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The Theory of Computability
Developed in Terms of Satisfaction

JAMES CAIN

Abstract  The notion of computability is developed through the study of the
behavior of aset of languagesinterpreted over the natural numbers which con-
tain their own fully defined satisfaction predicate and whose only other vocab-
ulary islimited to O, individual variables, the successor function, the identity
relation and operators for digunction, conjunction, and existential quantifica-
tion.

1 Introduction  Techniques from recursion theory (the theory of computability)
have proven to be invaluable in the study of the theory of truth. It is perhaps not
as well known that recursion theory can in turn be studied in terms of the theory of
truth (in particular the theory of satisfaction). | suspect that for one who has been
introduced to the basic metatheorems of mathematical logic up to, say, Godel’s first
incompl eteness theorem, a nice introduction to the fundamental concepts and theo-
rems of recursion theory isthrough the theory of satisfaction. Accordingly, this paper
is directed to three audiences. (1) those familiar with recursion theory who want to
see its connections to satisfaction, (2) those interested in theory of truth who want
to see some of its application and methods, and (3) those, especialy in philosophy,
who do not have abackground in recursion theory but areinterested in seeing adevel-
opment of some of its fundamental concepts and theorems. No familiarity with the
theory of truth or satisfaction will be assumed and no knowledge of recursion the-
ory will be assumed that goes beyond the techniques used in the proof of Godel’s
first incompleteness theorem. In particular, we will assumethat the reader knows that
“Godel numbers’ can be used to code syntactically definable features of alanguage
and that setsand rel ations of Godel numbers defining some of these featuresare prim-
itive recursive. Section2lwill introduce and briefly study some logical features of a
very simple language which can be interpreted so that it containsits own satisfaction
predicate. In terms of this language Section[Bwill introduce some of the basic con-
cepts of recursion theory and prove some of its fundamental theorems. Of course, my
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treatment of recursion theory is not intended to be comprehensive; rather, theaimis
to give the reader afeel for how recursion theory can be developed in terms of the
theory of satisfaction. Since this paper will not assume that the reader isan expert in
either of the areas of discussion, onewhoiswill find that certain sections of the paper
can simply be skimmed over.

2 A simple language containing its own satisfaction predicate Let L be an unin-
terpreted language whose vocabulary includes the following symbols:

, () 0 Ssa s ~ A v 3

plus the infinite set of variables xg, X1, Xo, .... Note that L contains no symbol for
negation or universal quantification. The terms of L include the individual constant
0, the variables, and, for any term t, s(t) isaterm. The atomic formulas of L include
to ~ t; (for any terms ty and t;) and Sat(to, ..., tn) (for any sequence of terms
to, ..., th, for n > 0). The formulas (or wffs) of L include the atomic formulas, and
whenever A and B are well-formed formulas so are (A v B), (A A B), and, for any
i, Ix A
An interpretation | of L provides adomain D, assigns to 0 some element O,
of Dy, assignsto s a 1-place function s; mapping D, into D,, assigns identity to ~,
and assignsto Sat, a set Sat) of finite sequences (dg, . . ., dn) of elements of D, (the
sequencesin Sat; need not all be of the same length). We will restrict our attention to
interpretations | of L suchthat D, =N={0,1, 2,...},0, =0; and s; = the successor
function. Thusto specify aninterpretation it will sufficeto specify Sat,, the extension
of Sat. Wewill indicate the interpreted language in which Sat; = Sby writing L(S).
Let r be any denumerable sequence, (ro, r1, r2, ...}, of natural numbers. We let

r(x) be afunction mapping the variables into N by setting r (x;) = rj. We may now
define the notion of the denotation of termt with respect tor, den, (t). If tisavariable
thenden, (t) =r(t). Ift =0, den, (t) = 0. If t = s(tg), then den, (t) = the successor
of den, (tp). Finally, we define formula A is satisfied by sequencer in L(S) (written
Es Alr]). =sA[r] if and only if

Aisty~ t; and den, (tg) = den, (t1), or

AisSat(ty, ..., ty) and ( den; (tp), ..., den (tn)) € S, or

Ais (B v C) and either =5 B[r] or =5 CJr], or

Ais (B A C) and both =5 B[r] and =5 CJ[r], or

Ais3xBand =g B[r'], for somer’ whichisan i-variant of r (thatis, r’ differs

fromr at most in its assignment to X;).

Say that r and r’ agree on the free variables in aterm t, or in aformula A, provided
that whenever x; isfreeintorin A, r(x) = r’(x;). Thefollowing useful lemma can
be proven by induction on the complexity of term or aformula.

LemmaZ2.1 Ifr andr’ agreeonthefreevariablesint thenden, (t) = den, (t). And
if r and r’ agree on the free variablesin A, then for any S E=gA[r] if and only if

s Alr'].

It follows from the lemmathat if Aisasentencethen =sA[r] for somer if and only
if =sA[r] for every r. We write =g A as short for =sA[r] for all r. We say that r
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extends (dy, ..., dy) provided that for 0 <i < n,r; = di;1, that is, r (%) = dj;1. We
say that formula A is satisfied by (n1, ..., nm) in L(S)(Es Al{ny, ..., nm]) if and
only if =gA[r] for every r that extends (n4, ..., ny).

Next we must consider the conditions under which Sat can be treated as a satis-
faction predicate. Two approachesmight betaken. Thedirect approach would require
the domain of the interpretation to contain the formulas of the language. The more
usual approach isin terms of Godel numberings and thisis the approach we will fol-
low. We let a Godel numbering be a one-to-one mapping from formulas of L into N.
Generally when people consider Godel numberingsit is understood that the mapping
will be ‘effective’, but, for the time being, we will not put any such restriction on the
Godel numbering. For afixed Godel numbering gn, we will define

D (S) = {(dp, ..., dn)| either (1) n=0and dy = gn(A) for some sentence A of
L suchthat =gA, or (2) n > 0 and dg = gn(A) for some well-formed formula
Aof L withat most Xg, . .., Xn_1 freeand =sA[(dy, ..., dn)]}.

With respect to a given Godel numbering, we say that Sat expresses a satisfaction
predicate for L(S) if and only if ®(S) = S.

Thus, for example, if the Godel number of the formula xg = X1 is 5, then
if Sat is a satisfaction predicate, Sat(Xg, X1, X2) Will be satisfied by a sequence
(5, mg, my, mg, My, ...) if and only if theformula xy = x; issatisfied by the sequence
(my, My, Mg, My, ...), in other words, if and only if m; = M.

If ®(S) = S, we say that Sisafixed point of ®, and that L(S) is afixed point
language. Let ®°(S) = S, **+1(S) = d(D*(S)), and, for limit ordinal 1, ®*(S) =
Ug <2 @Y (S). With respect to a given Godel numbering, we call afixed point aleast
fixed point provided it is a subset of every fixed point, and where Sis aleast fixed
point, we speak of L(S) asaleast fixed point language. We let A be the empty set.

Theorem 2.2

(a) With respect to any Godel numbering, there exists a least fixed point language,
namely L(®®(A)).
(b) In L(®*(A)), Sat isa satisfaction predicate.
(c) If SC ®(9), then ®*(S) is a fixed point; in fact, ®*(S) is a subset of every
fixed point containing S, andin L(®*(S)), Sat is satisfaction predicate.
Our proof of Theorem[2.2Mwill rely on the following lemma.
Lemma23 Wth respect to any Godel numbering the following hold.

(a) Suppose S, € S; then for any formula A and sequencer, =g Alr] entails[=s,
Alr].

(b) ® ismonotonic (thatis, if S, C S then ®(S;) C P(SH,)).

(©) If SC ®(9), then for any ordinal o, ®*(S) € ®*1(S).

(d) If SC ®(S) and o < B then d*(S) < BA(S).

(e) If SC () then, for any formula A and sequencer, =qo(s) Alr] = E=on(s)
A[r] for some finite n.

Proof of Lemmal2.3] (&) can be shown by induction on the complexity of the for-
mula A. (b) followsfrom (a) giventhedefinition of ®. For (c), (d), and (€) we assume
that SC ®(S). To prove (c) we show by induction on « that ®%(S) € ®**1(S). For
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a = 0, notethat ®2(S) = SC & (S) = ®1(S). Next we must show that if ®*(S) C
®*t1(S) then d*+1(S) € dtD+1(S), Suppose ®*(S) € ®**+1(S). Then, by the
monotonicity of ®, ®(®*(S)) € d(P*TL(S)), that is, *TH(S) € d@tDFL(S),
Finally, suppose that « is alimit ordinal and that d € ®*(S). We must show that
d € ®T(S). For some B < a,d € ®#(S) since d*(S) = U, P (S). By hy-
pothesis ®#(S) € ®FH1(S), so d € ®P+1(S). By monotonicity, since ®#(S) <
®%(S), PFL(S) C d*FL(S). Thusd € d*+1(S).

For (d) we show by induction on ordinal § that ®*(S) € ®**%(S). Clearly
®*(S) € P*HO(S). Suppose that ©*(S) € d*+¥(S). By monotonicity &*+1(S)
@ H+1(S). By (€), @*(S) € ®*t1(S), and thus % (S) € ®*H+1(S). If Sisalimit
then soisa + 8, and o < @ + 8. Thus ®*T°(S) = U, _41sP7(S). Thus &*(S) C
(DOZ—HS(S).

(e) can be shown by induction on the complexity of formula A. We assume
that =05y Alr]. Suppose that A is atomic. The case is clear for A = t; ~
tp, SO suppose that A =Sat(tp, ..., tn). Then (den; (tp),....den, (tn)) € ®*(S).
But then, since ®?(S) = U, ®"(S), for some finite n, (den, (tg), ...,den; (t,)) €
®"(S), and thus =qen(s) Alr]. Suppose A = (B v C). Then either =¢0(s) B[r] or
a0 (5 Cl[r]. By hypothesis, for some finite n, either =gn(s)B[r] or =4n(s)C[r] and
thus =¢n(s) (B v C)[r], that is, =en(s)Alr]. Suppose A= (BAC). Then =¢o(s) Blr]
and =40 (5)C[r], and so for somefinite j and k, =4 () B[r] and =45 C[r], and thus
Foitk(s (B A C)[r] by (d) and (a) above. Suppose A = 3xB. |=qu (53X B[r] =
o (s B[r’] for somer’” which differsfromr at most in its assignment to x, = (by
the induction hypothesis) [=qn(s)B[r’] for some finite n = {=gn (53X B[r]. O

Proof of Theorem[2.2] We begin with (c). Suppose that S € ®(S). We need to
show (1) ®“(S) isafixed point, (2) ®“(S) iscontained in every fixed point that con-
tains S, and (3) in L(®“(S)), Sat isasatisfaction predicate. Let'sbeginwith (2). By
induction we can seethat, for all n € N, ®"(S) iscontained in every fixed point con-
taining S (if any exist): for ®°(S) = S C every fixed point containing S, and when-
ever ®"(S) C S, where S* isafixed point containing S, by monotonicity and the
definition of afixed point, ®"1(S) = & (d"(S)) € &(S*) = S*. Since, for each n,
®"(S) is contained in every fixed point that contains S, Upcny®"(S) = ©“(S) must
also be.

To show (1) we need to show that ®*(S) = “*1(S). By (c) of Lemmal2.3)
d2(S) C d@H1(S), sowemust show that d*+t1(S) € & (S), thatis, (Mg, ..., My) €
O*tH(S) = (Mg, ..., My) € ®*(S). By the definition of @, if (Mg, ..., my) €
®»*1(S) then my = gn(A), for some formula A containing a most X, .. ., Xn_1
free, and =¢o(s) Alr] for any r that extends (my, ..., my) (or, if n= 0, for any r).
Take any such r. By (e) of Lemmal[2.3] F=on(s) Alr] for some finite n. But then
by Lenma.I] =qn(s) Alr’] for any r’ that extends (my, ..., my) (or for any r’ if
n = 0) sincer’ will agree with r on any free variablesin A. Thus by the definition
of ®, (Mg, ..., my) € ®"L(S). Since d™L(S) € ®2(S), (Mg, ..., M) € ().
Thus (1) holds. (3) follows from (1) by the definition of satisfaction predicate.

To complete the proof of Theorem[2.2it suffices to note that parts (a) and (b)
follow from part () since A € ®(A) and A C any fixed point. O
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It may be useful to pause and reflect on the construction of the least fixed point.
Note that for no finite nis L(®"(A)) afixed point. We can see this as follows. For
any formula A with Godel number n, let ™ A™ be the numera for n (for example, if
gn(A) = 2, then "A™ = s(s(0))). Let Sat®("AT) = A, and let Sat"t1("AT) = Sat
("Sat"("A™M™). Then Sat"("0 = 07) first getsevaluated true in language L(®"(A))
(that is, Eema)Sat"("0 = 07) if and only if m > n), and (gn(Sat"("0 = 07))) €
®™L(A) but ¢ ®"(A). Thusfor nofinitenis L(®"(A)) afixed point language.

We will say that aformula A(Xp), whose only freevariableis Xg, isatruth pred-
icate for L(S) if and only if, for every sequencer,

EsA(xg)[r] if and only if r (o) = gn(B) for some sentence B and =5 B.

Sat(Xg) will be atruth predicate in each fixed point language.

L(D*(A)) will not be the only fixed point language. Consider the formula
Sat(Xg, Xo). Suppose that its Godel number is n. Consider any interpretation S of
Sat. Supposethat (n, n) € S. Then =g Sat(Xg, Xg)[r] for any r that extends (n). Thus
(n,ny € ®(S). In particular {(n,n)} < ®({(n,n)}), and thus, by Theorem [2.2{c),
@« ({(n, n)}) will be afixed point containing (n, n). On the other hand, suppose
(n, n) ¢ Sthenitisnot the casethat =g Sat(xg, Xo)[r] for any r that extends (n), and
thus (n, n) ¢ ®(S). By induction it can be seen that, for al «, (n, n) ¢ ®*(S). In par-
ticular, for all « < w, (N, N) ¢ ®*(A), and thus (n, n) ¢ ®“(A). Thus ®“({(n, n)})
and ®?(A) aredistinct fixed points. Asweshall see, for each Godel numbering there
are 2% fixed points.

To make our terminology less cumbersome, we will abbreviate L(®*(S)) as
Ls,,. Our primary interest will be the least fixed point language L, ,,. Rather than
write =goa)Alr] wewill write =A[r], and rather than write =go 4 ) A we will write
EA.

Given a fixed Godel numbering for the language, the theory of the least fixed
point interpretation, L, ., admits of arather straightforward axiomatization. We take
as our sole axiom

0~0.

The set of theorems is the smallest set of sentences which includes the axiom and is
closed under thefollowing rules of inference. (Read-Aas* Aisatheorem’. FA—
B meansthat if Aisatheoremthensois B.)

Rule 1 Ho ~ t1 = FS(tg) ~ s(t1)

Rule 2 FA = (A vV B)(for any sentence B)

Rule 3 FB = F(AV B)(for any sentence B)

Rule4 FAand FB = (A A B)

Rule5 FAX/N) = FIx A

Rule 6 FA(Xo/Ng, ..., Xm/Nm) = FSat(" A7, ng, ..., Np)

Herewelet n stand for the numeral for n (for example, if n=2thenn = s(s(0))), and
A(Xo/to, . . ., Xm/tm) istheformulathat resultsfrom replacing all free occurrences of
the variables x; with t; (for 0 <i < m) informula A.

A derivation is a sequence of sentences of L in which each sentence is either
0~ 0or elsefollows from a previous sentence (or sentences) in the sequence by one
of the rules of inference. A sentence will be atheorem if and only if it occurs as the
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last sentence of a derivation. The set of theorems will be relative to a Godel hum-
bering; that is, different Godel numberings will generaly result in a different set of
theorems. For any fixed Godel numbering, our axiomatization is a sound and com-
plete axiomatization of the |least fixed point language Ly .

Theorem 2.4 (Soundness Theorem)  Wth respect to any Godel numbering, for any
sentence A, if FAthen =A; infact, if Sisany fixed point of ® then if -A then =sA.

Proof: Thisholdssince = 0= 0; Rules 1 through 5 preserve truth under any inter-
pretation of L, and Rule 6 preserves truth in any fixed point interpretation, £(S), of
the language. O

Theorem 2.5 (Completeness Theorem)  With respect to any Godel numbering, for
any sentence A, if =Athen A,

Proof: By Lemmalﬂe), if =Athen, for somefiniten, =qon(a)A. Thusit will suf-
fice to show by induction on n that if F=¢n(4) A then =A. Suppose that n = 0 and
FEooa)A thatis, =4 A. We show by induction on the complexity of Athat -A. Sup-
posethat Aisatomic. A cannot be Sat(to, ..., tm) Sincethe extension of Sat isempty
in L(A). So Aistg ~ t1. Since A is atrue sentence, tg and t; will be the same nu-
meral. Thustgy ~ t; will either betheaxiom 0~ 0 or be obtained from 0 ~ 0 by afinite
number of applications of Rule 1. Theinduction step, for A nonatomic, isstraightfor-
ward. So now we assume that, for any sentence A, if =¢n(5)Athen-A, to show that,
forany A, if =iy ) Athen FA. We assume =gn1(, A and show by induction on
the complexity of A that -A. The argument is the same as for the case of n = 0 ex-
cept that now we must also consider the case where Aisthe sentence Sat (1o, . . ., tm)-
Suppose |:¢n+1(A)Sat(to, .ot to, .., tm Will be numerals. We may assume that
they denote respectively the numbers kg, .. ., kn. Ko is the Godel number of afor-
mula B with at most Xg, . .., Xm—1 free such that =qn () B[r] for every r that extends
(k1,...,km). Thus Eona) B(Xo/t1, ..., Xm—1/tm)[r] for every r, that is, F=qna)
B(xo/t1, ..., Xm—1/tm). Thus, by theinduction hypothesis, -B(Xg/t1, . . ., Xm—1/tm)-
So, by Rule 6, FSat("B7, ty, ..., tm), that is, FSat(tg, ..., tm), which is what we
wanted to show. O

Recall that so far we have put no restrictions on the way language L is to be Godel
numbered. If the Godel numbering allows us either (1) to effectively decide for any
formula A what its Godel number is or (2) to effectively decide for any number (ex-
pressed as a numeral of L) whether it is the Godel number of a formula and, if so,
of which formula, then we will be able to effectively decide whether a sentencein a
sequence follows from previous sentences by one of the rules (and in particular we
will be able to decide whether it follows by Rule 6), and thus it will be effectively
decidable whether a given sequence is a derivation. If, however, neither (1) nor (2)
is effectively decidable we will have no effective way to determine whether one sen-
tence follows from another by Rule 6.

It will be useful to introduce the notion of the definability of a set or relationin
L(S), for arbitrary S. We say that aformula F containing at most g, ..., X asfree
variables defines the relation Rin L(S) provided that R = {(ng, ..., nj)| =sF[(ng,
...} For n e N, we identify (n) with n itself and so treat a set of num-
bers as a one-place relation on the numbers. We identify an n-place function with
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an n + 1-place relation. Thus our notion of definition applies to sets and func-
tions. Say that a condition C determines an i-place relation R provided C holds of
(ng,...,n)ifandonly if (ny, ..., n;) € R If condition C determines an i-place re-
lation R, then we say that agiven formula defines condition C if and only if it defines
the relation determined by C. A condition or relation is definable in L(S) provided
that thereis aformulawhich definesit in £(S).

Suppose that {(nq, ..., n)|{ny, ..., n;) € R} isany i-place relation on N and
suppose that 1 < j < i; then the relation {(ny,...,nj, ..., N)Iym(m < n; =
(ng,...,m,...,n) € R)}issaidto be obtained by bounded universal quantification
on the j" term of R (herewe areusing (n;, ..., m, ..., n;) to stand for the result of
replacing the j termin (nq, .. ., nj, ..., nj) withm). Thefollowing theorem will be
useful.

Theorem 2.6  With respect to any Godel numbering, for eachi andfor 1 < j </,
thereisaformula BUij (Xo, - .., X;) of L such that, for any fixed point language L(S)
and any formula Awith at most X, . . ., Xj_1 freewhich definesin £(S) thei-placere-
lation R, BU} (Xo, ..., Xi_1, " A" definesthe relation obtained by bounded univer sal

quantification on the j term of R.
Proof:  Suppose that £L(S) is afixed point language and formula A, with at most

Xo, - .., Xi_1 free, definesthei-placerelation {(ny, ..., nj)|{Ny, ..., nj) € R}in L(S),
andlet1 < j <i. Taketheformula

(¥*)  Xjm1=0V3Ixi;2(S(Xi42) = Xj—1 A Sat(Xi, X0, - - -, Xj—1/Xi42, - - s Xi—DA
Sat(Xi41, X0, -+ -5 Xj—1/Xi425 - -5 Xiy Xit1)).
(Here | am using Sat(x;, Xo, . . ., Xj—1/Xi42, . .., Xi—1) t0 abbreviate the result of re-

placing Xj_1 in Sat(Xi, X0, ++ s Xj—1y + -+ Xi—1) with X ».) Suppose the Godel num-
ber of (x) isk. Let BU} (Xo, ..., Xi_1, X ) abbreviate the formula,

Xj—1=0VIXi;2(S(Xi12) = Xj_1 ASA(Xi, X0, - - » Xj—1/Xig2, - -, Xi—DA
Sat(kv XOa ceey Xjfl/XH»Za ceey Xia k))l

that is, BU} (Xo, - - -, X;) results from (x) by replacing the variable x; ; with the nu-
meral for the Godel number for (x). BU}(XO, ..., Xi_1, " A7) defines the relation ob-

tained by bounded universal quantification on the j term of R. To show thiswe need
to prove that

=sBU (X0, - ., Xj—1, .. Xi—1, TAD[(Ng, ... 0y, L 0] (1)

holds if and only if

vym(m < nj = E=sA[(ng,....,m,....m)]) ()]
(where, again, (ny, ..., m, ..., n;) isused to stand for the result of replacing the jth
termin (nq, ..., nj) with m). This will be proven by induction on nj. Basis step:

Suppose nj = 0. Then (2) holds trivialy, and (1) holds since the first digunct of
BU} (X0s oy Xj=1, -+, Xim1, TAN isxj_1 =0and =eXj_1 = 0[(Ng, ..., nj, ..., m)]
when n; = 0. Induction step: Suppose that theinduction hypothesisholdsfor nj < p.
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We need to show that for nj = p + 1, (1) holds if and only if (2) holds. Suppose

that_nj = p+ 1. Then,since (ny, ..., nj, ..., n;) doesnot satisfy thefirst disunct of
BU}(xo, ooy Xj—1, ... Xi—1, " AT, (1) holds if and only if (ng, ..., nj, ..., n) satis-
fies

IXip2(S(Xit2) = Xj-1 A Sa("AXo, ..., Xjo1/Xir2, -0 Xim1) A

Sat(K, Xo, . .., Xj—1/Xit2, ...," A, K))
which holds, sincenj = p+ 1, ifandonly if (ny,..., p,..., n;) satisfies
Sat(" A, X0, ..., Xj—1, ..., Xi—1) ASat(K, Xo, ..., Xj—1, ..., AT, k)
which holds if and only if both (3) and (4) hold:
FEsAl(ng, ..., p, ... )] (©)]

ymim < p=ksA[(N,...,m, ..., n)]). (@]

(We use the fact that L(S) is afixed point to get (3) and the induction hypothesis
together with the fact that £(S) is afixed point to get (4).) (3) together with (4) in
turn holdsif and only if (2) holdssincen; = p+ 1. O

Corollary 2.7  The conditions which determine definable i-place relations in any
given fixed point are closed under bounded universal quantification.

3 Recursion theory We now study recursion theory in terms of our fixed point lan-
guages, especially L, ,,. We begin by looking at the partial recursive functions. Here
we speak of apartial function if the domain and range are subsets of N; apartial func-
tion whose domain is the whole of N will be called atotal function or simply a func-
tion. The set of partial recursive functionsincludes the following basic functions de-
fined on N:

1. the zero function , z(n): for al n, z(n) = 0O;
2. the successor function,’: for al n,n’ = n+ 1;
3. theidentity functions, id} (for 1 < j <i): foral ny, ..., nj,idj(ny, ..., M) =
nj.
Furthermore, the partial recursive functions are closed under the following opera-
tions:

4. composition: suppose that f' is an i-place partial function and gi, ...,gij
are j-place partial functions; then if h(ny, ..., nj) = fi(gi(nl, N £ 13 TR
gij (N1, ..., Nj)), wesay that histhe composition of fi with gi, e, gij.

5. primitive recursion: suppose that f is an i-place partia function and g is an

i + 2-place partial function; then we define the i + 1-place partia function h
by primitive recursion on f and g asfollows:

h(ng, ..., n,0) = f(ny, ..., np),
h(ng, ..., ni, M) =gy, ..., N, mh(ng, ..., N, m)).
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6. minimization: supposethat f'*1isani+ 1-place partia function; then we say
that the i-place partial function g isthe minimization of f provided that

aging,...,n)=miff(ny,...,n;,m =0
and
Vk(kim=f(n4, ..., n;, k))0),
and g(ng, ..., n;) isundefined if no such mexists. Wewill writeg(ng, ..., ny)
asum[f(ng,...,n;,m=0].

A recursive function is a partial recursive function that is a total function. The
partial functions that can be defined in terms of the three basic functions together
with composition and primitive recursion but without minimization will be a sub-
set of the recursive functions; such functions are called primitive recursive func-
tions. We say that a set or relation is (primitive) recursive if and only if it has a
(primitive) recursive characteristic function; that is, an i-place relation R is (prim-
itive) recursive if and only if there is a (primitive) recursive function f such that
f(ny,....,n)=0if (ng,....,n) e Rand f(ny,...,n) =21if(ny,....,n) ¢ R A
set (or relation) is recursively enumerable (abbreviated r.e.)) if and only if it is the
domain of a partial recursive function. (A isr.e. since it is the domain of the to-
tally undefined partial recursive function Mm[(idf(nl, m))" = 0].) Any recursive re-

lation Rwill ber.e, for R= {{(ny,...,n))|f(nq,...,n;) = 0}, for some recursive
characteristic function f, and thus R is the domain of the partial recursive function
ol fGdyng, .o m), L id TR g, L m)) = 0]

The intuitive ideas these formal notions are intended to capture are roughly as
follows. Say that an i-place relation R on N has an effective decision procedure if
and only if there is an algorithm such that, given any i-tuple (nq, ..., nj) of numbers
(in some standard notation, for example, decimal notation), eventually the procedure
will give an answer stating whether or not (ny, ..., nj) € R. Thenotion of arecursive
relation is widely thought to capture the idea of an effectively decidable relation on
N. The notion of anr.e. relation is supposed to capture the weaker notion of arela-
tion for which there is a positive algorithmic test which will eventually produce an
affirmative answer if and only if (ng, ..., n;) € R (but may not produce any output
if (ny,...,n) ¢ R). The notion of a partial recursive function is intended to cap-
ture the idea of a partial function, f', for which there exists an agorithmic proce-
dure such that, given aninput (ny, ..., n;), the procedure will yield aresulting value,
m, if and only if f'(ny, ..., n;) isdefined (that is, (ny, ..., n;) € domain( f')) and
f(ny,....,n)=m.If f(ny,...,n) isundefined then the algorithm yields no value
(and the algorithmic procedure might not even terminate). Recursive functions cover
the special case where for each input (ny, ..., n;) the procedure yields a value. We
will not discuss the issue of whether recursion theory succeeds in providing an ade-
guate formalization of these ideas.

Theorem 3.1  Given any fixed Godel numbering,
(a) for everypartial recursivefunction, f,thereisaformula, A, suchthat A defines
f in every fixed point language;
(b) thereareformulasof L, Z (Xg, X1), SUC(Xg, X1), andfor 1 < j <, Id}(xo,. Co X,
such that, for every S, in L(S):
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Z (Xg, X1) defines the zero function,
Suc(Xg, X1) defines the successor function,
forl<j<i, Id} (Xo- - ., X ) defines the identity function id}(no,..., Ni_1)

= Nj_1,
(c) for every i and |, there are formulas of L, Comp;j(Xo, ..., Xj+i+1),
Pritl(xo, ..., Xj+3),and Mn' (o, . . ., Xi;1), such that in every fixed point lan-
guage:

(i) if flisan i-place partial function defined by formula F and g, ..., ¢/
are j-place partial functionsdefined by formulas Gy, . . ., G; respectively,
then Comp; j(Xo, ..., Xj,"G1,...,"Gi,"F") defines the composition
of flwithgl,....g;

(i) if f)isa j-place partial function defined by formula F and gi*?isa j +
2-place partial function defined by formula G, then Prj“(xo, ooy Xj41s
TF7,TGT) definesthe j 4+ 1-place function defined by primitive recursion
on fland gi*+?;

(iii) ifthei+1-placepartial function '+ isdefined by theformula F (xo, . . .,
Xi11), then thei-place partial function which isthe minimization on fi+1
is defined by the formula Mni (xg, ..., X, "F 7).

Proof: Part (a) follows from parts (b) and (c). Part (b): Take any interpretation
L(S). The zero function isthe relation {(ng, n1)|n; = 0}. Thuswe may let Z (Xg, X1)
be the formula x; = 0 which defines this function in L(S) since =g x; = 0O[r] for
every r that extends (ng, 0). We may take Suc(Xg, X1) to be the formula s(xp) = Xy,
and Id} (Xo, - .., Xi) to bethe formula x;_; = x. Part (c): Let L(S) to be any fixed
point language. For composition, suppose that in L(S) formula F defines fi and
G1, ..., G respectively define gl, ..., g/. Let yi abbreviate Xji 1,k Then

yr. . (S G Xo, - Xjm1, YD) A A SAC G X, L, Xjo1, YD A
Sat("F ', y1, .. il X))

defines in L(S) the function f(gi(no, ..., Nj_1), ...,gij(no, ...,Nj_1)) = nj, the
composition of f' with g‘l, e, gi‘. Thus we may take Comp; j to be the formula,

Jyr. .. 3Yi( Sat(Xj41, X0, - - -5 Xj—1, Y1) A - A SE(Xjtis X0y« - -5 Xj—1, Vi) A
Sat(Xj4it1s Yo+ -+ Yis Xj))-

Next consider partial functions defined by primitive recursion. For simplicity, sup-
pose that the partia function h(ng, n;) = mis defined by primitive recursion from
the partia functions f (ng) = mand g(ng, Ny, Nz) = M. (Our considerations can be
easily generalized to cover cases where h is not atwo-placed partial function.) Sup-
pose that the formulas F (Xg, X1) and G(Xg, X1, X2, X3) define f and g, respectively.
We need to show that there is aformulawhich defines h. Consider the following for-
mula,

(X1 = 0 A Sat(X3, X0, X2) V IXeIX7 (X1 = S(Xg) A
Sat(Xs, X0, X6, X7, X3, X4, X5) A Sat(Xa, X0, X6, X7, X2))-
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Suppose that the Godel number of thisformulais k. The following formula,

Sat(K, Xo, X1, X2, X3, X4, K),

will be abbreviated as Pré(xg, X1, X2, X3, X4). Pré(Xo, X1, X2, "F7, "G7) defines the
two-place partial function h that is obtained from f and g by primitive recursion. To
show this we must show that h(ng, n;) = mif and only if =g Pre(xg, X1, X2, "F 7,
TGM[(ng, n1, m)]. Thiswe show by induction on n;. First we note that, since L(S)
isafixed point, Prz(xo, X1, X2, " F 1,7 G™) is satisfied by the same sequences as

X1 = 0 A Sa("F7, Xg, X2) VvV AXgIX7 (X1 = S(Xg) A
Sat(k, Xo, Xs, X7, "F 7, "G, k) A Sat("G™, Xo, Xe, X7, X2)).

Suppose n; = 0. Then thisformulawill be satisfied by (ng, ny, M) if and only if the
first digunct is so satisfied, if and only if f(ng) = m, if and only if h(ng, ny) = m.
Suppose that n; = i’. Then the formulawill be satisfied by (ng, ny, m) if and only if
the second digjunct is so satisfied. Note that the second disunct is the formula,

AxgIx7 (X1 = S(Xg) A Pr2(Xo, Xe, X7, "F71,7G™) A Sat(" G, Xg, Xg, X7, X2))

and thus, by the induction hypothesis, it will be satisfied by (ng, ny, m) (that is,
(no,i’, m)) if and only if m = g(no, i, h(ng, i)), that is, m= h(ng,i’), that is, m=
h(ng, ny), which is what we wanted to prove.

Finally we turn to minimization. Suppose that the partial function f'+2(ng, ...,
n;) = nj, 1 isdefined by formula F (X, . . ., X+1) and the partial function gisthemin-
imization of f. Wewant to find aformulathat definesg. g(no, ..., ni_1) = n; if and
only if the following condition is met:

(%) Forany j(j <ni= f(ng,...,Ni_1, j) > 0)and f(ng,...,Nni_1,nj) =0.

The condition f(ng,...,Nj_1,Nn;) > 0 can be defined by 3% ,Sat("F ™, Xy, . . .,
Xi—1, Xi, S(Xi12)). Let k be the Godel number of I, ,Sat(X41,Xo, ..., X_1, X,
S(Xi+2)). Then (usingformula BU!** from Theorem2.6) wemay let Mni(xo,. . ., Xi11)
be the formula

BUITZ(Xo. ... Xit1, K) A Sat(Xi41. X0, - .., X;, 0).

Then Mni (Xo, . .., X, "F™) will then be the formula

BU!T2(Xo, ..., %, F1,k) ASat("F7, X, ..., %.0),

which defines condition (), completing the proof. O

Corollary 3.2  With respect to any Godel numbering, in every fixed point, every set
or relation that isr.e. (and thus any set or relation that is recursive) is definable.
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Proof: Takeany i-placer.e. relation R. It isthe domain of an i-place partial recur-
sive function, which is definable by someformula A(Xg, . .., X). Risdefined by the
formula3dx; A(Xg, ..., X). O

Let'sillustrate how we can construct formulas of L that define partial recursive func-
tionsin any fixed point. Take the primitive recursive function ng + ny = ny,. We may
define thisfunction by primitive recursion from appropriate functions f and g asfol-
lows:

No + 0= f(no) = no;
No + N} = g(No, N1, Ng + Ny) = (Ng + Ny)’.

f isthefunction id%. g(ng, N1, N) = nz isthe function formed by composition of the
successor function with idg. Let Sum(Xg, X1, Xo) abbreviate

Pré(xo, X1, X2, "1d7 (X0, X1) 7, "Comp(Xo, X1, X2, X3, " SUC(Xo, X1) 7, 7103

(X0, X1, X2, X3) ) ).
Sum(Xg, X1, X2) defines the relation {(ng, N1, No)|Ng + Ny = Ny} in every fixed point
language. Readers not familiar with this technique might want to try as exercises
constructing formulas Prod(Xg, X1, X2) and exp(Xg, X1, X2) to respectively define the
functionsng - n; = ny and ngl = n,. (Note that the product and exponentiation func-
tions are primitive recursive: ng- 0= 0, Ny - N} = (Ng - N1) 4 Ng and ng =1, ng],l) =
No - Ngt.)

Theorem 3.3  There are enumerably many partial recursive functions, recursive
functions, recursively enumerable relations, and recursive relations.

Proof: Sinceall recursive functions are partial recursive functionsand all recursive
relations are r.e. relations it will suffice to show that there are at most enumerably
many partial recursive functions and r.e. relations. That there are enumerably many
partial recursive functions (and thus enumerably many r.e. relations) followsfrom the
fact that (in any given fixed point) each partial recursive function can be defined by
aformula and there are only enumerably many formulas of L. O

Theorem 3.4 Therearefunctionsthat are not partial recursive functions and rela-
tionsthat are not r.e.

Proof: This follows from the previous theorem since there are nondenumerably
many functions and relations on N. O

We have seen that in any fixed point language al r.e. relations are definable. One
might wonder whether only r.e. relations are definable in the fixed point languages,
or, a least, whether only r.e. relations are definable in the least fixed point languages
for any given Godel numbering. Thefollowing theoremswill answer these questions.

Theorem 3.5 For any Godel numbering:

(a) there exists 2% fixed points;
(b) for any relation R, thereis some fixed point in which Ris definable; and
(c) there are fixed pointsin which relations are definable that are not r.e.
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Proof:

() Suppose that we have afixed Godel numbering. Consider the formula Sat(Xg,
X0, X1, ..., X). Suppose its Godel number is ng. Then for any S and any

a, (Ng, N, N1, ..., M) € ®*(S) if and only if (g, Ng, N1, ..., N;) € S. Thiscan
be shown by induction on «. For a = O, this holds since oS =S Ifit
holds for «, then (ng, Ng, N1, ..., n;) € Sif and only if (nNg, Ng, N1, ..., N;) €
®¥ (S if andonly if =g« (s)Sat(Xo, Xo, X1, - .., X)[(No, N1, ..., n)] if and only
if (Ng, N, Ny, ..., M) € ®*L(S). Finally, let « be alimit ordinal. If (ng, ng,
Ny, ..., M) € Sthen(ng, No, Ny, ..., Ni) € Ug_o P (S) = (). If (o, No, My,
..., Nj) € ®%(S), then for some B < «, (Ng, N, N1, ..., N;) € P(S), and thus
by the induction hypothesis, (ng, hg, Ny, ..., Nj) € S.

Consider any i-placerdation, R,onN. Let R* = {(ng, hg, N1, ..., Ni)|{Ng, ...,

n;) € R}. By the above considerations R* € & (R*). Thus, by Theorem[2.2{c),
®d“(R*) is afixed point. Furthermore, (ng, ng, N1, ..., N;) € ®*(R*) if and
only if (ng, Ng, N1, ..., Nj) € R*. Thusto eachi-placerelation R, there existsa
distinct fixed point ®*(R*). There arethus at least 2% fixed points since there
are 2% i-place relations on N. Furthermore, there are at most 2% fixed points
since there are at most 2% ways of interpreting Sat by a set of finite sequences
of natural numbers.

(b) Anyi-placerelation Risdefined by Sat(ng, ng, Xo, . .., Xi_1) in the fixed point

language Lr- ,. (Itisinteresting to notethat theformulaSat(ng, Ng, X1, . . ., X;)
workslikea ‘truth teller’.)
(c) Follows from part (b) and Theorem[3.4] O

Theorem 3.6 For any relation R, there exists a Godel numbering for which R can
be defined in the least fixed point language for that Godel numbering.

Proof: Let Rbeanyi-placerelationonN. Risenumerable. Let (ng 1,No 2, - .. ,No i),
(N11,N12,...,N1), (N2.1, N2, ..., N2j), ... be anonredundant enumeration of the
elementsof R. (Thisenumeration need not be effective; recall that we are not requir-
ing our Godel numberings to be effective.)

Casel: Theenumeration isfinite. In this case R can be defined under any Godel
numbering. If Risempty, 0 = 1 defines R. Suppose Risnonempty but finite. Let its
enumeration be (np 1, No 2, . .., No.i), - - -, (MNk 1, Nk.2, - - -, Nki). Then theformula

(Xo=MNg1AXg=Ngo2 A+ AXi_1=Ngj) V-V (Xg=Ng1AX =Ng2A
ce A Xi—1 =N i)
defines R.
Case2: Theenumeration of Risinfinite. For each m € N, we let 2m be the Godel
number of the formula
(X0 =Nm1AX1=Nm2A-AX_1=Nn;i)VSa2Zm+2, X, X, ..., Xi-1)-

(Here 2m + 2 is the numera for the number 2m + 2.) To al the other formu-
las assign odd Godel numbers. (Xo = Ng1 A X1 = Ng2 A -+ A Xi_1 = Ngj) V
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Sat(2, Xo, X1, - .., Xi—1) defines {(ng 1, N 2, ..., Ng;i)} IN L 0,{(No,1,No.2, ..., Nojj),
(N1, N2, ...t in Lyg, ..., {{No1, No2, ..., Noi), (N1,1, NL2s oo M)y
(N1, N2, ..., Ni)} iN Ly , and so on. In the least fixed point language £, ,,, the
formula(Xo =Ng 1 AXt =Ng2A--- AXi_1=Ng;)V Sal(2, Xo, X1, ..., Xi—1) defines
R. O

Taking for R arelation that is not r.e., Theorem[Z.6lshows the following.

Corollary 3.7 Thereare Godel numberings with respect to which the definable re-
lationsin L, , exceed ther.e. relations.

We see that part of the strength (measured in terms of power to define relations) of a
least fixed point language may be determined by the Godel numbering, but each fixed
point has at least the strength to define all r.e. relations. We have put norestrictionson
allowable Godel numberings. Normally in setting out a particular Godel numbering
careistaken so that the numbering iseffective: one can effectively go froman expres-
sion (say a sentence or formula) set out in appropriate notation to its Godel number
(expressed in appropriate notation), and one can effectively decide for anumber (ex-
pressed in appropriate notation) whether it isthe Godel number for an expression and
if so which expression (expressed in appropriate notation). | do not want the develop-
ment of our theory to depend on the general notion of an effective Godel numbering.
On the other hand, | do not want to take the space to carefully set out a particular
Godel numbering. So | will merely make a few remarks about well-known features
of the Gddel numbering of languages.

Using standard techniques, a Godel numbering gn* can be set out that has the
following properties: (1) Not only are Godel numbers assigned to formulas but they
are also assigned to finite sequences of formulas, in particular a derivation will have
a Godel number; (2) The following functions, Sub;(ny, ny) and Proof(ny, ny), are
primitive recursive. For each i, Sub;j(ni, no) = ny if ng is not a Godel number
for a well-formed formula; if n; = gn*(A) for some well-formed formula A then
Sub; (ng, Np) = gn*(A(Xi/Nn2)). Proof(ny, np) = 0 if ny isthe Godel number for a
derivation and n; isthe Godel number for the last sentence of the derivation; other-
wise Proof (nq, npy) = 1. Let

S_Ubo k(No, N1, ..., Nkg1) = Subg(. . . (Suby_1 (Suby (Ng, Niy1), Nk))- .., Ny).

ey

No = gn*(A), Subg, . k(No, N1, ..., Nir1) = gN*(A(Xo/N1, - . ., Xk/Nikt1))-

Subo, .. k(Ng, Ny, ..., Nky1) IS primitive recursive since it can be obtained from the
Sub; functions (along with the id functions) using composition.
Let L* bethe least fixed point language under Godel numbering gn®*.

Theorem 3.8 The relations and partial functions definable in L* are exactly the
r.e. relations and the partial recursive functions.

Proof: Theorem[3.1]and its corollary tell usthat all r.e. relations and partial recur-
sive functions are definablein £*. What we need to show then isthat (a) each partial
function definable in L* is a partial recursive function and (b) each relation that is
definablein L* isr.e.
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(a) First we need to show that each partial function definablein L* isapartia re-
cursivefunction. Supposethat, fori > 0, R={(ng, ..., )| f(ng, ..., Ni_1) =
ni} is the graph of an i-place partia function f defined in £* by the formula
A(Xo, ..., Xi). We need to show that f isa partial recursive function. Define
g by primitive recursion as follows:

g(r, no, ..., Ni—1, 0, m) = Proof (Subyg___;(r, Ng, ..., Ni_1, 0), m);
g(r,ng,...,Ni_1, p’,m = g, ng,...,Ni_1, p,m) -

Proof(Subg __i(r,No, ..., Ni_1, p’), m).
Notethat g isprimitiverecursive (thisrelieson the fact we saw earlier that mul-
tiplication is primitive recursive). g(gn*(A), ng, ..., ni_1, N, m = 0 if and
only if misthe Godel number of aderivation of A(xg/Ng, ..., Xi—1/Nj—1, Xi/K)
for some k < n;; otherwise the value of the function is 1. Note that, for any
sentence B, if there is a derivation of B then there are an infinite number of
derivationsof B (onecan takeany derivation of length j of B and formaderiva-
tion of length j + 1 of B by adding the sentence B to the end of the origi-
nal derivation); thus there is no upper bound on the size of Godel numbers of
derivations of B. Thistellsusthat if FA(Xg/Ng, ..., X/n;j) then for some m,
g(gn*(A), ng, ..., Ni_1, m,my = 0. For any such m, mis the Godel number
of aderivation of A(Xg/No, ..., Xi/Nj) since A definesa partial function. Thus
the partial function f isthe following partia function:

Mk[PrOOf(SlJbO ..... i (gn*(A)a No, ..., Ni—1, k)v
Mm[g(gn*(A)a No, ..., Ni—1, M, m) = 0]) = 0] (5)

Here we may take ‘gn*(A)’ to stand in for the i + 1-place constant function
whose value is gn*(A); this function is primitive recursive since it can be de-
fined as (z(idi (o, ..., n;)))" " (where the number of applications of the suc-
cessor function = gn*(A)). Thefunction, wk[Proof(Suby _;(gn*(A), no, ...,
ni_1, K), um[g(gn*(A), ng, ..., Ni_1, m, m) = 0]) = 0] isthus apartial recur-
sive function with argumentsng, . . ., nj_1, built up from the zero function, the
identity functions, and the successor function using composition, primitive re-
cursion, and minimization. Thus f isapartial recursive function.

(b) Takeany i-placerelation, R, definablein L£*. We must show that Risr.e. Ris
definedin £L* by someformula A(Xo, ..., Xi_1). Theformula A(Xg,. .., Xi—_1)A
X; = 0 thus defines an i-place partial function. By part (a) this partial function
ispartia recursive. Risthusthe domain of apartial recursive function, and so
Risanr.e. relation, which completes the proof. O

Theorem [3.8] together with Theorem B.T]and its corollary, gives us the following
corollary.

Corollary 3.9 Arelationisrecursively enumerable, and a partial function is par-
tial recursive, if and only if it is definable in every fixed point language with respect
to every Godel numbering.
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Theorem 3.10

(@) If Ry and R, arei-placer.e. relations, then so are R U Ry and Ry N Ry.
(b) For anyi-placerelation R, Risrecursive <= both Rand R’ , the complement

of R, arer.e. (where the complement of R = {(ng, ..., ni_1)}|{no, ..., Ni_1) ¢
R}).
(¢) If Ry and Ry, arei-placerecursiverelations, thensoare R;, Ry U Ry, and Ry N
Ro.
Proof:

(&) Suppose Ry and R, arei-placer.e. relations. Let A; and A, be formulaswhich
respectively define Ry and R, in £*. Then, in £*, A; v A, defines Ry U Ry,
and A; A A, defines Ry N Ry. By TheoremB.8] R, U R, and Ry N R, arer.e.

() = Suppose that Risarecursive relation. Then R has a recursive charac-
terigtic function cr such that cr(ng, ..., Ni—_1) = 0if (ng,...,Ni_1) € Rand
cr(No, ..., Ni_1) = 1 otherwise. By Theorem[3.:8] cr isdefined in L* by some
well-formed formula Cr(Xg,. . ., Xi). Then Cr(Xg,. .., Xi_1, 0) defines R and
Cr(Xg,. .., Xi—1, 1) defines R. Since Rand R aredefinablein £L*, Rand R
arer.e.

<= Now suppose that R and R are r.e. Then they are defined in L*
by some well-formed formulas Ar(Xg,...,X—_1) and Ar(Xg, ..., Xi—1).
(AR(Xg, .. ., Xi—c) AX = 0) vV (AR (Xg, ..., Xi—1) A X; = 1) definesin L* a
total function which isthe characteristic function, cg, for R. cr isthusarecur-
sive function and so Risrecursive.

(c) By part (b), Ry isrecursive <= R; and R| arer.e. <= R] and R{ arer.e.
<= R] isrecursive. Suppose that R; and R; are i-place recursive relations.
By part (b), Ry, R}, Ry, and R, arer.e. By part (a), Rt U Ry and (R{ U Ry)' (=
RN R,) arer.e. Thus, by (b), Ry U Ry isrecursive. The proof for Ry N Ry is
similar. O

Let us return to some ideas devel oped in the proof of Theorem[2.8] Consider the re-

cursive function obtained from (5) by replacing ‘gn*(A)’ with the variable‘e’:
wK[Proof(Suby (e, ng, ..., Ni_1, k),

umlg(e ng,...,ni_y,m,m) =0]) =0].

,,,,,

Abbreviatethisasenum; (e, ng, ..., Ni_1). We have seen that if ey isthe gn* of afor-
mula Awhich definesin L* ani-placepartial function f, then enum; (eg, ng,. .., Ni_1)
justisthe partial function f. If ey isnot the gn* of aformulawith at most xg, ..., X
free, thenenum; (eg, Ng, . .., Nj_1) isthei-place partial function whichistotally unde-
fined (that is, itsrange = A). Suppose that ey = gn*(A) for some formula A which
definesin L* an i + 1-place relation R which is not a partia function (that is, for
some n and some m # n, both (ng, ..., Ni_1, Ny and (ng, ..., Ni_1, m) € R), then
enum; (&, No, . . ., Ni_1) definesan i-place partial function whose graph is a subset of
R. Thevalueof enum; (e, Ng, ..., Ni_1) may be described asfollows:. takethe small-
est number m for which mis the Godel number of a derivation whose last sentence
is of the form A(ng, ..., nij_1, k) where k < m; then enum;(ey, ng, ..., Ni_1) =K
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(if no such m exists, then enum;(eg, No, ..., Nj_1) is undefined for the arguments
No,...,Ni_1). Since enum;(e,ng,...,Nj_1) is a partia recursive function,
enum; (e, Ny, ..., Nj_1) isani + 1-place partial recursive function which enumerates

all thei-place partial recursive functions. This gives us our next theorem.

Theorem 3.11 For each i, there is an i + 1-place partial recursive function,
enum; (e, ng, ..., Ni_1) such that, for any i-place partial function f, f is partial re-
cursiveif and only if for some e:

f(no, ..., Ni_1) =enumi(e no, ..., Ni_1).

Comment on Theorem[3.11] A stronger version of Theorem[3.1T]could have been
derived if we had given a more fully developed treatment of the primitive recursive
functions. It can be shown that there are primitive recursive functions P2, L1, and R
such that whenever P(ng, ny) = ny, then the following hold:

L(nz) = N,

R(ny) = n;.
Rather than define enumi (e, ng, ..., Nj_1) as

uk[Proof(Subg, i(e no, ..., Ni—1,K), umlg(e, ng,...,Ni_1,m,m) =0]) =0],
we could instead have used

L(uk[Proof(Subg__i(e, no, ..., Ni_1, L(kK)), R(k)) =0]).

.....

Thisinvolvesonly oneusage of minimization. If e = gn*(A) for someformulawhich
definesin L* apartial function f, then L(uk[Proof(Suby (e, no, ..., ni—1, L(K)),
R(k)) = 0]) is the partia function f; if e # the gn* of a formula with at most
X, ..., X free then L(uk[Proof(Suby (e no,...,Nni—1, L(k)), R(k)) = 0])
is the i-place partid function with range = A, and if e = gn*(A)
for some formula A that defines in L* an i + 1-place relation R
that is not the graph of an i-place partia function then the graph of
L (uk[Proof(Subg (e ng, ..., Nni—1, L(K)), R(k)) = Q]) is a proper subset of R.
Lettingh(e, no,...,Nni_1, p) abbreviate Proof(Subg __i(e, no,...,Ni_1, L(p)), R(p)),
we get a version of Kleene's Normal Form Theorem: there are primitive recursive
functions L and h such that for every i-place partial function f, f ispartia recursive
if and only if thereisan esuchthat f(ng, ..., ni_1) = L(uk[h(e, ng, ..., ni_1, K)]).

Let W = {n| for some m, enum; (i, n) = m}. From Theorem B.11}we obtain the
following.

Theorem 3.12 For any SC N, Sr.e.ifand only if thereisan i such that S= W.

Theorem 3.13  Under any given Godel numbering, for any i,

(a) thereisaformula ENUM; (X, ..., Xj+1) which definesenum(e, ng, ..., nj_1)
in every fixed point;

(b) givenanyfixed point S, ani-place partial function f isapartial recursive func-
tion if and only if there is an index e such that

f(no, ..., ni_1) = m&=EsENUM;(e no, ..., Ni_1, m);
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(c) thereisaformula W(xg, X1) that enumerates, in every fixed point S, all and
only ther.e. sets, that is, aset R C N isr.e. if and only if there exists an index
e such that

ne R<=EsW(e n).

Proof: (@) follows from Theorems[3.1{a) and[211] (b) follows from (a). For (c) we
cantake W(Xg, X1) tobedx,ENUM 1 (Xg, X1, X2). Notethat if wewereonly concerned
with the least fixed point language £* we could take W(Xg, X1) to be Sat(Xg, X1). Of
course, the formulas ENUM; and W (Xg, X1) will vary depending on the Godel num-
bering. O

Department of Philosophy
Oklahoma State University
308 Hanner Hall

Sillwater OK 74078-5064

email: [cain@oksiate edu



mailto: jcain@okstate.edu

