
464

Notre Dame Journal of Formal Logic
Volume 39, Number 4, Fall 1998

Bochvar-McCarthy Logic and Process Algebra

JAN A. BERGSTRA and ALBAN PONSE

Abstract We propose a combination of Bochvar’s strict three-valued logic,
McCarthy’s sequential three-valued logic, and process algebra via thecondi-
tional guard construct. This combination entails the introduction of a new con-
stantmeaningless in process algebra. We present an operational semantics in
SOS-style, and a completeness result for ACP with conditional guard construct
and the proposed logic.

1 Introduction An (immediate) error in an algorithm or program, such as refer-
ence to a nonexisting instruction, or a type clash, is often easily detectable. In order
to model this feature in a concurrent setting, we consider process algebra with con-
ditional guard construct and a variant ofthree-valued logic as a means to represent
concurrent algorithms and programs. (Some motivation is given in Section 3.) In
general, errors can be classified in at least two categories: divergencies which can be
hard to detect and more simple ones, such as described above. In this paper we pro-
pose how to deal with the occurrence of the latter sort, which we further callmean-
ingless, notationM. In particular, evaluation of a propositionϕ may now lead toM,
in which case the evaluation of¬ϕ should of course also result inM. Thus the first
logical identity we adopt is¬M = M.

In process algebra we introduceµ as a process representing the effect of the log-
ical (error-)valueM. The new constantµ is axiomatized1 by

x + µ = µ,

µ · x = µ.

Here+ is the commutative operation denoting choice, and· represents sequential
composition. So the processµ ruins each (future) alternative.

We recall theconditional guard construct ϕ :→ from Dijkstra [13] (roughly:
if ϕ holds, then), which was introduced in process algebra with two-valued logic in
Baeten and Bergstra [2] with the following typical laws whereT denotes the value

Received January 12, 1998; revised December 2, 1999

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 465

true andF stands forfalse:

T :→ x = x,

F :→ x = δ,

ϕ :→ x + ψ :→ x = ϕ ∨ ψ :→ x.

The constantδ (inaction/deadlock) is well known in ACP-based approaches (see, e.g.,
Bergstra and Klop [6, 7] and Baeten and Wijland [3]) and is axiomatized byx + δ = x
andδ · x = δ. Another basic construct in the combination of two-valued proposi-
tional logic and process algebra isconditional composition x � ϕ � y, introduced in
[2]. Herex, y are processes, andϕ is a proposition. This operation satisfies (among
others) the following axioms:

x � T � y = x,

x � F � y = y,

x � ϕ � y = y � ¬ϕ � x.

The notation � � stems from Hoare et. al [17], and in that paper it is argued that
x � ϕ � y expressesif ϕ then x else y fi. Conditional composition � � can be
regarded as more basic than the conditional guard construct, as it does not presuppose
the existence of the special constantδ. Of course,

x � ϕ � y = ϕ :→ x + ¬ϕ :→ y.

Finally, a characteristic identity for process algebra withtwo-valued logic is
x � ϕ � x = x.

Wefix the relation betweenM andµ with axiom

M :→ x = µ.

If it is known that a condition in a process term equalsM, there is no point in con-
sidering any (future) alternative. Furthermore, preservation of the three laws on the
conditional guard construct mentioned above and those forδ andµ implies symmetry
of ∨. This symmetry together with¬M = M and the derivations

M :→ x = µ

= x + µ

= T :→ x + M :→ x
= T ∨ M :→ x,

and
M :→ x = µ

= µ + δ

= M :→ x + F :→ x
= M ∨ F :→ x,

imply the following truth tables:

x ¬x
M M
T F
F T

∨ M T F
M M M M
T M T T
F M T F

466 JAN A. BERGSTRA and ALBAN PONSE

This three-valued logic, in whichM is totally persistent, was defined earlier by
Bochvar in [11].

Another basic law in [2] that we want to accommodate relates to repeated appli-
cation of the conditional guard construct and conjunction:

ϕ :→ (ψ :→ x) = ϕ ∧ ψ :→ x

(note the symmetry inϕ ∧ ψ). However, this law is not preserved in the present
setting:2

F :→ (M :→ x) = δ,

F ∧ M :→ x = µ.

Therefore we replace it by a version in which also the right-hand side reflects theorder
of evaluation, and useleft-sequential conjunction as introduced by McCarthy [20],
with the asymmetric notation∧� taken from Bergstra, Bethke, and Rodenburg [5]:

∧� M T F

M M M M
T M T F
F F F F

Hereϕ ∧� ψ expresses thatfirst ϕ is evaluated andthen ψ. For recent work on Mc-
Carthy’s logic see, for example, Konikowska [19]. A sequential version of the law
mentioned above is

ϕ :→ (ψ :→ x) = ϕ ∧� ψ :→ x.

Wefurther adopt this identity as the process algebra axiom that reduces repeated ap-
plication of the conditional guard construct3. This design also allows us to extend the
framework defined in this paper in a conservative way to a setting with four-valued
logic as introduced in [5]. In that paper, complete axiomatizations for both Bochvar’s
and McCarthy’s three-valued logic can be found.

In the next section we present the precise three-valued logic we consider and
extend it with proposition symbols. In Section 3 we combine this extension with ACP.
In Sections 4 and 5 we define an operational semantics and bisimulation equivalence
and we prove a (relative) completeness result. In Section 6 we extend the setting with
data-parametric actions and consider some examples. Finally, in Section 7 we provide
some conclusions.

2 A three-valued propositional logic due to Bochvar with McCarthy’s extension
Weconsider the following set of logical operations on the setT

M
3 of truth values:

M, T, F : → T
M
3

¬ : T
M
3 → T

M
3

∧,∨, ∧� , ∨� , ∧�, ∨�

: T
M
3 × T

M
3 → T

M
3

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 467

of which¬, ∧, and ∧� are defined by the following truth tables:

x ¬x
M M
T F
F T

∧ M T F
M M M M
T M T F
F M F F

∧� M T F
M M M M
T M T F
F F F F

The remaining operations are all definable:

Disjunction: x ∨ y
def= ¬(¬x ∧ ¬y),

Left-sequential disjunction: x ∨� y
def= ¬(¬x ∧� ¬y),

Right-sequential conjunction: x ∧�y
def= y ∧� x,

Right-sequential disjunction: x ∨�

y
def= y ∨� x.

We call the resulting logicBM3(¬,∧, ∧�), or shortlyBM3. Notice thatBM3 is not
functionally complete: for example, one cannot definef with f (M) = F. We do not
embark on complete equational specifications ofBM3. All we need are the truth ta-
bles and equations above (so all in: 3+ 9+ 9 = 21 equations, or 25 if we include the
dual and right-sequential operations).

In case we use proposition symbols from setP, weshall writeBM3(P), andfor
concise notation we shall identifyBM3 andBM3(∅). In order to extend our evalua-
tion system to propositionsϕ,ψ, . . . overP, weuse substitution on single proposition
symbols: letp, q ∈ P, then

[ϕ/p]q
def= q,

[ϕ/p] p
def= ϕ,

[ϕ/p]c
def= c for c ∈ {M, T, F},

[ϕ/p]¬ψ
def= ¬[ϕ/p]ψ,

[ϕ/p](ψ1 ♦ ψ2)
def= [ϕ/p]ψ1 ♦ [ϕ/p]ψ2 for ♦ ∈ {∧,∨, ∧� , ∨� , ∧�, ∨�},

and as a proof rule theexcluded fourth rule:

σ(ϕ) = σ(ψ) for all σ ∈ {[M/p], [T/p], [F/p]}
ϕ = ψ

.

Together with the equations implied by the truth tables for¬, ∧, and ∧� , this yields
a complete, inequational evaluation system forBM3(P). Notice that the operations
∧, ∧� , and their duals are associative and that∧ and∨ are commutative as well. We
write

BM3(P) |= ϕ = ψ

if ϕ = ψ can be proved by the system described above. We use the satisfaction symbol
|= to indicate that our system is just a syntactic version of the standard semantics for
three-valued logic. IfP is fixed, we often only write|= ϕ = ψ. The identities stated
in the following lemma are used in the sequel.

468 JAN A. BERGSTRA and ALBAN PONSE

Lemma 2.1 The following identities hold in BM3(P):

1. |= (ϕ ∧� F) ∨ T = ϕ ∨ T,
2. |= (ϕ ∨ T) ∧� ϕ = ϕ.

3 Process algebra with BM3(P) In this section we consider the combination of
process algebra andBM3(P). This combination is based on ACP, the Algebra of
Communicating Processes [6, 7, 3]. The signature of ACP is parameterized with a
set A of constantsa, b, c, . . . denoting atomic actions, that is, processes that are not
subject to further division and that execute in finite time, and with a communication
function γ that prescribes which actions can communicate. We consider a distinct
action t �∈ A, andset At = A ∪ {t}. We further write ACP(At, γ) as to make these
parameters explicit. It is assumed thatγ is commutative, thusγ(a, b) = γ(b, a), and
associative:γ(a, γ(b, c)) = γ(γ(a, b), c). In ACP(At, γ) there is a constantδ �∈ At,
denoting the inactive process. The six operations of ACP(At, γ) are:

Alternative composition: x + y denotes the process that performs
eitherx or y.

Sequential composition: x · y denotes the process that performsx,
and upon completion ofx starts withy.

Merge or parallel composition: x ‖ y denotes the parallel execution ofx
and y (including the possibility of syn-
chronization).

Left merge, an auxiliary
operator:

x ‖ y denotesx ‖ y with the restriction
that the first action stems for the left ar-
gumentx.

Communication merge,
an auxiliary operator:

x | y denotesx ‖ y with the restriction
that the first action is a synchronization
of bothx andy.

Encapsulation: ∂H(x) (whereH ⊆ A) renames atoms in
H to δ.

In Table 1 we present a slight modification of ACP(At, γ). We take γ total on
At × At → Atδ, whereAtδ = At ∪ {δ}, and we take the communication merge com-
mutative (CMC) (by which (CM6) and (CM9), the symmetric variants of (CM5)
and (CM8), see [3], become derivable). We note that left merge and communication
merge are auxiliary operations used to axiomatize the merge (cf. [3]). By (A1) and
(CMC), merge is a commutative operation. Although the merge is not axiomatized
as an associative operation, it is associative for all process terms (i.e., closed terms,
which can be proved with structural induction), and we will leave out brackets in re-
peated applications.

We shortly comment on the primitives of ACP(At, γ). Often,+ is used as an
operation facilitating analysis rather than as a specification primitive: concurrency
is analyzed in terms of sequential composition, choice, and communication. Verifi-
cation of a concurrent system∂H(C1 ‖ . . . ‖ Cn) generally boils down to represent-
ing the possible executions with+ and · , having applied left-merge , communica-

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 469

Table 1:The axiom system ACP(At, γ), wherea, b ∈ Atδ, H ⊆ At.

(A1) x + (y + z) = (x + y) + z

(A2) x + y = y + x

(A3) x + x = x

(A4) (x + y)z = xz + yz

(A5) (xy)z = x(yz)

(A6) x + δ = x

(A7) δx = δ

(CF1) a |b = γ(a, b) if a, b ∈ At

(CF2) a |δ = δ

(CM1) x ‖ y = (x ‖ y + y ‖ x) + x | y

(CM2) a ‖ x = ax

(CM3) ax ‖ y = a(x ‖ y)

(CM4) (x + y)‖ z = x ‖ z + y ‖ z

(CMC) x | y = y | x

(CM5) ax |b = (a |b)x

(CM7) ax |by = (a |b)(x ‖ y)

(CM8) (x + y) | z = x | z + y | z

(D1) ∂H (a) = a if a �∈ H

(D2) ∂H (a) = δ if a ∈ H

(D3) ∂H (x + y) = ∂H (x) + ∂H (y)

(D4) ∂H (xy) = ∂H (x)∂H (y)

tion merge, and encapsulation (by which communication between componentsCi can
be enforced). After renaming internal activity (e.g., using pre-abstraction explained
below), this may yield a simple and informative specification of external behavior.
Furthermore, in case such a componentreacts upon external input, choice is a natu-
ral specification primitive for representing value-binding (cf. Milner’s translation of
basic CCS into value-passing CCS [21]). For example, assume componentC1 can
receive a value from a finite setData = {d0, d1, . . . , dN}, and then perform further
activity that depends on the valued received via actionr(d). By commutativity and
associativity of+ , this situation can be characterized by the identity

C1 = r(d0) · Activity(d0) + r(d1) · Activity(d1) + · · · + r(dN) · Activity(dN),

where · binds stronger than+, or shortly by

C1 =
∑

d∈Data

r(d) · Activity(d).

In a parallel context in which some values(d j) is offered, the intended communica-
tion γ(r(d j), s(d j)) can be enforced by encapsulation, after whichC1 has evolved

470 JAN A. BERGSTRA and ALBAN PONSE

into Activity(d j). After introducing the remaining axioms onµ and the conditional
operations, we continue this explanation.

Table 2:Remaining axioms of ACPµ(At, γ,P), whereϕ,ψ ∈ BM3(P), a, b ∈ Atδ, I ⊆ At.

(M1) x + µ = µ

(M2) µ · x = µ

(M3) µ | x = µ

(GT) T :→ x = x

(GF) F :→ x = δ

(GM) M :→ x = µ

(Cond) x � ϕ � y = ϕ :→ x + ¬ϕ :→ y

(GC1) ϕ :→ x + ψ :→ x = ϕ ∨ ψ :→ x

(GC2) ϕ :→ x + ϕ :→ y = ϕ :→ (x + y)

(GC3) (ϕ :→ x)y = ϕ :→ xy

(GCL4) ϕ :→ (ψ :→ x) = ϕ ∧� ψ :→ x

(GC5) ϕ :→ x ‖ y = ϕ :→ (x ‖ y)

(GCM6) ϕ :→ a |ψ :→ b = ϕ ∧ ψ :→ a |b

(GCM7) ϕ :→ ax |ψ :→ b = ϕ ∧ ψ :→ (a |b)x

(GCM8) ϕ :→ ax |ψ :→ by = ϕ ∧ ψ :→ (a |b)(x ‖ y)

(DGC) ∂H (ϕ :→ x) = ϕ :→ ∂H (x)

(TGC) tI (ϕ :→ x) = ϕ :→ tI (x)

(T1) tI (a) = a if a �∈ I

(T2) tI (a) = t if a ∈ I

(T3) tI (x + y) = tI (x) + tI (y)

(T4) tI (xy) = tI (x)tI (y)

In Table 2 we provide the additional axioms for the extension of ACP(At, γ) with
BM3(P) (whereP is considered a third parameter). Hereϕ is taken fromBM3(P),
so for eachϕ, � ϕ � is a binary operation andϕ :→ is a unary operation. The
axiom (GCM6) suggests a more general version of (CF1) – (CF2), and (GCM7) and
(GCM8) can be seen as generalizations of (CM5) and (CM7), respectively. Further-
more, observe that

ϕ :→ x | ψ :→ y = ϕ ∧ ψ :→ (x | y)

would imply inconsistency of our theory (µ=T :→µ | F :→x=T∧F :→(µ | x)=δ),
which explains the weaker axioms (GCM6) – (GCM8). For eachI ⊂ At there is a pre-
abstraction operationtI that renames all actions inI to t and that is axiomatized by
(T1) – (T4). We use

ACPµ(At, γ,P)

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 471

to refer to both this axiom system and the signature thus defined. We mostly sup-
press the· in terms, and brackets according to the following rules:· binds strongest,
:→ binds stronger than‖, ‖ , |, all of which in turn bind stronger than+ . Closed
terms over ACPµ(At, γ,P) will be further calledprocess terms, as these represent
processes, andP (At, γ,P), or shortlyP if all parameters are fixed, denotes the set of
all process terms.

We continue our explanation, now involving all operations of ACPµ(At, γ,P)

and binary Kleene star: assume componentC1 as introduced above models a channel
that repeatedly transfers values from port 1 to port 2 via actionsr1(d) (receive value
d along channel 1), ands2(d) (send valued along channel 2). We can write

C1 = (∑
d∈Data r1(d) · s2(d)

)∗
δ.

Here∗ is the binary Kleene star [18], defined by

x∗y = x(x∗y) + y.

(See also Bergstra, Bethke, and Ponse [4].) In particular,x∗δ repeatedly performs
x, as follows easily from the axioms A6 and A7 and can be defined byxω = x(xω),
thus without+ andδ (see Fokkink [14]). We further refineC1 to a componentCh,
representing a channel that either corrupts a value received or transfers it properly:
this can be written as

Ch = (∑
d∈Data r1(d) · (s2(d) � ϕ � s2(⊥)

)∗
δ,

whereϕ represents the mechanism that determines whetherd will be transferred prop-
erly or will be corrupted (actions2(⊥)). It may well be thatϕ depends on courses of
evaluation beyond our means of analysis or control or beyond our verification pur-
poses. In this case, our analysis should be performed on a more abstract level and we
can write (∑

d∈Data r1(d) · (s2(d) + s2(⊥)
)∗

δ,

where+ is used in favor of conditional composition. A better type of modeling is
obtained by specifying

(∑
d∈Data r1(d) · (t · s2(d) + t · s2(⊥)

)∗
δ,

thus guaranteeing that corruption of transfer is nondeterministic from the external
point of view. The latter specification is useful for analysis of the operation ofCh
in the case that no explicit information onϕ is available. Finally, we give an exam-
ple that illustrates that even in case a condition is explicit, it need not be relevant for
verification purposes. Consider the program fragment

while ϕ do
while ϕ do

P
od

od ;
Q

472 JAN A. BERGSTRA and ALBAN PONSE

which of course equalswhile ϕ do P od ; Q, irrespective ofϕ. This fragment can be
specified as

R∗(R∗S)

with R = ϕ :→ P andS = ¬ϕ :→ Q. Using∗ and+, and their axioms, one easily de-
rives R∗(R∗S) = R∗S (this is an example in [4]), proving our claim. This completes
our explanation of the primitives of ACPµ(At, γ,P).

In the remainder of the paper, we further develop the framework for the case in
which conditions play a decisive role and can in particular be evaluated as meaning-
less. Note that in this case,x � ϕ � x �= x, thus the principle of the excluded middle—
tertium non datur—is dropped.

In order to use identities in three-valued logic in process algebra, we introduce
the ‘rule of equivalence’

(ROE)
|= ϕ = ψ

� ϕ :→ x = ψ :→ x

This rule reflects the ‘rule of consequence’ in Hoare’s Logic (cf. Apt [1]). In our set-
ting we shall use the following version:(ROEM):

(ROEM)
BM3(P) |= ϕ = ψ

ACPµ(At, γ,P) � ϕ :→ x = ψ :→ x

We write ACPµ(At, γ,P) + ROEM � x = y, or shortly� x = y, if x = y follows
from the axioms of ACPµ(At, γ,P), the axioms and rules forBM3(P), and the rule
of equivalence ROEM. Weend this section with some useful derivabilities.

Lemma 3.1 The following identities can be derived in ACPµ(At, γ,P) + ROEM:

1. � ϕ :→ δ + x = ϕ ∨ T :→ x,
2. � ϕ :→ x + y = ϕ :→ x + ϕ ∨ T :→ y,
3. � µ‖ x = µ,
4. � ∂H(µ) = µ,
5. � tI (µ) = µ.

Proof: As for 1: ϕ :→ δ + x = ϕ :→ (F :→ x) + T :→ x = ((ϕ ∧� F) ∨ T) :→ x.
By Lemma 2.1.1,|= (ϕ ∧� F) ∨ T = ϕ ∨ T so ROEM can be applied.

As for 2: Useϕ :→ x = ϕ :→ (x + δ) = ϕ :→ x + ϕ :→ δ, and apply 1 on
ϕ :→ δ + y.

As for 3–5: Just replaceµ by M :→ x and apply (GC5), (DGC), and (TGC),
respectively. �

4 Operational semantics In this section we define an operational semantics for
ACPµ(At, γ,P). This semantics defines the contents of a process term in terms of
the atomic actions that can be executed (if any) or its interpretation as meaningless.
For example,

p :→ a with p ∈ P, a ∈ At

can either resembleµ, the actiona, or δ, depending on the interpretation ofp.

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 473

Let w range over thevaluations (interpretations)W of P in T
M
3 . We extendw

to BM3(P) in the ususal way:

w(c)
def= c for c ∈ {M, T, F},

w(¬ϕ)
def= ¬(w(ϕ)),

w(ϕ ♦ ψ)
def= w(ϕ) ♦ w(ψ) for ♦ ∈ {∧,∨, ∧� , ∨� , ∧�, ∨�}.

With the system defined in Section 2, it follows that if|= w(ϕ) = w(ψ) for all w ∈ W ,
then|= ϕ = ψ. For eachw ∈ W andϕ ∈ BM3(P) we define inductively in Table 3
the unary predicatemeaningless, notationµ(w,) onP , the set of process terms over
ACPµ(At, γ,P). This predicate defines which process terms represent the meaning-
less processµ under a certain valuationw.

Table 3:Rules forµ in panth-format

µ µ(w,µ)

:→ µ(w, ϕ :→ x) if w(ϕ) = M

µ(w, x)

µ(w, ϕ :→ x)
if w(ϕ) = T

+, ·,‖, ‖ , |, ∂H, tI
µ(w, x)

µ(w, x + y)

µ(w, y + x)

µ(w, x · y)

µ(w, x ‖ y)

µ(w, y ‖ x)

µ(w, x ‖ y)

µ(w, x | y)

µ(w, y | x)

µ(w, ∂H(x))

µ(w, tI (x))

The axioms and rules forµ(w,) given in Table 3 are extended by axioms and rules
given in Table 4 which define forw ∈ W anda ∈ At transitions

w,a−−→ ⊆ P × P ,

and unary ‘tick-predicates’ or ‘termination transitions’

w,a−−→ √ ⊆ P .

Transitions characterize under which interpretations a process term defines the possi-
bility to execute an atomic action and what remains to be executed (if anything, oth-
erwise

√
symbolizes successful termination).

474 JAN A. BERGSTRA and ALBAN PONSE

Table 4:Transition rules inpanth-format

a ∈ At a w,a−−→ √

·, ‖ x w,a−−→ √

x · y w,a−−→ y

x ‖ y w,a−−→ y

x w,a−−→ x′

x · y w,a−−→ x′y

x ‖ y w,a−−→ x′ ‖ y

+,‖ x w,a−−→ √ ¬µ(w, y)

x + y w,a−−→ √

y + x w,a−−→ √

x ‖ y w,a−−→ y

y ‖ x w,a−−→ y

x w,a−−→ x′ ¬µ(w, y)

x + y w,a−−→ x′

y + x w,a−−→ x′

x ‖ y w,a−−→ x′ ‖ y

y ‖ x w,a−−→ y ‖ x′

|,‖ x w,a−−→ √
y w,b−−→ √

x | y w,c−−→ √

x ‖ y w,c−−→ √
a | b = c

x w,a−−→ √
y w,b−−→ y′

x | y w,c−−→ y′

x ‖ y w,c−−→ y′

a | b = c

communication

x w,a−−→ x′ y w,b−−→ √

x | y w,c−−→ x′

x ‖ y w,c−−→ x′

a | b = c
x w,a−−→ x′ y w,b−−→ y′

x | y w,c−−→ x′ ‖ y′

x ‖ y w,c−−→ x′ ‖ y′

a | b = c

∂H
x w,a−−→ √

∂H(x)
w,a−−→ √ if a �∈ H

x w,a−−→ x′

∂H(x)
w,a−−→ ∂H(x′)

if a �∈ H

tI
x w,a−−→ √

tI (x)
w,a−−→ √ if a �∈ I

x w,a−−→ x′

tI (x)
w,a−−→ tI (x′)

if a �∈ I

x w,a−−→ √

tI (x)
w,t−−→ √ if a ∈ I

x w,a−−→ x′

tI (x)
w,t−−→ tI (x′)

if a ∈ I

:→ x w,a−−→ √
ϕ :→ x w,a−−→ √ if w(ϕ) = T

x w,a−−→ x′

ϕ :→ x w,a−−→ x′ if w(ϕ) = T

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 475

The following result clarifies the relation between (termination) transitions and
the meaningless predicate and follows easily by induction on the structure of the pro-
cess term involved.

Lemma 4.1 If x w,a−−→ x′ or x w,a−−→ √
for some w and a, then ¬µ(w, x).

Note that the converse implication does not hold (takex = δ).
The axioms and rules in Tables 3 and 4 yield a structured operational semantics

(SOS) with negative premises in the style of Groote [16]. Moreover, this SOS satisfies
the so-called panth-format, defined by Verhoef [23], which in this case defines the
following notion ofbisimulation equivalence.4

Definition 4.2 LetP be the set of process terms over ACPµ(At, γ,P) andB ⊆ P ×
P . ThenB is abisimulation if for all P, Q with PBQ the following conditions hold
for all w ∈ W anda ∈ At:

1. ∀P′ (P w,a−−→ P′ =⇒ ∃Q′(Q w,a−−→ Q′ ∧ P′ BQ′)),
2. ∀Q′ (Q w,a−−→ Q′ =⇒ ∃P′(P w,a−−→ P′ ∧ P′ BQ′)),
3. P w,a−−→ √ ⇐⇒ Q w,a−−→ √

,
4. µ(w, P) ⇐⇒ µ(w, Q).

Two process termsP andQ arebisimilar, notation

P ↔ Q,

if there exists a bisimulationB containing the pair(P, Q).

Furthermore, from Fokkink and van Glabbeek [15] and [23] it follows that its tran-
sitions and meaningless instances are uniquely determined. This can be established
with help of the following simplestratification S:

S(µ(w, x)) = 0,

S(x w,a−−→ x′) = S(x w,a−−→ √
) = 1,

As a consequence, we can apply the main result of [23]: bisimilarity is acongruence
for all operations involved.

Lemma 4.3 The system ACPµ(At, γ,P) + ROEM is sound with respect to bisim-
ulation: for all process terms P, Q over ACPµ(At, γ,P),

ACPµ(At, γ,P) + ROEM � P = Q =⇒ P ↔ Q.

Proof: Because bisimulation equivalence is a congruence, it is left to show that each
axiom in Table 1 and the rule ROEM yield bisimilar instances. For all axioms except
(A5), (CM1), (CMC), (T4), and (D4), this can be checked by taking

B
def= � ∪ {(il, ir)},

where� is the diagonal inP × P , and the pair(il, ir) represents the instance to be
checked. As an example, consider an instance of (GCM7), say

ϕ :→ aP | ψ :→ b = ϕ ∧ ψ :→ (a | b)P.

476 JAN A. BERGSTRA and ALBAN PONSE

Now µ(w,) either holds for bothϕ :→ aP | ψ :→ b andϕ ∧ ψ :→ (a | b)P or
not. This follows easily from the rules in Table 3. In the first case we are done; in the
second case, eitherγ(a, b) = δ, and both process terms cannot perform any transition,
or both can perform

w,a|b−−−→ P

by the rules in Table 4. ThusB is a bisimulation and

(ϕ :→ aP | ψ :→ b, ϕ ∧ ψ :→ (a | b)P) ∈ B.

For instances of (A5), (CM1), (CMC), (T4), and (D4) a witnessing bisimulation is
slightly more complex. As for (A5), assume for some process termP that

P w,a−−→ P′.

Then (PQ)R w,a−−→ (P′ Q)R and P(QR)
w,a−−→ P′(QR). A sufficient witnessing

bisimulation is in this case the diagonal extended withall appropriate associative vari-
ants:

B
def= � ∪ {((xy)z, x(yz)) | x, y, z ∈ P }.

It is not hard to check thatB is a bisimulation that contains each instance of (A5).
As for axiom (CM1) consider an arbitrary instance

P ‖ Q = (P ‖ Q + Q ‖ P) + P | Q.

Let

B
def= � ∪ {(P ‖ Q, (P ‖ Q + Q ‖ P) + P | Q)} ∪ {(x ‖ y, y ‖ x) | x, y ∈ P }.

ThenB witnesses the arbitrary instance. In particular, ifQ w,a−−→ Q′ thenP ‖ Q w,a−−→
P ‖ Q′ and(P ‖ Q + Q ‖ P) + P | Q w,a−−→ Q′ ‖ P. Again, it is easily checked that
B is a bisimulation. Furthermore, in this caseB witnesses each instance of (CMC).

As for instances of (T4) with fixedI ⊆, let

B
def= � ∪ {tI (xy), ti(x)tI (y) | x, y ∈ P }.

It quickly follows that B is a bisimulation that contains each instance of (T4). For
instances of (D4) a similar argument applies.

Finally, ϕ :→ P ↔ ψ :→ P if |= ϕ = ψ by definition of the meaningless pred-
icate, which proves the soundness of ROEM. �

5 Completeness In this section we prove completeness of ACPµ(At, γ,P) +
ROEM, that is, if for process termsP andQ it holds thatP ↔ Q, thenP = Q can be
derived. We prove this by distinguishing a term representation of bisimilar processes
that implies derivability in a direct way.

Definition 5.1 A process termP over ACPµ(At, γ,P) is abasic term if

P ≡
∑
i∈I

ϕi :→ Qi

where≡ is used for syntactic equivalence,I is a finite, nonempty index set,ϕi ∈
BM3(P), andQi ∈ {δ, a, aR | a ∈ At, R abasic term}.

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 477

Lemma 5.2 All process terms over ACPµ(At, γ,P) can be proved equal to a basic
term.

Proof: Standard induction on term complexity. �
For a ∈ At andϕ ∈ BM3(P), theheight of a basic term is defined by

h(δ) = 0,

h(a) = 1,

h(ϕ :→ x) = h(x),

h(x + y) = max(h(x), h(y)),

h(a · x) = 1+ h(x).

Lemma 5.3 If P is a basic term, there is a basic term P′ with � P = P′, h(P′) ≤
h(P), and P′ has either the form

ψ :→ δ, (1)

or the form
∑
i∈I

ψi :→ Qi (2)

with (i) for all i, j ∈ I, Qi �≡ δ, and Qi, Q j ∈ At ⇒ Qi �≡ Q j if i �= j,

(ii) if ∃i ∈ I,w ∈ W such that w(ψi) = M, then ∀ j ∈ I, w(ψ j) = M,

(iii) for each i ∈ I there is w ∈ W such that w(ψi) = T.

Proof: Let

P ≡ ∑n
i=1 ϕi :→ Qi

for somen ≥ 1. By Lemma 3.1.1 and axiom GCL4 we may assume that for alli either
Qi �≡ δ or Qi ≡ δ. In the latter case this yields with axiom GC1, form 1. In the first
case we may assume that each single action occurs at most once (by (GC1)). This
proves property (i) of form 2. Let

ϕ ≡ (ϕ1 ∨ T) ∧� · · · ∧� (ϕn ∨ T).

(Recall that ∧� is associative.) Observe that for eachw ∈ W , w(ϕ) ∈ {T, M}. Let
furthermore,

ψi ≡ ϕ ∧� ϕi,

P′′ ≡ ∑n
i=1 ψi :→ Qi.

Note that ifw(ψi) = M for somei andw, thenw(ψ j) = M for all j ∈ {1, . . . , n}. We
show that

� P = P′′ (3)

478 JAN A. BERGSTRA and ALBAN PONSE

by induction onn.

n = 1 : This follows immediately from Lemma 2.1.2.

n = k + 1 : Let ϕ ≡ (ϕ2 ∨ T) ∧� · · · ∧� (ϕn ∨ T) andϕi ≡ ϕ ∧� ϕi for
i = 2, . . . n. By induction we have that� P = ϕ1 :→
Q1 + ∑n

i=2 ϕi :→ Qi.

With k applications of Lemma 3.1.2 and (GCL4), we obtain

� P = ϕ1 :→ Q1 +
n∑

i=2

ψi :→ Qi.

Doing the same once more yields

� P = (ψ2 ∨ T) ∧� ϕ1 :→ Q1 + ∑n
i=2 ψi :→ Qi.

Now it follows easily that|= ψ1 = (ψ2 ∨ T) ∧� ϕ1 (recall thatψ2 ≡ ϕ ∧� ϕ2 andw(ψ) ∈
{T, M}). This finishes the proof of (3) and proves properties (i) and (ii) of form 2 for
P′′.

Next we consider all summands fromP′′ for which no valuation makes the con-
dition true. For each such summandψi :→ Qi it holds that|= ψi = ψi ∧� F, and thus

� ψi :→ Qi = ψi ∧� F :→ Qi

= ψi :→ (F :→ Qi)

= ψi :→ δ.

In case all summands can be proved equal toψ j :→ δ in this way, we are finished
using (3):

� P = ψ1 ∨ · · · ∨ ψn :→ δ.

In the other case,w(ψi) = T for certainw, i. If � ψ j :→ Q j = ψ j :→ δ for some
j, then by Lemma 3.1.2,� ψ j :→ δ + ψi :→ Qi = (ψ j ∨ T) ∧� ψi :→ Qi. Now
|= ψi = (ψ j ∨ T) ∧� ψi as was already used in the proof of (3). Hence we obtain

� P = ∑k
i=1 ψi :→ Qi

with k ≤ n (and possibly some rearrangement of indices), and for eachi ∈ {1, . . . , k}
there is a valuationw with w(ψi) = T. This proves property (iii) of form 2 and pre-
serves properties (i) and (ii). �

Lemma 5.4 Let P1, P2 be basic terms. Then

P1 ↔ P2 =⇒ � P1 = P2.

Proof: By the previous Lemma 5.3, we may assume that bothP1 andP2 satisfy ei-
ther form 1 or form 2 given there. We proceed by induction onh=max(h(P1), h(P2)).

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 479

Let h = 0. ThenPn ≡ ϕn :→ δ for n = 1,2. So� ϕ1 :→ δ ↔ ϕ2 :→ δ andw(ϕ1) =
M ⇐⇒ w(ϕ2) = M. This implies thatBM3(P) |= ϕ1 ∧� F = ϕ2 ∧� F. Now ϕn :→ δ =
ϕn :→ (F :→ δ) = ϕn ∧� F :→ δ. Consequently,� P1 = P2.

Let h > 0 andPn ≡ ∑
i∈In

ψn,i :→ Qn,i for n = 1,2. By the previous Lemma 5.3, we
may assume thatPn satisfies form 2 given there. Furthermore, we may assume that
for all i ∈ In, Qn,i ��↔ Qn, j for j ∈ In \ {i}. For the caseQn,i ≡ aRn,i andQn, j ≡ aRn, j

this follows by induction:Rn,i ↔ Rn, j implies� Rn,i = Rn, j, so� aRn,i = aRn, j,
and thus (GC1) could have been applied.

Now each summand ofPn can be proved equal to one inP3−n and by Lemma 5.3,
each summand yields a transition for a certainw ∈ W .

1. Assume thatPn
w,a−−→ √

for somew, a. Thusw(ψn,i) = T for some
unique i ∈ In. By P1 ↔ P2, there is a uniquej ∈ I3−n for which
P3−n

w,a−−→ √
and|= ψn,i = ψ3−n, j (the latter derivability follows from

the representation as defined in Lemma 5.3 and the nonbisimilarity of
different summands). Thus

� ψn,i :→ a = ψ3−n, j :→ a.

2. Assume thatPn
w,a−−→ Rn,i for somew, a and uniquei ∈ In. Thus

w(ψn,i) = T. By P1 ↔ P2, there must be some uniquej ∈ I3−n for which
P3−n

w,a−−→ R3−n, j and Rn,i ↔ R3−n, j, and for which|= ψn,i = ψ3−n, j

follows from Lemma 5.3. By induction we find� Rn,i = R3−n, j, and
therefore� aRn,i = aR3−n, j and hence

� ψn,i :→ aRn,i = ψ3−n, j :→ aR3−n, j.

By symmetry, it follows that each summand ofPn is provably equal to onePn−3. Con-
sequently,� P1 = P2. �
With Lemmas 5.2, 5.3, 5.4, and soundness (Lemma 4.3) we obtain the following the-
orem.

Theorem 5.5 The system ACPµ(At, γ,P) + ROEM is complete with respect to
bisimulation equivalence: for all process terms P, Q over ACPµ(At, γ,P),

ACPµ(At, γ,P) + ROEM � P = Q ⇐⇒ P ↔ Q.

6 Parameterized actions and nonclassical values When dealing with actionsa(x)

parameterized byx over some data type, it makes sense to consider the case in which
data can also take valueM. If so, one faces the question how to interpreta(M). Given
the preceding interpretation of conditions, a natural choice is to take

a(M) = µ.

(Soa(x) is an atomic action in casex �= M.) We end this section with two examples
on the use ofM andµ.

480 JAN A. BERGSTRA and ALBAN PONSE

Example 6.1 As an example of the use of process algebra with the proposed three-
valued propositional logicBM3(P), weconsider a process that manipulates bounded
stacks over data sort

Data
def= {d, e, f, g, h}.

Let Data0-5 def= {ρ ∈ Data∗ | length(ρ) ≤ 5}, where we assume thatε is the empty
string in Data∗, and length is a given function that yields the length of a string in
Data∗. Let furthermore

DataM
def= Data ∪ {M},

Data0-5
M

def= Data0-5 ∪ {M},

and let the following functions be defined:

app : Data × Data0-5
M → Data0-5

M ,

app(d, ρ) = M if length(ρ) = 5 or if ρ = M,

head : Data0-5
M → Data,

head(ρ) =

M if ρ ∈ {ε, M}
d if ρ = app(d, ρ′), ρ′ ∈ Data0-5,

tail : Data0-5
M → Data0-5

M ,

tail(ρ) =

M if ρ ∈ {ε, M}
ρ′ if ρ = app(d, ρ′), ρ′ ∈ Data0-5,

empty : Data0-5
M → T

M
3 ,

empty(ρ) =

T if ρ = ε

M if ρ = M

F otherwise,

full : Data0-5
M → T

M
3 ,

full(ρ) =

T if length(ρ) = 5

M if ρ = M

F otherwise.

We think these functions characterize straightforwardly the role ofmeaningless:

head(ε) = tail(ε) = M,

and all are monotonic inM.

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 481

The following process termQ(x) describes manipulation with stack objectx ∈
Data0-5 including all “special cases” that evolve fromData0-5

M .

Q(x) = ¬full(x) :→ ∑
d∈Data r1(d) · Q(app(d, x))

+ ¬empty(x) :→ (s2(head(x)) + s3(head(x))) · Q(tail(x))

+ ¬empty(x) ∧� empty(tail(x)) :→ s4(head(x)) · Q(ε)

+ empty(x) :→ s5(is empty) · Q(ε).

Here actionsr j() and s j() model receive and send actions, respectively, of data
along channelj. So,Q(x) can be ‘pushed’ in case it is not full and be ‘popped’ in case
it is not empty in three ways: either it can send its head value along channel 2 or 3,
and evolve intoQ(tail(x)), or in case of the one-element stack, it can send this value
along channel 4. The empty stack valueε can be observed via actions5(is empty).
WeconsiderQ(x) in parallel with areset processR defined by

R = r6(set empty) · (∑d∈Data r3(d))∗r5(is empty)
)
.

Hereγ(r j(x), c j(x)) = c j(x) for all values ofx ∈ DataM ∪ {is empty}. The idea is
that R can be triggered to resetQ(x) to Q(ε) via actionr6(set empty). Let H =
{r j(x), s j(x) | j = 3,4, x ∈ DataM ∪ {set empty, is empty}}. Then

∂H(Q(x) ‖ R)

models this reset. We still have∂H(Q(M) ‖ R) = µ.

Example 6.2 Consider the data typeω = {0, S(0), S(S(0)), . . .}, with equality≡:
ω × ω → T

M
3 (binary infix) defined by

0 ≡ 0 = T,

0 ≡ S(x) = F,

S(x) ≡ 0 = F,

S(x) ≡ S(y) = x ≡ y.

Let the predecessor functionP : ω → ω∪{M} be defined byP(0) = M, andP(S(x)) =
x. Weextend the domains ofS, ≡, andP with valueM by defining

S(M) = x ≡ M = M ≡ x = P(M) = M.

Now consider the following counterlike process:

C(x) = r(up) · C(S(x)) + r(down) · C(P(x)) + r(set zero) · C(0)

+ x ≡ 0 :→ r(is zero) · C(x).

With the actionr(up), a command to increase can be received, and a command to
decrease is modeled by the actionr(down). The actionr(set zero) models a reset of

482 JAN A. BERGSTRA and ALBAN PONSE

the counter toC(0), and actionr(is zero) indicates that the counter value equals 0. It
follows that

C(M) = µ,

C(0) = r(up) · C(S(0)) + r(down) · C(M) + r(set zero) · C(0)

+ r(is zero) · C(0),

C(Sk+1(0)) = r(up) · C(Sk+2(0)) + r(down) · C(Sk(0)) + r(set zero) · C(0).

So, if in case ofC(0) the actionr(down) is performed, the counter evolves intoµ.

7 Conclusion The extension of process algebra to a three-valued setting with
meaningless entails the introduction of a new process constantµ and the defining ax-
iom M :→ x = µ. As aguard,M is totally persistent: whenever a condition to be
evaluated in a process term equalsM, the process term equalsµ. In aparallel setting,
this is much stronger than occurrence ofF in a condition, for example,

(F :→ a) ‖ bc = bcδ, whereas(M :→ a) ‖ bc = µ.

In our set-up,F :→ µ = δ holds. This clearly illustrates that the conditional guard
construct reflects a certain order: first the condition is evaluated, then its right argu-
ment is considered. So, in this respect the conditional guard construct really guards its
process term. This agrees with the intuition as exemplified by the following program
fragment:

if T then P else 〈type-clash〉 fi,

where we certainly have a clue of its operational behavior when we have one ofP.

Note 7.1 Recently we published some more papers on process algebra with non-
classical logics [8, 10, 9]. The most intricate of these starts from a five-valued logic
that comprises in addition toT andF not only the valueM, but also valuesD for di-
vergence, andC for choice or undetermined. Typically, D :→ x = δ andx � C � y =
x + y. (So, with conditional composition,C gives a counterpart of the+ operation in
process algebra.)

We think that the present paper describes an approach that in its own right deserves
publication, and we hope that it provides an elegant introduction to the general subject
of process algebra with nonclassical logics, or perhaps—quoting a referee—“error
handling in parallel and distributed software systems.”

Acknowledgments Wethank a referee for suggesting some improvements.

NOTES

1. Thechaos processχ, which stems from CSP [17], seems to be characterized by exactly
the same laws as given forµ. But χ characterizes the effect of infinite internal activity
and its laws capture an intuition that is not useful in our set-up. Modeling internal activity
explicitly would distinguishµ andχ. Therefore we introduce this new constant.

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 483

2. Of course,δ = µ implies inconsistency of our theory:x = x + δ = x + µ = µ.

3. Note that in a two-valued setting,∧� and∧ coincide.

4. A general reference to bisimulation equivalence is Park [22]. Its role in process algebra
is overviewed in [3].

REFERENCES

[1] Apt, K. R., “Ten years of Hoare’s logic, a survey, part I,”ACM Transactions on Pro-
gramming Languages and Systems, vol. 3 (1981), pp. 431–83.

[2] Baeten, J. C. M., and J. A. Bergstra, “Process algebra with signals and conditions,”
pp. 273–323 inProgramming and Mathematical Method,Proceedings Summer School
Marktoberdorf, 1990 NATO ASI Series F, edited by M. Broy, Springer-Verlag, 1992.

[3] Baeten, J. C. M., and W. P. Weijland,Process algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, Cambridge, 1990.

[4] Bergstra, J. A., I. Bethke, and A. Ponse, “Process algebra with iteration and nesting,”
Computer Journal, vol. 37 (1994), pp. 243–58.

[5] Bergstra, J. A., I. Bethke, and P. H. Rodenburg, “A propositional logic with 4 values:
true, false, divergent and meaningless,”Journal of Applied Non-Classical Logics, vol. 5
(1995), pp. 199–217.

[6] Bergstra, J. A., and J. W. Klop, “The algebra of recursively defined processes and the al-
gebra of regular processes,” pp. 1–25 inAlgebra of Communicating Processes, Utrecht
1994, edited by A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, Springer-Verlag, 1995.

[7] Bergstra, J. A., and J. W. Klop, “Process algebra for synchronous communication,”In-
formation and Control, vol. 60 (1984), pp. 109–37.

[8] Bergstra, J. A., and A. Ponse, “Kleene’s three-valued logic and process algebra,”Infor-
mation Processing Letters, vol. 67 (1998), pp. 95–103.

[9] Bergstra, J. A., and A. Ponse, “Process algebra with five-valued conditions,” pp. 128–
43, inCombinatorics, Complexity, and Logic, Proceedings of DMTCS’99 and CATS’99,
vol. 21, nr. 3 of Australian Computer Science Communications, edited by C. S. Calude
and M. J. Dinneen, Springer-Verlag, Singapore, 1999.

[10] Bergstra, J.A., and A. Ponse, “Process algebra with four-valued logic,”Journal of Ap-
plied Non-Classical Logics, vol. 10 (2000), pp. 27–53.

[11] Bochvar, D. A., “On a 3-valued logical calculus and its application to the analysis of
contradictions (in Russian),”Matématic̆eskij sbornik, vol. 4 (1939), pp. 287–308.

[12] Brookes, S. D., C. A. R. Hoare, and A. W. Roscoe, “A theory of communicating sequen-
tial processes,”Journal of the ACM, vol. 31 (1984), pp. 560–99.

[13] Dijkstra, E. W.,A Discipline of Programming, Prentice Hall International, Englewood
Cliffs, 1976.

[14] Fokkink, W. J., “Axiomatizations for the perpetual loop in process algebra,” pp. 571–81
in Proceedings of the 24th Colloquium on Automata, Languages and Programming—
ICALP’97, Lecture Notes in Computer Science 1256, edited by P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, Springer-Verlag, 1997.

484 JAN A. BERGSTRA and ALBAN PONSE

[15] Fokkink, W. J., and R. J. van Glabbeek, “Ntyft/ntyxt rules reduce to ntree rules,”Infor-
mation and Computation, vol. 126 (1996), pp. 1–10.

[16] Groote, J. F., “Transition system specifications with negative premises,”Theoretical
Computer Science, vol. 118 (1993), pp. 263–99.

[17] Hoare, C. A. R., I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. A. Sufrin, “Laws of programming,”Communica-
tions of the ACM, vol. 30 (1987) pp. 672–86.

[18] Kleene, S. C., “Representation of events in nerve nets and finite automata,”Automata
Studies, pp. 3–41, edited by C. Shannon and J. McCarthy, Princeton University Press,
Princeton, 1956.

[19] Konikowska, B., “McCarthy algebras: a model of McCarthy’s logical calculus,”Fun-
damenta Informaticae, vol. 26 (1996), pp. 167–203.

[20] McCarthy, J., “A basis for a mathematical theory of computation,” pp. 33–70 inCom-
puter Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-
Holland, Amsterdam, 1963.

[21] Milner, R., Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

[22] Park, D. M. R., “Concurrency and automata on infinite sequences,” pp. 167–83 inPro-
ceedings of the 5th GI (Gesellschaft für Informatik) Conference, Karlsruhe, LNCS 104,
edited by P. Deussen, Springer-Verlag, 1981.

[23] Verhoef, C., “A congruence theorem for structured operational semantics with predi-
cates and negative premises,”Nordic Journal of Computing, vol. 2 (1995), pp. 274–
302.

Programming Research Group
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
THE NETHERLANDS
email: {janb,alban}@science.uva.nl

Department of Philosophy
Utrecht University
Heidelberglaan 8
3584 CS Utrecht
THE NETHERLANDS
email: Jan.Bergstra@phil.uu.nl

CWI
Kruislaan 413
1098 SJ Amsterdam
THE NETHERLANDS
email: Alban.Ponse@cwi.nl

