
Forthcoming in Oxford Studies in Metaphysics

The Π-Theorem as a Guide to Quantity Symmetries and
the Argument Against Absolutism ∗

Mahmoud Jalloh

University of Southern California

May 17, 2023

Abstract

In this paper a symmetry argument against quantity absolutism is amended. Rather
than arguing against the fundamentality of intrinsic quantities on the basis of trans-
formations of basic quantities, a class of symmetries defined by the Π-theorem is used.
This theorem is a fundamental result of dimensional analysis and shows that all unit-
invariant equations which adequately represent physical systems can be put into the
form of a function of dimensionless quantities. Quantity transformations that leave
those dimensionless quantities invariant are empirical and dynamical symmetries. The
proposed symmetries of the original argument fail to be both dynamical and empirical
symmetries and are open to counterexamples. The amendment of the original argument
requires consideration of the relationships between quantity dimensions. The discussion
raises a pertinent issue: what is the modal status of the constants of nature which
figure in the laws? Two positions, constant necessitism and constant contingentism, are
introduced and their relationships to absolutism and comparativism undergo preliminary
investigation. It is argued that the absolutist can only reject the amended symmetry
argument by accepting constant necessitism. I argue that the truth of an epistemically
open empirical hypothesis would make the acceptance of constant necessitism costly:
together they entail that the facts are nomically necessary.
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1 INTRODUCTION 2

1 Introduction

There is an old question which has recently gained renewed and generalized attention; most famous
is Poincaré’s statement of this question regarding space:

Suppose that in one night all the dimensions of the universe became a thousand times
larger. The world will remain similar to itself, if we give the word similitude the meaning
it has in the third book of Euclid. Only, what was formerly a metre long will now measure
a kilometre, and what was a millimetre long will become a metre. The bed in which I
went to sleep and my body itself will have grown in the same proportion. when I wake in
the morning what will be my feeling in face of such an astonishing transformation? Well,
I shall not notice anything at all. The most exact measures will be incapable of revealing
anything of this tremendous change, since the yard measures I shall use will have varied
in exactly the same proportions as the objects I shall attempt to measure. In reality the
change only exists for those who argue as if space were absolute. (Poincaré 1914, 94)

It is apparent that such considerations generalize to other quantity dimensions beyond the spatial
ones. There is an apparent paradox: Everywhere in the laws of physics it appears that solutions
depend on the absolute values of quantities. Yet, there is also an intuition behind thought experiments
like Poincaré’s: if all quantities of a kind were scaled by the same factor, including those of the
relevant measurement standards, that world would be in every way empirically indistinguishable
from the actual world. This paper provides a reconciliation of the absolutist form of the laws and
comparativist intuitions about measurement.

A case which has recently captured the attention of some philosophers: would it make a difference
if all the masses doubled overnight? The answer turns on a metaphysical debate regarding quantity
absolutism and quantity comparativism:

(Absolutism) Intrinsic quantities are fundamental, qualitative properties, quantity rela-
tions supervene on them.1

(Comparativism) Quantity relations are at least as fundamental as intrinsic quantities
and do not supervene on them.2

1Maybe this is better put in terms of “dependence”, “determination”, or “grounding” (see discussion in: McKenzie
2014, 2020; Sider 2020). I am not here concerned with whatever the proper relation between fundamentals and
non-fundamentals is, just that there is some distinction to be drawn which at least implies a supervenience relation
describable with possible world semantics.

2Here I focus on arguments against the fundamentality of intrinsic quantities. This corresponds to the weak absolutism
and weak comparativism described in Martens (2021). Some, including Dasgupta (2016), have presented the argument
against absolutism in eliminativist terms. The argument is taken to show that intrinsic quantities comprise surplus
structure which ought to be eliminated from our ontology. See Ismael and van Fraassen (2003) and Dasgupta (2016)
for accounts of such symmetry arguments. See Martens (2018) for an argument against mass eliminativism. See Sider
(2020) and Wolff (2020, chap. 8) for accounts of the absolutist-comparativist dispute in terms of fundamentality.
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Intrinsic quantities are determinate properties of particular physical objects and not relations. We
think of them as having an essentially monadic logical form.3 An object’s property of being two
kilograms in mass is intrinsic. Alternatively, the comparativist grounds the object’s being two
kilograms in mass relationally: the object stands in a relation of being twice as massive as, say,
some standard kilogram in Paris. The comparativist holds that these relations are not grounded in
intrinsic quantities, but are (relatively) fundamental.

Central to the debate is a symmetry argument against absolutism.4 Such arguments have
a general form: some supposed fundamental feature of reality, F , varies under some symmetry
transformation; so F is not a fundamental feature of reality. In this case the supposed fundamentals
are intrinsic or absolute quantities. The comparativist argues that there is a class of symmetries that
leave quantity ratios invariant while varying intrinsic quantities. If this is the case, a supervenience
principle follows:

(Comparativist Supervenience) No change in intrinsic quantity Q of object O without
some change in relation R between Q and Q′ of some O′.5

The relevant symmetries are physical symmetries which map physical systems to physically indistin-
guishable systems. Well known examples of such symmetry arguments include the argument against
absolute velocities due to velocity boost symmetries and arguments against absolute space due to
translation and rotation symmetries.

Dasgupta (2013) has influentially levied such a symmetry argument against the fundamentality
of intrinsic quantities. The argument depends on a notion of mass doubling as a transformation
that doubles the mass of every massive object in some physical system and leaves everything else
unchanged. This ceteris paribus condition requires mass doubling be a “full symmetry”, meaning
a dynamical and empirical symmetry. Dynamical symmetries map nomically possible systems to
nomically possible systems. Empirical symmetries map systems to observationally indistinguishable
systems. The argument runs so: Mass doubling is a full symmetry. Intrinsic mass quantities vary
under this full symmetry. Properties that vary under full symmetries are not fundamental. Therefore,
intrinsic mass quantities are not (relatively) fundamental.
3For an example of a relatively standard metaphysical account of intrinsicality, see Langton and Lewis (1998). See
Sider (1996) for a distinction between metaphysical and syntactic criteria of intrinsicality and a discussion of the
latter type.

4Martens (2021, 2523) usefully distinguishes three approaches to the debate regarding the empirical adequacy of
comparativism which are present in the literature: (1) the symmetry approach, (2) the detectability approach, and
(3) the possibility-checking (i.e. possible worlds) approach. He only discusses (1) in passing and shows that insofar as
(2) is useful it is equivalent to (3). Further, I take (1) to be equivalent to (3). I understand possible world semantics
to provide a model theory for discussing the symmetries of physical equations. However, as will be made evident, I
believe the symmetry approach in is some ways more illuminating and useful for some of the unsettled modality
questions (see section 5).

5The comparativist likely is committed to more than this, but this minimalist principle excludes absolutist possibilities,
e.g. mass doubling. Dasgupta puts this principle somewhat differently. For him the principle justified by these global
quantity symmetries is a global supervenience principle. The important thing is whatever set of facts are more
fundamental are not explained by the other set of facts (Dasgupta 2013, 108–9). Dasgupta actually makes the case
that his “pluralistic” grounding is less demanding than the individualistic condition I am stipulating.
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Baker (2020) and Martens (2018, 2021) have shown that this argument is unsound because its first
premise is false. Counterexamples, such as a two body system in which a projectile escapes a planet,
show that Dasgupta’s ceteris paribus clause is untenable. Either the mass doubling transformation
changes the empirical situation because the projectile fails to escape, or the projectile’s trajectory
breaks the laws. Mass doubling is not a full symmetry. Further, any other global transformation
which acts on a single basic quantity dimension is not a full symmetry.6 By contrast, I refer to any
quantity transformation that leaves both the laws and the observable situation unchanged a full
quantity symmetry. That all basic quantity transformations fail to be full quantity symmetries will
be made clear by consideration of the Π-theorem.

The argument against absolutism can be rehabilitated by showing that there is a class of
full quantity symmetries that shows that intrinsic quantities are not fundamental. This class
of symmetries is characterized by Edgar Buckingham’s (1914) Π-theorem, a foundational result
of dimensional analysis. This theorem establishes a general form of physical equations which is
invariant under both representational unit transformations and ontic quantity symmetries. The
general structure of these quantity symmetries has implications for the nomological role of the
dimensional constants. I will argue that whether these quantity symmetries are accepted as dynamical
symmetries depends on whether or not the values of physical constants (e.g. the gravitational constant)
are fixed by the laws or are instead contingent. The absolutist’s escape route from the amended
symmetry argument requires that the values of physical constants are nomically necessary. I argue
that this is a costly move, conditional on the truth of an open physical hypothesis.

2 The Quantity Calculus and the Argument Against Abso-
lutism

The argument against absolutism requires the existence of symmetries that are ontic counterparts to a
class of broadly accepted representational quantity symmetries, unit transformations. It is necessary
that these ontic quantity symmetries are both dynamical symmetries and empirical symmetries.
The relationship between these two classes of symmetries will be made clear by an explanation of
the quantity calculus.7

As terminology varies I will establish my vocabulary with a tripartite distinction:

(Quantity) A property of a physical object that is representable by class of a number-
unit pairs, usually by a number multiplied by a unit (e.g. my quantity of height is
approximately 1.854 meters or 1.854 × m);
(Quantity Dimension) A collection of quantities which are all representable by the same

6I assume throughout this paper that mass, length, and time are the basic quantity dimensions of mechanics. This is
a standard convention but is inessential to the argument—any adequate basis will do.

7See Boer (1995) for a history of the development of the quantity calculus. See JCGM (2012) for the contemporary
metrological standard, which I am broadly in line with.



2 THE QUANTITY CALCULUS AND THE ARGUMENT AGAINST ABSOLUTISM 5

set of units, i.e. commensurable (e.g. my quantity of height, yours, the length of route
66, an Angstrom);
(Unit) A standard magnitude of quantity in some dimension whose assignment to the
numerical representation 1 induces numerical values to all quantities in that dimension
(e.g. the standard lengths defined by the meter stick, the foot of Julius Caesar, the
distance a beam of light travels in a vacuum in one second).

I have defined these terms circularly—My aim here is not an analysis but a specification of their
relations so as to avoid confusion.

The representation of any quantity as a product of a number (synonymously: value, magnitude,
measure)8 and a unit informs us that these quantities of concern exist on a ratio scale. Further
we keep track of the units of some derivative quantity by not only performing algebraic operations
on the numerical representations of quantities but also on their units, e.g. 5×meters

2×seconds
= 2.5 × meters

seconds
.

We will see that the algebra of units obeys a necessary condition on the wellformedness of physical
equations—dimensional homogeneity. This necessary condition has to do with the dimensions
of which each unit instantiates, e.g. the dimensions of force: [N ] = [dyn] = MLT−2. Complex,
derivative dimensions are constructed from products of powers of basic dimensions, usually M, mass,
L, length, and T, duration.9 Any quantity has a dimensionality or dimension, [Q] = D, which
can be multiplied and divided arbitrarily, e.g. [Q1 × Q2] = [Q1] × [Q2] = D1 × D2.10 Consider
[F ] = [m] × [a] = MLT−2. However, only quantities of like dimensions can be summed or subtracted.
In other words, if k1Q1 + k2Q2 = Q3 is coherent, then [Q1] = [Q2] = [Q3]. That the terms of a
physical equation must have equal dimension is dimensional homogeneity.11 Intuitively, it makes no
sense to add a length to a force, etc. The dimensionality of a dimensionless quantity (i.e. a number)
is [1], which is the identity—for a quantity Q of arbitrary dimension [Q] × [1] = [Q].12 The product
of a quantity of some dimension and another of inverse dimension is dimensionless: [Q] × [Q]−1 = [1].

Equations are mere representations of relations between quantities, which are themselves
8This may seem odd to some. B. Russell (1903) roughly used magnitude for what I here call quantity, but his
usage is still consistent with that of the literature since—at least the physics literature with which I will largely be
concerned—the phrases “the magnitude of a quantity”, “the value of a quantity”, “the measure of a quantity” are all
felicitous and equivalent. They all refer to its numerical extent relative to some defined unit. See Berberan-Santos
and Pogliani (1999) for a useful discussion and formalism. One major caveat is that “magnitude” is sometimes
contrasted with “value” or “measure” as referring to the objective, unit-independent extent or size of a quantity, as
is done in the definition of “unit” above (for a metaphysics agnostic definition of unit-independent magnitudes see
Tal 2021). Context will make it clear when the “magnitude” or “value” of a quantity is meant in a unit-relative or
unit-free way.

9Outside of mechanics, additional dimensions for electrical charge, C and for temperature, Θ, are introduced. I will
only deal with mechanics in this paper for simplicity.

10The square brackets denote the dimensionality extraction function. Basic dimensions will be denoted by un-italicized
letters, like L for length. Products of powers of these basic dimensions are the values of the [X] function. Tolman
(1917) and Dewar (Forthcoming) give more sophisticated accounts of the operations of the quantity calculus.

11We owe this formulation of the principle to Fourier (1878), see De Clark (2017).
12Quantity dimensions form an Abelian group. The formal properties of dimensions deserves a much more thorough

discussion. See Raposo (2018); Raposo (2019) for some details and a fiber bundle model.
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“worldly”.13 Relations between quantities are physical systems, and equations are their representative
counterparts, mathematical models. Quantities are either represented by variables associated with
dimensions or numbers associated with units. Whether or not the units or dimensions of the
quantities in some equation are literally represented, the structure of a dimensional system (or,
derivatively, that of a unit system) determines the possible forms of any quantitative equation. As
quantitative equations represent physical systems, the structure of a dimensional system determines
what relations among the quantities themselves are possible: the algebra of dimensions mirrors the
algebra of quantities. If such a dimensional system is at hand, any definable system of units on
those quantity dimensions is coherent. That we are dealing with such dimensional or unit systems is
a foundational assumption of dimensional analysis and the source of its utility. As Sterrett has it:

Thus, if it is known that the system of units is coherent, it follows that the numerical
relation has the same form as the fundamental [dimensional] relation. The form of the
numerical equation can be known independently of actually using units and numerical
expressions to express the quantities and then deriving the numerical equation from the
quantity equation—so long as the requirement that the system of units is coherent is
met. (Sterrett 2009, 806)

This is what generates the representational-ontic symmetry duality described below, which is essential
to my argument (see 4.1).

The numerical representations of quantities are determined by the system of units used. We
understand a unit system as a collection of maps from physical quantities to numerical representations.
Each particular unit system partitions the physical quantities into equivalence classes independent
of the particular homomorphism it adopts, e.g. mass-in-grams vs mass-in-kilograms. These unit
systems are related by two kinds of isomorphisms—those that act on the quantities themselves and
those that act on the unit system mappings. Distinguishing the quantities from their representatives,
we can define two classes of symmetry transformations:

(Representational Symmetries) Transformations on the assignment of numerical repre-
sentatives to quantities that leaves the quantities and their ratios unchanged, e.g. unit
system transformations.
(Ontic Symmetries) Transformations on the quantities themselves which change the
numerical representatives of quantities for any given unit system, leaving their ratios
unchanged, e.g. universal velocity boosts.14

Representational symmetries are transformations of mere representation. Ontic symmetries are
transformations of physical systems.
13My usage here is at odds with Martens (2021), for whom “quantity” refers to the representation and not the physical

property.
14The ontic-representational distinction corresponds to the active-passive distinction that some may be familiar with.
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The comparativist holds that quantity ratios are more fundamental than intrinsic mass quantities,
owing to their invariance under ontic scale transformations. The (naive) comparativist argues that
scale transformations of basic quantity dimensions, like mass doubling, are full symmetries:

(Comparativist Commitment) Basic quantity (ontic) scale transformations are full sym-
metries.15

The absolutist rejoinder shows that basic mass doubling cannot meet both criteria required of a full
symmetry, so it is important to distinguish the two conditions:

(Empirical Symmetry) An empirical symmetry is a map from one physical system to
another that leaves unchanged all observable phenomena, i.e. it takes a system and
generates an observationally indistinguishable system.
(Dynamical Symmetry) A dynamical symmetry is a map from one lawful physical system
to another lawful physical system, i.e. a transformation that leaves the laws invariant.16

Again, a full symmetry, one that justifies the variance-to-unreality inference used by the comparativist,
must be both dynamical and empirical.

An explicit version of the argument against absolutism can be stated:

1. If quantity Q is variant under some full symmetry then Q is not fundamental.

2. Mass doubling is an empirical symmetry: If all of the mass quantities were doubled
there would be no observable difference.17

3. Mass doubling is a dynamical symmetry.

4. Mass quantities are variant under a full symmetry. (2, 3)

5. Mass quantities are not fundamental. (1, 4)
15The range of anti-absolutist views includes more than just comparativism. To accept that these scale transformations

are full symmetries only requires the denial of intrinsic mass quantity quiddities. The denial of quiddities can
be accommodated by multiple views. Most weakly it implies a sophisticated substantivalism (Wolff 2020). More
strongly there would be no quiddities if there were no intrinsic quantities at all—or at least no objective facts about
them, as in a relationalist view (Dasgupta 2020). There are also a variety of comparativisms on offer, as developed
by (Martens 2017, 2018, 2020).

16In this context, a criterion of a dynamical symmetry is that that the application of transformation to a system
commutes with the lawful time evolution of the system. See Ismael and van Fraassen (2003), J. T. Roberts (2008),
and Wigner (1979) for discussions of the relation between these two classes of symmetries.

17This argument is meant to directly parallel arguments against the existence of absolute velocity, see Dasgupta
(2013); Dasgupta (2016). Crucially this argument depends on absolute mass, and some class of physical quantities
more generally, not being observable. J. T. Roberts (2008) and Dasgupta (2016) cash this out in terms of the
impossibility of constructing absolute quantity detectors. Both parties to the debate tend to accept that absolute
quantities like mass are not directly observable. For criticism of the detectability interpretation see Martens (2021,
2540–44). In light of this we might drop the observable adjective and say that empirical symmetries leave all the
qualitative facts unchanged (see J. S. Russell 2014).
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Premise (1) of this argument is a form of the more general variance-to-nonfundamentality (or
unreality, or non-objectivity) principle commonly accepted by physicists and philosophers alike.
Premise (3) is a posit that there is a comparativist paraphrase of the laws that is genuinely Newtonian
but is indifferent to mass doublings. The problem raised against this argument is the inconsistency of
(2) and (3). Generally counterexamples to this argument are taken to target the empirical symmetry
premise, (2), but my presentation below will focus on how the counterexamples can be used to
bring more focus to (3). By showing that the problem with the argument against absolutism is
the misclassification of a basic quantity transformation as a full symmetry, I provide an argument
against absolutism that is immune to counterexample.

3 Baker’s Counter Example

Baker (2020) presents a counter example to comparativism, showing that mass doubling is not a
full symmetry.18 Consider a two body system: a projectile traveling with velocity vpro away from a
planet’s surface. From Newton’s laws we can derive an equation for the critical escape velocity such
that if vpro > vescape, the projectile will escape the orbit of the planet:

(Escape Velocity) vescape =
√

2GM
R

,

where G is the gravitational constant, M is the mass of the planet, and R is its radius. Note that the
equation for the escape velocity depends only on the mass of the planet and not the projectile mass.
On Earth, the M and vpro are such that the projectile escapes. In the mass doubled counterpart
system, the planet Pandora’s mass is such that the projectile does not escape. The sticking point is
that the comparativist sees initial states of the Earth and Pandora systems as empirically equivalent.
So the comparativist cannot hold that the initial state of the two body system has a unique future
as determined by the laws.

Baker presents this counterexample to comparativism as showing that comparativism introduces
indeterminism into deterministic systems. A different presentation will better serve our purposes:
the counterexample generates an inconsistent triad. The three inconsistent propositions are:

(a) The initial states of the Earth and Pandora systems are indistinguishable;

(b) The final states of the Earth and Pandora systems are indistinguishable;

(c) The dynamics are left invariant by the transformation that maps the Earth system
to the Pandora system.

18Martens (2018); Martens (2021) has shown this to be only one instance of a broader class of counterexamples in
which two or more particles either collide or escape each other, depending on their absolute masses. These are all
equivalent for my purposes.
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The first two propositions follow from mass doubling being an empirical symmetry, the third from
mass doubling being a dynamical symmetry. If mass doubling is an empirical symmetry, then it
cannnot be a dynamical symmetry: the trajectory required is inconsistent with the escape velocity
equation. If mass doubling is a dynamical symmetry it cannot be an empirical one: either the initial
state or final state of the system must be changed for the position of the projectile to match the Earth
case at the opposite temporal state (final or initial) while having a trajectory consistent with the laws.
Generally the issue has been characterized as one of empirical adequacy or indistinguishability, this
presentation highlights the sometimes implicit assumption that the relevant empirical symmetries
are a subset of the set of dynamical symmetries.19 Mass doubling cannot be both an empirical and
a dynamical symmetry, so it is not a full symmetry.

4 The Argument Against Absolutism Redux: Lessons from
Dimensional Analysis

Dimensional analysis depends on a number of basic (though not totally uncontroversial) assumptions.
An account of these assumptions provides a route to a proof of the Π-theorem. The first assumption
is that all of the basic quantities that figure in equations which are representationally adequate have
a ratio scale structure. This means that all quantities of a basic dimension can be related by a scalar
multiplication operation of the form f : x 7→ Rx. Mass, length, and time all share this structure and
so are suited to form the dimensional basis for mechanics. This can be attributed to the fundamental
idea that these are all extensive quantities, i.e. the magnitude of a whole is an additive function of
the magnitudes of its parts.20 By treating these quantities as basic we are treating them as building
blocks from which all other quantities are defined.

In a “complete” system of units (or dimensions) the derived quantities inherit some properties
from the basic quantities which define them, i.e. they too exist on a ratio scale. The ratio scale
structure of the mechanical quantities defines a group of unit transformations:

(Unit Transformation) For any quantity Q = V × U , there is a class of maps Q 7→ Q′,
U 7→ U ′, V 7→ V ′, such that U ′ = xU , V ′ = x−1V , Q′ = Q, where x ∈ R+.

An example: the representational Q-transformation 10×kilogram ⇐⇒ 10, 000×gram. It involves a
U -transformation, 1 × kilogram ⇐⇒ 1000 × gram, and a V -transformation, 10 ⇐⇒ 1

1000 × 10, 000.
19Martens makes this explicit. The dynamical condition is pronounced even in the guise of the possibility checking

approach: “Comparativism should provide at least one metaphysically distinct (and dynamically allowed) possible
world for each empirically distinct possible world allowed by absolutism. If the metaphysically distinct worlds that
comparativism acknowledges fail to differentiate between those distinct empirical possibilities, then comparativism is
wrong. If, on the other hand, the set of all the metaphysically distinct possible worlds acknowledged and dynamically
allowed by comparativism contains all the empirically distinct possible worlds (that are dynamically allowed by
absolutism), then we may opt for comparativism over absolutism based on an Occamist norm.” (Martens 2021, 2524,
my emphasis)

20I here ignore any distinction between additivity and “proper” extensivity, cf. Perry (2015).
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While there are an indefinite number of representations of a quantity in some dimension owing to the
indefinite number of reference units, all of the representations are equivalent under the group action.

Insofar as we take quantities and equations of quantities to be describing physical phenomena
and not our measurement standards we require all “objective” quantity equations to be invariant
under unit transformations. Given that these unit transformations are multiplicative in nature it is
intuitive that quantities defined by products and divisions (and iterations thereof, i.e. powers) of
the basic quantities will also be so invariant. As for equations, it is also relatively intuitive that
equations only involving terms of like dimension will be invariant under unit transformations. The
equation Z = X + Y remains true under transformations of the form Z 7→ cZ, X 7→ aX, Y 7→ bY ,
in cases in which a = b = c, i.e. Z = X +Y ⇐⇒ aZ = aX + aY . These are cases in which all three
quantities share the same dimension and so the same unit transformation factor. If, say, Y was of
different dimension such that for some unit transformation a = c ̸= b, then aZ = aX + bY would not
remain true in any case in which aY ′ ̸= bY , where Y ′ = Z −X as defined in the original units. This
violation of dimensional homogeneity does not guarantee variance under all unit transformations,
there may be some unit transformations of some equations in which it just happens that a = b even
though [X] ̸= [Y ].

4.1 From the Representational to the Ontic

Here I describe the main metaphysical move made by my usage of the Π-theorem. For those interested
in proofs of the theorem, see appendices A and B and the references therein. Those uninterested in
any technical detail (or those who take the active-passive duality as a matter of course) can skip to
4.2 and 4.3 for the solution of the escape velocity case and a summary of the amended argument
against absolutism. In order to provide proofs of the Π-theorem, we must first prove Bridgman’s
Lemma: that all derivative quantities take the form of product of powers of the basic quantities. I
do not provide a proof here,21 but will briefly describe the reasoning and importance of the lemma.

The task of the lemma is to show that the derived quantities in a coherent systems of units
have an essential form. It is established that dimensionally homogeneous equations are unit
independent (see above). We take as a constraint on the form of a derived quantity that it is a
function of basic quantities. Further, the defining equation is itself unit invariant, e.g. F = kma.
That these defining equations only take the form of products of powers of the basic quantities
(with a numerical scale factor, k) is Bridgman’s Lemma. Bridgman’s proof of the lemma is
presented as an analytic elaboration of “our” requirement that relative magnitudes have absolute
significance—independent of numerical representation, i.e. units. For Bridgman (1931, 21) this
naturally follows from an operationalist point of view: the measurement of relative magnitudes
is first and foremost a comparison of bodies which could not be affected by a change in our
operational standards. Setting aside operationalism, we take it as an assumption that there is
21Readers can consult Bridgman (1931) and Berberan-Santos and Pogliani (1999) for proofs of the lemma.
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some unit transformation invariant relation underlying the comparative measurement of basic
quantities.22 From this it can be proved that all derived quantities must defined as powers of
products of the basic quantity units: Qmechanics = kmxlytz. This defines a complete dimensional
system: [Qmechanics] = [mx][ly][tz]. So much for Bridgman’s Lemma.

The Π-theorem, in a nutshell, states that any adequate physical equation that describes a system
can be put into Ur-Equation form:23

(Ur-Equation) ψ(Π1,Π2, . . . ,Πn) = 0,

where the Π-terms are dimensionless derived quantities—products of powers of basic quanti-
ties—adequate to describe the system and ψ is some arbitrary function.The Π-theorem gets its name
from the form of the functions that define the Π-terms: Π = k

n∏
i

Qai
i , as established by Bridgman’s

Lemma.
I will distinguish two version of the theorem not often distinguished. Usually authors have one

interpretation or another of the result,24 all agree that there is an important sense in which the result
is about mathematical structure. The question is the proper location of that structure: is this a result
of the algebra of quantities or of the numbers which measure them? For the representational proof,
the invariance of the numbers which measure quantities is essential the to the resulting Π-theorem.
For the ontic proof, it is rather the quantities themselves and their dimensional properties which
are essential to the result. My argument here is that these two proofs can indeed be seen as
mere differences in “interpretation” such that both readings of the transformations described—unit
transformations and ontic scale transformations—are available.25 Further, I argue that a commitment
to the representational theorem and some minimal assumptions regarding measurement entail a
commitment to the ontic theorem.26

22Perhaps we do so on the basis of the necessity of objective communication, see J. T. Roberts (2008). Even the
absolutist will accept the invariance of quantity ratios of like dimension under unit transformations.

23This is my terminology. Sterrett (2017) calls this “The Reduced Relation Equation of 1914”. Others sometimes
refer to this equation as the Π-theorem itself, but I think it is more proper to consider the theorem the claim that
any complete physical equation can be put in this form.

24For example, Bridgman (1931) takes the formalist approach indicated by the representational interpretation of
the theorem, while Buckingham (1914) takes on (somewhat reluctantly) the metaphysical significance of the ontic
interpretation, as does Tolman (1915), more enthusiastically. For discussions of the history of the theorem, including
priority disputes see Pobedrya and Georgievskii (2006) and Sterrett (2005); Sterrett (2017) and their references.
Gibbings (1982); Gibbings (2011) gives a typology of proofs and his own metaphysical account. See also Walter
(1990) and Mitchell (2019) on the historical metaphysical dispute regarding dimensions—see Skow (2017) for a
contemporary discussion.

25Sterrett (2009) has brought it to my attention that Maxwell (2002) also noted this ambiguity in the interpretation of
physical equations. My understanding of these equations as quantity equations is in line with Sterrett’s view and the
account of Lodge (1888). Accepting quantity equations means accepting the application of mathematical operations
to quantities. This avoids the awkward work around of Maxwell who avoids the supposed inapplicability of algebra
to physical quantities by converting between numbers which can be so manipulated and proper quantities via the
introduction and elimination of units—Bridgman (1931) takes this implicit constraint to be the total significance of
dimensions. For more on the “double interpretation of physical equations” see de Courtenay (2015) and Mitchell
(2019).

26That, therefore, the denial of the ontic symmetry transformations would force the absolutist to reject the represen-
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We first reconsider the nature of the unit transformation discussed above. Let us first specify a
neutral conception of an equation between numerical and the quantitative. We take an equation
to represent relations between quantities either directly or indirectly, in either case we take the
representatives which figure in an equation to have the canonical form of a numerical value multiplied
by a unit quantity: Q = V ×U . If we take the representation to be direct, then we take the dimension
associated with the unit to be constitutive of Q such that the principle of dimensional homogeneity
is a metaphysical instantiation of Leibniz’ Law.27 Alternatively, we take the dimension of the unit
to be inessential to the representation28 and merely a bookkeeping device which reminds us of the
conventionally decided rules which correspond to the principle of dimensional homogeneity. Under
either interpretation of units, they are taken to represent a member of a group of homomorphic
maps from quantities to numbers which represent the magnitude of the quantity, here represented
by V ∈ R.29 That the units of some dimension form a group is simply another way of saying that
unit transformations are symmetries of the form Utrans : V 7→ V ′. For the represntationalist or
conventionalist, this is a direct numerical transformation and the new units associated with V ′ merely
indicate a different standard for measuring Q.

For the metaphysician there is another set of symmetries that share the form V 7→ V ′ with
Utrans. These symmetries are transformations of the quantity itself Q 7→ Q′, which is defined as an
automorphism of the quantity dimension: Q,Q′ ∈ D. These ontic transformations can change the
appropriate numerical representation of a quantity while leaving the units they are described with
invariant. The unit map is preserved under the transformation Umap ◦Q = V → Umap ◦Q′ = V ′.30

This provides another set of transformations under which physical equations may be invariant:
quantity dimension transformations.

The Π-theorem provides a bridge from the invariance of physical equations under unit transforma-
tions to the invariance of physical systems under quantity transformations. That any physical system
can be represented by an equation of dimensionless quantities, is the crux of the revised argument
against absolutism. All symmetries of an Ur-Equation representation of a system are dual. On the
one hand we have the representational symmetries accepted by all parties—unit transformations.
These change the numerical values associated with constituent dimensional quantities but they leave
the dimensionless Π-terms unchanged. This requires us to understand the Π-terms as providing a

tational symmetry transformations (unit transformations) is argued by Wolff (2020, 149–50). This is a difficult and
involved argument so I will not press the point here. Further, I discuss a different loophole that the absolutist may
take in section 5.

27Here only the dimension associated with the unit, but not the unit itself is essential to the quantity. Here a unit is
just another quantity.

28The unit is of course essential to the representation—a change of units constitutes a change of representation.
29Or, if we commit to abstract or maybe only hypothetical quantity magnitudes (which then mediate the application

of value-unit representations to concrete quantities), unit systems are isomorphic maps (see Wolff 2020; Tal 2021).
This makes no difference to my arguments.

30Note that the value of the unit quantity Umap ◦Q = 1 will change V ̸= V ′. This subtlety is (as far as I can tell)
largely irrelevant for what follows, but see Wolff (2020, 151–53) for a discussion of quantity dimension translations
vs quantity dimension dilations.
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semantic link between an equation and a system itself: the Π-terms represent the quantity relations
of the system that have absolute significance, their values have unit-independent meaning. As shown
above, there is also a class of unit-independent, ontic symmetries which act on the constituent
dimensional quantities of Π-terms—these symmetries act on the system’s quantities themselves. The
class of ontic physical symmetries which leave the Π-terms invariant are the class of non-trivial
empirical symmetries. For this reason the Ur-Equation provides a well-tuned representation of
physical systems—its formalism is coordinated to the physical structure of systems without excess
representation. A change in the value of a Π-term necessarily represents a change in the physical
system, while a change in the value of a constituent dimensional quantity may be an artifact of a
purely representational change, like a change of units systems.31

4.2 Symmetries Defined by the Π-theorem: The Escape Velocity Case

Recall that one historical aim of this theorem was ultimately to provide a standard for scale models
in aeronautics.32 This theorem provides a condition that must be met for one physical system to
serve as a model of another, i.e. the theorem defines empirical symmetries for physical systems.33

We can describe two systems S and S ′:

S : ψ (Π1,Π2, . . . ,Πi) = 0

S ′: ψ′(Π′
1,Π′

2, . . . ,Π′
i) = 0

S and S ′ are empirically indistinguishable if and only if the values of the dimensionless Π-terms
are invariant, i.e. Πi = Π′

i, under some transformation of the basic dimensional quantities which
compose the Π-terms.

In our escaping projectile case Π =
√√√√2GM
rv2

pro

and ψ is a function that yields the Ur-Equation form

Π−1+ ϵ = 0.34 The ratio between the projectile’s escape velocity and its actual velocity is conserved
across symmetry transformations that leave Π invariant at approximately 1: vecscape

vpro

+ ϵ = 1. If two
systems are to be dynamically similar and share the same ψ, it must be the case that the numerical
31Sterett’s analogy between Buckingham’s theorem and Wittgenstein’s Tractatus has greatly clarified my thinking

on this point. We may consider the dimensional quantities as atomic objects and the dimensionless Π-terms as
propositions about the relations of these objects (atomic facts). As it were, the world consists of facts and not things;
the Π -terms are accordingly isomorphic to the physical facts while the dimensional quantities fail to represent in
isolation. ψ represents higher-order propositions which are decomposable into relations, here dynamical rather than
logical, between the basic propositions, Π-terms. The equation itself serves as a model of the system. See especially
the diagrams on pages 225 and 227 of Sterrett (2005).

32See Sterrett (2005) for more on the historical development of the formal results of dimensional analysis.
33It should be noted that the notion of “physically similar systems” that the Π-theorem allows us to formalize is more

fine-grained and sophisticated than the standard of empirical symmetry I am considering here. Besides dynamical
similarity, there is e.g. geometrical similarity and kinematic similarity. Philosophers concerned with symmetries
would do well to consider physical similarity, see Sterrett (2009); Sterrett (2017).

34ϵ is simply a small constant added so we can deal with equalities rather than inequalities since strictly speaking the
escape situation requires Π < 1.
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values of the Π-terms are equivalent between the two systems. ψ is a high level description of the
dynamics of the system: it constrains solutions to the equations of motion to those in which the
projectile just has the velocity necessary to escape the planet’s orbit.

Buckingham’s argument is that changes in the basic quantity dimensions will leave the Π-terms
unchanged in the transformation f : S 7→ S ′, because they are dimensionless. If all of the operands
and the values of ψ and ψ′ are identical, then the functions must be the same.35 This identity signifies
a symmetry. In the cases we are concerned with ψ and ψ′ stand in for the dynamical laws. This makes
good on an assumption made by comparativism, that the relevant empirical symmetries of a system
are a subset of its dynamical symmetries and are hence full symmetries. A formerly problematic
principle is justified: measurable quantities must be invariant under dynamical symmetries.36 This
licenses the inference from the existence of a class of empirical quantity symmetries to the existence
of a class of full quantity symmetries.

We can generate a full quantity symmetry by: (i) arbitrarily transforming any of the basic quantity
dimensions; (ii) adjusting the derivative quantities according to their dimensional composition, in
line with Bridgman’s Lemma, which will keep the values of the Π-terms are invariant.

Now we can return to the escape velocity case and show that a full mass doubling symmetry,
which involves more than doubling the masses of objects, does not generate indeterminism or violate

the laws. Consider again a situation in which the projectile escapes, vpro =
√

2GM
r

.37 In step (i) of
the transformation, as mass is a basic quantity dimension, we apply an arbitrary ratio transformation:

mi → 2mi for i massive objects. We can describe the transformed situation thus: vescape =
√

4GM
r

,
so vpro is now insufficient to escape, but we do not stop here.

In step (ii) we change one of the derived quantities in order to preserve the relevant Π-term.

The Π-term is Π =
√√√√2GM
rv2

pro

, or Π = vescape

vpro

, and the derived quantity to be transformed is the

gravitational constant G, whose dimensions L3M−1T−2 define the compensating transformation the
value as a halving, according to dimensional homogeneity.

Here’s an explicit derivation modeled on Bridgman (1916): Let’s define G as the product of a
dimensionless number γ and its dimensions L3M−1T−2 (in abstraction from any particular units). If
we define mass doubling as operating directly on the dimension, then M′ = 2M. So then the new
35As stated this is an invalid inference. Consider the operations of addition and multiplication which have the same

value, 4, with the same operands 2 and 2. The argument relies on the operands being more fine-grained than the
values of Π. If we distinguish different instances of the Π-terms by the values of their constituent basic quantities,
then we can claim that ψ is identical to ψ′ iff for every instance of a set of Π-terms related by basic quantity
symmetries (i.e. of the same value) they yield the same value. The dynamical laws are shielded from non-empirical
differences in quantity values.

36This measurability-invariance-principle is the puzzle that is taken up by J. T. Roberts (2008). Roberts denies that
the principle is analytic and I agree. The synthetic principles are work here are dimensional homogeneity and
Bridgman’s Lemma. I think it is plausible that these are equivalent or closely related to the publicity principle
Roberts proposes. Note that—with Roberts—I take this to also provide an explanation of Earman’s (1989)
prescription that geometrical symmetries should not exceed dynamical ones in a “well-tuned” theory.

37From here on I drop the ϵ.
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gravitational constant G′ equals γL3M′−1T−2 , and by substitution G′ = 1
2γL3M−1T−2. Therefore

G′ = 1
2G. Another way to understand this induced transformation of G is that G has (inverse)

mass; its dimensionality has negative exponents in the mass dimension, so if all quantities with mass
dimensions double, those with inverse mass dimension will halve. Under the completed symmetry
transformation,

vescape =
√

4G′M

r
,

where G′ = 1
2G. The original empirical situation in which the projectile escapes is preserved:

vescape = vpro =
√

2GM
r

,

and
Π = vescape

vpro

≈ 1.

That the Π-terms are invariant under some transformation of quantity dimensions is Buckingham’s
Criterion for a full quantity symmetry:

(Buckingham’s Criterion) Only those quantity transformations which preserve the values
of Π-terms that represent a physical system are full symmetries of that system.

If the absolutist is committed to the principle that physical equations are unit invariant (representa-
tional symmetries) and some fundamental principles of dimensional analysis, they are committed to
the Π-theorem. This in turn commits them to ontic quantity symmetries, which, if they accept the
validity of variance to unreality (or non-fundamentality) inferences, provides a decisive argument
against their absolutism.38

Put somewhat more simply: a quantity transformation is a full symmetry if and only if it leaves
the ratios of all quantities sharing some dimension invariant according to their exponent in that
dimension.

4.3 Executive Summary of the Amended Argument Against Absolutism

I here present an amended symmetry argument against quantity absolutism:

(1) For any supposed fundamental property F , if F varies under a full symmetry, then
F is not fundamental. (variance-to-unreality inference)

38Wolff (2020) comes to a similar conclusion, though by way of measurement theory rather than dimensional analysis.
J. Roberts (2016) also responds to the counterexample to comparativism much the same as I do, but works on the
basis of a less general principle than the Π-theorem. See also Dewar (Forthcoming)—it is not clear to me whether
or not his group-theoretic sophisticated absolutism is equivalent to group theoretical presentations of the Π-theorem
and the results of dimensional analysis, compare Corrsin (1951); Boyling (1979); Curtis, Logan, and Parker (1982);
Raposo (2018); Raposo (2019).
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(2) Mass doubling is a full symmetry. (naive comparativist commitment)
(3) Intrinsic mass quantities vary under mass doubling. (definition of mass doubling)

Therefore, intrinsic mass quantities are not fundamental. (1, 2, 3)

Premise (2) was falsified. A full symmetry is a transformation that is both a dynamical and an
empirical symmetry. It was established that mass doubling cannot be both. I amend the argument
by substituting (2) and (3) with (2*) and (3*):

(2) There are a class of full* quantity symmetries defined by the Π-theorem, one of
which, full mass doubling, doubles the masses and halves the gravitational constant.
(Buckingham’s Criterion) (3*) Intrinsic mass quantities vary under full mass doubling.
(definition of full mass doubling)

Note the generality of the result: any quantity which is not dimensionless, is not fundamental.39

The argument for the pivotal amended premise (2*) is the establishment of Buckingham’s
Criterion for a general quantity symmetry. The first part of the establishment of Buckingham’s
Criterion is to provide a general form for physical equations, the Ur-Equation. Its generality is
justified by the assumption of dimensional homogeneity and the completeness, or unit invariance,
of the physical equations in question. These are undeniable, at least for the equations we call
physical laws.40 Bridgman’s Lemma tells us the form of the quantities, Π-functions, that figure
in the Ur-Equation. These are measurable quantities, dimensionless products of powers of basic
quantities. With this all in place, the Π-theorem can be be proved. As the Ur-Equations which
represent systems embed dynamical equations, i.e. equations of motion, quantity transformations
which leave their ψ-functions invariant are by definition dynamical symmetries.41 As only Π-terms
figure in these equations, such a dynamical symmetry must leave their values invariant as well. All
absolutely significant quantities are Π-terms, therefore any transformation that leaves the Π-terms
invariant is an empirical symmetry. So we have an intersection of the dynamical and empirical
quantity symmetries of a system. These are symmetries in which individual quantities may be
transformed according to their ratio structure, and constraints defined by the preservation of the
systems dynamics according to general law will induce transformations on other quantities such that
the empirical situation, specified by Π-terms, remains invariant.

It is important to clarify the results of this argument against absolutism. This symmetry
argument, impervious to the sorts of counterexamples to Dasgupta’s symmetry argument against
absolutism, has a more modest aim than its predecessor. It shows that absolute quantities are not
39This avoids the “pushing-the-bump-under-the-carpet” objection that can be made against other comparativisms,

see Martens (2020, 15).
40But see Grozier (2020) for some of the issues regarding “unit-invariance”. A much deeper account of the nature of

dimensions and their relation to the laws and the significance of dimensionless quantities is needed.
41For example, similitude methods exploiting the results of the Π-theorem are widely used in fluid mechanics, where

analytical methods are intractable. Examples of such derivations of dynamical equations can be found in textbooks
like Gibbings (2011).
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more fundamental than quantity relations. However, if one adopts a strong, Ockhamist variance-to-
unreality principle, one may use the Buckingham class of symmetries to argue for the non-existence
of absolute quantities and the absolute fundamentality of quantity relations. For Dasgupta, these
relations are between actual bodies, but one may instead adopt a quasi-Platonist structuralist view
in which the fundamental quantity relations are between unworldly quantity magnitudes or second
order properties which physical quantity relations somehow participate in (a gross gloss of Wolff
2020). As I see it, there is no reason not to extend the argument in either of these directions: weak
comparativism (Martens), relationalist comparativism (Dasgupta), and structuralism (Wolff) are all
consistent with my argument as it stands.42 As it stands my argument is not an argument for a
comparativist account of quantity, but rather propaedeutic to one. Further commitments are needed
to have a complete metaphysics of quantity.

This account of the quantity symmetries takes into account inter-quantity relations. Quantity
symmetries generally require the transformation of multiple quantities, though they may transform
only a single basic quantity dimension. By ignoring inter-quantity relations, the contemporary
debate has been built on a fallacious assumption—a primary target of one of Galileo’s two new
sciences:

Only by a miracle could nature form a horse the size of twenty horses, or a giant ten
times the height of a man—unless she greatly altered the proportions of the members,
especially those of the skeleton, thickening the bones far beyond their ordinary symmetry.

Similarly, to believe that in artificial machines the large and small are equally practicable
and durable is a manifest error. Thus, for example, small spire, little columns, and other
solid shapes can be safely extended or heightened without risk of breaking them, whereas
very large ones will go to pieces at any adverse accident, or for no more cause than that
of their own weight. (Galilei 1638, 14)

5 The Nomological Role of Constants

There is one lingering issue. I cannot hope to settle it here, but I’d like to open this vista for
surveying. The account of dimensional analysis above gives no special role to the constants of nature,
particularly the gravitational constant. The constants are merely parameters of equations and are
available to be transformed by quantity symmetries. Indeed, they are only special in the sense that
they are most apt to be manipulated in quantity symmetries as they describe the coupling of various
logically independent basic quantity dimensions.
42One may worry that my appeal to a constant (G) is in tension with Dasgupta-style relationalist comparativism in

which the fundamental quantity relations are between bodies. This is not the case. The constants can be understood
as highly complex relations between bodies or regions of empty space—they are distinctive in that they are, in
some sense, the same relation everywhere.
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Let me clarify what I mean by “constants of nature”. Johnson (2018) distinguishes three kinds of
quantities called “constants”: scale factors, system-dependent parameters, and system-independent
parameters. The system-independent parameters are universal constants and are my concern here.
Scale factors are mere numerical artifacts that can be inserted or removed from equations at will by
unit changes.43 System-dependent parameters on the other hand are quantities that correspond to
aspects of particular physical systems. For example, the density of a fluid ρ may be defined as the
ratio of its mass and volume ρ = m/V . For the treatment of some particular fluid, like an idealized
incompressible fluid, this quantity may indeed remain constant, but its value differs for different
fluids.

Among system independent parameters there are two philosophically relevant subkinds of
constants of nature.44 We distinguish: properties of the fundamental particles (e.g. mp, me, e)
and properties of the fundamental fields (e.g. c, h, G). My concern here is solely the third class
of constants, the interaction constants which describe various sorts of fields.45 Given that the
debate between the comparativist and the absolutist has concerned the possibility of changing the
basic quantities, i.e. constants describing fundamental properties of the fundamental particles we
can understand the question raised here as: Do transformations of the particle constants induce
transformations in the interaction constants?

However, interaction constants seem to play a more significant role in all physical laws: their
values seem constitutive of the laws. It seems that if the gravitational constant or any other constant
of nature is changed, then the laws have changed.46 This would mean that there is some discrepancy,
though unobservable, between the two escape velocity cases, vindicating the absolutist—full mass
doubling would fail to be a dynamical symmetry. The question is then whether the values of the
constants determine the nomically possible worlds.47 Broadly, there are two views one can have
towards the gravitational constant in particular and interaction constants which appear in the laws
in general:
43E.g. the 4π factors that appear and disappear in electromagnetism (Maxwell’s equations) depending on whether

one is working in rationalized or unrationalized unit systems (see Silsbee 1962).
44I assimilate Johnson’s third category, numerical artifacts, to scale factors. A core example is Avogadro’s constant
NA. N.B.: This is contrary to the usual conception of Avogadro’s constant as a constant of nature and a mole as a
unit of "amount of substance" that can be found in the SI unit system (BIPM 2019). See Johansson (2011) for some
common sense dissent.

45There is a somewhat similar delineation of the constants given by Lévy-Leblond (1977); Lévy-Leblond (2019).
Lévy-Leblond distinguishes class B constants which describe general classes of phenomena (e.g. electromagnetic)
and truly universal class C constants. Johnson (2018) finds the distinction unfounded. As Lévy-Leblond holds that
the classification of the constants is context dependent, it makes no difference to me here whether or not e.g. c is
considered as a mere electromagnetic constant or a universal constant (describing the causal structure of spacetime).
All of the constants I am concerned with here may be considered class C constants.

46I will not here consider “singularity” limits where the constants are taken to be infinity or 0. We take such cases,
e.g. G → 0, to represent the absence of the relevant physics which tells in favor of their necessity to the law. Another
case, c → ∞, represents the classical limit of relativity. I believe that these cases are different in nature from a
mere doubling, etc. of the magnitudes of the constants. See Lévy-Leblond (2019) for an introduction to some of the
relevant issues.

47I set aside issues regarding spatiotemporal variations of the constants in a single universe. See Barrow (2004) and
Barrow and Webb (2005) for accessible introductions.
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(Constant Contingentism) The magnitudes of the dimensional constants are independent
of the laws and depend on non-nomic quantity regularities—they vary across nomically
possible worlds.48

(Constant Necessitism) The magnitudes of the dimensional constants are fundamental
and necessary across nomically possible worlds. These values constrain non-nomic
regularities.49

Contingentism naturally pairs with comparativism. For the contingentist comparativist, it is only
the general, dimensional relation between the constants and dimensional quantities that constitutes
the laws, the actual magnitude of dimensional constants is irrelevant. Some pioneers of dimensional
analysis thought of the constants as properties of the environment, the gravitational constant and
the permittivity constant were thought to be properties of empty space.50 Though one may not
need to accept this sort of ontological grounding for physical constants: Bridgman (1916) held that
the constants are conventional conversion factors. One of the most intuitive cases for constant
contingentism is the fact that we take constants to be measured quantities.51

Similarly, absolutism naturally pairs with necessitism.52 It is nomically impossible that the
gravitational force be stronger than it is. We might understand the role of the constants in this way:
Rather than have the gravitational constant as a parameter in functions that represent gravitational
systems, f(G, x, y, z . . . ), the gravitational constant is an essential constituent of that function which
represents the dynamics of gravitational systems, fG(x, y, z . . . ). One natural understanding of
necessitist absolutism is that it leads to a total determination of the facts of the world by the laws—a
theory of everything would have no terms left to be determined by experiment:

One plausible view of the Universe, is that there is one and only one way for the constants
and laws of Nature to be. . . The values of the constants of Nature are thus a jigsaw
puzzle with only one solution and this solution is completely specified by the one true
theory of Nature. If this were true then it would make no more sense to talk about

48This view has been floated in Ehrenfest-Afanassjewa (1916); Ehrenfest-Afanassjewa (1926) and Nordström (1915)
and has recently come under criticism by Martens (2020).

49This is to be distinguished from Dahan’s (2020) view of the constants as (defeasible) identifiers of universal
laws—Dahan makes this point herself. Though necessitism is consistent with the idea that constants “baptize”
universal laws, it is independent of it.

50For example, Mercadier and Vaschy, see De Clark (2017, 312–19).
51Recent changes in SI units aside. That the values of constants are there treated as defined is to be understood as a

conventional fiction. The high-precision measurement of the constants are to be cordoned off to the special science
of metrology, while those measured values are taken as analytic truths by the rest of the sciences (see Petley 1983).
It is merely cognitive division of labor—we do not, in the same practice, design the tools that we use.

52Both of these “natural” pairings are superior to their mixed counterparts: necessitist comparativism and contingentist
absolutism. These mixed views entail a mismatch between the metaphysics of quantities and the metaphysics of the
laws in a way that generates unsynchronized changes—both violate some of our modal scruples. I will not provide
arguments here. For similar reasons I will resist the deflationist move of holding contingentism and necessitism to
merely generate different gradations of nomological necessity. The evaluation of counterfactuals (and their contrast
with counterlegals) is central to scientific practice and we should hope for a univocal standard.
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other hypothetical universes in which the constants of Nature take different values than
it would make sense to talk of square circles. There simply could not be other worlds.
(Barrow 2004, 178)53

One ought not be mislead by Barrow’s comparison to square circles; what we are and have been
concerned with throughout this work is nomological or natural necessity and not any broader sense
of metaphysical or logical necessity. The view expressed here, then, is that constant necessitism leads
to necessitarianism or strong determinism: that everything that is true is (nomically) necessarily so.
A sketch of the argument for this: Assuming the world is lawful, the combination of the necessity of
the laws, including the values of the constants, and the absolute significance of intrinsic quantities,
including the constants, would entail a strict, two-way supervenience relation between the laws
and the quantities they govern. As changes in the laws are, by assumption, impossible, so too are
changes in the quantities.54

That sketch is not likely to be convincing. Let me quickly elaborate on what is meant by strong
determinism and on the case for its entailment by the conjunction of quantity absolutism and
constant necessitism. Chen (2022) has recently given a definition of “strong determinism” and has
laid out some of its consequences. Strong determinism is logically stronger than determinism and
logically weaker than superdeterminism, which comes up in the foundations of quantum mechanics
literature. I adopt this definition from Chen:

(Strong Determinism) A world is strongly deterministic if its fundamental laws are
compatible with only one possible world.

This view is compatible with the leading accounts of physical laws. As Chen has it, there are a
couple of toy models in which strong determinism can be shown to hold, but only one realistic
physical theory which is stongly deterministic: the Everettian Wentaculus (see also Chen 2023).55

If I can make the case that strong determinism is entailed by quantity absolutism and constant
necessitism then I will have shown that strong determinism is easier to get than Chen makes it
seem—it will be theory independent and follow from metaphysical theses.

I know of no way to make this case. In order to argue that constant necessitism implies strong
determinism, I must substitute a metaphysical thesis for an empirical conjecture. Rather than
involve absolutism in the argument directly, I only hold that a strategy to avoid the amended
argument against absolutism given above is to adopt constant necessitism, so a commitment to
53Note: Barrow himself makes the case for the opposing, contingentist conception of the constants—though it seems

that this goes along with a (metaphysical) contingentism regarding the laws as well.
54This presentation of the these two positions is intended as a clarification of what has been at stake in debates

concerning the comparativist reformulation of the laws. The laws seem intuitively to refer to absolute quantities—the
escape velocity equation does not (explicitly) refer to any mass other than that of the planet. Starting with Dasgupta
(2013) and continuing with Baker (2020, 83–92) and Sider (2020, 145–50), many different formulations of the
comparativist Newtonian laws have been proposed and criticized. To debate whether or not there is a coherent
comparativist statement of the laws just is to debate the merits of constant contingentism.

55I am not dealing with quantum mechanics here, so I will say nothing about this case.
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absolutism weakly implies a commitment to constant necessitism (until another solution is found).
The empirical conjecture is one that naturally comes out of a tradition of taking the magnitudes
of the constants of nature to determine many important facts about our world—upper and lower
bounds on planet size, the existence of habitable planets, the existence of life, etc.—of which Barrow
was an heir (e.g. Weisskopf 1975; Press et al. 1983). The conjecture is this:

(Constant Determinism) As our understanding of physical theory increases we will
increasingly find that the magnitudes of the constants determine more and more of the
facts of our universe: in the limit the constants will be sufficient to determine the initial
conditions of the universe.

This increase of theoretical understanding may include, for example, the discovery of further
fundamental constants related to novel forces or the unification of multiple constants in a more
fundamental theory. The argument then is that the conjunction of constant necessitism and constant
determinism implies strong determinism (in the sense of Chen 2022). While this seems to be
alternative route to strong determinism than Chen countenances, it is clearly not theory-independent
and so is a matter ultimately for empirical investigation rather than a metaphysical thesis.

While constant determinism is endorsed by some impressive figures, its plausibility is questionable
and its empirical confirmation a long ways away. That said, if it is accepted, then my argument
against absolutism can ultimately be understood as a reductio, with the consequences of constant
necessitism (with the assumed fact of constant determinism) being the absurdum.56 It is worth
noting, however, that this result is not regarded as absurd by some: Einstein, who held a version of
(nomological) Spinozism,57 seems to have to taken constant necessitism and constant determinism as
a package deal.

Or one could put it like this: In a reasonable theory there are no (dimensionless) numbers
whose values are only empirically determinable.

Of course, I cannot prove this. But I cannot imagine a unified and reasonable theory
which explicitly contains a number which the whim of the Creator might just as well
have chosen differently, whereby a qualitatively different lawfulness of the world would
have resulted.

Or one could put it like this: A theory which in its fundamental equations explicitly
contains a non-basic [nicht rationelle] constant would have to be somehow constructed
from bits and pieces which are logically independent of each other; but I am confident
that this world is not such that so ugly a construction is needed for its theoretical
comprehension. (Einstein to Rosenthal-Schneider 1945, in Rosenthal-Schneider 1980,
37–38)

56For some of the problems with strong determinism see Chen (2022).
57See Paty (1986).
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The differences between Einstein’s typology of the constants and the typology used here is of little
philosophical importance. Further, Einstein’s typology of constants is too complicated to give
a full interpretation here; however, some notes must be made to forestall confusion. Rosenthal-
Schneider translates “rationell” as “basic” (see Rosenthal-Schneider 1980, 36). In the same letter
as that quoted above Einstein gives π and Euler’s number, e, as examples of “rationelle Zahlen”
(which meet further special simplicity conditions). Other rationelle Zahlen include the fundamental
dimensionless constants that would appear in a final, complete theory of physics (they would be
constructable from some subset of the dimensional, “universal” constants). In such a theory a
dimensional constant like G would be merely apparent while a dimensionless one, like α would
be real—if α could be given a rational (theoretical) derivation. Why would the arbitrariness of
value of the constructed dimensionless constant lead to a fractured theoretical structure (logically
independent bits)? I propose that the free variation of a dimensionless constant constructed from
dimensional constants implies that the relative magnitudes of the dimensional constants are only
empirically determinable—this would mean, e.g. that the relative strength of the gravitational and
electromagnetic forces would only be empirically determinable and so there would be two logically
independent sorts of forces.58

The apparent arbitrariness in values of the constants to which the contingentist is committed,
that of the real, fundamental constants and not merely apparent, eliminable ones, troubled Einstein.
Whatever one thinks of the metaphysical possibility of strong determinism, Einstein’s expression of
it puts the contingentist comparativist on notice: The comparativist ought to endeavor to show that
the arbitrariness of the connections between logically distinct quantity dimensions is not so ugly a
construction after all.

Let me say a bit in defense of a contingentist comparativism that points the way to the work
still to be done to fully flesh out what the comparativist’s commitments are. The contingentist
comparativist does not think that “anything goes” with respect to the real, fundamental, physical
constants; there is a feature of them that is nomically necessary. What remains invariant under the
comparativist symmetries is the algebraic relation between the constants and the other parameters
in the laws. Their relation is encoded by their relative dimensionality. With [G] = L3M−1T−2,
as required by the dimensional homogeneity of Newton’s law of gravitation, F = GMm

r2 , it is
nomically necessary that G scales inversely with M and cubicly with L. This is independent on
any changes of convention regarding units or the basic quantity dimensions—the relation holds if
force is treated as basic and mass as derived.59 It is a contingent matter of fact what magnitudes
quantities have, including constants. It is matter of convention which units we use to measure them
58Elsewhere, Rosenthal-Schneider (1949) discusses Einstein’s views of the constants (and quantities more generally) in

the broader context of his epistemology of science—of special significance is the connection she draws to the reality
principle in Einstein, Podolsky, and Rosen (1935). It is worth noting that Einstein endorses Rosenthal-Schneider’s
interpretation of his remarks on the elimination of arbitrarily valued constants in a letter to Rosenthal-Schneider on
the 24th of March, 1950 (Rosenthal-Schneider 1980, 41). Many thanks to Caspar Jacobs and Dennis Lehmkuhl for
raising some of these interpretational difficulties to me—remaining murkiness or errors are my responsibility.

59On the scope and limitations of conventionality in dimensional systems see (Palacios 1964; Johnson 2018).
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and (maybe) which dimensions we stipulate as basic. The dimensional (i.e. scaling) relation between
different quantities is nomically necessary.60 A full account of comparativism must find some way
for accounting for these inter-quantity relations and their boundedness by physical law.

Something more can be said to sharpen this problem and to present an initial answer to it. Some,
like Sider (2020) and Baker (2013), seem to hold that the value of some constant as essential to that
constant to the extent that they introduce units into the laws by their interpretation. Therefore,
comparativist and absolutist alike have a problem retaining the representational symmetry of unit
system changes. Sider attempts to get around this problem by relativizing the laws to a choice of
representation functions (unit systems), but this only forces the (mixed) absolutist into a constant
contingency or into the naive absolutism—where unit transformations fill to be symmetries, an
absurd conclusion.61 Baker argues that the comparativist may posit fundamental mixed relations
among quantities of different dimensions in order to avoid the positing of numerical constants, but
in doing so the comparativist loses any parsimony advantage over the absolutist, sacrificing the
original motivation for the comparativist.

This would seem to be an ugly construction indeed. Let me suggest that the notion of a constant
used here causes no such problem. First let me simply reiterate that on the contingentist conception
of the constants the nature of the constants is entirely unit-free, my understanding here is of the
(field) constants as dimensional quantities. I have not endeavored to give a full account of the
constants and their ontology, however positing them as something like fundamental mixed relations
between quantity dimensions seems right.62 Though there has not been much philosophical work on
the nature of the constants, recently Jacobs (2021, chap. 6) has, by way of giving a very similar
solution to the escape velocity case as that above, offered an account of G as a fundamental mixed
relation that is part of the structure of Newtonian Gravity. Still we can ask where G ought to be
placed in the structure of Newtonian Gravity.63 The suggestion here is that G, qua dimensional
relation, plays a nomological role, hence no violation of ontological parsimony. The dimensions of
60I cannot discuss this material fully here, but it may be worth comparing the results here to the discussion in Duff

(2014). Compare also recent discussions in Grozier (2020) and Riordan (2015) on the question of the fundamental
constants and dimensionality.

61I’ve avoided discussion of this issue, see Eddon (2013) and Wolff (2020) for discussions of this view.
62Here fundamental is only relative to the ontology of quantity dimensions—quantity dimensions themselves may

depend on something more fundamental. That said, quantity dimensions seem like natural candidates for the
fundamental ontology of physics. There are different sorts of realist views we can have about quantity dimensions,
as discussed in Skow (2017). We could alternatively be irrealists and conventionalist regarding quantity dimensions
and therefore regard the constants, qua fundamental mixed relations, as mere conceptual guides to thinking about
the relations between measured quantities (Bridgman 1931). I believe the argument against absolutism can run
regardless of the metaphysics of dimension—this is the point of the two different proofs of the Π-theorem—but I
will defend a moderate quantity dimension realism in further work.

63More recently Jacobs (Forthcoming) has made the case that G is part of the kinematic structure of Newtonian
gravitation and so my full mass doubling (or what Jacobs calls an “inclusive active mass scaling”) is not quite a
dynamical symmetry, but rather a similarity. I will not adjudicate this issue here. I have already alluded to the fact
that similarities seem to be more general than the sorts of symmetries philosophers have so far been concerned
with and that the Π-theorem is a guide to similarities, some of which correspond to dynamical and empirical
symmetries (see Buckingham 1914; Sterrett 2009). I locate G in the nomology of Newtonian gravitation and hence
in its dynamics.
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G fix the functional form of the gravitational force law. This generalizes to a principle that every
ineliminable constant of mixed dimension determines the functional form of a fundamental law. It is
precisely these constants that tell us how otherwise logically independent quantity dimensions come
together to form a physical universe. Rather than “number[s] which the whim of the Creator might
just as well have chosen differently” that “would have to be somehow constructed from bits and
pieces which are logically independent of each other” (as Einstein would have it), we have a picture
of the constants as construction principles which glue together the fundamentals of creation into a
coherent and lawful world.

The comparativist may take inspiration from the example provided by Plato’s Timaeus:

So if the body of the universe were to have come to be as a two dimensional plane, a
single middle term would have sufficed to bind together its conjoining terms with itself.
As it was, however, the universe was to be a solid, and solids are never joined together
by just one middle term but always by two. Hence the god set water and air between
fire and earth, and made them as proportionate to one another as was possible, so that
what fire is to air, air is to water, and what air is to water, water is to earth. He then
bound them together and thus he constructed the visible and tangible universe. This is
the reason why these four particular constituents were used to beget the body of the
world, making it a symphony of proportion. They bestowed friendship upon it, so that,
having come together into a unity with itself, it could not be undone by anyone but the
one who had bound it together. (Plato 1997, 1237–38)

6 Conclusion

This paper presents an amendment to the symmetry argument against quantity absolutism. Rather
than requiring that any universal scale transformations of the quantities of some basic dimension
are empirical and dynamical symmetries, the argument against absolutism depends only on those
symmetries defined by the Π-theorem. These symmetries may involve scale transformations of
basic quantities, but they also involve transformations of derived quantities, most notably the
physical constants. The symmetries defined by the Π-theorem are transformations that leave the
dimensionless quantity ratios which describe some system invariant—these transformations are both
empirical and dynamical symmetries.

The transformation of the constants in some symmetries defined by the Π-theorem raises the
question of their modal status. On the one hand is constant contingentism, which states that the
laws and the relations of the basic quantities determine the values of the constants—their values can
vary in nomically possible worlds, supervening on variations of the relations of the basic quantities.
On the other hand is constant necessitism, which states that the values of the constants are fixed
across nomically possible worlds and are fundamental—their values and dimensions fix the laws and
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the relations between the basic quantities. My purpose has been to introduce the debate and set
some of its terms. Though I give reason to prefer constant contingentism to constant necessitism,
not least of all its superior fit with quantity comparativism, the discussion here is not conclusive.

7 Appendix A: Proof of the Representational Π-theorem

This proof proceeds on an understanding of equations as relations between numbers or representations
of numbers (i.e. variables) and unit transformations as transformations of numbers. The structure of
the proof is the same in both versions. The fundamental assumption being that we are only dealing
with unit invariant or dimensionally homogeneous equations. The ratio scaling symmetries of basic
quantities will propagate to derived quantities according to Bridgman’s lemma. This allows any
physical equation equation to be recast enitrely in terms of dimensionless derived quantities, by way
of the reduction of superfluous variables in the expression of some equation.

A review of the requisite assumptions:

0. Zeroth assumption: Any equation describing a physical system can be represented by some
function of numbers which represent quantities set equal to zero: > f(Q1, Q2, . . . QN) = 0.

1. First assumption: We are only concerned with “complete” equations whose algebraic form is
unit-invariant. For such equations there is a class of representations: > f ′(Q′

1, Q
′
2, . . . Q

′
N ) = 0,

where xiQi = Q′
i and the unit transformation factors xi ∈ R+.

2. Second assumption: If the equation describing the system is unit invariant, then the numbers
representing derivative quantities are unit-transformed by transformation factors that can be
defined as products of powers of the unit-transformation factors of the numerical representations
of the constituent basic quantities.

These are the fundamental assumptions of dimensional analysis; to give them up would be to forgo
many important patterns of physical reasoning and would threaten the marriage of measurement
and number.

The proof proceeds:64 We define the number of derivative quantities, r, as the difference in the
total set of quantities describing the phenomena, N , and the subset of basic quantities, n: r = N −n.
We can understand the n basic dimensions to serve as a reduction base for the original description of
the system by N quantities. If r is non-zero, then the reduction exists, and with Bridgman’s lemma,
we can define the relations between the derivative and basic transformation factors with a set of r
equations:
64This presentation of the proof is based on Ehrenfest-Afanassjewa (1916).
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

xn+1 = x
an+1,1
1 x

an+1,2
2 . . . x

an+1,n
n

xn+2 = x
an+2,1
2 x

an+2,2
2 . . . x

an+2,n
n

...
xn+r = x

an+r,1
1 x

an+r,2
2 . . . x

an+r,n
n


,

where the exponents ai,j are defined by the relation Qi ∝ Q
ai,j

j , with i = n+1, n+2, . . . , n+r and
j = 1, 2, . . . , n.65 These xn+1, . . . , xn+r factors are the numerical scale factors for unit transformations
of the numerical representations of the derived quantities. The values of these factors depend on the
unit transformations on the basic quantities and the defined relationships between the derived and
basic quantity representatives.

From this equation set, we define r unitless Π-terms, eliminating all of the transformation factors
and involving all of the relevant representations of quantities:
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n
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n
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1 Q
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a2,n
n

...
Πn+r = Q′

n+r

Q′ar,1
1 Q′ar,2

2 ...Q′ar,n
n

= Qn+r

Q
ar,1
1 Q

ar,2
2 ...Q

ar,n
n


.

Since the Π-terms are unit transformation invariant, the Π-terms are equivalently defined out
of the Qs and the Q′s—and encode the essential relations between derived and basic quantity
measurements. This means that any equation describing the measurement results of a physical
system can be recast in Ur-Equation form:

f(Π1,Π2, . . . ,Πr) = 0.

This is the (representational) Π-theorem. It was derived from three assumptions: (0) that numerical
representations of physical systems exist which can be described as a function of numbers set equal
to zero; (1) There is a subset of such numerical equations that are unit invariant; (2) Bridgman’s
lemma, i.e. the numerical measures of derived quantities are products of powers of the numerical
measures of basic quantities.

8 Appendix B: Proof of the Ontic Π-theorem

This proof understands equations to directly represent quantity relations themselves and proceeds
by considerations of ontic transformations of quantity dimensions rather than unit transformations.
The relation between the two was more fully analyzed in 4.1, but the outline bares repeating. What
is meant by calling this proof “ontic”? Of course, in neither the ontic or in the representational case
are the syntactic objects which make up equation tokens taken to be quantities or numbers (rather
they are variables and numerals). The ontic-representational distinction is this: either equations
represent relations between quantities which are properties of physical systems or they represent
65The exponent will be zero for all irrelevant quantities Qj .
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relations between numbers which measure quantities according to some externally defined convention.
Given the assumption of faithful measurement conventions, conclusions drawn under interpretations
of the latter kind entail counterpart conclusions under interpretations of the former kind. This is
to say: the two interpretations are in an important sense interchangeable, if numbers can measure
quantities at all.

We begin again with a generalized functional form of a complete (i.e. unit-invariant) equation
describing a physical system:66

f(Q1, Q2, . . . QN) = 0 = f(Q′
1, Q2, . . . , Q

′
N),

where each Qi is a quantity composed of a dimensionless number and a unit quantity, Qi = ViUi,
and the primed quantities are related by dimensionless transformation factors xi. Here we abstract
from the (conventional) determinancy of “value” and the “unit” of some quantity to its magnitude,
M , and dimension, D, where each unit transformed quantity counterpart is identical in these
respects: Qi, Q

′
i, Q

′′
i, · · · = Mi and [Qi], [Q′

i], [Q′′
i] = Di. This abstraction serves us with a unit-free

representation of the quantities, much like tensor calculus allows us coordinate-free representations
of spacetime—this makes it clear that we are dealing with the ontic quantities and not their mere
representations.67

Given Bridgman’s lemma, we can define each quantity as products of powers of the basic
quantities, Q1, Q2, . . . , Qn:
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
.

Since we are dealing with a coherent dimensional system, the same construction applies to quantity
dimensions themselves; they can be defined in terms of basic quantity dimensions, D1, D2, . . . , Dn:
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1 D

a1,2
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n
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n

...
[QN ] = D

aN,1
1 D

aN,2
2 . . . D

aN,n
n


.

Now we take a quantity Qi from a subset Qi ⊂ QN of quantities such that some of Qi’s basic
quantity exponents, ai,j, are zero, meaning that their dimension does not require all Dn and divide
through each row of the quantitative matrix by Qi so as to cancel its dimension [Qi] in all the other
quantities. As this elimination process iterates, we will be left with dimensionless quantities. For
the first dimension D1 and each Qj, j ̸= i:
66This presentation of the proof is based on Gibbings (1982); Gibbings (2011).
67Note that this is merely a presentational move, the “representational” proof given above proceeds in a unit fixed

representation, but defines transformations and relations which are invariant under any unit standard. There is an
important sense in which these two approaches are equivalent, compare Wallace (2019) and Wolff (2020, chap. 9).
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Q
ai,1
j

Q
aj,1
i

→ D
aj,1ai,1
1

D
ai,1aj,1
1

= 1.

The division procedure described above guarantees that the power of the dimension in the numerator
and the denominator is equal, hence the dimension is eliminated in the quotient quantity. This
creates the functional, complete equation:

f(Q
ai,1
1

Q
a1,1
i

, . . . ,
Q

ai,1
N

Q
aN,1
i

) = 0.

Successive cancellations up to Dn for all Qi lead to all dimensions being eliminated and so all
quantities in the function are dimensionless Π-terms of the same form as those defined in the last
subsection:
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
,

yielding a proof of the (ontic) Π-theorem:

f(Π1,Π2, . . . ,Πr) = 0.

The divisional procedure of eliminating dimensions highlights an important aspect of the Π-theorem.
It provides a definitive answer to the number of variables and the number of dimensionless groups
required to describe some system. As indicated above there are r = N − n dimensionless groups of
variables, Π-terms, necessary to describe a system of N quantities formed by n basic dimensions.
The removal of each dimension is associated with the addition of a variable to each Π-term, yielding
a number of n+ 1 variables per Π-term.68

68For details and exceptions see Gibbings (2011, 59–61).
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