
464

Notre Dame Journal of Formal Logic
Volume 39, Number 4, Fall 1998

Bochvar-McCarthy Logic and Process Algebra

JAN A. BERGSTRA and ALBAN PONSE

Abstract We propose a combination of Bochvar's strict three-valued logic,
McCarthy's sequential three-valued logic, and process algebra via the condi-
tional guard construct. This combination entails the introduction of a new con-
stant meaningless in process algebra. We present an operational semantics in
SOS-style, and a completeness result for ACP with conditional guard construct
and the proposed logic.

I Introduction An (immediate) error in an algorithm or program, such as refer-
ence to a nonexisting instruction, or a type clash, is often easily detectable: In order
to model this feature in a concurrent setting, we consider process algebra with con-
ditional guard construct and a variant of three-valued logic as a means to represent
concurrent algorithms and programs. (Some motivation is given in Section 3.) In
general, errors can be classified in at least two categories: divergencies which can be
hard to detect and more simple ones, such as described above. In this paper we pro-
pose how to deal with the occurrence of the latter sort, which we further call mean-
ingless, notation M. In particular, evaluation of a proposition cp may now lead to M,
in which case the evaluation of -gyp should of course also result in M. Thus the first
logical identity we adopt is -M = M.

In process algebra we introduce it as a process representing the effect of the log-
ical (error-)value M. The new constant µ is axiomatizedt by

X+A = A,
/L X = A.

Here + is the commutative operation denoting choice, and represents sequential
composition. So the process Ft ruins each (future) alternative.

We recall the conditional guard construct cp :-* - from Dijkstra [13] (roughly:
if co holds, then _), which was introduced in process algebra with two-valued logic in
Baeten and Bergstra [2] with the following typical laws where T denotes the value

Received January 12, 1998; revised December 2, 1999

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 465

true and F stands for false:

T:ax = x,

F :-) x = S,

cpv * :-ma x.

The constant S (inaction/deadlock) is well known in ACP-based approaches (see, e.g.,
Bergstra and Klop [6, 7] and Baeten and Wijland [3]) and is axiomatized by x + S = x
and 8 x = S. Another basic construct in the combination of two-valued proposi-
tional logic and process algebra is conditional composition x < cp > y, introduced in
[2]. Here x, y are processes, and cp is a proposition. This operation satisfies (among
others) the following axioms:

x<Tr>y = x,
x<FDy = y,
xacp>y = y<-,cp>x.

The notation _ < stems from Hoare et. al [17], and in that paper it is argued that
x < rp r y expresses if cp then x else y ti. Conditional composition - < _ > - can be
regarded as more basic than the conditional guard construct, as it does not presuppose
the existence of the special constant S. Of course,

x<co> y= cp:-+ x+ -cp :-+ Y.

Finally, a characteristic identity for process algebra with two-valued logic is
xacpr>x=x.

We fix the relation between M and it with axiom

M :-+ x = it.

If it is known that a condition in a process term equals M, there is no point in con-
sidering any (future) alternative. Furthermore, preservation of the three laws on the
conditional guard construct mentioned above and those for S and µ implies symmetry
of v. This symmetry together with -.M = M and the derivations

M:-x = it
x+µ
T:-*x+M:-+x
TvM:-+x,

and

M:-.x
= µ+S

M:-*x+F:-+x
= MvF:-+x,

imply the following truth tables:

x -x v M T F

M M M M M M
T F T M T T

F T F M T F

_ > _

=

466 JAN A. BERGSTRA and ALBAN PONSE

This three-valued logic, in which M is totally persistent, was defined earlier by
Bochvar in [11].

Another basic law in [2] that we want to accommodate relates to repeated appli-
cation of the conditional guard construct and conjunction:

(p:-)- (*:-)- x) =(pA*:- x

(note the symmetry in O A /). However, this law is not preserved in the present
setting:2

F:-> (M:--* x) = 8,

FAM:-x = µ.
Therefore we replace it by a version in which also the right-hand side reflects the order
of evaluation, and use left-sequential conjunction as introduced by McCarthy [20],
with the asymmetric notation p taken from Bergstra, Bethke, and Rodenburg [5]:

OA

M
T

F

M T F

M M M
M T F

F F F

Here cp p i expresses that first p is evaluated and then >U. For recent work on Mc-
Carthy's logic see, for example, Konikowska [19]. A sequential version of the law
mentioned above is

pp :-> (,/r :-> x) _ O dA i/i' dA*:-+ X.

We further adopt this identity as the process algebra axiom that reduces repeated ap-
plication of the conditional guard construct3. This design also allows us to extend the
framework defined in this paper in a conservative way to a setting with four-valued
logic as introduced in [5]. In that paper, complete axiomatizations for both Bochvar's
and McCarthy's three-valued logic can be found.

In the next section we present the precise three-valued logic we consider and
extend it with proposition symbols. In Section 3 we combine this extension with ACP.
In Sections 4 and 5 we define an operational semantics and bisimulation equivalence
and we prove a (relative) completeness result. In Section 6 we extend the setting with
data-parametric actions and consider some examples. Finally, in Section 7 we provide
some conclusions.

2 A three-valued propositional logic due to Bochvar with McCarthy's extension
We consider the following set of logical operations on the set TM of truth values:

M, T, F : -> TM

TM ZCM

V :
3 3

TM x TM --* TM
3 3

A, V, A, V, /b,

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 467

of which A, and dA are defined by the following truth tables:

x _x A M T F dA T F

M M M M M M M M M
T F T M T F T T F

F T F M F F F F F

The remaining operations are all definable:

Disjunction: x v y def - (-x A -y),

Left-sequential disjunction: y
def -(-xA -y),

Right-sequential conjunction: x y aef y\x

Right sequential disjunction: x \,Py d=f y'V X.

We call the resulting logic II$M3 (-, A, d`), or shortly BM3. Notice that HM3 is not
functionally complete: for example, one cannot define f with f (M) = F. We do not
embark on complete equational specifications of IBM3. All we need are the truth ta-
bles and equations above (so all in: 3 + 9 + 9 = 21 equations, or 25 if we include the
dual and right-sequential operations).

In case we use proposition symbols from set IID, we shall write IBM3 (IP), and for
concise notation we shall identify BM3 and IBM3(0). In order to extend our evalua-
tion system to propositions fp, *, ... over IP>, we use substitution on single proposition
symbols: let p, q E IP, then

[wl p]q

[wl pl p

[o/p]c

[W/pl -f

[0/p](* O *2)

q,

w,

c for c E {M, T, F},

-[ca/p]*,

[cD/p] 1 0 [ca/p] r2 for O E {A, v, d\, OV, /lb, \,P},

def

def

def

a proof rule the excluded fourth rule:

a(V) = a(*) for all or E {[M/ p], [T/ p], [F/ p]}

fp = *

Together with the equations implied by the truth tables for A, and P, this yields
a complete, inequational evaluation system for]BM3 (IP). Notice that the operations
A, 0/\, and their duals are associative and that A and V are commutative as well. We
write

3M3 =cv=*
if fp = t can be proved by the system described above. We use the satisfaction symbol
= to indicate that our system is just a syntactic version of the standard semantics for
three-valued logic. If IP is fixed, we often only write H cp = fr. The identities stated
in the following lemma are used in the sequel.

X V Y =

y0A x,

468 JAN A. BERGSTRA and ALBAN PONSE

Lemma 2.1 The following identities hold in

1. (cppF)vT=cpvT,
2. vT)d`p=gyp.

M3 (IP):1B

3 Process algebra with I($M3 (IP) In this section we consider the combination of
process algebra and BMMMI3 (IP). This combination is based on ACP, the Algebra of
Communicating Processes [6, 7, 3]. The signature of ACP is parameterized with a
set A of constants a, b, c.... denoting atomic actions, that is, processes that are not
subject to further division and that execute in finite time, and with a communication
function y that prescribes which actions can communicate. We consider a distinct
action t V A, and set At = A U {t}. We further write ACP(A1, y) as to make these
parameters explicit. It is assumed that y is commutative, thus y(a, b) = y(b, a), and
associative: y(a, y(b, c)) = y(y(a, b), c). In ACP(A1, y) there is a constant S V A1,
denoting the inactive process. The six operations of ACP(A1, y) are:

Alternative composition: x + y denotes the process that performs
either x or y.

Sequential composition: x y denotes the process that performs x,
and upon completion of x starts with y.

Merge or parallel composition: x 11 y denotes the parallel execution of x
and y (including the possibility of syn-
chronization).

Left merge, an auxiliary x 11 y denotes x 11 y with the restriction
operator: that the first action stems for the left ar-

gument x.

Communication merge, x I y denotes x 11 y with the restriction
an auxiliary operator: that the first action is a synchronization

of both x and y.

Encapsulation: 8H(x) (where H C A) renames atoms in
H to S.

In Table 1 we present a slight modification of ACP(A1, y). We take y total on
At x At -> Ara, where A15 = At U {S}, and we take the communication merge com-
mutative (CMC) (by which (CM6) and (CM9), the symmetric variants of (CM5)
and (CM8), see [3], become derivable). We note that left merge and communication
merge are auxiliary operations used to axiomatize the merge (cf. [3]). By (Al) and
(CMC), merge is a commutative operation. Although the merge is not axiomatized
as an associative operation, it is associative for all process terms (i.e., closed terms,
which can be proved with structural induction), and we will leave out brackets in re-
peated applications.

We shortly comment on the primitives of ACP(A1, y). Often, + is used as an
operation facilitating analysis rather than as a specification primitive: concurrency
is analyzed in terms of sequential composition, choice, and communication. Verifi-
cation of a concurrent system 3H(Cl 11 ... II C,) generally boils down to represent-
ing the possible executions with + and , having applied left-merge , communica-

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA

Table 1: The axiom system ACP(A,, y), where a, b E A,a, H C A,.

(Al) x+(y+z) = (x+y)+z
(A2) x+y = y+x
(A3) x+x = x
(A4) (x+y)z = xz+yz
(A5) (xy)z = x(yz)
(A6) X+3 = x
(A7) Sx = S

(CH) alb = y(a, b) if a, b E A,

(CF2) a I S = S

(CMI) x lI y = (xLY+YLx)+xly
(CM2) a L x = ax
(CM3) ax L y = a(x II y)
(CM4) (x+y)Il z = xll z+yll z
(CMC) xly = ylx
(CM5) ax l b = (a l b)x

(CM7) ax l by = (alb) (x II y)

(CM8) (x+y)Iz = xlz+ylz
(D1) ay(a) = a if a H

(D2) ay(a) = S if a E H

(D3) ay(x+y) = ay(x)+ay(Y)
(D4) ay(xy) = ay(x)ay(Y)

tion merge, and encapsulation (by which communication between components CC can
be enforced). After renaming internal activity (e.g., using pre-abstraction explained
below), this may yield a simple and informative specification of external behavior.
Furthermore, in case such a component reacts upon external input, choice is a natu-
ral specification primitive for representing value-binding (cf. Milner's translation of
basic CCS into value-passing CCS [21]). For example, assume component C1 can
receive a value from a finite set Data = {do-, dt , ... , dN }, and then perform further
activity that depends on the value d received via action r(d). By commutativity and
associativity of +, this situation can be characterized by the identity

C1 = r(do) Activity(do) + r(dl) Activity(d1) + ... + r(dN) Activity(dN),

where binds stronger than +, or shortly by

C, = E r(d) Activity(d).
dE Data

In a parallel context in which some value s(dj) is offered, the intended communica-
tion y(r(dj), s(dj)) can be enforced by encapsulation, after which C, has evolved

..mar*

469

470 JAN A. BERGSTRA and ALBAN PONSE

into Activity(dj). After introducing the remaining axioms on µ and the conditional
operations, we continue this explanation.

Table 2: Remaining axioms of ACPN, (A,, y, 1P), where rp, i/r E

(GC3) (v- x)y =

(GC5) rp:-+ xfLy =
(GCM6) rp :-+ a l i/r :-+ b =
(GCM7) cp :-* ax I i/r :-* b =
(GCM8) rp:-)-axl>/r:aby =
(DGC) ay((p :- x) =
(TGC) t,(rp :-a x) =
(T1) t, (a) =

(T2) ti(a) =
(T3) t,(x+y) =
(T4) t,(xy) =

(GCL4) rp :--)' x)

H M3 (IP), a, b E A,s, 1 c A,.

A

cO :-- x+.,cp :-± y

rpvi/r:-±x

v- (x+Y)
rp:-+ xy

v- (xfY)
rpni/r:-±al b

Vn*:--+(alb)x
rpni/r:--* (alb)(x 11 y)

V- ax(x)
(P:-* tj(X)

a ifaVI
t if a E I

tr(x)+t,(Y)
t,(x)t,(y)

In Table 2 we provide the additional axioms for the extension of ACP(A,, y) with
HM3 OP) (where P is considered a third parameter). Here cp is taken from Il$M3 OP),
so for each cp, - a W r> - is a binary operation and cp :-> - is a unary operation. The
axiom (GCM6) suggests a more general version of (CF 1) - (CF2), and (GCM7) and
(GCM8) can be seen as generalizations of (CM5) and (CM7), respectively. Further-
more, observe that

cp:->X f*:-;y=wAi/r:-*(xIY)

would imply inconsistency of our theory (A=T:--), µ f F:--* x=T A F:--* (µ i x) =S),
which explains the weaker axioms (GCM6) - (GCM8). For each 1 C At there is a pre-
abstraction operation tj that renames all actions in I to t and that is axiomatized by
(T1):-(T4). We use

ACPO (At, y, IP)

(*:--+

= A
= P
= P
= X
= S

=
=

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 471

to refer to both this axiom system and the signature thus defined. We mostly sup-
press the in terms, and brackets according to the following rules: binds strongest,

binds stronger than II, II , I, all of which in turn bind stronger than +. Closed
terms over ACPt,,(At, y, IP) will be further called process terms, as these represent
processes, and P(At, y, IP), or shortly P if all parameters are fixed, denotes the set of
all process terms.

We continue our explanation, now involving all operations of ACP, (At, y, IP)
and binary Kleene star: assume component Ct as introduced above models a channel
that repeatedly transfers values from port 1 to port 2 via actions r, (d) (receive value
d along channel 1), and s2 (d) (send value d along channel 2). We can write

C1 = (Ed,Data r, (d) s2(d))* S.

Here * is the binary Kleene star [18], defined by

x*y = x(x*y) + Y.

(See also Bergstra, Bethke, and Ponse [4].) In particular, x*8 repeatedly performs
x, as follows easily from the axioms A6 and A7 and can be defined by xu' = x(xl'),
thus without + and 8 (see Fokkink [14]). We further refine C, to a component Ch,
representing a channel that either corrupts a value received or transfers it properly:
this can be written as

Ch = (>dEDatar,(d) (s2(d) <tP>s2(1))*8,

where tp represents the mechanism that determines whether d will be transferred prop-
erly or will be corrupted (action s2(1)). It may well be that tp depends on courses of
evaluation beyond our means of analysis or control or beyond our verification pur-
poses. In this case, our analysis should be performed on a more abstract level and we
can write

(>dEData ri (d) (s2(d) + s2(1))* S,

where + is used in favor of conditional composition. A better type of modeling is
obtained by specifying

(EdEData r, (d) (t s2(d) + t s2(1))* 8,

thus guaranteeing that corruption of transfer is nondeterministic from the external
point of view. The latter specification is useful for analysis of the operation of Ch
in the case that no explicit information on rP is available. Finally, we give an exam-
ple that illustrates that even in case a condition is explicit, it need not be relevant for
verification purposes. Consider the program fragment

while cp do
while tP do

P
od

od ;

Q

472 JAN A. BERGSTRA and ALBAN PONSE

which of course equals while cp do P od ; Q, irrespective of cp. This fragment can be
specified as

R*(R*S)

with R = cp :-. P and S = -cp :-)- Q. Using * and +, and their axioms, one easily de-
rives R*(R*S) = R*S (this is an example in [4]), proving our claim. This completes
our explanation of the primitives of ACP,, (At, y,]P).

In the remainder of the paper, we further develop the framework for the case in
which conditions play a decisive role and can in particular be evaluated as meaning-
less. Note that in this case, x < pp > x 0 x, thus the principle of the excluded middle-
tertium non datur-is dropped.

In order to use identities in three-valued logic in process algebra, we introduce
the `rule of equivalence'

(ROE)
E- x

This rule reflects the `rule of consequence' in Hoare's Logic (cf. Apt [1]). In our set-
ting we shall use the following version: (ROEM):

(ROEM)
IRM3 (IP) I` tp = /

ACP,,,(At,y,1P)l-tp:-+ x=,:-). x

We write ACPN, (At, y, IP) + ROEM F- x = y, or shortly F- x = y, if x = y follows
from the axioms of ACPN, (At, y, 1P), the axioms and rules for II$M3 (lip), and the rule
of equivalence ROEM. We end this section with some useful derivabilities.

Lemma 3.1 The following identities can be derived in ACPN, (At, y, IP) + ROEM:

1. F-pp:--S+x=cpvT:--* x,
2. F-pp:+ x+y=tp:-), x+cpvT:- y,
3. F-µll x=µ.
4. F-8H(µ)=
5. F-tt(A)=µ

-

Proof.- As for 1: pp:--* S+x=tp:-* (F:-+ x)+T:-*x=((cppF)vT)x.
By Lemma 2.1.1, = (rp p F) V T = rp v T so ROEM can be applied.

As for 2: Use cpx=tp:-> (x+S) =cp:- x+tp:- S, and apply 1 on
S+y.

As for 3-5: Just replace µ by M :-- x and apply (GC5), (DGC), and (TGC),
respectively.

4 Operational semantics In this section we define an operational semantics for
ACP,,, (At, y, P). This semantics defines the contents of a process term in terms of
the atomic actions that can be executed (if any) or its interpretation as meaningless.
For example,

p:-+ awith pEIP, aEA,

can either resemble µ, the action a, or 8, depending on the interpretation of p.

(-

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 473

Ho

Let w range over the valuations (interpretations) W of IP in 7M. We extend w
M3 (IP) in the ususal way:

w(c) acv
c for c E {M, T, F),

w(-ntP)
air

(W (0),

w(tp0r) =` w(()Ow(Vi)for 0 E IA, V, P, V , /\, \f).

With the system defined in Section 2, it follows that if w (cp) = w (*) for all w E W,
then = cp = Eli. For each w E W and cp E Ii M3 (IP) we define inductively in Table 3
the unary predicate meaningless, notation it (w, -) on P, the set of process terms over
ACP, (At, y, IP). This predicate defines which process terms represent the meaning-
less process A under a certain valuation w.

Table 3: Rules for it in panth-format

A A(w, it)

:-* µ(w,tp:-*x) if w(0 = M

A(w, x)

µ(w,cp:--mix)

+, , 11, II ,1, aH, tl

if w(rp) = T

A(w, X)

A(w, x+ y)
µ(w, y+x)
µ(w, x y)

it (w,x11Y)
it(w,Yllx)

Y)

µ(w,xl Y)
µ(w, Y I x)
µ(w, aH(X))

A(w, ti W)

The axioms and rules for µ(w, -) given in Table 3 are extended by axioms and rules
given in Table 4 which define for w E W and a E A, transitions

and unary 'tick-predicates' or `termination transitions'

/ c P.

Transitions characterize under which interpretations a process term defines the possi-
bility to execute an atomic action and what remains to be executed (if anything, oth-
erwise / symbolizes successful termination).

[--

- -E4

474

a E At

x !L4 /
X. Y w'*

JAN A. BERGSTRA and ALBAN PONSE

Table 4: Transition rules in panth-format

y

x11 y y

communication

x w'*/ -A(w,Y)
x+y

y + x w'

xlly -+y
y llxy

x w' yw'_.J
xIY

alb=c

xlly w4 /

X y w' b* /
alb=c

tl

xl y w'`>x'

xlly x'

x /
aH(x) * /

N

x w' / if a¢I
tt(x) w4 ./

x-
wt if aEI

tl (x) --* .,/

x w'ax'

x

x y x'

x x'

xlly *x'llY
yllx -* yllx,

u' a -x -'> ,\/ y + y'

xIyw4 y'
alb=c

x1Iy-*Y'

,a w,bX -w* x y -* y
xly X, Y,

xlly X, Y,

alb=c

x * x' ifaf H
aH(x) W'* aH(x')

w,ax -* x ifa4l
tl(x) w' tl(x')

x w'a* x'

tl(x)
-

tl(x')

if aEl

x w4 / x "4 x'
wa if w(cp) =T a if w(cp) =Tpx-> V:-+

x/

. , L

a

/

X x'

!L

x y

w,a w,a

L4

i

x

/ xx'

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 475

The following result clarifies the relation between (termination) transitions and
the meaningless predicate and follows easily by induction on the structure of the pro-
cess term involved.

Lemma 4.1 If x w'4 x ' or x --> ../for some w and a, then -A(w, x).

Note that the converse implication does not hold (take x = 3).
The axioms and rules in Tables 3 and 4 yield a structured operational semantics

(SOS) with negative premises in the style of Groote [16]. Moreover, this SOS satisfies
the so-called panth-format, defined by Verhoef [23], which in this case defines the
following notion of bisimulation equivalence.4

Definition 4.2 Let P be the set of process terms over ACP,, (A,, y, II>) and B C_ P x
P. Then B is a bisimulation if for all P, Q with PBQ the following conditions hold
for all w E W and a E A,:

VP' P P'1 ' -* ' ' '(. 3Q (Q Q A P BQ)),
V ' - '2 Q (Q Q. P A P9P (P BQ)),
P -.a,

3 , J. Q

4. µ(w, P) µ(w,Q)
Two process terms P and Q are bisimilar, notation

P ± Q,

if there exists a bisimulation B containing the pair (P, Q).

Furthermore, from Fokkink and van Glabbeek [15] and [23] it follows that its tran-
sitions and meaningless instances are uniquely determined. This can be established
with help of the following simple stratification S:

S(µ(w, x)) = 0,

S(x-*x')=S(x1,
As a consequence, we can apply the main result of [23]: bisimilarity is a congruence
for all operations involved.

Lemma 4.3 The system ACP,, (Ar, y, IP>) + ROEM is sound with respect to bisim-
ulation: for all process terms P, Q over ACP, (At, y, 1P),

ACPµ(A,, y,1l) +ROEM I- P = Q = P H Q.

Proof: Because bisimulation equivalence is a congruence, it is left to show that each
axiom in Table 1 and the rule ROEM yield bisimilar instances. For all axioms except
(A5), (CMI), (CMC), (T4), and (D4), this

Wt,

be checked by taking

B =def
A U [(it, ir)},

where A is the diagonal in P x P, and the pair (it, ir) represents the instance to be
checked. As an example, consider an instance of (GCM7), say

rp:-* aPI sir:--* b=gOAi/r:-> (aI b)P.

-!L4 s/,
4--

can

_

476 JAN A. BERGSTRA and ALBAN PONSE

Now a (w, -) either holds for both rp :-* aP I >t :-> b and rp A > r :-± (a I b) P or
not. This follows easily from the rules in Table 3. In the first case we are done; in the
second case, either y(a, b) = S, and both process terms cannot perform any transition,
or both can perform

by the rules in Table 4. Thus B is a bisimulation and

(rp:- aP I *:-+ b, rpA*:-* (a I b)P) E B.

For instances of (A5), (CM1), (CMC), (T4), and (D4) a witnessing bisimulation is
slightly more complex. As for (AS), assume for some process term P that

.P -'"4 P.

Then (PQ)R w (P'Q)R and, P(QR) P'(QR). A sufficient witnessing
bisimulation is in this case the diagonal extended with all appropriate associative vari-
ants:

def
B = D U {((xy)z, x(yz)) I x, y, z E P}.

It is not hard to check that B is a bisimulation that contains each instance of (A5).
As for axiom (CM1) consider an arbitrary instance

PII Q=(PII Q+QII P)+PI Q.
Let

defB ,U{(PII Q,(PLQ+QILP)+PIQ)}U{(xllY,Yllx)Ix,YEP}.

Then B witnesses the arbitrary instance. In particular, if Q -* Q' then P 11 Q
P II Q' and (PII Q + Q II P) + P I Q -* Q' II P. Again, it is easily checked that
B is a bisimulation. Furthermore, in this case B witnesses each instance of (CMC).

As for instances of (T4) with fixed 1 c, let

B r D U {tt(xy), ti(x)tt(y) I x, y E P}.

It quickly follows that B is a bisimulation that contains-each instance of (T4). For
instances of (D4) a similar argument applies.

Finally, rp :-. P * :-> P if rp = t by definition of the meaningless pred-
icate, which proves the soundness of ROEM.

5 Completeness In this section we prove completeness of ACPN, (At, Y, IP) +
ROEM, that is, if for process terms P and Q it holds that P Q, then P = Q can be
derived. We prove this by distinguishing a term representation of bisimilar processes
that implies derivability in a direct way.

Definition 5.1 A process term P over ACP L (At, y, IP) is a basic term if

P (Pi : --)' Qi
iEt

where = is used for syntactic equivalence, I is a finite, nonempty index set, rpi E
fl$M3 (P), and Qi E {8, a, aR I a E At, R a basic term}.

w'Q" P

-L4

-w-.

-_

±±

=

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 477

Lemma 5.2 All process terms over ACPN, (At, y, IP>) can be proved equal to a basic
term.

Proof: Standard induction on term complexity.

For aEAtand(gE M3 (I?), the height of a basic term is defined byEB

h(S) = 0,

h(a) = 1,

h(cp :-> x) = h(x),

h(x+ y) = max(h(x), h(y)),

Lemma 5.3 If P is a basic term, there is a basic term P' with I- P = P, h(P')
h(P), and P' has either the form

or the form

E *i:-+ Qi
iE1

with (i) for all i, j E 1, Qi 0 S, and Qi, Qj E At = Qi 0 Qj if i j,

(ii) if Ii E I, W E W such that w(*i) = M, then V j E 1, W(4r) = M,

(iii) for each i E I there is w E'W such that w(*i) =T.

Proof: Let

(1)

(2)

P = _in

=1
(Pi

Qi

for some n > 1. By Lemma 3. 1.1 and axiom GCL4 we may assume that for all i either
Qi # S or Qi = S. In the latter case this yields with axiom GC1, form 1. In the first
case we may assume that each single action, occurs at most once (by (GC I)). This
proves property (i) of form 2. Let

(oI v T)d`... A (ion V T).

(Recall that dA is associative.) Observe that for each w E W, E fT, M}. Let
furthermore,

pit = ELI /i:-+ Qi.
Note that if w (>fr) = M for some i and w, then w (,¢j) = M for all j E { 1, ... , n). We
show that

J-
P=P" (3)

<

:A

(Pi

'5 = T) d`

P =

478 JAN A. BERGSTRA and ALBAN PONSE

by induction on n.

n = 1 : This follows immediately from Lemma 2.1.2.

n=k+1: Let A(co, VT)andcpi - =pgcpifor
i = 2, .. n. By induction we have that F- P
Ql + En

i=2 Ti :-+ Qi

With k applications of Lemma 3.1.2 and (GCL4), we obtain

n

F- P = p1 :- Q1 + E Vfi :-+ Q.
i=2

Doing the same once more yields

F P=(*2vT)A P1 :-+ Q1-l-En 2Y/i:- Qi

Now it follows easily that = 11 = (12 v (recall that *2 - wPP2 and w(*) E
IT, M}). This finishes the proof of (3) and proves properties (i) and (ii) of form 2 for
P"

Next we consider all summands from P" for which no valuation makes the con-
dition true. For each such summand ri :-> Qi it holds that Vri = *i do F, and thus

*t Qi = *i.A F: --+ Qi
= ',j:-+ (F:- Qi)
= 1,ri:-+ 8.

In case all summands can be proved equal to 1/rj :-- 8 in this way, we are finished
using (3):

F P=t/r1V...V

In the other case, w(1/ri) = T for certain w, i. If F- 1/rj :-+ Qj = i/rj :- 8 for some
j, then by Lemma 3.1.2, F- t/rj :- 8 + ,/1i :-* Qi = (,*1 v T) do 1ri :--> Qi. Now
= *i = (ir1 v T) do 1,Iri as was already used in the proof of (3). Hence we obtain

P=EkQi
with k < n (and possibly some rearrangement of indices), and for each i E 11, . . . , k}

there is a valuation w with w(1/ri) = T. This proves property (iii) of form 2 and pre-
serves properties (i) and (ii).

Lemma 5.4 Let P1, P2 be basic terms. Then

P1s: P2 F-P1=P2.

Proof- By the previous Lemma 5.3, we may assume that both P1 and P2 satisfy ei-
ther form 1 or form 2 given there. We proceed by induction on h =max(h (P1), h (P2)).

= o : -

Q1+

J=

F- :-+

F

==>

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 479

Let It =0. Then P,=_W,:-*6for n=1,2. So cpj :--* 6 1+CP2:-+ 3and w((Pi)=
M w (cp2) = M. This implies that II$M3 (IP) = cps d` F = q02 p F. Now cpn :-+ S =
pp, :--> (F :-* S) = cpn p F :-* S. Consequently, I- P, = P2.

Let h > 0 and Pn - iE>n 1n,i :-+ Qn,i for n = 1, 2. By the previous Lemma 5.3, we
may assume that Pn satisfies form 2 given there. Furthermore, we may assume that
for all i E In, Qn,i Qn, j for j E In \ {i}. For the case Qn,i =_ aRn,i and Qn,j = aR,,,j
this follows by induction: Rn,i H Rn, j implies F- Rn,1 = Rn, j, so F- aRn,i = aR,,,j,
and thus (GC1) could have been applied.

Now each summand of Pn can be proved equal to one in P3_n and by Lemma 5.3,
each summand yields a transition for a certain w E W.

1. Assume that Pn -* / for some w, a. Thus w(1/rn,i) = T for some
unique i E In. By Pl H P2, there is a unique j E 13_n for which
P3-n 1 ' / and *n,i = 13-n, j (the latter derivability follows from
the representation as defined in Lemma 5.3 and the nonbisimilarity of
different summands). Thus

l- 1/f,, i :- a = 13-n,j :--* a.

2. Assume that Pn w4 Rn,i for some w, a and unique i E I,,. Thus
w (1/!n, i) = T. By P1 P2, there must be some unique j E 13, for which
P3-n -* R3-n, j and Rn,i R3_n, j, and for which *n,i = V3-,,, j
follows from Lemma 5.3. By induction we find F- Rn,i = R3-n, j, and
therefore F- aR,,,i = aR3-n, j and hence

F- *n,i :--* aR,,,i = 1/ 3-n,j :-+ aR3-n,j

By symmetry, it follows that each summand of Pn is provably equal to one Pn_3. Con-
sequently, F- P1 = P2.

With Lemmas 5.2, 5.3, 5.4, and soundness (Lemma 4.3) we obtain the following the-
orem.

Theorem 5.5 The system ACPN, (A1, y, IP) + ROEM is complete with respect to
bisimulation equivalence: for all process terms P, Q over ACP, (At, y, IP),

ACPj, (At, y, P) + ROEM F- P = Q b P ± Q.

6 Parameterized actions and nonclassical values When dealing with actions a(x)
parameterized by x over some data type, it makes sense to consider the case in which
data can also take value M. If so, one faces the question how to interpret a(M). Given
the preceding interpretation of conditions, a natural choice is to take

a(M) = µ.

(So a(x) is an atomic action in case x 0 M.) We end this section with two examples
on the use of M and µ.

19

_-

_+ k--

480 JAN A. BERGSTRA and ALBAN PONSE

Example 6.1 As an example of the use of process algebra with the proposed three-
valued propositional logic BM3 OP), we consider a process that manipulates bounded
stacks over data sort

Data d=f {d, e, f, g, h}.

Let DataO 5 d=f {p E Data* I length(p) < 5}, where we assume that c is the empty
string in Data*, and length is a given function that yields the length of a string in
Data*. Let furthermore

DataM

DataOM-5

def

def

Data U {M},

DataO-5 U {M},

and let the following functions be defined:

app : Data x DataM5 -+ DataMs

app(d,p)=Miflength (p) = 5 or if p = M,

head : DataM5 -Data,

head(p)
M if pE {E, M}.

d ifp = app(d, p'), p' E Datao-s

tail : DataMS DataMs,

tail(p) =
if pE {E,M}

if p = app(d, p'), p' E Datao-s

empty :
Data0O--5 TM

M 31

T ifp=E
empty(p) = M ifp = M

F otherwise,

full : DataM5 TM

T if length (p) = 5

full(p) M if p = M

F otherwise.

We think these functions characterize straightforwardly the role of meaningless:

head(,-) = tail(,-) = M,

and all are monotonic in M.

DataM5,

=

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 481

The following process term Q(x) describes manipulation with stack object x E
DataO-5 including all "special cases" that evolve from Data0 5

Q(x) = -full(x) :-* EdcData rl (d) . Q(app(d, x))

+-empty(x) :- (s2(head(x))+s3(head(x))) Q(tail(x))

+ -empty (x) Aempty (tail (x)) :-* s4(head (x)) Q(E)

+ empty (x) :-+ s5 (is-empty) Q(E).

Here actions rj(_) and sj(_) model receive and send actions, respectively, of data
along channel j. So, Q (x) can be `pushed' in case it is not full and be `popped' in case
it is not empty in three ways: either it can send its head value along channel 2 or 3,
and evolve into Q(tail(x)), or in case of the one-element stack, it can send this value
along channel 4. The empty stack value E can be observed via action ss (is-empty).
We consider Q(x) in parallel with a reset process R defined by

R = r6(set_empty) (F-dEDatar3(d))*rs(is_empty)).

Here y(rj (x), cj (x)) = cj (x) for all values of x E DataM U {is-empty}. The idea is
that R can be triggered to reset Q(x) to Q(c) via action r6(set_empty). Let H =
{rj(x), si(x) I j = 3, 4, x E DataM U (set empty, is-empty}}. Then

8 (Q(x) II R)

models this reset. We still have aH(Q(M) 11 R) = µ

Example 6.2 Consider the data type co = {0, S(O), S(S(0)), ... }, with equality -:
to x to - TM (binary infix) defined by

00 = T,
0 = S(x) = F,

S(x) m 0 = F,

SW S(y) x = Y.

Let the predecessor function P : co -- co U {M} be defined by P(O) = M, and P(S(x)) _
x. We extend the domains of S, -, and P with value M by defining

S(M)=xmM=M=x=P(M)=M.

Now consider the following counterlike process:

C(x) = r(up) - C(S(x)) + r(down) - C(P(x)) + r(set_zero) - C(0)

+ x m 0:--* r(is_zero) - C(x).

With the action r(up), a command to increase can be received, and a command to
decrease is modeled by the action r(down). The action r(set_zero) models a reset of

-

482 JAN A. BERGSTRA and ALBAN PONSE

the counter to C(0), and action r(is_zero) indicates that the counter value equals 0. It
follows that

C(M) = A,

C(O) = r(up) C(S(0)) + r(down) C(M) + r(set-zero) C(0)

+ r(is-zero) C(O),

C(Sk+l (0)) = r(up) C(Sk+2(0)) + r(down) C(Sk(0)) + r(set zero) C(O).

So, if in case of C(O) the action r(down) is performed, the counter evolves into µ.

7 Conclusion The extension of process algebra to a three-valued setting with
meaningless entails the introduction of a new process constant µ and the defining ax-
iom M : x = it. As a guard, M is totally persistent: whenever a condition to be
evaluated in a process term equals M, the process term equals it. In a parallel setting,
this is much stronger than occurrence of F in a condition, for example,

(F :-. a) 11 be = bcS, whereas (M :-+ a) 11 be = µ.

In our set-up, F :-> it = S holds. This clearly illustrates that the conditional guard
construct reflects a certain order: first the condition is evaluated, then its right argu-
ment is considered. So, in this respect the conditional guard construct really guards its
process term. This agrees with the intuition as exemplified by the following program
fragment:

if T then P else (type-clash) fi,

where we certainly have a clue of its operational behavior when we have one of P.

Note 7.1 Recently we published some more papers on process algebra with non-
classical logics [8, 10, 9]. The most intricate of these starts from a five-valued logic
that comprises in addition to T and F not only the value M, but also values D for di-
vergence, and C for choice or undetermined. Typically, D :--* x = S and x < C > y =
x + Y. (So, with conditional composition, C gives a counterpart of the + operation in
process algebra.)

We think that the present paper describes an approach that in its own right deserves
publication, and we hope that it provides an elegant introduction to the general subject
of process algebra with nonclassical logics, or perhaps-quoting a referee-"error
handling in parallel and distributed software systems."

Acknowledgments We thank a referee for suggesting some improvements.

NOTES

1. The chaos process X, which stems from CSP [17], seems to be characterized by exactly
the same laws as given for it. But X characterizes the effect of infinite internal activity
and its laws capture an intuition that is not useful in our set-up. Modeling internal activity
explicitly would distinguish t and X. Therefore we introduce this new constant.

BOCHVAR-McCARTHY LOGIC AND PROCESS ALGEBRA 483

2. Of course, 8 = µ implies inconsistency of our theory: x = x + x + A = µ.

3. Note that in a two-valued setting, d\ and A coincide.

4. A general reference to bisimulation equivalence is Park [22]. Its role in process algebra
is overviewed in [3].

REFERENCES

[1] Apt, K. R., "Ten years of Hoare's logic, a survey, part I," ACM Transactions on Pro-
gramming Languages and Systems, vol. 3 (1981), pp. 431-83.

[2] Baeten, J. C. M., and J. A. Bergstra, "Process algebra with signals and conditions,"
pp. 273-323 in Programming and Mathematical Method,Proceedings Summer School
Marktoberdorf, 1990 NATO ASI Series F, edited by M. Broy, Springer-Verlag, 1992.

[3] Baeten, J. C. M., and W. P. Weijland, Process algebra, Cambridge Tracts in Theoretical
Computer Science 18, Cambridge University Press, Cambridge, 1990.

[4] Bergstra, J. A., I. Bethke, and A. Ponse, "Process algebra with iteration and nesting,"
Computer Journal, vol. 37 (1994), pp. 243-58.

[5] Bergstra, J. A., I. Bethke, and P. H. Rodenburg, "A propositional logic with 4 values:
true, false, divergent and meaningless," Journal of Applied Non-Classical Logics, vol. 5
(1995), pp. 199-217.

[6] Bergstra, J. A., and J. W. Klop, The algebra of recursively defined processes and the al-
gebra of regular processes," pp. 1-25 in Algebra of Communicating Processes, Utrecht
1994, edited by A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, Springer-Verlag, 1995.

[7] Bergstra, J. A., and J. W. Klop, "Process algebra for synchronous communication," In-
formation and Control, vol. 60 (1984), pp. 109-37.

[8] Bergstra, J. A., and A. Ponse, "Kleene's three-valued logic and process algebra," Infor-
mation Processing Letters, vol. 67 (1998), pp. 95-103.

[9] Bergstra, J. A., and A. Ponse, "Process algebra with five-valued conditions," pp. 128-
43, in Combinatorics, Complexity, and Logic, Proceedings of DMTCS'99 and CATS'99,
vol. 21, nr. 3 of Australian Computer Science Communications, edited by C. S. Calude
and M. J. Dinneen, Springer-Verlag, Singapore, 1999.

[10] Bergstra, J.A., and A. Ponse, "Process algebra with four-valued logic," Journal ofAp-
plied Non-Classical Logics, vol. 10 (2000), pp. 27-53.

[11] Bochvar, D. A., On a 3-valued logical calculus and its application to the analysis of
contradictions (in Russian)," Matematiceskij sbornik, vol. 4 (1939), pp. 287-308.

[12] Brookes, S. D., C. A. R. Hoare, and A. W. Roscoe, "A theory of communicating sequen-
tial processes," Journal of the ACM, vol. 31 (1984), pp. 560-99.

[13] Dijkstra, E. W., A Discipline of Programming, Prentice Hall International, Englewood
Cliffs, 1976.

[14] Fokkink, W. J., "Axiomatizations for the perpetual loop in process algebra," pp. 571-81
in Proceedings of the 24th Colloquium on Automata, Languages and Programming-
ICALP'97, Lecture Notes in Computer Science 1256, edited by P. Degano, R. Gorrieri,
and A. Marchetti-Spaccamela, Springer-Verlag, 1997.

S =

484 JAN A. BERGSTRA and ALBAN PONSE

[15] Fokkink, W. J., and R. J. van Glabbeek, "Ntyft/ntyxt rules reduce to ntree rules," Infor-
mation and Computation, vol. 126 (1996), pp. 1-10.

[16] Groote, J. F., "Transition system specifications with negative premises," Theoretical
Computer Science, vol. 118 (1993), pp. 263-99.

[17] Hoare, C. A. R., I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. A. Sufrin, "Laws of programming," Communica-
tions of the ACM, vol. 30 (1987) pp. 672-86.

[18] Kleene, S. C., "Representation of events in nerve nets and finite automata," Automata
Studies, pp. 3-41, edited by C. Shannon and J. McCarthy, Princeton University Press,
Princeton, 1956.

[19] Konikowska, B., "McCarthy algebras: a model of McCarthy's logical calculus," Fun-
damenta Informaticae, vol. 26 (1996), pp. 167-203.

[20] McCarthy, J., "A basis for a mathematical theory of computation," pp. 33-70 in Com-
puter Programming and Formal Systems, edited by P. Braffort and D. Hirshberg, North-
Holland, Amsterdam, 1963.

[21] Milner, R., Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

[22] Park, D. M. R., "Concurrency and automata on infinite sequences," pp. 167-83 in Pro-
ceedings of the 5th GI (Gesellschaft fur Informatik) Conference, Karlsruhe, LNCS 104,
edited by P. Deussen, Springer-Verlag, 1981.

[23] Verhoef, C., "A congruence theorem for structured operational semantics with predi-
cates and negative premises," Nordic Journal of Computing, vol. 2 (1995), pp. 274-302.

Programming Research Group
University of Amsterdam
Kruislaan 403
1098 SJ Amsterdam
THE NETHERLANDS
email: {janb,alban} @science.uva.nl

Department of Philosophy
Utrecht University
Heidelberglaan 8
3584 CS Utrecht
THE NETHERLANDS
email: Jan.Bergstra@phil.uu.nl

CWI
Kruislaan 413
1098 Si Amsterdam
THE NETHERLANDS
email: Alban.Ponse@cwi.nl

