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a b s t r a c t

Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo
and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured
human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to
the mitochondria and p53-dependent increases in the pro-apoptotic mitochondrial protein BAX leading
to a loss of mitochondrial membrane potential as demonstrated by a 25% decrease in JC-1 red:green
fluorescence ratio. Disruption of mitochondrial membrane integrity was accompanied by efflux of the
apoptosis inducing factor (AIF) from the mitochondria and translocation to the nucleus with a significant
increase in reactive oxygen species (ROS) after 24 h of zinc deficiency. Measurement of caspase cleavage,
mRNA, and treatment with caspase inhibitors revealed the involvement of caspases 2, 3, 6, and 7 in
zinc deficiency-mediated apoptosis. Down-stream targets of caspase activation, including the nuclear

structure protein lamin and polyADP ribose polymerase (PARP), which participates in DNA repair, were
also cleaved. Transfection with a dominant-negative p53 construct and use of the p53 inhibitor, pifithrin-
�, established that these alterations were largely dependent on p53. Together these data identify a cascade
of events involving mitochondrial p53 as well as p53-dependent caspase-mediated mechanisms leading
to apoptosis during zinc deficiency.

© 2014 Elsevier GmbH. All rights reserved.
Grants, sponsors, and funding sources: U.S. Army MRMC

ntroduction

Neural stem cells, capable of proliferating and differentiating
nto mature neurons, are important in both the developing and
he adult CNS. In the developing embryo, asymmetric division of

tem cells is followed by radial and tangential migration to sites
hat permit development of the notochord, neural tube, and neural
rest. The process of developmental neurogenesis continues with
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differentiation of stem cells into functional neurons, aggregation,
synaptogenesis, and synaptic pruning [1]. Programmed cell death
is an important part of these processes leading to normal brain
growth and plasticity during development [2,3].

We have known for some time that the essential trace metal zinc
plays a key role in the maintenance of neuronal stem cell popula-
tions in the developing CNS. For example, when pregnant female
mice were fed diets either severely deficient (1 ppm) or marginally
deficient (5 ppm) in zinc, the stem cell marker nestin was signif-
icantly reduced in the pups beginning on embryonic day 10 and
persisting through post-natal day 10 [4]. Understanding the cellular
and molecular events associated with impaired stem cell prolifer-
ation and survival is important because the CNS deficits associated
with developmental zinc deficiency, such as learning and memory,
cannot be reversed by subsequent addition of zinc to the diet after
weaning [5,6].

The requirement for zinc in stem cell proliferation and neuro-

genesis is not limited to the developmental period. While largely
isolated to specific brain regions, such as the subventricular zone
(SVZ) that surrounds the rostral end of the lateral ventricles and
the subgranular zone (SGZ) of the dentate gyrus, stem cells in the
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NS continue to proliferate throughout adulthood [7]. Despite the
imited number of these cells, it is clear that they are important
or normal brain function. Neural stem cells that arise from the SVZ

igrate along the rostral migratory stream where they undergo dif-
erentiation into interneurons in the olfactory bulb [8]. Neuronal
recursor cells in the SGZ migrate into the granular cell layer of
he dentate gyrus, undergo neuronal differentiation, and integrate
hemselves into the hippocampal circuitry [8,9]. The presence of
hese cells in the adult CNS is significant because not only are stem
ells in the hippocampus known to participate in learning [10], but
oth the olfactory bulb and the hippocampus are also part of the

imbic system that participates in the control of emotion [9,11,12].
In the mature CNS, zinc deficiency reduces the number of

roliferating stem cells and neuronal precursors [13–15]. This
ppears to be the result of both a decrease in proliferation and
n increase in apoptosis. For example, when adult rats were sub-
ected to a zinc deficient diet for 3 weeks, there was an increase
n terminal deoxynucleotidyl transferase dUTP nick end labeled
TUNEL-labeled) cells compared to pair-fed controls [13], a finding
hat was subsequently confirmed in mice fed a diet low in zinc for
weeks [14]. Analysis of the neuronal precursor cell lines NT-2 and

MR-32 grown under zinc deficient conditions has revealed a role
or the tumor suppressor protein p53, which acts as a DNA-binding
ranscription factor to arrest the cell cycle and induce apoptosis
13,15]. In addition to the well-known nuclear and transcriptional
oles of p53, there is new and mounting evidence suggesting that
53 may be acting via mitochondrial mechanisms to induce apo-
tosis [16–18]. In at least some cell types, p53 induces apoptosis via

nteraction with the pro-apoptotic Bcl-family member BAX that is
ssociated with the outer mitochondrial membrane [16,17,19].

Together these data led us to hypothesize that in neuronal pre-
ursor cells zinc deficiency would result in the translocation of p53
o the mitochondria leading to mitochondrial alterations and apo-
tosis. We further hypothesized a role for p53-mediated caspase
ctivation in zinc deficiency-induced apoptosis and thus examined
he role of p53 in caspase cleavage leading to loss of neuronal pre-
ursor cells via apoptosis.

aterials and methods

ell culture

The human neuronal precursor cell line, Ntera-2 (NT-2; Strata-
ene, La Jolla, CA) was grown in a humidified incubator at 37 ◦C
ith 5% CO2 and 95% air [13]. Briefly, cells were maintained in
ulbeco’s Modified Eagle’s Medium (DMEM) and supplemented
ith 10% fetal bovine serum (Hyclone Laboratories, Logan, UT). To
repare zinc deficient media, FBS was mixed with 10% Chelex 100 at
◦C overnight according to the method described in Ho et al. [20].
inal zinc concentrations were evaluated with atomic absorption
pectrophotometry. Other divalent ions including calcium, magne-
ium, copper, and iron were also evaluated to ensure zinc specificity
f Chelex 100. Zinc adequate (ZA) medium contained 2.5 �M
inc and zinc deficient (ZD) medium contained 0.4 �M zinc. All
edia were supplemented with 0.5 �g/ml gentamicin (GIBCO BRL,

ockville, MD), and 100 �g/ml penicillin, 100 �g/ml streptomycin,
nd 0.25 �g/ml amphotericin B (Mediatech Inc., Manassas, VA).
itochondrial p53 was inhibited using 5 �M pifithrin-� (�PFT)

Sigma Chemicals, St. Louis, MO) [18,21].

mmunocytochemistry
NT-2 cells were grown on glass 22 mm2 coverslips in 35 mm2

ishes to approximately 50% confluence. Cells grown in ZD or
A media for 24 h (n = 6 in two separate experiments) were
edicine and Biology 30 (2015) 59–65

treated with 100 �M Mitotracker Deep Red 633 (Molecular Probes,
Eugene, OR) for 45 min and then fixed with 4% formaldehyde
and permeabilized with 0.2% Triton X-100 (5 min). After block-
ing with BSA, cells were incubated with a mouse anti-human
monoclonal antibody for p53 (1:500, Santa Cruz) followed by
fluorescently labeled secondary antibodies and nuclear staining
with 4′,6-diamidino-2-phenylindole (DAPI). Coverslips were then
mounted onto microscope slides using anti-fade mounting medium
(FluorSave Reagent, Calbiochem-Novabiochem, La Jolla, CA) and
visualized by fluorescence microscopy (Olympus BX61 micro-
scope).

Detection of mitochondrial ROS

In two separate experiments, the production of mitochondrial
ROS was detected by incubation of live cultured NT-2 cells (n = 3)
in 10 �M dihydrorhodamine (DHR) in DMSO at 37 ◦C for 20 min
following a 24 h incubation in ZA or ZD media with and without
5 �M �PFT. DHR is localized to the mitochondria and upon oxida-
tion it is converted to rhodamine-123. Fluorescence was measured
using Flx800 Microplate fluorescence plate reader (Winooski, Ver-
mont) with excitation and emission spectra at 485/528 nm. KC4
v3.4 software was used for data analysis.

Western blot analysis

Cells were grown in 75 cm2 flasks and treated with ZA or
ZD media for 24 h. Mitochondrial fractions were isolated using
a mitochondrial isolation kit (Pierce Biotechnology, Rockford, IL)
following the manufacturer’s protocol. Western blot analysis was
performed using cytosolic and mitochondrial fractions which were
added to sample buffer, heated to 95 ◦C for 10 min, and subjected
to sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) using a 10% polyacrylamide gel. Samples were then
transferred to a 0.2 �m nitrocellulose membrane on ice. The mem-
brane was blocked with Tris-buffered saline containing Tween-20
(TBS-T) and nonfat dry milk for 1 h at room temperature followed by
overnight incubation at 4 ◦C with antibodies to cleaved caspase-3,
caspase-2, caspase-6, caspase-7, total p53, phosphor-p53 (Serine
33), PARP, lamin, and BAX (Cell Signaling Technology, Beverly,
MA). Anti-histone H1 and AIF antibodies were obtained from Santa
Cruz Biotechnology Inc. (Santa Cruz, CA). The COX IV antibody
was obtained from Invitrogen Life Technology (Carlsbad, CA) and
the mouse monoclonal �-actin antibody was obtained from Sigma
Chemicals. The pan-caspase inhibitor, benzyloxycarbonyl-Val-
Ala-Asp-fluoromethylketone (ZVAD) was obtained from Peptides
International (Louisville, KY). Reactive bands were visualized using
Super Signal West Pico Chemiluminescent Substrate (Thermo Sci-
entific, Rockford, IL) and then exposed to X-ray film (Kodak X-OMAT
AR film, Eastman Kodak Co., Rochester, NY) for autoradiographic
visualization. Densitometry was performed with ImageJ software
from http://rsbweb.nih.gov/ij/.

Mitochondrial membrane permeability

In two separate experiments, NT-2 precursor cells were grown
in 96-well plates and treated with ZA or ZD media with or
without transfection of the dominant negative p53 construct
as described in Corniola et al. [13]. Control cells were trans-
fected with control plasmid. Cells were then incubated with
10 �M 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolylcar-
bocyanine iodide (JC-1, Biovision Inc., Mountain View, CA) for

10 min at 37 ◦C. JC-1 is normally localized to the mitochondria in
aggregate form where it can be detected using an excitation wave-
length of 520–570 nm and an emission of 570–610 nm. However,
when membrane potential is compromised, JC-1 leaks into the

http://rsbweb.nih.gov/ij/
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Fig. 1. Zinc deficiency induces apoptosis. Examination of nuclear morphology fol-
lowing DAPI staining of NT-2 cells grown for 48 h in zinc adequate (ZA) or zinc
deficient (ZD) media revealed the presence of nuclear condensation and blebbing in
R. Seth et al. / Journal of Trace Elemen

ytosol where it disaggregates to monomeric form with an excita-
ion at 485 nm and emission at 535 nm. Fluorescence was measured
sing Flx800 Microplate fluorescence plate reader (Winooski, Ver-
ont) using the KC4 v3.4 software for data analysis.

uantitative real time PCR

Quantitative RT-PCR was performed using SA Biosciences
Valencia, CA) PCR Array kit for human apoptosis (Cat#PAHS-012A),
sing the manufacturer’s protocol. Briefly, cDNA was prepared
sing RT2 First Strand Kit with 1 �g of total cellular RNA. Reverse
ranscription was performed after degradation of genomic DNA.
he reaction was stopped by incubation at 95 ◦C for 5 min before
roceeding to the real-time PCR protocol. RT2 SYBR Green Master-
ix was added to cDNA mix followed by addition to each well of RT2

rofiler PCR Array and mixed well using a multi-channel pippetor.
sing a hot start protocol the plate was run on a Bio-Rad i-Cycler
nd analyzed according to the SA Biosciences protocol provided
ith the Array kit.

ubcellular fractionation

Mitochondrial and nuclear fractions were isolated using a pre-
iously published protocol [22]. Briefly, NT-2 cells were harvested,
ashed, and re-suspended in homogenization buffer containing

10 mM mannitol, 70 mM sucrose, 1 mM EDTA, 10 mM HEPES, pH
.5, supplemented with protease inhibitor mixture (Sigma). After
ounce homogenization (Wheaton), samples were adjusted to a
nal concentration of 0.25 M sucrose and 0.35% Triton X-100 and

ayered on top of a discontinuous sucrose density gradient prepared
ith 0.32, 0.8, and 1.2 M sucrose for centrifugation at 40,000 × g

or 2 h. Nuclei were recovered at the interface of 0.8 M and 1.2 M
ucrose and stored at −80 ◦C.

Mitochondrial fractions were also isolated by sucrose density
radient centrifugation. The supernatant obtained after the isola-
ion of nuclear fraction was centrifuged at 13,000 × g at 4 ◦C for
0 min. Pellets were re-suspended in homogenization buffer and

ayered on top of a discontinuous sucrose gradient consisting of
0 ml of 1.2 M sucrose, 10 mM HEPES, pH 7.5, 1 mM EDTA, and 0.1%
SA on top of 17 ml of 1.6 M sucrose, 10 mM HEPES, pH 7.5, 1 mM
DTA, and 0.1% BSA. Samples were centrifuged at 27,000 rpm for 2 h
t 4 ◦C. Pure mitochondria, recovered at the 1.6–1.2 M sucrose inter-
ace, were washed and re-suspended in homogenization buffer.
ontamination of mitochondria in the nuclear fraction was deter-
ined by immunoblotting for cytochrome oxidase subunit IV, an

ntegral membrane protein of the mitochondria.

tatistical analysis

Data were analyzed using one way ANOVA with a Tukey’s post
oc test. Data were considered significantly different at p < 0.05.

esults

poptosis

Confirming previous work [13,15], zinc deficiency produced
hanges in cultured neuronal precursor cells consistent with apop-
otic cell death. Fig. 1 illustrates the finding that cells grown in zinc
eficient media exhibited nuclear blebbing, the hall mark sign of
poptosis.
ctivation and translocation of p53

While it did not significantly alter the total amount of p53
n NT-2 cells, Fig. 2 shows that growth of cells in zinc deficient
ZD cells.

media resulted in the phosphorylation of this transcription fac-
tor. Immunohistochemistry not only confirmed previous reports
showing that zinc deficiency induces the translocation of p53 to the
nucleus, but also revealed co-localization of p53 with Mitotracker,
a marker for mitochondria, in zinc deficient cells (Fig. 3).
Fig. 2. Zinc deficiency induces phosphorylation of p53. Western blot analysis of total
cellular and phosphorylated p53 shows that under zinc adequate control conditions
p53 is maintained in the dephosphorylated state. Incubation in zinc deficient media
(24 h) resulted in p53 phosphorylation. Figure is representative of cultured cells
from three separate experiments.
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Fig. 3. Zinc deficiency results in nuclear and mitochondrial translocation of p53.
Cells were treated with zinc adequate (ZA) or zinc deficient (ZD) media for 24 h.
(A) Immunocytochemistry was used to localized p53 (red) in ZD cells. Nuclei were
stained with DAPI (blue) and mitochondria were labeled with Mitotracker (green).
Overlays of images show localization of p53 to the nuclei in purple and localization
of p53 to mitochondria in yellow. (B) Western blot analysis of p53 confirmed the
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Fig. 5. Zinc deficiency induces translocation of mitochondrial Apoptosis Inducing
Factor (AIF) to the nucleus. Representative blot of NT-2 cells treated with zinc
adequate (ZA) or zinc deficient (ZD) media for 24 h and subjected to subcellular
fractionation for Western blot analysis (n = 6). ZD treatment reduced the abundance
of mitochondrial AIF (mito AIF). Reductions were prevented by treatment of ZD cells
with the caspase inhibitor ZVAD (ZD + ZVAD). Nuclear AIF, which was not detected in
ZA NT-2 cells, was increased in ZD cells. Treatment of ZD cells with ZVAD (ZD + ZVAD)
ocalization of p53 to the mitochondria in the ZD but not ZA conditions. (For inter-
retation of the references to color in this figure legend, the reader is referred to the
eb version of the article.)

itochondrial alterations

Zinc deficiency resulted in an approximately 2-fold (2.2 ± 0.5,
< 0.05) increase in BAX mRNA that was consistent with an increase

n BAX protein levels in zinc deficient cells. Inhibition of mito-
hondrial p53 with �PFT prevented this increase in BAX (Fig. 4).
ther zinc deficiency-induced mitochondrial changes included an
pproximately 40% decrease (n/s) in the mitochondrial abundance
f the apoptosis inducing factor, AIF (Fig. 5). Fig. 5, a representative
lot, shows that there were no detectable levels of nuclear AIF in

A cells, but abundant nuclear AIF in ZD cells, suggesting translo-
ation of AIF from the mitochondrial to the nuclear compartments.
urthermore, treatment of ZD cells with either ZVAD or �PFT

ig. 4. Zinc deficiency increases BAX abundance. Representative Western blot of
ells (n = 3) treated with zinc adequate (ZA) media, zinc deficient (ZD) media, or ZD
edia treated with �PFT to inhibit mitochondrial p53, for 24 h. �-actin was used as
loading control.
or the mitochondrial p53 inhibitor (ZD + �PFT) partially prevented nuclear accu-
mulation of AIF. Mitochondrial COX IV and nuclear Histone H1 protein abundance
served as controls.

partially prevented the nuclear accumulation of AIF (Fig. 5) with
ZVAD reducing nuclear AIF by 50% and �PFT reduction nuclear AIF
by approximately 70% (p < 0.05).

Zinc deficiency also resulted in a decrease in mitochondrial
membrane potential reflected in a 25% decrease in the red to
green ratio of JC-1 (2.2 ± 0.1 vs 1.7 ± 0.6, p < 0.05). Transfection
of cells with the dominant negative p53 gene construct elimi-
nated this decrease (2.5 ± 0.6). DHR fluorescence also suggested
mitochondrial production of reactive oxygen species (ROS), with a
2-fold increase associated with zinc deficiency. ROS production was
reduced to control levels when mitochondrial p53 was inhibited by
treatment of cells with �PFT (Fig. 6).

Caspase activation

Initial RT-PCR analysis suggested that zinc deficiency results
in an increase in mRNA abundance for caspase 2 (7.6 ± 1.7-fold
increase, p < 0.05), caspase 3 (2.5 ± 0.6-fold, p < 0.05), and caspase 7
(1.4 ± 0.1-fold). Western and ImageJ analysis of caspases suggested
a role for zinc deficiency in the relative increase in caspases 3, 6, and
7 abundance (Fig. 7). Caspase 3 abundance was increased by more
than 6-fold (p < 0.01), caspase 6 was increased by 3-fold (p < 0.001),
and caspase 7 was increased by 1.5-fold (p < 0.05). More impor-
tantly, caspases 2, 3, 6, and 7 were all cleaved under conditions of
zinc deficiency (Fig. 7). Addition of the pan-caspase inhibitor ZVAD
prevented cleavage-induced activation of these caspases (Fig. 7).
Caspase activation in zinc deficient NT-2 cells was accompanied by
cleavage of poly-ADP ribose polymerase (PARP) and lamin (Fig. 8).
Cleavage of these down-stream caspase targets was also inhibited
by the pan-caspase inhibitor ZVAD (Fig. 8).

Discussion
This work has not only confirmed the dependence of neuronal
precursor cell survival on the essential trace element zinc, but has
also reported data enabling us to build a model, illustrated in Fig. 9,



R. Seth et al. / Journal of Trace Elements in Medicine and Biology 30 (2015) 59–65 63

Fig. 6. Zinc deficiency induces ROS that is dependent on mitochondrial p53. NT-2
cells were treated with zinc adequate (ZA) or zinc deficient (ZD) media for 24 h. (A)
Representative photomicrograph showing increased DHR fluorescence in ZD cells
compared to ZA cells. Treatment of ZD cells with 5 �M �PFT (ZD + �PFT), that inhibits
translocation of p53 to the mitochondria, abolished this signal. (B) Quantification
(mean ± SD) of ROS in ZA, ZD, and ZD + �PFT cells. *Significantly different from ZA
cells at p < 0.001.

Fig. 7. Zinc deficiency induces caspase cleavage. NT-2 cells (n = 6) were treated with
zinc adequate (ZA) or zinc deficient (ZD) media for 24 h and harvested for Western
blot analysis to analyze activation of caspases 2, 3, 6, and 7. Separate dishes of zinc
deficient cells were treated with the caspase inhibitor ZVAD (ZD + ZVAD). Arrows
point to representative images of cleaved caspases in the zinc deficient condition.

Fig. 8. Zinc deficiency induces PARP and lamin cleavage. NT-2 cells (n = 6) were
treated with zinc adequate (ZA) or zinc deficient (ZD) media for 24 h and harvested
for Western blot analysis to evaluate cleavage of PARP and lamin. Separate dishes
of zinc deficient cells were treated with the caspase inhibitor ZVAD (ZD + ZVAD).

Arrows point to representative images of cleaved substrates in the zinc deficient
condition.

that describes our current understanding of p53-dependent mech-
anisms associated with zinc deficiency-induced apoptosis in this
important cell type, and suggests a prominent role for mitochon-
drial p53 in these mechanisms.

p53-Mediated mechanisms

Previous work has identified p53 as a key regulator of apoptosis
in zinc deficient neuronal precursor cells [13]. The finding, reported
here, that zinc deficiency induces the phosphorylation of p53, is
consistent with p53 activation and translocation to the nucleus
[23] where it acts to regulate a wide variety of downstream gene
targets [13,24]. Given that p53 has previously been shown to be
phosphorylated under conditions of high zinc in other cells types
such as human A549 pulmonary epithelial cells [25], these data
suggest that p53 activation is under tight regulation by zinc and
that optimal levels of zinc are needed for normal p53 function.
When cells induce p53 in an intermittent fashion, alterations in
gene expression arrest the cell cycle and increase the potential for
cellular recovery. However, when active p53 levels are sustained,
it induces apoptotic mechanisms that lead to cell death [26]. This is
consistent with the finding that zinc deficiency initially regulates
cell cycle arrest genes in a p53-dependent fashion, while sustained
zinc deficiency leads to a p53-dependent increase in pro-apoptotic
genes and a decrease in anti-apoptotic genes [13].

In addition to the important nuclear and transcriptional roles
of p53, it has been recently recognized that the mitochondrial
localization of p53 also participates in the induction of apoptosis
[23,27] in part by interaction with Bcl-family proteins such as BAX
[16,27,28]. Fig. 9 summarizes the findings from the current study
showing the localization of p53 to the nucleus and the mitochondria
as well as increases in the pro-apoptotic protein BAX and caspase
activation. The interaction between BAX and p53, which has also
been reported in staurosporine-treated cerebellar neuronal precur-

sor cells and other cell types [16,29], leads to the direct activation of
BAX [17,19,30] and BAX-pore formation at the outer mitochondrial
membrane [18].
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Fig. 9. Role of mitochondrial p53 and caspase activation in zinc deficient human neuronal precursor cells. Zinc deficiency induces p53 phosphorylation. Activated p53 is
then translocated to the nucleus and mitochondria. Mitochondrial p53 interacts with the pro-apoptotic protein BAX, hypothesized to form pores in the outer mitochondrial
membrane that reduces the mitochondrial membrane potential (��m), increases reactive oxygen species (ROS), and permits the translocation of the apoptosis inducing
factor, AIF, to the nucleus. Caspase cleavage results in caspase activation, lamin cleavage and inactivation of PARP. All of the above mechanisms contribute to apoptosis in
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inc deficient neuronal precursor cells.

Our data suggest that this is likely to have multiple effects lead-
ng to apoptosis. First, as illustrated in Fig. 9, pore formation causes
he release of mitochondrial proteins such as the apoptosis induc-
ng factor, AIF. This is significant because not only has the release of
IF been linked to mitochondrial p53 in other cell types [22,31], but
ctivation of AIF has also been reported in the hippocampus of rats
ed a zinc deficient diet for 5 weeks [32]. Also consistent with BAX
ore formation, we observed a loss of mitochondrial membrane
otential as well as an increase in the production of ROS, that has
reviously been linked to mitochondrial p53 [33]. We provide two

ines of evidence suggesting that these mechanisms of zinc defi-
iency are dependent on p53. First, treatment of cells with �PFT,
drug that prevents the localization of p53 to the mitochondria

18], abolished the increase in BAX as well as the production of ROS
n ZD cells. Secondly, transfection of deficient cells with a domi-
ant negative p53 construct, previously used to reduce p53 activity

n NT-2 cells [13], prevented the loss of mitochondrial membrane
otential.

aspase-mediated mechanisms

Consistent with data reported here for zinc deficiency, previous
ork using other stimulators of p53 phosphorylation has shown

hat activated p53 can induce the activation of caspase 3 [34].
urthermore, while p53 appears to play a role in AIF transloca-
ion from the mitochondria to the nucleus during zinc deficiency,
ur data also provide evidence that mitochondrial release of AIF
s mediated by p53-dependent caspase activation. We showed
hat caspase inhibition not only prevented the reductions in mito-

hondrial AIF, but also resulted in reduced nuclear accumulation
f AIF associated with zinc deficiency. A role for caspases in AIF
ranslocation is supported by previous work showing that caspase 2
ctivation leads to mitochondrial release of AIF in cisplatin-treated
renal tubular epithelial cells [22]. Our finding that caspase 2 mRNA
abundance and caspase 2 cleavage were both induced also sup-
port a role for this enzyme in zinc deficient neuronal precursor
cells.

Clearly, caspase activation and the caspase cascade are com-
plex and not fully understood [35]. For example, while caspases 3
and 7 clearly have some redundant functions, such as the cleav-
age of PARP [36], they are also known to have distinct substrates
as well [37]. In any case, the fact that caspases 3, 7, and PARP
are all cleaved in zinc deficient neuronal precursor cells suggests
that these members of the caspase cascade play a role in the p53-
mediated mechanisms of apoptosis observed here. As illustrated in
Fig. 9, caspase 3 activation has also been associated with caspase 6
cleavage and the subsequent cleavage of nuclear lamin [36] lead-
ing to the structural breakdown of the nuclear envelop [38]. Clearly
caspase 3 is likely to have other downstream actions as well. Thus,
while Fig. 9 represents only a single model that can occur when zinc
deficiency induces caspase activation, it provides a framework for
our understanding of the role of phosphorylated p53 and caspases
in survival and apoptosis of neuronal precursor cells.

Conclusions

This work has identified zinc-regulated mechanisms that are
responsible for the regulation of neuronal precursor cells. As the
cell type that gives rise to neurons throughout the brain, neuronal
precursor cells are important for brain development. Furthermore,
we now appreciate the fact that, although limited, the adult brain
contains neuronal stem cells and neuronal precursors that not

only proliferate but have the potential to form new neurons. Thus,
this work showing new roles for zinc in mitochondrial p53- and
caspase-dependent mechanisms has implications for CNS health
throughout the lifespan.
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