possible explanation of this non-
finding is that the test for cluster bias did not have much power to
detect bias at the school level.

DISCUSSION
In this study I illustrated how strong factorial invariance across
the Level 2 and Level 3 clustering variable can be investigated. The
employed method is only suitable to test strong factorial invari-
ance, by rejecting models with zero residual variance at Level 2 or
Level 3. However, the test cannot differentiate between violations
of weak and strong factorial invariance. If �LEVEL2 �= 0, this can

Table 2 | Proportions of variance caused by biasing variables at

Level 2.

Test Proportion bias

Level 2

Proportion bias

Total

Test 1 0.071 0.019
Test 6 0.146 0.031
Test 7 0.090 0.020

also be caused by a difference in factor loadings across school
classes, which is a violation of weak factorial invariance (Jak et al.,
2013). So, if non-zero residual variance is detected, we know that
strong factorial invariance does not hold, but we do not know
if weak factorial invariance holds. An advantage of the current
method is that factorial invariance with respect to Level 2 and
Level 3 variables can be tested, even without having measured
these variables. Non-zero residual variance at a level indicates
bias with respect to some variable at that level, and can thus be
viewed as a global test of measurement invariance with respect
to any variable. If bias with respect to the clustering variable is
found, covariates could be added to the model to explain the bias
(Verhagen and Fox, 2012; Jak et al., 2014). In the current dataset
this was not possible, as we did not have a measure of the sup-
posed biasing factor, and other covariates at Level 2 did not have
significant variance.

THE INTERPRETATION OF RESIDUAL VARIANCE IN MULTILEVEL
MODELS
With equal factor loadings across levels, at the higher levels
of a multilevel factor model, non-zero residual variance always
represents measurement bias. This is not the case in single
level data (or at Level 1), as we cannot distinguish variance
caused by item specific factors from random measurement error
variance.

In a factor model, residual variance stems from a residual
factor (δ) that consists of two components, a structural compo-
nent, s, and a random component, e (Bollen, 1998). With VAR()
denoting variance:

VAR(δ) = VAR(s) + VAR(e), (6)

in which s represents a specific component, that is unique to
the indicator, causing systematic variance in the test score. The
remaining part of the residual variance is caused by a random
component, e, representing measurement error. The expected
value, denoted E(), of the structural component s may be non-
zero, and could be interpreted as the intercept in a factor model:

E(s) = τ. (7)

The random component is unsystematic and has an expected
value of zero:

E(e) = 0. (8)

The residual variance of each indicator is thus equal to the sum of
the variance of the two components, and the mean of the residual
factor is equal to the mean of the structural component.

Zero structural residual variance represents invariance of the
indicator with respect to all variables. As mentioned, in a sin-
gle level model we cannot distinguish structural residual variance
from measurement error variance, rendering it impossible to
identify non-zero residual variance as measurement bias. At the
second (and higher) level of a multilevel model, it is possible to
test whether structural variance is present. Given that the cluster
mean of the random component is expected to be zero (Equation
8), all residual variance at aggregated levels represents structural
variance. Of course, if the number of observations per cluster is
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very small, some random error variance may be aggregated to the
higher level.

ALTERNATIVE APPROACHES WITH TWO-LEVEL DATA
The test for cluster bias is a useful addition to the existing set of
structural equation modeling tools to investigate measurement
bias. However, it is not the only test that can be used to inves-
tigate measurement invariance across clusters in multilevel data.
One of the alternatives to is to test for measurement bias in a fixed
effects model, i.e., in a multigroup model in which each clus-
ter is a group. The equal factor loadings and intercepts across
groups (clusters) in a multigroup model represent absence of
cluster bias. Although this approach is possible in principle, it is
hardly practical when the number of clusters is large. Muthén and
Asparouhov (2013) describe an alternative way to circumvent the
cumbersome strategy of multigroup modeling with large num-
bers of groups, using a 2-step procedure with Bayesian estimation.
They introduce the concept of “approximate measurement invari-
ance,” referring to the analysis of measurement invariance across
several groups using Bayesian SEM (BSEM), see also Van De
Schoot et al. (2013). In Step 1 of the procedure (the analysis of
approximate measurement invariance), in each group the differ-
ence between the group specific measurement parameter (factor
loading or intercept) and the average of the particular parameter
across all groups is estimated. The researcher can then identify
the group with the largest difference between its measurement
parameter and the average parameter as the most deviant group.
In the next step, using BSEM, one estimates a model in which all
factor loadings and intercepts are equal across groups, except for
the groups that were identified as deviant in the previous step.
This is similar to the use of modification indices with maximum
likelihood estimation in a multigroup model, where the most
deviant group will show the largest modification index in an anal-
ysis with equal factor loadings and intercepts. An advantage of the
BSEM method is that it works well for the analysis of categorical
variables, while maximum-likelihood estimation with categori-
cal variables often leads to computational problems due to the
numerical integration involved. A disadvantage of the approxi-
mate measurement invariance approach is that it relies on prior
distributions for the model parameters, and different priors may
yield different outcomes. Muthén and Asparouhov recommend
zero-mean, small-variance priors for the difference parameters.
However, the optimal size of the small-variance of the priors is
a subject of debate. When trying to analyse the dyscalculia data
using the BSEM method, it was unsuccessful due to the enor-
mous computational load with 156 groups. Indeed, I have not
seen applications of the BSEM method with large numbers of
groups.

A framework for the detection of measurement bias across
large numbers of groups within Bayesian Item Response Theory
(IRT) is given by Verhagen and Fox (2012), using multilevel ran-
dom item effects models (De Jong et al., 2007; Fox and Verhagen,
2010). Verhagen and Fox estimate a random effects parameter
for all measurement parameters in the model (i.e., discrimina-
tion parameters and difficulty parameters in an IRT model), and
test which of the measurement parameters have significant vari-
ance across clusters using Bayes factors or using the Deviance

Information Criterion (DIC). Consequently, the cluster level
variance in item parameters may be explained by adding covari-
ates to the model. The approach of Verhagen en Fox is similar
to the approach in this article in some respects. Both approaches
treat groups as randomly drawn from a population of groups.
Both approaches test the hypothesis of zero variance of param-
eters at the cluster level, and both allow for the explanation of
non-zero variance by cluster level variables. The main differences
between the two approaches relate to the modeling framework
(multilevel IRT vs. multilevel SEM), and the estimation method
[Bayesian estimation vs. frequentist (maximum likelihood) esti-
mation]. It is an interesting topic of future research to compare
the outcomes of the two methods.

ALTERNATIVE APPROACHES WITH THREE-LEVEL DATA
Although it seems straightforward to analyse three-level data
with the before mentioned approaches as well, I am not aware
of any published articles in which measurement invariance with
respect to the Level 2 and Level 3 cluster variables is inves-
tigated. One option would be to treat the Level 3 clustering
as fixed, and impose the measurement invariance restrictions
on the two-level models for every school. That is, first mea-
surement invariance across school classes can be investigated
using the test for cluster bias (Jak et al., 2013) for each school
separately, and next the equality of factor loadings and inter-
cepts can be tested across schools (see Muthén et al., 1997).
This approach is not considered very useful, as within each
school, the number of school classes will never be large enough
to obtain stable estimates and have acceptable power to reject
measurement invariance. The BSEM approach can probably be
extended to three-level data, by including difference parame-
ters for the intercepts and factor loadings at the school level
as well as at the class level. One difference parameter would
then reflect how the specific school average differs from the
overall average, and another difference parameter would reflect
how the specific class deviation from the school average differs
from the average class deviation from the school average. The
method of Verhagen and Fox could also be extended to three-level
data, by estimating school level variance for each measurement
parameter.

Although the three-level SEM method is not the only option
to investigate measurement bias in three-level data, it is shown
in this article that it is at least a relatively simple method to use.
At the higher levels of multilevel data, the power of the statistical
tests may not be very large, as the number of higher level units is
often small. In the current example there were 50 schools at Level
3. From simulation research with two-level data (Jak and Oort,
under review), we know that with 50 clusters of size 5, the power
to detect large bias is only 50%. Extrapolating this to the three-
level situation indicates that that in our example, we did not have
high power to detect bias at Level 3. Nevertheless, the illustration
can be useful as an example of how the detection of measurement
invariance in three-level data may be executed.
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