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Arithmetic With Satisfaction

JAMES CAIN

Abstract A language in which we can express arithmetic and which contains
its own satisfaction predicate (in the style of Kripke’s theory of truth) can be
formulated using just two nonlogical primitives:′ (the successor function) and
Sat (a satisfaction predicate).

Let L be a language with vocabulary:

, ( ) ∃ ¬ ∨ = ′
Sat

plus the variablesx0, x1, x2, . . .. A term is a variable followed by zero or more oc-
currences of′. An atomic formula is any formula of the formt0 = t1, Sat(t0), or
Sat(t0, . . . , ti) (for any finite string of termst0, . . . , ti). Nonatomic formulas are de-
fined in the normal way. (Note that, though for simplicity we letSat take any number
of terms, this is not necessary for our purposes. We could consider just a 5-place pred-
icate,Sat(x0, . . . , x4). More will be said about this later.)

We will be concerned with partial interpretations ofL in which the variables
range over the natural numbers,′ is interpreted as the successor function, and a dis-
joint pair of sets(S1, S2) of finite sequences of natural numbers is assigned toSat.
Let L(S1, S2) represent such an interpretation ofL . Let s be an infinite sequence of
natural numbers, and lets∗ be the corresponding assignment of natural numbers to
terms (thuss∗(xi) = s(i) ands∗(t′) = the successor ofs∗(t)). Then we say:

L(S1, S2) |= Sat(t0, . . . , ti)[s]

(i.e., L(S1, S2) satisfiesSat(t0, . . . , ti) with s) iff 〈s∗(t0), . . . , s∗(ti)〉 ∈ S1 . On the
other hand, we say:

L(S1, S2) =| Sat(t0, . . . , ti)[s]

(i.e., L(S1, S2) falsifiesSat(t0, . . . , ti) with s) iff 〈s∗(t0), . . . , s∗(ti)〉 ∈ S2. And fi-
nally, L(S1, S2) leavesSat(t0, . . . ti) undefined with respect tos if L(S1, S2) neither
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satisfies nor falsifiesSat(t0, . . . ti) with s. Weevaluate nonatomic formulas using the
Strong Kleene scheme. Thus:

L(S1, S2) |= ¬A[s](L(S1, S2) =| ¬A[s])

iff
L(S1, S2) =| A[s](L(S1, S2) |= A[s]).

Similarly:
L(S1, S2) |= (A ∨ B)[s](L(S1, S2) =| (A ∨ B)[s])

iff

L(S1, S2) |= A[s] or L(S1, S2) |= B[s](L(S1, S2) =| A[s] andL(S1, S2) =| B[s]).

Finally:
L(S1, S2) |= ∃xi A[s](L(S1, S2) =| ∃xi A[s])

iff

L(S1, S2) |= A[r](L(S1, S2) =| A[r]) for some (every) sequencer

such that, for j �= i, s( j) = r( j).

Welet (A ∧ B) abbreviate¬(¬A ∨ ¬B).
Say that sequences extends 〈n0, . . . , ni〉 provided, for j ≤ i, s( j) = n j. We say

thatL(S1, S2) |= A[〈n0, . . . , ni〉] i ff , for everys extending〈n0, . . . , ni〉,L(S1, S2) |=
A[s]. L(S1, S2)=| A[〈n0, . . . , ni〉] i ff , for everys extending〈n0, . . . , ni〉,L(S1, S2)=|
A[s].

We will be interested in those interpretations ofL in which Sat can be under-
stood as expressing a satisfaction predicate for the language. Assume that we have
a Gödel numbering of the formulas ofL by the natural numbers (we place no fur-
ther restrictions on the G̈odel numbering—it can even be nonrecursive). We say that
�(S1, S2) = (S3, S4), whereS3 = {〈n0, . . . , ni〉|n0 is the G̈odel number of a for-
mula A such thatA contains at mostx0, . . . , xi−1 as free variables andL(S1, S2) |=
A[〈n1, . . . , ni〉]}, andS4 = {〈n0, . . . , ni〉| eithern0 is not the G̈odel number of a for-
mula which contains at mostx0, . . . , xi−1 free, orn0 is the G̈odel of such a formula,
A, andL(S1, S2) =| A[〈n1, . . . , ni〉]}. It should be clear that ifS1 andS2 are disjoint
then�(S1, S2) will be a disjoint pair. We say thatSat expresses a satisfaction pred-
icate for L(S1, S2) iff �(S1, S2) = (S1, S2), in which case we say that(S1, S2) is a
fixed point of � andL(S1, S2) is afixed point language.

Say that(S1, S2) ≤ (S3, S4) iff S1 ⊆ S3 andS2 ⊆ S4. Clearly � is monotonic
(in the sense that if(S1, S2) ≤ (S3, S4) then�(S1, S2) ≤ �(S3, S4)), and(�,�) ≤
�(�,�) (where� is the empty set). It follows that� has fixed points, including a
smallest fixed point.1

We need to define the notion of definability in a partially interpreted language.
Wesay that ani-place relation,R, isweakly defined in L(S1, S2) by a formulaA pro-
vided thatA contains at mostx0, . . . , xi−1 free andL(S1, S2) |= A[s] for exactly those
s which extend elements ofR. R is strongly defined by A iff it is weakly defined byA
andNi − R is weakly defined by¬A. R is weakly (strongly) definable iff it is weakly



ARITHMETIC WITH SATISFACTION 301

(strongly) definable by some formula. A function is said to be strongly definable iff its
graph is. (To handle definability of a set,S, of numbers, we treatS as a set of 1-tuples
and let〈n〉 = n.)

Theorem 1 Every relation definable in the first order language of arithmetic (with
vocabulary: + × ′ 0 =) is strongly definable in any fixed point language L(S1, S2).

Proof: Suppose thatL(S1, S2) is a fixed point language. SinceL(S1, S2) contains
= and ′, it will suffice to show that the relationsx = 0, x + y = z, andx × y = z
are strongly definable.x = 0 is of course definable by¬∃y(x = y′). We show that
addition is definable as follows.

Consider the formula:

(x1 = 0∧ x2 = x0) ∨ ∃x4∃x5(x1 = x′
4 ∧ Sat(x3, x0, x4, x5, x3) ∧ x2 = x′

5).

Suppose the G̈odel number of this formula ism. Let Sum(x0, x1, x2) be the for-
mulaSat(m, x0, x1, x2, m) (which in turn abbreviates the formula∃x6(¬∃x7x6 = x′

7 ∧
Sat(x(m)

6 , x0, x1, x2, x(m)
6 ))).

Sum(x0, x1, x2) strongly defines the addition function. We prove this by in-
duction. Suppose that we are givenn0. We first need to show that for eachn1

andn2, n0 + n1 = n2 iff L(S1, S2) |= Sum(x0, x1, x2)[〈n0, n1, n2〉]. Supposen1 =
0. L(S1, S2) |= Sum(x0, x1, x2)[〈n0,0, n2〉] iff 〈m, n0,0, n2, m〉 ∈ S1, which holds,
sinceL(S1, S2) is a fixed point, iff

L(S1, S2) |= (x1 = 0∧ x2 = x0) ∨ ∃x4∃x5(x1 = x′
4 ∧ Sat(x3, x0, x4, x5, x3) ∧

x2 = x′
5)[〈n0,0, n2, m〉],

which in turn holds iff

L(S1, S2) |= (x1 = 0∧ x2 = x0)[〈n0,0, n2, m〉],
which holds iffn0 + 0 = n2. Supposen1 = k + 1. L(S1, S2) |= Sum(x0, x1, x2)[〈n0,

k +1, n2〉] iff 〈m, n0, k +1, n2, m〉 ∈ S1, which holds, sinceL(S1, S2) is a fixed point,
iff

L(S1, S2) |= (x1 = 0∧ x2 = x0) ∨ ∃x4∃x5(x1 = x′
4 ∧ Sat(x3, x0, x4, x5, x3) ∧

x2 = x′
5)[〈n0, k + 1, n2, m〉],

which holds iff

L(S1, S2) |= ∃x4∃x5(x1 = x′
4 ∧ Sat(x3, x0, x4, x5, x3)∧ x2 = x′

5)[〈n0, k + 1, n2, m〉],
which holds iff

L(S1, S2) |= ∃x4∃x5(x1 = x′
4 ∧ Sum(x0, x4, x5) ∧ x2 = x′

5)[〈n0, k + 1, n2〉],
which, by the induction hypothesis, holds iffn0 + (k + 1) = n2.

Wenext need to show that

L(S1, S2) |= ¬Sum(x0, x1, x2)[〈n0, n1, n2〉] iff n0 + n1 �= n2

i.e., L(S1, S2) =| Sum(x0, x1, x2)[〈n0, n1, n2〉] iff n0 + n1 �= n2.
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The proof is again by induction, only now we replace|= with =|,∈ S1 with ∈ S2,
and= n2 with �= n2. The case is similar for×. Take the formula:

(x1 = 0∧ x2 = 0) ∨ ∃x4∃x5(x1 = x′
4 ∧ Sat(x3, x0, x4, x5, x3) ∧ Sum(x0, x5, x2)).

Suppose that this formula has Gödel numberk. Sat(k, x0, x1, x2, k) defines× in any
fixed point. The proof is parallel to the case for addition.

Remark 2 Note that the satisfaction predicate is used in the above proof only in
the formSat(t0, t1, t2, t3, t4). We could have letL contain just a 5-place predicate
Sat(x0, x1, x2, x3, x4) in addition to′. Then, given the theorem, the language will con-
tain adequate resources to code finite sequences and talk about its own syntax. One
will then be able to define a more general notion of satisfaction as a relation between
a Gödel number for a formula and a code for a finite sequence. The approach taken
in the paper is simpler and less artificial.

Remark 3 The proof also works if we use the van Fraassen supervaluation scheme
instead of the Strong Kleene scheme. On the other hand, the proof will not go through
if the Weak Kleene scheme is used. This is so because any formula of the form
. . .∃x(. . . Sat(x, . . .) . . . will be paradoxical (i.e., neither satisfied nor falsified in any
fixed point by any sequence) since for some instancesSat(x, . . .) is undefined (e.g.,
instances in which the value ofx is a paradoxical sentence).

Remark 4 Of course the strength of the fixed point languages go well beyond that
of arithmetic, since they contain their own satisfaction predicates. So, for example, in
the minimal fixed point the�1

1 relations are weakly defined and the hyperarithmetical
relations are strongly defined.2

NOTES

1. Of course there will be no fixed point in whichSat is totally defined. The formula
¬Sat(x0, x0) (cf., “x0 is heterological”) will be neither satisfied nor falsified by its own
Gödel number in any fixed point. On the other hand,Sat(x0, x0) (cf., “x0 is autologi-
cal”) will sometimes be satisfied by its own Gödel number, sometimes falsified by it,
and sometimes neither satisfied nor falsified by it.

2. The basic trick involved in the proof of the theorem (the construction of appropriate self-
referential formulas without the use of a substitution function) came to me while con-
templating remarks of Kripke on diagonalization and the recursion theorem. It has been
brought to my attention that Visser [2], pp. 666–667 also uses this trick in his proof of
the ”Prediagonal Lemma for SAT,” though he does so while considering a language in
which it is already given that a pairing function is available andSat expresses a two-place
relation between a G̈odel number for a formula and a code for a finite sequence.
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