Notre Dame Journal of Formal Logic
Volume XXI, Number 1, January 1980
NDJFAM

DISCOURSE BETWEEN PROCESSES

JAN BERGSTRA

Introduction and definitions
Let \mathcal{L} be a countable language. \mathcal{L} contains a special word START. A discourse over \mathcal{L} is an infinite sequence $k=\left\langle\mathrm{START}, k_{q}^{1}, k_{a}^{2}, k_{q}^{2}, k_{a}^{3} \ldots\right\rangle$, where $k_{a}^{1}=\mathrm{START}$. The q-components of k are called questions; the a-components are answers. The word START is used to initiate the discourse and invokes a first question of the first speaker. It is assumed that $k_{q}^{i} \neq \operatorname{START}(i \geqslant 1), k_{a}^{i+1} \neq \operatorname{START}(i \geqslant 1)$. We denote the set of discourses by D.

Before proceeding it may be useful to note that our considerations will be meaningful for finite discourses as well; the infinite case, however, is more general.

Now suppose that by some criterion we established that $S D \subseteq D$ consists of the sensible (meaningful) discourses. We ask the following question: Is there a set $S P$ of sensible speakers such that:

1. for every $k \in S D$ there are p_{1} and p_{2} in $S P$ such that the discourse determined by p_{1} and p_{2} (notation: $p_{1} \square p_{2}$) is just k.
2. for all p_{1} and p_{2} in $S P p_{1} \square p_{2} \in S D$.

Of course we must specify exactly what a speaker can be to make the problem well-defined. We feel that if $S D$ is to be the set of meaningful discourses in some sense there must exist a corresponding $S P$. The more natural the notion of a speaker is the more the existence of $S P$ is a requirement for $S D$ if it is to be a set of sensible discourses (in some sense which remains unspecified).

In this note we define the class of speakers as the class of deterministic processes with inputs in \mathcal{L} and outputs in $\mathcal{L}^{\prime}=\mathcal{L}-\{$ START $\}$.

Definition A process is a function $p: \mathscr{L}^{*} \rightarrow \mathcal{L}^{\prime}$, where \mathscr{L}^{*} is the set of finite sequences of words in \mathcal{L}. Given processes p_{1} and p_{2} we define $p_{1} \square p_{2}=\left\langle\right.$ START, $\left.k_{q}^{1}, k_{a}^{2}, k_{q}^{2}, \ldots\right\rangle$ by means of the following recursion:

$$
\left\{\begin{array}{l}
k_{q}^{1}=p_{1}(\langle\mathrm{START}\rangle) \\
k_{a}^{2}=p_{2}\left(\left\langle k_{q}^{1}\right)\right) \\
k_{q}^{i+1}=p_{1}\left(\left\langle\mathrm{START}, k_{a}^{2}, \ldots, k_{a}^{i+1}\right\rangle\right) \\
k_{a}^{i+1}=p_{2}\left(\left\langle k_{q}^{1}, \ldots, k_{q}^{i}\right\rangle\right) .
\end{array}\right.
$$

Received April 30, 1978

Finally we define for $K \subseteq P: K \square K=\left\{p_{1} \square p_{2} \mid p_{1}, p_{2} \in K\right\}$.
Theorem For all $S D \subseteq D$ there exists $S P \subset P$ such that $S D=S P \square S P$.
Comment: From the motivation as formulated in the introduction we must conclude that this is a negative result. It tells that the existence of a subset $S P$ of P such that $S D=S P \square S P$ is a trivial condition. Therefore it cannot be used to specify, e.g., sets of meaningful discourses.

Proof: We use s to denote initial segments of discourses. If $\ln (s)$, the length of s, is even then p_{2} is the next to speak otherwise p_{1}. Let $I S$ be the class of initial segments of discourses in D. We write $s<k$ if s is an initial segment of k. Let $S I S=\{s \in I S \mid \exists k \in S D s<k\}$. Let A be a countable subset of $S D$ such that $\forall s[(\exists k \in S D s<k) \rightarrow(\exists k \in A s<k)]$. The existence of A follows from the fact that there are only countably many initial segments (although $S D$ may well be uncountable). Let F be a bijective function from ω, the natural numbers, to A. We define a partial mapping $f: I S \rightarrow A$ with domain SIS as follows: $f(s)=F(n)$, where n is the least m, if any, such that $s<F(m)$. Now we define for all $k, t \in S D$ processes p^{k}, p^{t} in such a way that:
i. $\forall k, t \in S D p^{k} \square p^{t} \in S D$
ii. $\forall k \in S D p^{k} \square p^{k}=k$.

Then we may take $S P$: $\left\{p^{k} \mid k \in S D\right\}$.
We will give an algorithmic description of the p^{k} using the following information: (i) the characteristic function of SIS; (ii) f; and (iii) k. To present the algorithm we use a self explaining programming language for processes. Questions are input, answers are output. QUESTION is a word identifier which always has the value of the last question that has been received. NEWQUESTION is a statement asking for a new question. The result is an update of QUESTION. ANSWER (k) is a statement expressing that $k \in \mathcal{L}$ is answered. We first define \bar{p}_{1}^{k} and \bar{p}_{2}^{t} such that always $\bar{p}_{1}^{k} \square \bar{p}_{2}^{k}=k$ and $\bar{p}_{1}^{k} \square \bar{p}_{2}^{t} \in S D$ for $k, t \in S D$. The program for \bar{p}_{1}^{k} has four main internal states: I, . .., IV.

I NEWQUESTION

$n:=1$
if QUESTION $=$ START then $s:=\left\langle\operatorname{START}, k_{q}^{1}\right\rangle$
ANSWER $\left(k_{q}^{1}\right)$
GOTO II
else GOTO IV

fi

(Comment: in state I \bar{p}_{1}^{k} receives START, counter n is initialized as well as s which will denote the initial segment at any stage. n counts the number of questions that have been received. IV is the state which collects all errors.)

II NEWQUESTION

$n:=n+1$

```
\(s:=s *\) QUESTION
if \(s<k\) then \(s:=s * k_{q}^{n}\)
            ANSWER ( \(k_{q}^{n}\) )
            GOTO II
                else GOTO III
fi
(Comment: as long as \(s<k \bar{p}_{1}^{k}\) answers consistent with \(k\), if its partner
does not follow \(k\) any longer a new strategy is followed in III.)
III if \(s \in\) SIS then \(s:=s * f(s)_{q}^{n}\)
            \(\operatorname{ANSWER}\left(f(s)_{q}^{n}\right)\)
            NEWQUESTION
            \(n:=n+1\)
            \(s:=s *\) QUESTION
                    GOTO III
        else GOTO IV
    fi
    (Comment: \(\bar{p}_{1}^{k}\) tries to follow \(f(s)\) at any stage.)
IV \(\operatorname{ANSWER}\left(k_{0}\right)\) (Comment: \(k_{0}\) is some fixed element of \(\swarrow\).)
NEWQUESTION
GOTO IV
```

The program for \bar{p}_{2}^{k} is quite similar. In state I it only initializes n and s but does not read. In state II it gives answers of the form k_{a}^{n} and in state III of the form $f(s)_{a}^{n}$.

Now we must show for $k, t \in S D$:

1. $\bar{p}_{1}^{k} \square \bar{p}_{2}^{k}=k$. Both \bar{p}_{1}^{k} and \bar{p}_{2}^{k} remain in their respective states II and k is the resulting discourse.
2. $\bar{p}_{1}^{k} \square \bar{p}_{2}^{k} \in S D$. There are two cases (let $h=\bar{p}_{1}^{k} \square \bar{p}_{2}^{t}$):
i. \bar{p}_{1}^{k} or \bar{p}_{2}^{t} remains in its state II, then either k or t must be the resulting discourse. (Of course $k, t \in S D$.)
ii. both \bar{p}_{1}^{k} and \bar{p}_{2}^{t} move to their respective states III after a (finite) part of the computation of h. Let this be the case after initial segment s^{1} of h. With induction on the length of $s<h$ one proves $s \in$ SIS, using that $s \in$ SIS implies $s * f(s)_{q}^{n+1} \in S I S$ if $\ln (s)=2 n+1$ and $s * f(s)_{a}^{n+1}$ if $\ln (s)=2 n$. To see this note that $f(s)$ always extends s. We claim that in fact $h=f\left(s^{1}\right)$. This follows from the following equalities for $s^{1} \leqslant s<h$:
$f(s)=f\left(s * f(s)_{q}^{n+1}\right)$ if $\ln (s)=2 n+1$ and $f(s)=f\left(s * f(s)_{a}^{n+1}\right)$ if $\ln (s)=2 n$.
The reason for these equalities is that $f(s)$ is the minimal extension of s in $S D$ (in the sense of F) which is clearly equal to the minimal extension of any longer initial segment of $f(s)$ in $S D$.

Now p^{k} is simply described as follows: If the first question received is START then it behaves like \bar{p}_{1}^{k}, otherwise like \bar{p}_{2}^{k}. This completes the proof of the theorem.

Conclusion As mentioned before our method works in the case of finite discourses too. If we look at games as discourses we can draw the following conclusion: Let $S D$ be a collection of chess games, then there exists a collection of strategies $S P$ such that $S D=S P \square S P$.

University of Leiden
Leiden, The Netherlands

