
515

Notre Dame Journal of Formal Logic
Volume 40, Number 4, Fall 1999

The Theory of Computability
Developed in Terms of Satisfaction

JAMES CAIN

Abstract The notion of computability is developed through the study of the
behavior of a set of languages interpreted over the natural numbers which con-
tain their own fully defined satisfaction predicate and whose only other vocab-
ulary is limited to 0, individual variables, the successor function, the identity
relation and operators for disjunction, conjunction, and existential quantifica-
tion.

1 Introduction Techniques from recursion theory (the theory of computability)
have proven to be invaluable in the study of the theory of truth. It is perhaps not
as well known that recursion theory can in turn be studied in terms of the theory of
truth (in particular the theory of satisfaction). I suspect that for one who has been
introduced to the basic metatheorems of mathematical logic up to, say, Gödel’s first
incompleteness theorem, a nice introduction to the fundamental concepts and theo-
rems of recursion theory is through the theory of satisfaction. Accordingly, this paper
is directed to three audiences: (1) those familiar with recursion theory who want to
see its connections to satisfaction, (2) those interested in theory of truth who want
to see some of its application and methods, and (3) those, especially in philosophy,
who do not have a background in recursion theory but are interested in seeing a devel-
opment of some of its fundamental concepts and theorems. No familiarity with the
theory of truth or satisfaction will be assumed and no knowledge of recursion the-
ory will be assumed that goes beyond the techniques used in the proof of Gödel’s
first incompleteness theorem. In particular, we will assume that the reader knows that
“Gödel numbers” can be used to code syntactically definable features of a language
and that sets and relations of Gödel numbers defining some of these features are prim-
itive recursive. Section 2 will introduce and briefly study some logical features of a
very simple language which can be interpreted so that it contains its own satisfaction
predicate. In terms of this language Section 3 will introduce some of the basic con-
cepts of recursion theory and prove some of its fundamental theorems. Of course, my

Received September 2, 1999; revised January 4, 2001

516 JAMES CAIN

treatment of recursion theory is not intended to be comprehensive; rather, the aim is
to give the reader a feel for how recursion theory can be developed in terms of the
theory of satisfaction. Since this paper will not assume that the reader is an expert in
either of the areas of discussion, one who is will find that certain sections of the paper
can simply be skimmed over.

2 A simple language containing its own satisfaction predicate Let L be an unin-
terpreted language whose vocabulary includes the following symbols:

, () 0 Sat s ≈ ∧ ∨ ∃
plus the infinite set of variables x0, x1, x2, Note that L contains no symbol for
negation or universal quantification. The terms of L include the individual constant
0, the variables, and, for any term t, s(t) is a term. The atomic formulas of L include
t0 ≈ t1 (for any terms t0 and t1) and Sat(t0, . . . , tn) (for any sequence of terms
t0, . . . , tn, for n ≥ 0). The formulas (or wffs) of L include the atomic formulas, and
whenever A and B are well-formed formulas so are (A ∨ B), (A ∧ B), and, for any
i,∃xi A.

An interpretation I of L provides a domain DI , assigns to 0 some element 0I

of DI , assigns to s a 1-place function sI mapping DI into DI , assigns identity to ≈,
and assigns to Sat, a set SatI of finite sequences 〈d0, . . . , dn〉 of elements of DI (the
sequences in SatI need not all be of the same length). We will restrict our attention to
interpretations I of L such that DI = N = {0, 1, 2, . . .}, 0I = 0; and sI = the successor
function. Thus to specify an interpretation it will suffice to specify SatI , the extension
of Sat. We will indicate the interpreted language in which SatI = S by writing L(S).

Let r be any denumerable sequence, 〈r0, r1, r2, . . .〉, of natural numbers. We let
r(xi) be a function mapping the variables into N by setting r(xi) = ri. We may now
define the notion of the denotation of term t with respect to r, denr(t). If t is a variable
then denr(t) = r(t). If t = 0, denr(t) = 0. If t = s(t0), then denr(t) = the successor
of denr(t0). Finally, we define formula A is satisfied by sequence r in L(S) (written
|=S A[r]). |=S A[r] if and only if

A is t0 ≈ t1 and denr(t0) = denr(t1), or

A is Sat(t0, . . . , tn) and 〈 denr(t0), . . . , denr(tn)〉 ∈ S, or

A is (B ∨ C) and either |=S B[r] or |=S C[r], or

A is (B ∧ C) and both |=S B[r] and |=S C[r], or

A is ∃xi B and |=S B[r′], for some r′ which is an i-variant of r (that is, r′ differs
from r at most in its assignment to xi).

Say that r and r′ agree on the free variables in a term t, or in a formula A, provided
that whenever xi is free in t or in A, r(xi) = r′(xi). The following useful lemma can
be proven by induction on the complexity of term or a formula.

Lemma 2.1 If r and r′ agree on the free variables in t then denr(t) = denr′ (t). And
if r and r′ agree on the free variables in A, then for any S |=S A[r] if and only if
|=S A[r′].

It follows from the lemma that if A is a sentence then |=S A[r] for some r if and only
if |=S A[r] for every r. We write |=S A as short for |=S A[r] for all r. We say that r

THEORY OF COMPUTABILITY 517

extends 〈d1, . . . , dn〉 provided that for 0 ≤ i < n, ri = di+1, that is, r(xi) = di+1. We
say that formula A is satisfied by 〈n1, . . . , nm〉 in L(S)(|=S A[〈n1, . . . , nm〉]) if and
only if |=S A[r] for every r that extends 〈n1, . . . , nm〉.

Next we must consider the conditions under which Sat can be treated as a satis-
faction predicate. Two approaches might be taken. The direct approach would require
the domain of the interpretation to contain the formulas of the language. The more
usual approach is in terms of Gödel numberings and this is the approach we will fol-
low. We let a Gödel numbering be a one-to-one mapping from formulas of L into N.
Generally when people consider Gödel numberings it is understood that the mapping
will be ‘effective’, but, for the time being, we will not put any such restriction on the
Gödel numbering. For a fixed Gödel numbering gn, we will define

�(S) = {〈d0, . . . , dn〉| either (1) n = 0 and d0 = gn(A) for some sentence A of
L such that |=S A, or (2) n > 0 and d0 = gn(A) for some well-formed formula
A of L with at most x0, . . . , xn−1 free and |=S A[〈d1, . . . , dn〉]}.

With respect to a given Gödel numbering, we say that Sat expresses a satisfaction
predicate for L(S) if and only if �(S) = S.

Thus, for example, if the Gödel number of the formula x0 = x1 is 5, then
if Sat is a satisfaction predicate, Sat(x0, x1, x2) will be satisfied by a sequence
〈5, m1, m2, m3, m4, . . .〉 if and only if the formula x0 = x1 is satisfied by the sequence
〈m1, m2, m3, m4, . . .〉, in other words, if and only if m1 = m2.

If �(S) = S, we say that S is a fixed point of �, and that L(S) is a fixed point
language. Let �0(S) = S,�α+1(S) = �(�α(S)), and, for limit ordinal λ, �λ(S) =
∪α<λ�

α(S). With respect to a given Gödel numbering, we call a fixed point a least
fixed point provided it is a subset of every fixed point, and where S is a least fixed
point, we speak of L(S) as a least fixed point language. We let � be the empty set.

Theorem 2.2

(a) With respect to any Gödel numbering, there exists a least fixed point language,
namely L(�ω(�)).

(b) In L(�ω(�)), Sat is a satisfaction predicate.
(c) If S ⊆ �(S), then �ω(S) is a fixed point; in fact, �ω(S) is a subset of every

fixed point containing S, and in L(�ω(S)), Sat is satisfaction predicate.

Our proof of Theorem 2.2 will rely on the following lemma.

Lemma 2.3 With respect to any Gödel numbering the following hold.

(a) Suppose S1 ⊆ S2; then for any formula A and sequence r, |=S1 A[r] entails |=S2

A[r].
(b) � is monotonic (that is, if S1 ⊆ S2 then �(S1) ⊆ �(S2)).
(c) If S ⊆ �(S), then for any ordinal α,�α(S) ⊆ �α+1(S).
(d) If S ⊆ �(S) and α ≤ β then �α(S) ⊆ �β(S).
(e) If S ⊆ �(S) then, for any formula A and sequence r, |=�ω(S) A[r] =⇒|=�n(S)

A[r] for some finite n.

Proof of Lemma 2.3: (a) can be shown by induction on the complexity of the for-
mula A. (b) follows from (a) given the definition of �. For (c), (d), and (e) we assume
that S ⊆ �(S). To prove (c) we show by induction on α that �α(S) ⊆ �α+1(S). For

518 JAMES CAIN

α = 0, note that �0(S) = S ⊆ �(S) = �1(S). Next we must show that if �α(S) ⊆
�α+1(S) then �α+1(S) ⊆ �(α+1)+1(S). Suppose �α(S) ⊆ �α+1(S). Then, by the
monotonicity of �,�(�α(S)) ⊆ �(�α+1(S)), that is, �α+1(S) ⊆ �(α+1)+1(S).
Finally, suppose that α is a limit ordinal and that d ∈ �α(S). We must show that
d ∈ �α+1(S). For some β < α, d ∈ �β(S) since �α(S) = ∪γ<α�

γ(S). By hy-
pothesis �β(S) ⊆ �β+1(S), so d ∈ �β+1(S). By monotonicity, since �β(S) ⊆
�α(S),�β+1(S) ⊆ �α+1(S). Thus d ∈ �α+1(S).

For (d) we show by induction on ordinal δ that �α(S) ⊆ �α+δ(S). Clearly
�α(S) ⊆ �α+0(S). Suppose that �α(S) ⊆ �α+δ(S). By monotonicity �α+1(S) ⊆
�α+δ+1(S). By (c), �α(S) ⊆ �α+1(S), and thus �α(S) ⊆ �α+δ+1(S). If δ is a limit
then so is α + δ, and α < α + δ. Thus �α+δ(S) = ∪γ<α+δ�

γ(S). Thus �α(S) ⊆
�α+δ(S).

(e) can be shown by induction on the complexity of formula A. We assume
that |=�ω(S) A[r]. Suppose that A is atomic. The case is clear for A = t1 ≈
t2, so suppose that A =Sat(t0, . . . , tn). Then 〈denr(t0), . . . ,denr(tn)〉 ∈ �ω(S).
But then, since �ω(S) = ∪n<ω�n(S), for some finite n, 〈denr(t0), . . . ,denr(tn)〉 ∈
�n(S), and thus |=�n(S) A[r]. Suppose A = (B ∨ C). Then either |=�ω(S) B[r] or
|=�ω(S)C[r]. By hypothesis, for some finite n, either |=�n(S)B[r] or |=�n(S)C[r] and
thus |=�n(S)(B ∨ C)[r], that is, |=�n(S)A[r]. Suppose A = (B ∧C). Then |=�ω(S)B[r]
and |=�ω(S)C[r], and so for some finite j and k, |=� j(S)B[r] and |=�k(S)C[r], and thus
|=� j+k(S)(B ∧ C)[r] by (d) and (a) above. Suppose A = ∃xi B. |=�ω(S)∃xi B[r] =⇒
|=�ω(S)B[r′] for some r′ which differs from r at most in its assignment to xi =⇒ (by
the induction hypothesis) |=�n(S)B[r′] for some finite n =⇒|=�n(S)∃xi B[r]. �

Proof of Theorem 2.2: We begin with (c). Suppose that S ⊆ �(S). We need to
show (1) �ω(S) is a fixed point, (2) �ω(S) is contained in every fixed point that con-
tains S, and (3) in L(�ω(S)), Sat is a satisfaction predicate. Let’s begin with (2). By
induction we can see that, for all n ∈ N,�n(S) is contained in every fixed point con-
taining S (if any exist): for �0(S) = S ⊆ every fixed point containing S, and when-
ever �n(S) ⊆ S∗, where S∗ is a fixed point containing S, by monotonicity and the
definition of a fixed point, �n+1(S) = �(�n(S)) ⊆ �(S∗) = S∗. Since, for each n,
�n(S) is contained in every fixed point that contains S,∪n∈N�n(S) = �ω(S) must
also be.

To show (1) we need to show that �ω(S) = �ω+1(S). By (c) of Lemma 2.3,
�ω(S) ⊆ �ω+1(S), so we must show that �ω+1(S) ⊆ �ω(S), that is, 〈m0, . . . , mn〉 ∈
�ω+1(S) =⇒ 〈m0, . . . , mn〉 ∈ �ω(S). By the definition of �, if 〈m0, . . . , mn〉 ∈
�ω+1(S) then m0 = gn(A), for some formula A containing at most x0, . . . , xn−1

free, and |=�ω(S) A[r] for any r that extends 〈m1, . . . , mn〉 (or, if n = 0, for any r).
Take any such r. By (e) of Lemma 2.3, |=�n(S) A[r] for some finite n. But then
by Lemma 2.1, |=�n(S) A[r′] for any r′ that extends 〈m1, . . . , mn〉 (or for any r′ if
n = 0) since r′ will agree with r on any free variables in A. Thus by the definition
of �, 〈m0, . . . , mn〉 ∈ �n+1(S). Since �n+1(S) ⊆ �ω(S), 〈m0, . . . , mn〉 ∈ �ω(S).
Thus (1) holds. (3) follows from (1) by the definition of satisfaction predicate.

To complete the proof of Theorem 2.2 it suffices to note that parts (a) and (b)
follow from part (c) since � ⊆ �(�) and � ⊆ any fixed point. �

THEORY OF COMPUTABILITY 519

It may be useful to pause and reflect on the construction of the least fixed point.
Note that for no finite n is L(�n(�)) a fixed point. We can see this as follows. For
any formula A with Gödel number n, let �A� be the numeral for n (for example, if
gn(A) = 2, then �A� = s(s(0))). Let Sat0(�A�) = A, and let Satn+1(�A�) = Sat
(�Satn(�A�)�). Then Satn(�0 = 0�) first gets evaluated true in language L(�n(�))

(that is, |=�m(�)Satn(�0 = 0�) if and only if m ≥ n), and 〈gn(Satn(�0 = 0�))〉 ∈
�n+1(�) but /∈ �n(�). Thus for no finite n is L(�n(�)) a fixed point language.

We will say that a formula A(x0), whose only free variable is x0, is a truth pred-
icate for L(S) if and only if, for every sequence r,

|=S A(x0)[r] if and only if r(x0) = gn(B) for some sentence B and |=S B.

Sat(x0) will be a truth predicate in each fixed point language.
L(�ω(�)) will not be the only fixed point language. Consider the formula

Sat(x0, x0). Suppose that its Gödel number is n. Consider any interpretation S of
Sat. Suppose that 〈n, n〉 ∈ S. Then |=S Sat(x0, x0)[r] for any r that extends 〈n〉. Thus
〈n, n〉 ∈ �(S). In particular {〈n, n〉} ⊆ �({〈n, n〉}), and thus, by Theorem 2.2(c),
�ω({〈n, n〉}) will be a fixed point containing 〈n, n〉. On the other hand, suppose
〈n, n〉 /∈ S then it is not the case that |=S Sat(x0, x0)[r] for any r that extends 〈n〉, and
thus 〈n, n〉 /∈ �(S). By induction it can be seen that, for all α, 〈n, n〉 /∈ �α(S). In par-
ticular, for all α < ω, 〈n, n〉 /∈ �α(�), and thus 〈n, n〉 /∈ �ω(�). Thus �ω({〈n, n〉})
and �ω(�) are distinct fixed points. As we shall see, for each Gödel numbering there
are 2ℵ0 fixed points.

To make our terminology less cumbersome, we will abbreviate L(�α(S)) as
LS,α. Our primary interest will be the least fixed point language L�,ω. Rather than
write |=�ω(�)A[r] we will write |=A[r], and rather than write |=�ω(�)A we will write
|=A.

Given a fixed Gödel numbering for the language, the theory of the least fixed
point interpretation, L�,ω admits of a rather straightforward axiomatization. We take
as our sole axiom

0 ≈ 0.

The set of theorems is the smallest set of sentences which includes the axiom and is
closed under the following rules of inference. (Read �A as ‘A is a theorem’. �A =⇒
�B means that if A is a theorem then so is B.)

Rule 1 �t0 ≈ t1 =⇒ �s(t0) ≈ s(t1)
Rule 2 �A =⇒ �(A ∨ B)(for any sentence B)

Rule 3 �B =⇒ �(A ∨ B)(for any sentence B)

Rule 4 �A and �B =⇒ �(A ∧ B)

Rule 5 �A(xi/n) =⇒ �∃xi A
Rule 6 �A(x0/n0, . . . , xm/nm) =⇒ �Sat(�A�, n0, . . . , nm)

Here we let n stand for the numeral for n (for example, if n = 2 then n = s(s(0))), and
A(x0/t0, . . . , xm/tm) is the formula that results from replacing all free occurrences of
the variables xi with ti (for 0 ≤ i ≤ m) in formula A.

A derivation is a sequence of sentences of L in which each sentence is either
0 ≈ 0 or else follows from a previous sentence (or sentences) in the sequence by one
of the rules of inference. A sentence will be a theorem if and only if it occurs as the

520 JAMES CAIN

last sentence of a derivation. The set of theorems will be relative to a Gödel num-
bering; that is, different Gödel numberings will generally result in a different set of
theorems. For any fixed Gödel numbering, our axiomatization is a sound and com-
plete axiomatization of the least fixed point language L�,ω.

Theorem 2.4 (Soundness Theorem) With respect to any Gödel numbering, for any
sentence A, if �A then |=A; in fact, if S is any fixed point of � then if �A then |=S A.

Proof: This holds since |= 0 = 0; Rules 1 through 5 preserve truth under any inter-
pretation of L, and Rule 6 preserves truth in any fixed point interpretation, L(S), of
the language. �

Theorem 2.5 (Completeness Theorem) With respect to any Gödel numbering, for
any sentence A, if |=A then �A.

Proof: By Lemma 2.3(e), if |=A then, for some finite n, |=�n(�)A. Thus it will suf-
fice to show by induction on n that if |=�n(�) A then �A. Suppose that n = 0 and
|=�0(�)A, that is, |=�A. We show by induction on the complexity of A that �A. Sup-
pose that A is atomic. A cannot be Sat(t0, . . . , tm) since the extension of Sat is empty
in L(�). So A is t0 ≈ t1. Since A is a true sentence, t0 and t1 will be the same nu-
meral. Thus t0 ≈ t1 will either be the axiom 0 ≈ 0 or be obtained from 0 ≈ 0 by a finite
number of applications of Rule 1. The induction step, for A nonatomic, is straightfor-
ward. So now we assume that, for any sentence A, if |=�n(�)A then �A, to show that,
for any A, if |=�n+1(�) A then �A. We assume |=�n+1(�) A and show by induction on
the complexity of A that �A. The argument is the same as for the case of n = 0 ex-
cept that now we must also consider the case where A is the sentence Sat (t0, . . . , tm).
Suppose |=�n+1(�)Sat(t0, . . . , tm). t0, . . . , tm will be numerals. We may assume that
they denote respectively the numbers k0, . . . , km. k0 is the Gödel number of a for-
mula B with at most x0, . . . , xm−1 free such that |=�n(�)B[r] for every r that extends
〈k1, . . . , km〉. Thus |=�n(�) B(x0/t1, . . . , xm−1/tm)[r] for every r, that is, |=�n(�)

B(x0/t1, . . . , xm−1/tm). Thus, by the induction hypothesis, �B(x0/t1, . . . , xm−1/tm).
So, by Rule 6, �Sat(�B�, t1, . . . , tm), that is, �Sat(t0, . . . , tm), which is what we
wanted to show. �
Recall that so far we have put no restrictions on the way language L is to be Gödel
numbered. If the Gödel numbering allows us either (1) to effectively decide for any
formula A what its Gödel number is or (2) to effectively decide for any number (ex-
pressed as a numeral of L) whether it is the Gödel number of a formula and, if so,
of which formula, then we will be able to effectively decide whether a sentence in a
sequence follows from previous sentences by one of the rules (and in particular we
will be able to decide whether it follows by Rule 6), and thus it will be effectively
decidable whether a given sequence is a derivation. If, however, neither (1) nor (2)
is effectively decidable we will have no effective way to determine whether one sen-
tence follows from another by Rule 6.

It will be useful to introduce the notion of the definability of a set or relation in
L(S), for arbitrary S. We say that a formula F containing at most x0, . . . , xi as free
variables defines the relation R in L(S) provided that R = {〈n0, . . . , ni〉| |=S F[〈n0,

. . . , ni, 〉]}. For n ∈ N, we identify 〈n〉 with n itself and so treat a set of num-
bers as a one-place relation on the numbers. We identify an n-place function with

THEORY OF COMPUTABILITY 521

an n + 1-place relation. Thus our notion of definition applies to sets and func-
tions. Say that a condition C determines an i-place relation R provided C holds of
〈n1, . . . , ni〉 if and only if 〈n1, . . . , ni〉 ∈ R. If condition C determines an i-place re-
lation R, then we say that a given formula defines condition C if and only if it defines
the relation determined by C. A condition or relation is definable in L(S) provided
that there is a formula which defines it in L(S).

Suppose that {〈n1, . . . , ni〉|〈n1, . . . , ni〉 ∈ R} is any i-place relation on N and
suppose that 1 ≤ j ≤ i; then the relation {〈n1, . . . , n j, . . . , ni〉|∀m(m < n j =⇒
〈n1, . . . , m, . . . , ni〉 ∈ R)} is said to be obtained by bounded universal quantification
on the jth term of R (here we are using 〈ni, . . . , m, . . . , ni〉 to stand for the result of
replacing the jth term in 〈n1, . . . , n j, . . . , ni〉 with m). The following theorem will be
useful.

Theorem 2.6 With respect to any Gödel numbering, for each i and for 1 ≤ j ≤ i,
there is a formula BUi

j(x0, . . . , xi) of L such that, for any fixed point language L(S)

and any formula A with at most x0, . . . , xi−1 free which defines in L(S) the i-place re-
lation R, BUi

j(x0, . . . , xi−1,�A�) defines the relation obtained by bounded universal

quantification on the jth term of R.

Proof: Suppose that L(S) is a fixed point language and formula A, with at most
x0, . . . , xi−1 free, defines the i-place relation {〈n1, . . . , ni〉|〈n1, . . . , ni〉 ∈ R} in L(S),
and let 1 ≤ j ≤ i. Take the formula

(∗) x j−1 = 0 ∨∃xi+2(s(xi+2) = x j−1 ∧ Sat(xi, x0, . . . , x j−1/xi+2, . . . , xi−1)∧
Sat(xi+1, x0, . . . , x j−1/xi+2, . . . , xi, xi+1)).

(Here I am using Sat(xi, x0, . . . , x j−1/xi+2, . . . , xi−1) to abbreviate the result of re-
placing x j−1 in Sat(xi, x0, . . . , x j−1, . . . , xi−1) with xi+2.) Suppose the Gödel num-
ber of (∗) is k. Let BUi

j(x0, . . . , xi−1, xi) abbreviate the formula,

x j−1 = 0 ∨∃xi+2(s(xi+2) = x j−1 ∧ Sat(xi, x0, . . . , x j−1/xi+2, . . . , xi−1)∧
Sat(k, x0, . . . , x j−1/xi+2, . . . , xi, k)),

that is, BUi
j(x0, . . . , xi) results from (∗) by replacing the variable xi+1 with the nu-

meral for the Gödel number for (∗). BUi
j(x0, . . . , xi−1,�A�) defines the relation ob-

tained by bounded universal quantification on the jth term of R. To show this we need
to prove that

|=S BUi
j(x0, . . . , x j−1, . . . xi−1,�A�)[〈n1, . . . , n j, . . . , ni〉] (1)

holds if and only if

∀m(m < n j =⇒ |=S A[〈n1, . . . , m, . . . , ni〉]) (2)

(where, again, 〈n1, . . . , m, . . . , ni〉 is used to stand for the result of replacing the jth

term in 〈n1, . . . , ni〉 with m). This will be proven by induction on n j. Basis step:
Suppose n j = 0. Then (2) holds trivially, and (1) holds since the first disjunct of
BUi

j(x0, . . . , x j−1, . . . , xi−1,�A�) is x j−1 = 0 and |=Sx j−1 = 0[〈n1, . . . , n j, . . . , ni〉]
when n j = 0. Induction step: Suppose that the induction hypothesis holds for n j ≤ p.

522 JAMES CAIN

We need to show that for n j = p + 1, (1) holds if and only if (2) holds. Suppose
that n j = p + 1. Then, since 〈n1, . . . , n j, . . . , ni〉 does not satisfy the first disjunct of
BUi

j(x0, . . . , x j−1, . . . xi−1,�A�), (1) holds if and only if 〈n1, . . . , n j, . . . , ni〉 satis-
fies

∃xi+2(s(xi+2) = x j−1 ∧ Sat(�A�, x0, . . . , x j−1/xi+2, . . . , xi−1) ∧
Sat(k, x0, . . . , x j−1/xi+2, . . . ,�A�, k))

which holds, since n j = p + 1, if and only if 〈n1, . . . , p, . . . , ni〉 satisfies

Sat(�A�, x0, . . . , x j−1, . . . , xi−1) ∧ Sat(k, x0, . . . , x j−1, . . . ,�A�, k)

which holds if and only if both (3) and (4) hold:

|=S A[〈n1, . . . , p, . . . , ni〉] (3)

∀m(m < p =⇒|=S A[〈n1, . . . , m, . . . , ni〉]). (4)

(We use the fact that L(S) is a fixed point to get (3) and the induction hypothesis
together with the fact that L(S) is a fixed point to get (4).) (3) together with (4) in
turn holds if and only if (2) holds since n j = p + 1. �

Corollary 2.7 The conditions which determine definable i-place relations in any
given fixed point are closed under bounded universal quantification.

3 Recursion theory We now study recursion theory in terms of our fixed point lan-
guages, especially L�,ω. We begin by looking at the partial recursive functions. Here
we speak of a partial function if the domain and range are subsets of N; a partial func-
tion whose domain is the whole of N will be called a total function or simply a func-
tion. The set of partial recursive functions includes the following basic functions de-
fined on N:

1. the zero function , z(n): for all n, z(n) = 0;
2. the successor function,′: for all n, n′ = n + 1;
3. the identity functions, id i

j (for 1 ≤ j ≤ i): for all n1, . . . , ni, id i
j(n1, . . . , ni) =

n j.

Furthermore, the partial recursive functions are closed under the following opera-
tions:

4. composition: suppose that f i is an i-place partial function and g j
1, . . . , g j

i

are j-place partial functions; then if h(n1, . . . , n j) = f i(g j
1(n1, . . . , n j), . . . ,

g j
i (n1, . . . , n j)), we say that h is the composition of f i with g j

1, . . . , g j
i .

5. primitive recursion: suppose that f is an i-place partial function and g is an
i + 2-place partial function; then we define the i + 1-place partial function h
by primitive recursion on f and g as follows:

h(n1, . . . , ni, 0) = f (n1, . . . , ni),

h(n1, . . . , ni, m′) = g(n1, . . . , ni, m, h(n1, . . . , ni, m)).

THEORY OF COMPUTABILITY 523

6. minimization: suppose that f i+1 is an i + 1-place partial function; then we say
that the i-place partial function g is the minimization of f provided that

g(n1, . . . , ni) = m if f (n1, . . . , ni, m) = 0

and
∀k(k〈m =⇒ f (n1, . . . , ni, k)〉0),

and g(n1, . . . , ni) is undefined if no such m exists. We will write g(n1, . . . , ni)

as µm[f (n1, . . . , ni, m) = 0].

A recursive function is a partial recursive function that is a total function. The
partial functions that can be defined in terms of the three basic functions together
with composition and primitive recursion but without minimization will be a sub-
set of the recursive functions; such functions are called primitive recursive func-
tions. We say that a set or relation is (primitive) recursive if and only if it has a
(primitive) recursive characteristic function; that is, an i-place relation R is (prim-
itive) recursive if and only if there is a (primitive) recursive function f such that
f (n1, . . . , ni) = 0 if 〈n1, . . . , ni〉 ∈ R and f (n1, . . . , ni) = 1 if 〈n1, . . . , ni〉 /∈ R. A
set (or relation) is recursively enumerable (abbreviated r.e.) if and only if it is the
domain of a partial recursive function. (� is r.e. since it is the domain of the to-
tally undefined partial recursive function µm[(id2

1(n1, m))′ = 0].) Any recursive re-
lation R will be r.e., for R = {〈n1, . . . , ni〉| f (n1, . . . , ni) = 0}, for some recursive
characteristic function f , and thus R is the domain of the partial recursive function
µm[f (id i+1

1 (n1, . . . , ni, m), . . . , id i+1
i (n1, . . . , ni, m)) = 0].

The intuitive ideas these formal notions are intended to capture are roughly as
follows. Say that an i-place relation R on N has an effective decision procedure if
and only if there is an algorithm such that, given any i-tuple 〈n1, . . . , ni〉 of numbers
(in some standard notation, for example, decimal notation), eventually the procedure
will give an answer stating whether or not 〈n1, . . . , ni〉 ∈ R. The notion of a recursive
relation is widely thought to capture the idea of an effectively decidable relation on
N. The notion of an r.e. relation is supposed to capture the weaker notion of a rela-
tion for which there is a positive algorithmic test which will eventually produce an
affirmative answer if and only if 〈n1, . . . , ni〉 ∈ R (but may not produce any output
if 〈n1, . . . , ni〉 /∈ R). The notion of a partial recursive function is intended to cap-
ture the idea of a partial function, f i, for which there exists an algorithmic proce-
dure such that, given an input 〈n1, . . . , ni〉, the procedure will yield a resulting value,
m, if and only if f i(n1, . . . , ni) is defined (that is, 〈n1, . . . , ni〉 ∈ domain(f i)) and
f (n1, . . . , ni) = m. If f (n1, . . . , ni) is undefined then the algorithm yields no value
(and the algorithmic procedure might not even terminate). Recursive functions cover
the special case where for each input 〈n1, . . . , ni〉 the procedure yields a value. We
will not discuss the issue of whether recursion theory succeeds in providing an ade-
quate formalization of these ideas.

Theorem 3.1 Given any fixed Gödel numbering,

(a) for every partial recursive function, f , there is a formula, A, such that A defines
f in every fixed point language;

(b) there are formulas of L, Z(x0, x1),Suc(x0, x1), and for 1 ≤ j ≤ i, Idi
j(x0,. . ., xi),

such that, for every S, in L(S):

524 JAMES CAIN

Z(x0, x1) defines the zero function,

Suc(x0, x1) defines the successor function,

for1 ≤ j ≤ i, Idi
j(x0,. . .,xi)defines the identity function id i

j(n0,. . ., ni−1)

= n j−1;

(c) for every i and j, there are formulas of L, Compi, j(x0, . . . , x j+i+1),

Pr j+1(x0, . . . , x j+3), and Mni(x0, . . . , xi+1), such that in every fixed point lan-
guage:

(i) if f iis an i-place partial function defined by formula F and g j
1, . . . , g j

i
are j-place partial functions defined by formulas G1, . . . , Gi respectively,
then Compi, j(x0, . . . , x j,�G1�, . . . ,�Gi�,�F�) defines the composition
of f i with g j

1, . . . , g j
i ;

(ii) if f j is a j-place partial function defined by formula F and g j+2 is a j +
2-place partial function defined by formula G, then Pr j+1(x0, . . . , x j+1,

�F�,�G�) defines the j + 1-place function defined by primitive recursion
on f j and g j+2;

(iii) if the i+1-place partial function f i+1 is defined by the formula F(x0, . . . ,

xi+1), then the i-place partial function which is the minimization on f i+1

is defined by the formula Mni(x0, . . . , xi,�F�).

Proof: Part (a) follows from parts (b) and (c). Part (b): Take any interpretation
L(S). The zero function is the relation {〈n0, n1〉|n1 = 0}. Thus we may let Z(x0, x1)

be the formula x1 = 0 which defines this function in L(S) since |=S x1 = 0[r] for
every r that extends 〈n0, 0〉. We may take Suc(x0, x1) to be the formula s(x0) = x1,
and Idi

j(x0, . . . , xi) to be the formula x j−1 = xi. Part (c): Let L(S) to be any fixed
point language. For composition, suppose that in L(S) formula F defines f i and
G1, . . . , Gi respectively define g j

1, . . . , g j
i . Let yk abbreviate x j+i+1+k. Then

∃y1 . . .∃yi(Sat(�G1�, x0, . . . , x j−1, y1)∧ · · ·∧ Sat(�Gi�, x0, . . . , x j−1, yi)∧
Sat(�F�, y1, . . . , yi, x j))

defines in L(S) the function f (g j
1(n0, . . . , n j−1), . . . , g j

i (n0, . . . , n j−1)) = n j, the
composition of f i with g j

1, . . . , g j
i . Thus we may take Compi, j to be the formula,

∃y1 . . .∃yi(Sat(x j+1, x0, . . . , x j−1, y1) ∧ · · · ∧ Sat(x j+i, x0, . . . , x j−1, yi) ∧
Sat(x j+i+1, y1, . . . , yi, x j)).

Next consider partial functions defined by primitive recursion. For simplicity, sup-
pose that the partial function h(n0, n1) = m is defined by primitive recursion from
the partial functions f (n0) = m and g(n0, n1, n2) = m. (Our considerations can be
easily generalized to cover cases where h is not a two-placed partial function.) Sup-
pose that the formulas F(x0, x1) and G(x0, x1, x2, x3) define f and g, respectively.
We need to show that there is a formula which defines h. Consider the following for-
mula,

(x1 = 0 ∧ Sat(x3, x0, x2) ∨ ∃x6∃x7(x1 = s(x6) ∧
Sat(x5, x0, x6, x7, x3, x4, x5) ∧ Sat(x4, x0, x6, x7, x2)).

THEORY OF COMPUTABILITY 525

Suppose that the Gödel number of this formula is k. The following formula,

Sat(k, x0, x1, x2, x3, x4, k),

will be abbreviated as Pr2(x0, x1, x2, x3, x4). Pr2(x0, x1, x2,�F�,�G�) defines the
two-place partial function h that is obtained from f and g by primitive recursion. To
show this we must show that h(n0, n1) = m if and only if |=S Pr2(x0, x1, x2,�F�,

�G�)[〈n0, n1, m〉]. This we show by induction on n1. First we note that, since L(S)

is a fixed point, Pr2(x0, x1, x2,�F�,�G�) is satisfied by the same sequences as

(x1 = 0 ∧ Sat(�F�, x0, x2) ∨ ∃x6∃x7(x1 = s(x6) ∧
Sat(k, x0, x6, x7,�F�,�G�, k) ∧ Sat(�G�, x0, x6, x7, x2)).

Suppose n1 = 0. Then this formula will be satisfied by 〈n0, n1, m〉 if and only if the
first disjunct is so satisfied, if and only if f (n0) = m, if and only if h(n0, n1) = m.
Suppose that n1 = i′. Then the formula will be satisfied by 〈n0, n1, m〉 if and only if
the second disjunct is so satisfied. Note that the second disjunct is the formula,

∃x6∃x7(x1 = s(x6) ∧ Pr2(x0, x6, x7,�F�,�G�) ∧ Sat(�G�, x0, x6, x7, x2))

and thus, by the induction hypothesis, it will be satisfied by 〈n0, n1, m〉 (that is,
〈n0, i ′, m〉) if and only if m = g(n0, i, h(n0, i)), that is, m = h(n0, i ′), that is, m =
h(n0, n1), which is what we wanted to prove.

Finally we turn to minimization. Suppose that the partial function f i+1(n0, . . . ,

ni) = ni+1 is defined by formula F(x0, . . . , xi+1) and the partial function g is the min-
imization of f . We want to find a formula that defines g. g(n0, . . . , ni−1) = ni if and
only if the following condition is met:

(∗) For any j(j < ni =⇒ f (n0, . . . , ni−1, j) > 0) and f (n0, . . . , ni−1, ni) = 0.

The condition f (n0, . . . , ni−1, ni) > 0 can be defined by ∃xi+2Sat(�F�, x0, . . . ,

xi−1, xi, s(xi+2)). Let k be the Gödel number of ∃xi+2Sat(xi+1,x0, . . . ,xi−1, xi,

s(xi+2)). Then (using formula BUi+1
i from Theorem 2.6) we may let Mni(x0,. . ., xi+1)

be the formula

BUi+2
i+1 (x0, . . . , xi+1, k) ∧ Sat(xi+1, x0, . . . , xi, 0).

Then Mni(x0, . . . , xi,�F�) will then be the formula

BUi+2
i+1 (x0, . . . , xi,�F�, k) ∧ Sat(�F�, x0, . . . , xi, 0),

which defines condition (∗), completing the proof. �

Corollary 3.2 With respect to any Gödel numbering, in every fixed point, every set
or relation that is r.e. (and thus any set or relation that is recursive) is definable.

526 JAMES CAIN

Proof: Take any i-place r.e. relation R. It is the domain of an i-place partial recur-
sive function, which is definable by some formula A(x0, . . . , xi). R is defined by the
formula ∃xi A(x0, . . . , xi). �
Let’s illustrate how we can construct formulas of L that define partial recursive func-
tions in any fixed point. Take the primitive recursive function n0 + n1 = n2. We may
define this function by primitive recursion from appropriate functions f and g as fol-
lows:

n0 + 0 = f (n0) = n0;
n0 + n′

1 = g(n0, n1, n0 + n1) = (n0 + n1)
′.

f is the function id1
1. g(n0, n1, n2) = n3 is the function formed by composition of the

successor function with id3
3. Let Sum(x0, x1, x2) abbreviate

Pr2(x0, x1, x2,�Id1
1(x0, x1)�,�Comp(x0, x1, x2, x3,�Suc(x0, x1)�,�Id3

3
(x0, x1, x2, x3)�)�).

Sum(x0, x1, x2) defines the relation {〈n0, n1, n2〉|n0 + n1 = n2} in every fixed point
language. Readers not familiar with this technique might want to try as exercises
constructing formulas Prod(x0, x1, x2) and exp(x0, x1, x2) to respectively define the
functions n0 · n1 = n2 and nn1

0 = n2. (Note that the product and exponentiation func-

tions are primitive recursive: n0 · 0 = 0, n0 · n′
1 = (n0 · n1) + n0 and n0

0 = 1, n
(n′

1)

0 =
n0 · nn1

0 .)

Theorem 3.3 There are enumerably many partial recursive functions, recursive
functions, recursively enumerable relations, and recursive relations.

Proof: Since all recursive functions are partial recursive functions and all recursive
relations are r.e. relations it will suffice to show that there are at most enumerably
many partial recursive functions and r.e. relations. That there are enumerably many
partial recursive functions (and thus enumerably many r.e. relations) follows from the
fact that (in any given fixed point) each partial recursive function can be defined by
a formula and there are only enumerably many formulas of L. �

Theorem 3.4 There are functions that are not partial recursive functions and rela-
tions that are not r.e.

Proof: This follows from the previous theorem since there are nondenumerably
many functions and relations on N. �
We have seen that in any fixed point language all r.e. relations are definable. One
might wonder whether only r.e. relations are definable in the fixed point languages,
or, at least, whether only r.e. relations are definable in the least fixed point languages
for any given Gödel numbering. The following theorems will answer these questions.

Theorem 3.5 For any Gödel numbering:

(a) there exists 2ℵ0 fixed points;
(b) for any relation R, there is some fixed point in which R is definable; and
(c) there are fixed points in which relations are definable that are not r.e.

THEORY OF COMPUTABILITY 527

Proof:

(a) Suppose that we have a fixed Gödel numbering. Consider the formula Sat(x0,

x0, x1, . . . , xi). Suppose its Gödel number is n0. Then for any S and any
α, 〈n0, n0, n1, . . . , ni〉 ∈ �α(S) if and only if 〈n0, n0, n1, . . . , ni〉 ∈ S. This can
be shown by induction on α. For α = 0, this holds since �0(S) = S. If it
holds for α, then 〈n0, n0, n1, . . . , ni〉 ∈ S if and only if 〈n0, n0, n1, . . . , ni〉 ∈
�α(S) if and only if |=�α(S)Sat(x0, x0, x1, . . . , xi)[〈n0, n1, . . . , ni〉] if and only
if 〈n0, n0, n1, . . . , ni〉 ∈ �α+1(S). Finally, let α be a limit ordinal. If 〈n0, n0,

n1, . . . , ni〉 ∈ S then 〈n0, n0, n1, . . . , ni〉 ∈ ∪β<α�
β(S) = �α(S). If 〈n0, n0, n1,

. . . , ni〉 ∈ �α(S), then for some β < α, 〈n0, n0, n1, . . . , ni〉 ∈ �β(S), and thus
by the induction hypothesis, 〈n0, n0, n1, . . . , ni〉 ∈ S.
Consider any i-place relation, R, on N. Let R∗ = {〈n0, n0, n1, . . . , ni〉|〈n1, . . . ,

ni〉 ∈ R}. By the above considerations R∗ ⊆ �(R∗). Thus, by Theorem 2.2(c),
�ω(R∗) is a fixed point. Furthermore, 〈n0, n0, n1, . . . , ni〉 ∈ �ω(R∗) if and
only if 〈n0, n0, n1, . . . , ni〉 ∈ R∗. Thus to each i-place relation R, there exists a
distinct fixed point �ω(R∗). There are thus at least 2ℵ0 fixed points since there
are 2ℵ0 i-place relations on N. Furthermore, there are at most 2ℵ0 fixed points
since there are at most 2ℵ0 ways of interpreting Sat by a set of finite sequences
of natural numbers.

(b) Any i-place relation R is defined by Sat(n0, n0,x0, . . . , xi−1) in the fixed point
language LR∗,ω. (It is interesting to note that the formula Sat(n0, n0,x1, . . . , xi)

works like a ‘truth teller’.)
(c) Follows from part (b) and Theorem 3.4. �

Theorem 3.6 For any relation R, there exists a Gödel numbering for which R can
be defined in the least fixed point language for that Gödel numbering.

Proof: Let R be any i-place relation on N. R is enumerable. Let 〈n0,1,n0,2, . . . ,n0,i〉,
〈n1,1, n1,2, . . . , n1,i〉, 〈n2,1, n2,2, . . . , n2,i〉, . . . be a nonredundant enumeration of the
elements of R. (This enumeration need not be effective; recall that we are not requir-
ing our Gödel numberings to be effective.)

Case 1: The enumeration is finite. In this case R can be defined under any Gödel
numbering. If R is empty, 0 = 1 defines R. Suppose R is nonempty but finite. Let its
enumeration be 〈n0,1, n0,2, . . . , n0,i〉, . . . , 〈nk,1, nk,2, . . . , nk,i〉. Then the formula

(x0 = n0,1 ∧ x1 = n0,2 ∧ · · · ∧ xi−1 = n0,i) ∨ · · · ∨ (x0 = nk,1 ∧ x1 = nk,2 ∧
· · · ∧ xi−1 = nk,i)

defines R.

Case 2: The enumeration of R is infinite. For each m ∈ N, we let 2m be the Gödel
number of the formula

(x0 = nm,1 ∧ x1 = nm,2 ∧ · · · ∧ xi−1 = nm,i) ∨ Sat(2m + 2, x0, x1, . . . , xi−1).

(Here 2m + 2 is the numeral for the number 2m + 2.) To all the other formu-
las assign odd Gödel numbers. (x0 = n0,1 ∧ x1 = n0,2 ∧ · · · ∧ xi−1 = n0,i) ∨

528 JAMES CAIN

Sat(2, x0, x1, . . . , xi−1) defines {〈n0,1, n0,2, . . . , n0,i〉} in L�,0,{〈n0,1, n0,2, . . . , n0,i〉,
〈n1,1, n1,2, . . . , n1,i〉} in L�,1, . . . , {〈n0,1, n0,2, . . . , n0,i〉, 〈n1,1, n1,2, . . . , n1,i〉, . . . ,
〈nk,1, nk,2, . . . , nk,i〉} in L�,k, and so on. In the least fixed point language L�,ω, the
formula (x0 = n0,1 ∧ x1 = n0,2 ∧ · · · ∧ xi−1 = n0,i) ∨ Sat(2, x0, x1, . . . , xi−1) defines
R. �

Taking for R a relation that is not r.e., Theorem 3.6 shows the following.

Corollary 3.7 There are Gödel numberings with respect to which the definable re-
lations in L�,ω exceed the r.e. relations.

We see that part of the strength (measured in terms of power to define relations) of a
least fixed point language may be determined by the Gödel numbering, but each fixed
point has at least the strength to define all r.e. relations. We have put no restrictions on
allowable Gödel numberings. Normally in setting out a particular Gödel numbering
care is taken so that the numbering is effective: one can effectively go from an expres-
sion (say a sentence or formula) set out in appropriate notation to its Gödel number
(expressed in appropriate notation), and one can effectively decide for a number (ex-
pressed in appropriate notation) whether it is the Gödel number for an expression and
if so which expression (expressed in appropriate notation). I do not want the develop-
ment of our theory to depend on the general notion of an effective Gödel numbering.
On the other hand, I do not want to take the space to carefully set out a particular
Gödel numbering. So I will merely make a few remarks about well-known features
of the Gödel numbering of languages.

Using standard techniques, a Gödel numbering gn∗ can be set out that has the
following properties: (1) Not only are Gödel numbers assigned to formulas but they
are also assigned to finite sequences of formulas, in particular a derivation will have
a Gödel number; (2) The following functions, Subi(n1, n2) and Proof(n1, n2), are
primitive recursive. For each i, Subi(n1, n2) = n1 if n1 is not a Gödel number
for a well-formed formula; if n1 = gn∗(A) for some well-formed formula A then
Subi(n1, n2) = gn∗(A(xi/n2)). Proof(n1, n2) = 0 if n2 is the Gödel number for a
derivation and n1 is the Gödel number for the last sentence of the derivation; other-
wise Proof(n1, n2) = 1. Let

Sub0,...,k(n0, n1, . . . , nk+1) = Sub0(. . .(Subk−1(Subk(n0, nk+1), nk)). . . ,n1).
Thus, if

n0 = gn∗(A), Sub0,...,k(n0, n1, . . . , nk+1) = gn∗(A(x0/n1, . . . , xk/nk+1)).

Sub0,...,k(n0, n1, . . . , nk+1) is primitive recursive since it can be obtained from the
Subi functions (along with the id functions) using composition.

Let L∗ be the least fixed point language under Gödel numbering gn∗.

Theorem 3.8 The relations and partial functions definable in L∗ are exactly the
r.e. relations and the partial recursive functions.

Proof: Theorem 3.1 and its corollary tell us that all r.e. relations and partial recur-
sive functions are definable in L∗. What we need to show then is that (a) each partial
function definable in L∗ is a partial recursive function and (b) each relation that is
definable in L∗ is r.e.

THEORY OF COMPUTABILITY 529

(a) First we need to show that each partial function definable in L∗ is a partial re-
cursive function. Suppose that, for i > 0, R = {〈n0, . . . , ni〉| f (n0, . . . , ni−1) =
ni} is the graph of an i-place partial function f defined in L∗ by the formula
A(x0, . . . , xi). We need to show that f is a partial recursive function. Define
g by primitive recursion as follows:

g(r, n0, . . . , ni−1, 0, m) = Proof(Sub0,...,i(r, n0, . . . , ni−1, 0), m);
g(r, n0, . . . , ni−1, p′, m) = g(r, n0, . . . , ni−1, p, m) ·

Proof(Sub0,...,i(r, n0, . . . , ni−1, p′), m).

Note that g is primitive recursive (this relies on the fact we saw earlier that mul-
tiplication is primitive recursive). g(gn∗(A), n0, . . . , ni−1, ni, m) = 0 if and
only if m is the Gödel number of a derivation of A(x0/n0, . . . , xi−1/ni−1, xi/k)

for some k ≤ ni; otherwise the value of the function is 1. Note that, for any
sentence B, if there is a derivation of B then there are an infinite number of
derivations of B (one can take any derivation of length j of B and form a deriva-
tion of length j + 1 of B by adding the sentence B to the end of the origi-
nal derivation); thus there is no upper bound on the size of Gödel numbers of
derivations of B. This tells us that if �A(x0/n0, . . . , xi/ni) then for some m,
g(gn∗(A), n0, . . . , ni−1, m, m) = 0. For any such m, m is the Gödel number
of a derivation of A(x0/n0, . . . , xi/ni) since A defines a partial function. Thus
the partial function f is the following partial function:

µk[Proof(Sub0,...,i(gn∗(A), n0, . . . , ni−1, k),

µm[g(gn∗(A), n0, . . . , ni−1, m, m) = 0]) = 0]. (5)

Here we may take ‘gn∗(A)’ to stand in for the i + 1-place constant function
whose value is gn∗(A); this function is primitive recursive since it can be de-
fined as (z(id i

1(n0, . . . , ni)))
′...′ (where the number of applications of the suc-

cessor function = gn∗(A)). The function, µk[Proof(Sub0,...,i(gn∗(A), n0, . . . ,

ni−1, k), µm[g(gn∗(A), n0, . . . , ni−1, m, m) = 0]) = 0] is thus a partial recur-
sive function with arguments n0, . . . , ni−1, built up from the zero function, the
identity functions, and the successor function using composition, primitive re-
cursion, and minimization. Thus f is a partial recursive function.

(b) Take any i-place relation, R, definable in L∗. We must show that R is r.e. R is
defined in L∗ by some formula A(x0, . . . , xi−1). The formula A(x0,. . ., xi−1)∧
xi = 0 thus defines an i-place partial function. By part (a) this partial function
is partial recursive. R is thus the domain of a partial recursive function, and so
R is an r.e. relation, which completes the proof. �

Theorem 3.8, together with Theorem 3.1 and its corollary, gives us the following
corollary.

Corollary 3.9 A relation is recursively enumerable, and a partial function is par-
tial recursive, if and only if it is definable in every fixed point language with respect
to every Gödel numbering.

530 JAMES CAIN

Theorem 3.10

(a) If R1 and R2 are i-place r.e. relations, then so are R1 ∪ R2 and R1 ∩ R2.
(b) For any i-place relation R, R is recursive ⇐⇒ both R and R′ , the complement

of R, are r.e. (where the complement of R = {〈n0, . . . , ni−1〉|〈n0, . . . , ni−1〉 /∈
R}).

(c) If R1 and R2 are i-place recursive relations, then so are R′
1, R1 ∪ R2, and R1 ∩

R2.

Proof:

(a) Suppose R1 and R2 are i-place r.e. relations. Let A1 and A2 be formulas which
respectively define R1 and R2 in L∗. Then, in L∗, A1 ∨ A2 defines R1 ∪ R2,
and A1 ∧ A2 defines R1 ∩ R2. By Theorem 3.8, R1 ∪ R2 and R1 ∩ R2 are r.e.

(b) =⇒ Suppose that R is a recursive relation. Then R has a recursive charac-
teristic function cR such that cR(n0, . . . , ni−1) = 0 if 〈n0, . . . , ni−1〉 ∈ R and
cR(n0, . . . , ni−1) = 1 otherwise. By Theorem 3.8, cR is defined in L∗ by some
well-formed formula CR(x0,. . ., xi). Then CR(x0,. . ., xi−1, 0) defines R and
CR(x0,. . ., xi−1, 1) defines R′. Since R and R′ are definable in L∗, R and R′

are r.e.

⇐= Now suppose that R and R′ are r.e. Then they are defined in L∗

by some well-formed formulas AR(x0, . . . , xi−1) and AR′ (x0, . . . , xi−1).

(AR(x0, . . . , xi−1) ∧ xi = 0) ∨ (AR′ (x0, . . . , xi−1) ∧ xi = 1) defines in L∗ a
total function which is the characteristic function, cR, for R. cR is thus a recur-
sive function and so R is recursive.

(c) By part (b), R1 is recursive ⇐⇒ R1 and R′
1 are r.e. ⇐⇒ R′

1 and R′′
1 are r.e.

⇐⇒ R′
1 is recursive. Suppose that R1 and R2 are i-place recursive relations.

By part (b), R1, R′
1, R2, and R′

2 are r.e. By part (a), R1 ∪ R2 and (R1 ∪ R2)
′(=

R′
1 ∩ R′

2) are r.e. Thus, by (b), R1 ∪ R2 is recursive. The proof for R1 ∩ R2 is
similar. �

Let us return to some ideas developed in the proof of Theorem 3.8. Consider the re-
cursive function obtained from (5) by replacing ‘gn∗(A)’ with the variable ‘e’:

µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, k),
µm[g(e, n0, . . . , ni−1, m, m) = 0]) = 0] .

Abbreviate this as enumi(e, n0, . . . , ni−1). We have seen that if e0 is the gn∗ of a for-
mula A which defines in L∗ an i-place partial function f , then enumi(e0, n0,. . ., ni−1)

just is the partial function f . If e0 is not the gn∗ of a formula with at most x0, . . . , xi

free, then enumi(e0, n0, . . . , ni−1) is the i-place partial function which is totally unde-
fined (that is, its range = �). Suppose that e0 = gn∗(A) for some formula A which
defines in L∗ an i + 1-place relation R which is not a partial function (that is, for
some n and some m �= n, both 〈n0, . . . , ni−1, n〉 and 〈n0, . . . , ni−1, m〉 ∈ R), then
enumi(e0, n0, . . . , ni−1) defines an i-place partial function whose graph is a subset of
R. The value of enumi(e0, n0, . . . , ni−1) may be described as follows: take the small-
est number m for which m is the Gödel number of a derivation whose last sentence
is of the form A(n0, . . . , ni−1, k) where k ≤ m; then enumi(e0, n0, . . . , ni−1) = k

THEORY OF COMPUTABILITY 531

(if no such m exists, then enumi(e0, n0, . . . , ni−1) is undefined for the arguments
n0, . . . , ni−1). Since enumi(e, n0, . . . , ni−1) is a partial recursive function,
enumi(e, n0, . . . , ni−1) is an i + 1-place partial recursive function which enumerates
all the i-place partial recursive functions. This gives us our next theorem.

Theorem 3.11 For each i, there is an i + 1-place partial recursive function,
enumi(e, n0, . . . , ni−1) such that, for any i-place partial function f, f is partial re-
cursive if and only if for some e:

f (n0, . . . , ni−1) = enumi(e, n0, . . . , ni−1).

Comment on Theorem 3.11: A stronger version of Theorem 3.11 could have been
derived if we had given a more fully developed treatment of the primitive recursive
functions. It can be shown that there are primitive recursive functions P2, L1, and R1

such that whenever P(n0, n1) = n2, then the following hold:

L(n2) = n0,
R(n2) = n1.

Rather than define enumi(e, n0, . . . , ni−1) as

µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, k), µm[g(e, n0, . . . , ni−1, m, m) = 0]) = 0],

we could instead have used

L(µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, L(k)), R(k)) = 0]).

This involves only one usage of minimization. If e = gn∗(A) for some formula which
defines in L∗ a partial function f , then L(µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, L(k)),

R(k)) = 0]) is the partial function f ; if e �= the gn∗ of a formula with at most
x0, . . . , xi free then L(µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, L(k)), R(k)) = 0])
is the i-place partial function with range = �, and if e = gn∗(A)

for some formula A that defines in L∗ an i + 1-place relation R
that is not the graph of an i-place partial function then the graph of
L(µk[Proof(Sub0,...,i(e, n0, . . . , ni−1, L(k)), R(k)) = 0]) is a proper subset of R.
Letting h(e, n0,. . . ,ni−1, p) abbreviate Proof(Sub0,...,i(e, n0,. . . ,ni−1, L(p)), R(p)),
we get a version of Kleene’s Normal Form Theorem: there are primitive recursive
functions L and h such that for every i-place partial function f, f is partial recursive
if and only if there is an e such that f (n0, . . . , ni−1) = L(µk[h(e, n0, . . . , ni−1, k)]).

Let Wi = {n| for some m, enum1(i, n) = m}. From Theorem 3.11 we obtain the
following.

Theorem 3.12 For any S ⊆ N, S r.e. if and only if there is an i such that S = Wi.

Theorem 3.13 Under any given Gödel numbering, for any i,

(a) there is a formula ENUMi(x0, . . . , xi+1) which defines enumi(e, n0, . . . , ni−1)

in every fixed point;

(b) given any fixed point S, an i-place partial function f is a partial recursive func-
tion if and only if there is an index e such that

f (n0, . . . , ni−1) = m ⇐⇒|=S ENUMi(e, n0, . . . , ni−1, m);

532 JAMES CAIN

(c) there is a formula W(x0, x1) that enumerates, in every fixed point S, all and
only the r.e. sets, that is, a set R ⊆ N is r.e. if and only if there exists an index
e such that

n ∈ R ⇐⇒|=SW(e, n).

Proof: (a) follows from Theorems 3.1(a) and 3.11. (b) follows from (a). For (c) we
can take W(x0, x1) to be ∃x2ENUM1(x0, x1, x2). Note that if we were only concerned
with the least fixed point language L∗ we could take W(x0, x1) to be Sat(x0, x1). Of
course, the formulas ENUMi and W(x0, x1) will vary depending on the Gödel num-
bering. �

Department of Philosophy
Oklahoma State University
308 Hanner Hall
Stillwater OK 74078-5064
email: jcain@okstate.edu

mailto: jcain@okstate.edu

