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Abstract
We introduce a new Priestley-style topological duality for N4-lattices, which are the algebraic counterpart of paraconsistent
Nelson logic. Our duality differs from the existing one, due to S. Odintsov, in that we only rely on Esakia duality for Heyting
algebras and not on the duality for De Morgan algebras of Cornish and Fowler. A major advantage of our approach is that we
obtain a simple description for our topological structures, which allows us to extend the duality to other algebraic structures
such as N4-lattices with monotonic modal operators, and also to provide a neighbourhood semantics for the non-normal
modal logic corresponding to these algebras.
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1 Introduction

Paraconsistent Nelson logic, which was introduced in [1] as an inconsistency-tolerant counterpart
of the better-known logic of Nelson [16, 23], combines interesting features of intuitionistic, classical
and many-valued logics (e.g. Belnap–Dunn four-valued logic); recent work has shown that it can
also be seen as one member of the wide family of substructural logics [25].

The work we present in this article is a contribution towards a better topological understanding
of the algebraic counterpart of paraconsistent Nelson logic, namely a variety of involutive lattices
called N4-lattices in [17]. We present a Priestly-style duality for those lattices and we develop a
topological duality for N4-lattices expanded with a monotone modal operator.

A Priestley-style duality for N4-lattices was already introduced by Odintsov [19], generalizing
the duality developed by Cignoli [5] for a subclass of N4-lattices called N3-lattices. The main
differences between the Cignoli–Odintsov approach and ours are the following:

• we only rely on Esakia duality for Heyting algebras [12], whereas [5, 19] use both Esakia
duality and the duality for De Morgan algebras [8, 9]: as a consequence, the dual spaces that
we obtain are, in our opinion, easier to understand than those considered in [5, 19];

• [5, 19] only deal with bounded N4-lattices, whereas we cover the non-bounded case as well.

From our perspective, our duality has the further advantage that it can be easily extended to obtain
topological counterparts of N4-lattices with modal operators such as those introduced in [20, 24], and
the resulting duality can be used to provide a state-based semantics for the paraconsistent modal logic
introduced in [24]. The duality we present for non-modal N4-latices has already been introduced in
[15], to which we will refer in the sequel.

This article is organized as follows.
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Section 2 introduces the abstract algebraic definition of N4-lattices and we state a fundamental
result of Odintsov [18], namely that every N4-lattice can be represented through a concrete construc-
tion called twist-structure. We show that this can be extended to a categorial equivalence, which
will allow us to work, for our duality, with a category of twist-structures instead of the category of
N4-lattices as defined in [19].

Section 3 contains the details of our duality. At the level of objects, on the algebraic side we have
twist-structures, that is, tuples 〈A,∇, ∇〉 where A is a Brouwerian lattice (i.e. the 0-free subreduct
of a Heyting algebra) and ∇, ∇

are, respectively, a filter and an ideal of A. On the topological side
we have tuples 〈X ,C,O〉 such that X is the Priestley space corresponding to a Heyting algebra (an
Esakia space) and C,O⊆X are, respectively, a closed and an open set of the Priestley topology on
X . We prove that the two resulting categories are dually equivalent via the usual functors involved
in Priestley (and Esakia) duality.

Section 4 recalls the algebraic definitions of monotonic N4-lattices [24] and BK-lattices [20],
which are both classes of N4-lattices augmented with monotone modal operators. We see that twist-
structure representations are available for these algebras as well and, as in the non-modal case, we
extend them to categorial equivalences that employ the same functors.

Section 5 extends the duality of Section 3 to twist-structures corresponding to N4-lattices with
modal operators. At the level of objects, on the algebraic side we have as before tuples 〈A,∇, ∇〉,
but where A is now a Brouwerian lattice augmented with modal operators. On the topological side,
these operators are represented by neighbourhood functions on the corresponding spaces [14]. We
show that the usual Priestley functors establish dualities between twist-structures augmented with
modal operators and the spaces thus obtained.

Finally, Section 6 shows how the duality of Section 5 can be used to provide a state-based
semantics which is complete with respect to the paraconsistent modal logic introduced in [24], thus
solving one of the open problems posed in [24, Section 5].

2 Equivalence between N4-lattices and twist-structures

In this section we prove a result which is implicitly contained in [18], namely that N4-lattices,
viewed as a category, are equivalent to a category of twist-structures over (i.e. special second
powers of) Brouwerian lattices. This restricts to an equivalence between bounded N4-lattices and
twist-structures over bounded Brouwerian lattices (i.e. Heyting algebras). In the next section we
will develop a duality for the latter category based on Esakia duality for Heyting algebras, which
will allow us to obtain a dual equivalence between the topological spaces thus introduced and the
category of (bounded) N4-lattices.

Let us start by introducing N4-lattices, which are our main objects of interest [18, Definition 2.3].

DEFINITION 2.1
An N4-lattice is an algebra B=〈B,∧,∨,→,∼〉 such that:

1. the reduct1 〈B,∧,∨,∼〉 is a De Morgan lattice, i.e. a distributive lattice equipped with a unary
operation ∼: B→B (usually called negation) such that ∼∼a=a and ∼ (a∨b)=∼a∧∼b for
all a,b∈B,

2. the relation � defined, for all a,b∈B, as a�b iff a→b= (a→b)→ (a→b), is a pre-ordering
(i.e. reflexive and transitive),

1By a reduct of B we mean an algebra with the same carrier set, in which some of the algebraic operations of B have
been suppressed.
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3. the relation ≡ defined, for all a,b∈B, as a≡b iff a�b and b�a, is a congruence relation w.r.t.
∧,∨,→ and the quotient algebra B�� =〈B,∧,∨,→〉/≡ is a Brouwerian lattice (see below),

4. for all a,b∈B, ∼ (a→b)≡a∧∼b,
5. for all a,b∈B, a≤b iff (a�b and ∼b�∼a), where ≤ is the lattice order of B.

B is said to be bounded if its lattice reduct is bounded, in which case we include the bounds as
constants in the algebraic signature.

We remind the reader that a Brouwerian lattice is a lattice 〈L,∧,∨〉 equipped with a binary oper-
ation → that satisfies the following residuation condition: for all a,b,c∈L, a∧b≤c if and only if
b≤a→c. Brouwerian lattices are precisely the 0-free subreducts (i.e. subalgebras of reducts) of
Heyting algebras.2

Although it is not apparent in the above definition, it is known [17] that N4-lattices form a variety
(therefore, the class of bounded N4-lattices is also a varietiy).

Condition (3) of the definition provides a way to associate a Brouwerian lattice to any given
N4-lattice. Conversely, we are now going to describe a method introduced in [18, Definition 2.1]
that allows us to construct an N4-lattice as a special power of a Brouwerian lattice, and we shall see
that each N4-lattice is isomorphic to one obtained in this way.3

Let A=〈A,∧,∨,→,1〉 be a Brouwerian lattice. Consider the algebra A�� =〈A×A,∧,∨,→,∼〉
with operations defined as follows:

• 〈a,b〉∧〈c,d〉 :=〈a∧c,b∨d〉
• 〈a,b〉∨〈c,d〉 :=〈a∨c,b∧d〉
• 〈a,b〉→〈c,d〉 :=〈a→c,a∧d〉
• ∼〈a,b〉 :=〈b,a〉.

It is not difficult to check that A�� satisfies all conditions of Definition 2.1, i.e. A�� is an N4-lattice.
If A has a minimum element 0, then by defining �:=〈1,0〉 and ⊥:=〈0,1〉 we obtain a bounded
N4-lattice. Notice that the operations ∧,∨,→ of A�� are defined component-wise just as in a direct
product in the first component, while they are somehow ‘twisted’ in the second one. This explains
the name twist-structure over A for the algebra A�� used for instance in [18].

Although the construction described above indeed produces an N4-lattice, not all N4-lattices are
isomorphic to one constructed in this way. In order to obtain all of them, we need to consider all
{∧,∨,→,∼}-subalgebras of A��. The following construction, due to Odintsov, provides a way of
producing all such subalgebras.

Given our Brouwerian lattice A, denote by D(A) the set of dense elements of A, defined as

D(A) :={a∨(a→b) :a,b∈A}.
D(A) is always a lattice filter of A, so we may also call it the filter of dense elements of A. If A has
a bottom element 0, (i.e. if A is in fact a Heyting algebra, except for the fact that no symbol for 0
is included as a constant in the algebraic language), then the dense elements can also be obtained as
follows:

D(A)={a∨¬a :a∈A}={a∈A :¬¬a=1}
where ¬ is the Heyting negation of A, i.e. ¬a :=a→0.

2 Brouwerian lattices are also known in the literature as generalized Heyting algebras [6], Brouwerian algebras [10],
implicative lattices [17] or relatively pseudo-complemented lattices [23]. Note also that some authors call ‘Brouwerian
lattices’ structures that are (lattice-theoretic) dual to ours.

3The origins of this construction can be traced back to [26] and also, independently, [13].
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Now consider a lattice filter ∇ ⊆A such that D(A)⊆∇ and let

∇⊆A be a lattice ideal. Then
the set

B :={〈a,b〉∈A×A : a∨b∈∇, a∧b∈ ∇}
is closed under the operations ∧,∨,→,∼ of A��. Therefore 〈B,∧,∨,→,∼〉 is an N4-lattice. Fol-
lowing [18], we denote this algebra by Tw(A,∇, ∇

). Notice also that, for every a∈A, there is
b∈A such that 〈a,b〉∈Tw(A,∇, ∇

). To see this, take a′ ∈ ∇

. Then a∨(a→a′)∈D(A)⊆∇ and since
a∧(a→a′)=a∧a′ ∈ ∇

, we have 〈a,a→a′〉∈B. Thus, letting b :=a→a′, we obtain the desired
result.

In order to show that any N4-lattice can be obtained as Tw(A,∇, ∇

) for a suitable choice of
(A,∇, ∇

), we define, for an arbitrary N4-lattice B,

∇(B) :={[a∨∼a] :a∈B}
where [b] denotes the equivalence class of b∈B modulo the relation ≡ introduced in Definition 2.1.
Similarly, we let

∇

(B) :={[a∧∼a] :a∈B}.
It is not difficult to check that ∇(B) is a lattice filter of the Brouwerian lattice B�� =〈B,∧,∨,→〉/≡
which contains the dense elements of B��, and that

∇

(B) is an ideal of B��. Thus, we can construct the
N4-lattice Tw(B��,∇(B),

∇

(B)), which turns out to be isomorphic to B, as shown by the following
result [18, Corollary 3.2].

PROPOSITION 2.2 (cf. [15], Prop. 2.2)
Every N4-lattice (bounded N4-lattice) B is isomorphic to the algebra

Tw(B��,∇(B),

∇

(B))

where B�� is a Brouwerian lattice (Heyting algebra), through the map jB :B→B/≡×B/≡ defined,
for all a∈B, as

jB(a) :=〈[a],[∼a]〉.
Thus, any (bounded) N4-lattice can be associated to a triple of the form (A,∇, ∇

) with A a
(bounded) Brouwerian lattice and ∇, ∇

, respectively, a filter and an ideal of A. We are going to see
that jB is in fact the unit of a categorical equivalence between two naturally associated categories.

We denote by N4 the category whose objects are N4-lattices and whose morphisms are the
algebraic N4-lattice homomorphisms. The category of bounded N4-lattices (denoted N4⊥) is defined
analogously, the corresponding objects being bounded N4-lattices and the morphisms being the
algebraic N4-lattice homomorphisms that preserve the bounds.

On the other side of our equivalence, we define a category Twist whose objects are triples A=
(A,∇, ∇

) such that:

• A is a Brouwerian lattice,
• ∇ is a lattice filter of A containing the dense elements D(A),
•

∇

is a lattice ideal of A.

We will refer to objects in this category as twist-structures, but notice that we view them just as
triples (A,∇, ∇

) rather than as the product algebra Tw(A,∇, ∇

) defined above.
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A morphism between two twist-structures A1 = (A1,∇1,

∇

1) and A2 = (A2,∇2,

∇

2) is defined as
a Brouwerian lattice homomorphism h : A1 →A2 such that

• h[∇1]⊆∇2

• h[ ∇

1]⊆ ∇

2.

It is easy to check that the set-theoretic composition of morphisms gives a morphism and that the
identity morphism of a twist-structure is the identity homomorphism of the underlying Brouwerian
lattice. We define the category Twist⊥ by restricting the objects to twist-structures over bounded
Brouwerian lattices (i.e. Heyting algebras) and by requiring that morphisms preserve the bounds.
Note that Twist⊥ is a subcategory of Twist which is not full because of the requirement that mor-
phisms preserve the bounds.

We proceed to define functors T : N4→Twist and N : Twist→N4 that will allow us to prove the
equivalence between the two categories.

Given an N4-lattice B, we let

T (B) := (B��,∇(B),

∇

(B)).

If f : B1 →B2 is an N4-lattice homomorphism, we define T (f ) : (B1)�� → (B2)�� as

T (f )([a]≡1 ) :=[f (a)]≡2

where [a]≡1 is the equivalence class of a∈B1 modulo the relation introduced in Definition 2.1 and
likewise [b]≡2∈B2/≡2 for all b∈B2. The definition is sound because a≡1 a′ implies that f (a)≡2

f (a′). The map T (f ) is a morphism from (B1)�� to (B2)�� satisfying that T (f )◦π1 =π2 ◦f , where
πi :Bi →Bi/≡ is defined by πi(b) :=[b]≡i for all b∈Bi.

It is straightforward to check that T is indeed a functor from N4 to Twist. Note that if B1,B2

are bounded and f preserves the bounds, then T (f ) also preserves the bounds. Thus T also gives a
functor from N4⊥ to Twist⊥.

Conversely, given a twist-structure A= (A,∇, ∇

), we let

N (A) :=Tw(A,∇, ∇

).

We know from Proposition 2.2 that Tw(A,∇, ∇

) is an N4-lattice. For a morphism h : A1 →A2

between twist-structures A1 = (A1,∇1,

∇

1) and A2 = (A2,∇2,

∇

2), we define the map
N (h) : N (A1)→N (A2), for all a,b∈A1, as

N (h)〈a,b〉 :=〈h(a),h(b)〉.
It is easy to see that this map is well defined, that is, if 〈a,b〉∈N (A1), then 〈h(a),h(b)〉∈N (A2), and
that it is a homomorphism. As with T , it is straightforward to see that N is a functor from Twist to N4.
Moreover, if A1,A2 are twist-structures over bounded Brouwerian lattices and h : A1 →A2 preserves
the bounds, then N (h) : N (A1)→N (A2) is a bounded N4-lattice homomorphism. Therefore N gives
a functor from Twist⊥ to N4⊥.

Now, given an N4-lattice B, by Proposition 2.2 we have an algebraic isomorphism

jB : B∼=N (T (B)).

It is easy to see that this implies that jB is an isomorphism in the category N4.
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Conversely, given a twist-structure A, we define a function ηA : A→T (N (A)) as follows: for
all a∈A,

ηA(a) :=[〈a,a′〉] (2.1)

where a′ ∈A is an element we choose such that 〈a,a′〉∈N (A) and [〈a,a′〉] is the equivalence class of
〈a,a′〉 modulo the equivalence relation on T (N (A)) introduced in Definition 2.1. In order to see that
this definition is sound, notice first that such an element a′ ∈A always exists because π1[N (A)]=A,
and secondly notice that for all a,b,a′,b′ ∈A, it holds that [〈a,a′〉]=[〈b,b′〉] if and only if a=b.

PROPOSITION 2.3 (cf. [15], Prop. 2.3)
For any twist-structure A, the map ηA : A→T (N (A)) defined in (2.1) is an isomorphism in the
category Twist.

PROOF. (a). The map ηA is one-to-one. Let a,b,a′,b′ ∈A and suppose that [〈a,a′〉]=[〈b,b′〉]. Then,
as noted above, a=b.
(b). ηA is onto. Let 〈a,b〉∈N (A). As observed above, [〈a,b〉]=[〈a,c〉] for any c∈A such that
〈a,c〉∈N (A). Hence, [〈a,b〉]=[〈a,a′〉]=ηA(a).
(c). ηA is a homomorphism. Let a,b∈A. Then ηA(a)∧ηA(b)=[〈a,a′〉]∧[〈b,b′〉]=[〈a,a′〉∧〈b,b′〉]=
[〈a∧b,a′ ∨b′〉]. But [〈a∧b,a′ ∨b′〉]=[〈a∧b,c〉] for any c∈A such that 〈a∧b,c〉∈N (A), so in par-
ticular we have that [〈a∧b,a′ ∨b′〉]=ηA(a∧b). A similar reasoning establishes the cases of the
other operations.
(d). ηA[∇]=∇(N (A)). It is sufficent to observe that

∇(N (A))={[〈a,b〉∨∼〈a,b〉] : 〈a,b〉∈N (A)}
={[〈a∨b,a∧b〉] :a∨b∈∇, a∧b∈ ∇}
={[〈c,d〉] :c∈∇, d ∈ ∇

, d ≤c}
={[〈c,d〉] :c∈∇}
=ηA[∇].

(e). ηA[ ∇]= ∇

(N (A)). Similar to the proof of the previous item.

PROPOSITION 2.4 (cf. [15], Prop. 2.4)
Let f : B1 →B2 be a morphism of N4-lattices. Then N (T (f ))◦jB1 = jB2 ◦f .

PROOF. For any a∈B1, we have

N (T (f ))◦jB1 (a)=N (T (f ))(〈[a]≡1 ,[∼a]≡1〉)
=〈T (f )([a]≡1 ),T (f )([∼a]≡1 )〉
=〈[f (a)]≡2 ,[f (∼a)]≡2〉
=〈[f (a)]≡2 ,[∼ f (a)]≡2〉
= jB2 ◦f (a).

PROPOSITION 2.5 (cf. [15], Prop. 2.5)
Let h : A1 →A2 be a morphism of twist-structures. Then T (N (h))◦ηA1 =ηA2 ◦h.
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FIG. 1. Equivalence between (bounded) N4-lattices and twist-structures over (bounded) Brouwerian
lattices.

PROOF. For any a∈A1, we have

T (N (h))◦ηA1 (a)=T (N (h))([〈a,a′〉]≡1 )

=[N (h)(〈a,a′〉)]≡2

=[〈h(a),h(a′)〉]≡2

=[〈h(a),(h(a))′]≡2

=ηA2 ◦h(a).

Let us remind the reader that the equality [〈h(a),h(a′)〉]≡2 =[〈h(a),(h(a))′]≡2 holds because
[〈h(a),h(a′)〉]≡2 =[〈h(a),b〉]≡2 for any b∈A2 as long as 〈h(a),b〉∈N (A2).

Propositions 2.4 and 2.5 imply the announced equivalence result (Figure 1).

THEOREM 2.6 (cf. [15], Thm. 2.6)
Functors T : N4→Twist and N : Twist→N4 establish a natural equivalence between the category
N4 of (bounded) N4-lattices and the category Twist of twist-structures over Brouwerian lattices
(Heyting algebras).

3 Topological duality for twist-structures

In this section, we introduce a category of topological structures that will be proven to be equivalent
to the twist-structures considered in the previous section. As we will build on Esakia duality for
Heyting algebras, we begin by recalling essential definitions and results on Esakia duality [12],
which is itself based on Priestley duality for distributive lattices [11].

3.1 Esakia duality

Recall that a Priestley space is a compact topological ordered space X =〈X ,τ,≤〉 that satisfies the
following separation condition: for every x,y∈X such that x �≤y there exists a clopen up-set U with
x∈U and y �∈U . A Priestley space is an Esakia space if in addition it satisfies that for every clopen
set U ⊆X , the down-set ↓U is clopen.

If A is a Heyting algebra, then 〈X (A),τ,⊆〉 is an Esakia space, where X (A) is the set of the prime
filters of A and τ is the topology generated by the sub-basis

{σA(a) :a∈A}∪{X (A)−σA(a) :a∈A}.

with

σA(a) :={P∈X (A) :a∈P} (3.1)
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Conversely, if X =〈X ,τ,≤〉 is an Esakia space, then the distributive lattice of its clopen up-sets
forms a Heyting algebra when endowed with the following implication operation. For clopen up-sets
U ,V ⊆X , we let

U →X V :={x∈X :↑x∩U ⊆V },

which also is a clopen up-set. We denote this Heyting algebra by A(X ). Notice that implication can
be equivalently defined as

U →X V := (↓ (U −V ))c.

The correspondence between Heyting algebras and Esakia spaces given by the maps X (.) and A(.)
can be turned into a dual equivalence between the category of Heyting algebras and the category of
Esakia spaces by extending those maps to contravariant functors between the two categories.

The category of Heyting algebras has as objects these algebras and as morphisms the algebraic
homomorphisms between them. The objects of the category of Esakia spaces are these spaces and
the morphisms are Esakia functions, defined as follows. Let X ,Y be Esakia spaces. A map f :X →Y
is an Esakia function if it is continuous, order-preserving and satisfies that ↑Y f (x)⊆ f [↑X x] for every
x∈X .

If h :A1 →A2 is a homomorphism of Heyting algebras, then the map X (h) :X (A2)→X (A1)
between the corresponding Esakia spaces defined by X (h)(P)=h−1[P] for every P∈X (A2) is an
Esakia function. Conversely, if f :X1 →X2 is an Esakia function, then the map A(f ) :A(X2)→A(X1)
defined by A(f )(U )= f −1[U ] for every clopen up-set of X2 is a Heyting algebra homomorphism.

The map X (.) so obtained is a contravariant functor from the category of Heyting algebras to the
category of Esakia spaces and the map A(.) is a contravariant functor in the other direction. The two
functors establish a dual equivalence between the two categories. The natural transformations are
given by the following families of morphisms. For a Heyting algebra A, the map σA :A→A(X (A))
defined in (3.1) is an isomorphism. If X is an Esakia space, the map εX :X →X (A(X )) defined by
εX (x)={U ∈A(X ) :x∈U } for every x∈X is a homeomorphism and an order isomorphism.

Esakia duality can be adapted to obtain a topological duality for Brouwerian lattices as these can
be seen as Heyting algebras which possibly lack the bottom element. Our strategy is the following.
To a Brouwerian lattice A we add a new bottom element, thus obtaining a Heyting algebra A∗, and
then we consider its dual Esakia space X (A∗). Our original A can then be recovered as the algebra
of the non-empty clopen up-sets of X (A∗). Let us expound the details.

Let A=〈A,∧,∨,→,1〉 be a Brouwerian lattice. Regardless of whether A already has a bottom
element, we add a new one 0∗ and we set 0∗ ≤a for all a∈A∪{0∗}. This uniquely determines the
behaviour of the Heyting implication, because on the one hand it must hold that 0∗ →a=1 for all
a∈A∪{0∗}, and on the other hand residuation implies that

a→0∗ =
∨

{b∈A∪{0∗} :a∧b≤0∗}

which means that for a �=0∗ the only possible choice is b=0∗. Hence we are led to the following
definition:

a→0∗ :=
{

0∗ if a∈A
1 otherwise (i.e. if a=0∗).
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Extending in this way → to the new universe A∪{0∗} we obtain a Heyting algebra, which we
denote by A∗. Note that X (A∗)=X (A)∪A and the prime filter A of A∗ contains all prime filters
of A∗.

Concerning the dense elements, we observe that D(A∗)=A because for every a∈A, a∨(a→0∗)=
a∨0∗ =a. Moreover, a Heyting algebra B is isomorphic to A∗ for some Brouwerian lattice A if and
only if, for every b∈B−{0}, b→0=0. Indeed, if B satisfies this last condition, then it is isomorphic
to (B∗)∗ where B∗ is the Brouwerian lattice we obtain by deleting 0 from B.

Notice that if A1,A2 are Brouwerian lattices, a map h : A∗
1 →A∗

2 is a Heyting algebra homomor-
phism if and only if the restriction h�A1 : A1 →A2 is a Brouwerian lattice homomorphism. This
implies that Brouwerian lattices, viewed as a category, are equivalent to a full subcategory of Heyt-
ing algebras. Moreover the objects of this subcategory are the Heyting algebras that satisfy the
quasiequation: x∧y≈⊥⇒x≈⊥.

Let A be a Brouwerian lattice. If we look at X (A∗), the Esakia space corresponding to A∗, we have
that X (A∗) has a greatest element, namely A, and it holds that A∈σA∗ (a) for every a∈A. Moreover,
the map σA∗ restricted to A establishes an isomorphism between A and the algebra of non-empty
clopen up-sets of X (A∗). This makes it possible to recover the Brouwerian lattice A as the lattice of
non-empty clopen up-sets of the Esakia dual of A∗.

We say that an Esakia space 〈X ,≤,τ 〉 is a pointed Esakia space if the poset 〈X ,≤〉 has a greatest
element 1X . It immediately follows that the set of non-empty clopen up-sets of a pointed Esakia
space is closed under finite intersections, and therefore it is a Brouwerian lattice (it may or may not
have a least element, depending on whether the subspace given by the elements different from 1X

is an Esakia space or not).
Let X =〈X ,≤,τ 〉 be a pointed Esakia space. Note that for every non-empty clopen up-set U ⊆X ,

we have U →X ∅={x∈X :↑x∩U ⊆∅}=∅. Denoting by A∗(X ) the Brouwerian lattice of non-empty
clopen up-sets of X , we have that the algebra of all clopen up-sets A(X ) is isomorphic to (A∗(X ))∗.
We can thus, without loss of generality, identify A(X ) and (A∗(X ))∗.

For a Brouwerian lattice A, we set X ∗(A) :=X (A∗). This is clearly a pointed Esakia space and,
as observed above, σA∗ restricted to A establishes an isomorphism between A and A∗(X ∗(A)).

Now let h :A1 →A2 be a homomorphism between Brouwerian lattices A1,A2. Then h extends to
a unique Heyting algebra homomorphism h∗ : A∗

1 →A∗
2 that maps the new element 0∗

1 ∈A∗
1 to the

new element 0∗
2 ∈A∗

2. So the dual Esakia function X (h∗) :X (A∗
2)→X (A∗

1) maps the top element of
X (A∗

2) (namely, A2) to the top element of X (A∗
1) (namely, A1). We denote the map X (h∗) by X ∗(h).

If X1,X2 are pointed Esakia spaces and f :X1 →X2 is an Esakia function, then the dual A(f ) :
A(X2)→A(X1) restricts to a Brouwerian lattice homomorphism A∗(f ) : A∗(X2)→A∗(X1) when, for
every non-empty clopen up-set U ⊆X2, f −1[U ] is non-empty. This holds if and only if f (1X1 )=1X2 .
In fact, f (1X1 )=1X2 obviously implies that f −1[U ] is non-empty for every non-empty clopen up-set
U ⊆X2. On the other hand, suppose that, for every non-empty clopen up-set U ⊆X2, we had that
f −1[U ] is non-empty and f (1X1 ) �=1X2 . Then, since 1X2 �≤ f (1X1 ), there is a clopen up-set U ⊆X2 such
that 1X2 ∈U and f (1X1 ) �∈U . This would imply 1X1 �∈ f −1[U ], which is not possible because f −1[U ]
is a non-empty up-set.

Accordingly, we say that an Esakia function f :X1 →X2 between pointed Esakia spaces X1,X2 is
a pointed Esakia function (or morphism) if f (1X1 )=1X2 .

Of course if X is a pointed Esakia space, then X (A(X ))=X ∗(A∗(X )) and the homeomorphism and
order isomorphism εX :X →X (A(X )) is a pointed Esakia function. Therefore Esakia duality easily
implies that X ∗(.) and A∗(.) are contravariant functors that establish a dual equivalence between the
category of Brouwerian lattices with their homomorphism and the category of pointed Esakia spaces
with pointed Esakia functions (Figure 2).
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FIG. 2. Equivalence between Brouwerian lattices and pointed Esakia spaces.

3.2 Duality for twist-structures

The following property is going to be useful for the description of our topological spaces.

LEMMA 3.1 (cf. [15], Lemma 4.1)
Let P⊆A be a prime filter of a Brouwerian lattice A. Then D(A)⊆P if and only if P is a maximal
element of the poset of prime filters of A.

PROOF. We will prove that, if P�Q for some prime filter Q, then Q=A, so Q is not prime. Assume
that P⊆Q and there is a∈Q such that a /∈P. We claim that, for an arbitrary element b∈A, it holds
that b∈Q. By assumption we have a∨(a→b)∈D(A)⊆P. Since P is prime and a /∈P, we conclude
that a→b∈P⊆Q. Now a,a→b∈Q imply that a∧(a→b)=a∧b∈Q. This means that b∈Q as we
claimed.
Suppose now that P is a maximal element of the poset of prime filters of A. Let a,b∈A and assume
that a∨(a→b) �∈P. Consider the filter F generated by P∪{a}. Then a→b �∈F . On the contrary
there would be c∈P such that c∧a≤a→b. Then c≤a→ (a→b)=a→b. It would thus follow that
a→b∈P, against our assumption. So there is a prime filter Q such that P�F ⊆Q and a→b �∈Q.
Therefore P is not maximal: a contradiction. Hence D(A)⊆P.

COROLLARY 3.2
Let P⊆A be a prime filter of a Brouwerian lattice A such that D(A)⊆P. Then P is a maximal
element of the poset X (A∗)−{A}.

In the rest of the section we first present a duality for twist-structures over Heyting algebras, and
later we extend it to obtain a duality for all twist-structures.

3.3 Duality for twist-structures over Heyting algebras

In this subsection, unless otherwise specified, we consider only twist-structures (A,∇, ∇

)∈Twist⊥,
that is twist-structures over Heyting algebras.

Let A= (A,∇, ∇

)∈Twist⊥ and let 〈X (A),τ,⊆〉 be the dual Esakia space of A. Thanks to the
isomorphism σA between A and the algebra of clopen up-sets of X (A), the sets ∇, ∇⊆A can be
represented as follows. We let

CA :=
⋂

{σA(a) :a∈∇}

which is obviously a closed up-set, and

OA :=
⋃

{σA(a) :a∈ ∇}

which is an open up-set. It is easy to check that

CA ={P∈X (A) :∇ ⊆P} OA ={P∈X (A) :P∩ ∇�=∅}.
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In the rest of the article we will thus be using whichever of the above definitions is more convenient.
Let us also notice that CA is included in the set max(X (A)) of maximal elements of our Esakia space
(which also implies, trivially, that CA is an up-set). This follows from Lemma 3.1, because P∈CA
implies that D(A)⊆∇ ⊆P. We use this insight to introduce formally the spaces we will deal with.

DEFINITION 3.3 (cf. [15], Definition 4.2)
An NE-space is a structure X =〈X ,≤,τ,C,O〉 such that

1. 〈X ,≤,τ 〉 is an Esakia space,
2. C is a closed set such that C ⊆max(X ),
3. O is an open up-set.

In order to view NE-spaces as a category, we need to introduce a notion of NE-morphism. We
propose the following definition.

DEFINITION 3.4 (cf. [15], Definition 4.3)
Let X1 =〈X1,≤1,τ1,C1,O1〉 and X2 =〈X2,≤2,τ2,C2,O2〉 be two NE-spaces. A morphism is a map
f :X1 →X2 such that

1. f is an Esakia function, i.e. f is monotone, continuous and for every x∈X1, ↑f (x)⊆ f [↑x],
2. f [C1]⊆C2,
3. f −1[O2]⊆O1.

Given NE-spaces X1,X2,X3 and NE-morphisms f : X1 →X2, g : X2 →X3, it is easy to see that
g◦f : X1 →X3 is also a morphism. Moreover, the identity map on an NE-space is a morphism. So
we indeed have a category NE-Sp of NE-spaces.

We are going to see that NE-Sp is dually equivalent to the category Twist⊥ of twist-structures
over Heyting algebras. It will thus follow that NE-Sp is also dually equivalent to the category N4⊥

of bounded N4-lattices.
The definition immediately implies that, for any twist-structure A= (A,∇, ∇

),

X (A) :=〈X (A),τ,⊆,CA,OA〉

is an NE-space. Given a morphism of twist-structures h : A1 →A2, we define the map
X (h) : X (A2)→X (A1) as in Esakia duality, i.e. we let X (h)(P) :=h−1[P] for any P∈X (A2).

It is obvious that X (h) is an Esakia function. Let us check that the other requirements of Definition
3.4 are also met.

LEMMA 3.5 (cf. [15], Lemma 4.4)
Let h : A1 →A2 be a morphism between twist-structures A1 =〈A1,∇1,

∇

1〉 and A2 =〈A2,∇2,

∇

2〉.
Then X (h) : X (A2)→X (A1) is a morphism between the corresponding NE-spaces.

PROOF. In order to see that X (h)[CA2 ]⊆CA1 , assume Q∈X (h)[CA2 ], i.e. Q∈h−1[CA2 ]. This means
that there is Q′ ∈X (A2) such that ∇2 ⊆Q′ and Q=h−1[Q′]. Since h is a morphism of twist-structures,
we have that h[∇1]⊆∇2. This implies that ∇1 ⊆h−1[∇2]⊆h−1[Q′]=Q. We conclude that ∇1 ⊆Q,
which means that Q∈CA1 as desired.
Assume now that P∈X (h)−1[OA1 ]. This means that X (h)(P)=h−1[P]∈OA1 . Then h−1[P]∩ ∇

1 �=∅.
Let a∈A1 be such that a∈h−1[P]∩ ∇

1. We then have h(a)∈P∩h(

∇

1). From the assumptions we
have P∩h(

∇

1)⊆P∩ ∇

2, so we obtain h(a)∈P∩ ∇

2 �=∅, which implies P∈OA2 as required. Thus,
X (h) is indeed a morphism of NE-spaces.
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It follows from Esakia duality that the map X preserves composition and identity maps.
So we actually have a functor X : Twist⊥ →NE-Sp. We are now going to define a functor
A : NE-Sp→Twist⊥ in the opposite direction.

To each NE-space X =〈X ,≤,τ,C,O〉 we associate a twist-structure in the following way. Let
A(X ) be the Heyting algebra of clopen up-sets of X . To the closed set C we associate the following
filter of A(X ):

∇C :={U ∈A(X ) :C ⊆U }.
Likewise, to the open up-set O we associate the following ideal of A(X ):

∇

O :={U ∈A(X ) :U ⊆O}.
We need to ensure that ∇C does indeed contain all dense elements of A(X ). For this we notice

that, since every dense element has the form U ∪(↓U )c for some clopen up-set U ∈A(X ), condition
(2) of Definition 3.3 is equivalent to the following property: C ⊆U ∪(↓U )c for all U ∈A(X ). In fact,
we have

max(X )=
⋂

{U ∪(↓U )c :U ∈A(X )}.
To see this, assume x∈max(X ). Then, for every clopen up-set U , we have x /∈ (↓U )c iff x∈↓U iff
there is y∈U such that x≤y. By maximality of x, this means that x=y, so x∈U . Hence, x∈U ∪(↓U )c

for every U ∈A(X ). Conversely, suppose x /∈max(X ), i.e. there is y∈X such that x<y. Since X is
a Priestley space, we know that there is a clopen up-set V such that x /∈V and y∈V . Moreover,
x∈↓V , i.e. x /∈ (↓V )c. This means that x /∈V ∪(↓V )c, so x /∈⋂{U ∪(↓U )c :U ∈A(X )}.

The above reasoning immediately implies that 〈A(X ),∇C,
∇

O〉 is a twist-structure over a Heyting
algebra. Thus, for every object X ∈NE-Sp, we have A(X )∈Twist⊥. Let us now look at morphisms.

Let X1 =〈X1,≤1,τ1,C1,O1〉 and X2 =〈X2,≤2,τ2,C2,O2〉 be NE-spaces, and let f :X1 →X2 be
an NE-morphism. Consider the dual map A(f ) : A(X2)→A(X1) between the Heyting algebras of
clopen up-sets of the two spaces. We know from Esakia duality that A(f ) is a Heyting algebra
homomorphism. Let us check that it is in fact a twist-structure morphism (as defined in Section 2)
from 〈A(X2),∇C2 ,

∇

O2〉 to 〈A(X1),∇C1 ,

∇

O1〉.
LEMMA 3.6 (cf. [15], Lemma 4.5)
Let f :X1 →X2 be a morphism of NE-spaces. Then A(f ) : A(X2)→A(X1) is a twist-structure mor-
phism.

PROOF. We need to show that A(f )[∇C2 ]⊆∇C1 and A(f )[ ∇

O2 ]⊆

∇

O1 . Let U ∈A(f )[∇C2 ] and V ∈∇C2

be such that U =A(f )(V )= f −1[V ]. Since V ∈∇C2 we have C2 ⊆V . So f −1[C2]⊆ f −1[V ]. Then,
since f [C1]⊆C2, we have C1 ⊆ f −1[C2]. Therefore, C1 ⊆ f −1[V ]. Hence, f −1[V ]∈∇C1 . Now let
U ∈A(f )[ ∇

O2 ] and assume that V ∈ ∇

O2 is such that A(f )(V )=U , so that f −1[V ]=U . Since V ∈ ∇

O2 ,
we have V ⊆O2. Therefore, U = f −1[V ]⊆ f −1[O2]⊆O1. Hence, U ∈ ∇

O1 .

We thus have a functor A : NE-Sp→Twist⊥ from the category NE-spaces to the category of
twist-structures over Heyting algebras. We are now going to see that, for any twist-structure A and
any NE-space X , there are natural isomorphisms σA : A∼=A(X (A)) and εX : X ∼=X (A(X )).

Given a twist-structure A= (A,∇, ∇

), consider the twist-structure associated with the dual space
of A, that is, 〈A(X (A)),∇CA ,

∇

OA〉. We know by Esakia duality that the map σA : A→A(X (A))
defined by

σA(a)={P∈X (A) :a∈P}
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is a Heyting algebra isomorphism. Thus, we only need to check that σA is a twist-structure morphism
too. This follows from next lemma (we will omit the subscript of σA when there is no ambiguity).

LEMMA 3.7 (cf. [15], Lemma 4.6)
For any twist-structure A=〈A,∇, ∇〉, the map σA : A→A(X (A)) satisfies:

1. σA[∇]=∇CA ,
2. σA[ ∇]= ∇

OA .

PROOF. (i) Let a∈∇. Then CA ⊆σ (a), so σ (a)∈∇CA . Let now σ (a)∈∇CA . Then CA ⊆σ (a). Suppose
that a �∈∇. Let P be a prime filter such that ∇ ⊆P and a �∈P. Since P∈CA, we have CA �⊆σ (a), i.e.
σ (a) /∈∇CA , a contradiction.
(ii) Let a∈ ∇

. Then σ (a)⊆OA. Therefore, σ (a)∈ ∇

OA . Suppose now σ (a)∈ ∇

OA , i.e. σ (a)⊆OA.
Suppose a �∈ ∇

. Let P be a prime filter such that a∈P and P∩ ∇=∅. Then P∈σ (a) and P /∈OA, i.e.
σ (a) �⊆OA, a contradiction.

Conversely, consider the NE-space corresponding to the twist-structure A(X ):

〈X (A(X )),⊆,τA,CA(X ),OA(X )〉.
Recall that the map εX :X →X (A(X )) defined, for all x∈X , by

εX (x)={U ∈A(X ) :x∈U }
is an Esakia-homeomorphism between 〈X ,≤,τ 〉 and 〈X (A(X )),⊆,τA〉. We check that εX is in fact
an NE-morphism as well.

LEMMA 3.8 (cf. [15], Lemma 4.7)
For any NE-space X =〈X ,≤,τ,C,O〉, the map εX :X →X (A(X )) satisfies:

1. εX [C]=CA(X ),
2. εX [O]=OA(X ).

PROOF. (i) Recall that in a Priestley space any closed up-set is the intersection of all the clopen
up-sets containing it, and similarly any open up-set is the union of all the clopen up-sets it contains
(see, e.g. [7, Proposition A.1]). Given x∈C, we have to see that

εX (x)∈
⋂

{σ (U ) :U ∈∇C},

that is, that for every U ∈A(X ) such that C ⊆U , it holds that U ∈εX (x). Assume then C ⊆U ∈A(X ).
Then x∈U , so U ∈εX (x). Conversely, assume x∈U for every clopen up-set U ⊇C. Since C is a
closed up-set, C =⋂{U ∈A(X ) :C ⊆U }. Therefore, x∈C and εX (x)∈εX [C].
(ii) For x∈O, we have to see that

εX (x)∈
⋃

{σ (U ) :U ∈ ∇

O}.

That is, that U ∈εX (x) for some U ∈A(X ) with U ⊆O. Suppose the contrary. Then, for every
U ∈A(X ) with U ⊆O, it holds that x /∈U . Since O is an open up-set, O=⋃{U ∈A(X ) :U ⊆O}. It fol-
lows that x �∈O, a contradiction. Hence, εX (x)∈⋃{σ (U ) :U ∈ ∇

O}. Assume now
εX (x)∈⋃{σ (U ) :U ∈ ∇

O}. Then there is a clopen up-set U ⊆O such that x∈U . Therefore, x∈O
and εX (x)∈εX [O].
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FIG. 3. Equivalence between bounded N4-lattices and NE-spaces.

The fact that σA and εX are natural follows immediately from Esakia duality. We highlight these
facts in the following lemmas.

LEMMA 3.9
Let h :A1 →A2 be a morphism of twist-structures. Then σA2 ◦h=A(X (h))◦σA1 .

LEMMA 3.10
Let f :X1 →X2 be a morphism of NE-spaces. Then εX2 ◦f =X (A(f ))◦εX1 .

Joining the previous results, we obtain the announced dual equivalences (Figure 3).

THEOREM 3.11 (cf. [15], Thm. 4.8)
The functors X : Twist⊥ →NE-Sp and A : NE-Sp→Twist⊥ establish a dual equivalence between

the category Twist⊥ of twist-structures over Heyting algebras and the category NE-Sp of NE-spaces.

COROLLARY 3.12 (cf. [15], Cor. 4.9)
The category N4⊥ of bounded N4-lattices and the category NE-Sp of NE-spaces are dually equiv-

alent via functors X ◦T : N4⊥ →NE-Sp and N ◦A : NE-Sp→N4⊥.

3.4 Duality for Twist

The above duality for Twist⊥ can be adapted to obtain a topological duality for Twist, the category
of twist-structures over Brouwerian lattices. In this subsection, unless otherwise specified, by twist-
structure we mean a twist-structure over a Brouwerian lattice.

Let A= (A,∇, ∇

)∈Twist. We consider the Heyting algebra A∗ and its dual Esakia space X (A∗),
which is a pointed Esakia space in our terminology. We define CA and OA similarly as before:

CA :=
⋂

{σA∗ (a) :a∈∇} OA :=
⋃

{σA∗ (a) :a∈ ∇}.

Then,

CA ={P∈X (A) :∇ ⊆P}∪{A} and OA ={P∈X (A) :P∩ ∇�=∅}∪{A}.

So these sets are respectively a non-empty closed up-set and a non-empty open up-set. Moreover,
the elements of CA−{A} are maximal among the points of X (A∗)−{A}. The objects of the category
which we will prove to be dual to Twist are topological structures defined as follows.

DEFINITION 3.13
A pointed NE-space is a structure X =〈X ,≤,τ,C,O〉 such that

1. 〈X ,≤,τ 〉 is a pointed Esakia space,
2. C is a non-empty closed up-set such that the elements of C−{1X } are maximal in X −{1X },
3. O is a non-empty open up-set.
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It follows from the above considerations that, if A= (A,∇, ∇

) is a twist-structure, then
X ∗(A) :=〈X (A∗),CA,OA〉 is a pointed NE-space which we take as our candidate for the dual of A.

We observe that condition (2) of Definition 3.13 is equivalent to the following: for all clopen
up-sets U ,V ∈A(X ), if V �=∅, then C ⊆U ∪(U →X V ). To see this, let us prove that

max(X −{1X })=
⋂

{U ∪(U →X V ) :U ,V clopen up-sets and V �=∅}−{1X }.

Suppose x∈max(X −{1X }). Let U ,V be clopen up-sets with V �=∅. Suppose that x �∈U →X V .
Then ↑x∩U �⊆V . By maximality of X , ↑x={x,1X }. Therefore if x �∈U , then ↑x∩U ={1X }⊆V ,
a contradiction. Thus x∈U . Hence, x∈⋂{U ∪(U →X V ) :U ,V clopen up-sets and V �=∅}. Con-
versely, suppose x /∈max(X −{1X }) and x �=1X , i.e. there is y∈X such that x<y<1X . Since X
is a Priestley space, we know that there are clopen up-sets U ,V such that x /∈U , y∈U , y �∈V
and 1X ∈V . Then x �∈U →X V , because y∈↑x∩U and y �∈V . Therefore, x �∈U ∪(U →X V ). So
x /∈⋂{U ∪(U →X V ) :U ,V clopen up-sets and V �=∅}.

Let X =〈X ,≤,τ,C,O〉 be a pointed NE-space. In the Brouwerian lattice A∗(X )=A(X )−∅ of
non-empty clopen up-sets, we define the following filter ∇C and ideal

∇

O:

∇C :={U ∈A∗(X ) :C ⊆U } ∇

O :={U ∈A∗(X ) :U ⊆O}.
From the discussion above it immediately follows that (A∗(X ),∇C,

∇

O) is a twist-structure, which
we will take as our candidate for the dual of X .

We denote by pNE-Sp the category having as objects pointed NE-spaces and whose morphisms
are defined as follows.

DEFINITION 3.14
Let X1 =〈X1,≤1,τ1,C1,O1〉 and X2 =〈X2,≤2,τ2,C2,O2〉 be pointed NE-spaces. A pNE-morphism
is a map f :X1 →X2 such that

1. f is a pointed Esakia function,
2. f [C1]⊆C2,
3. f −1[O2]⊆O1.

Let h :A1 →A1 be a morphism between twist-structures A1 = (A1,∇1,

∇

1) and A2 = (A2,∇2,

∇

2).
Let us consider the dual X (h∗) :X (A∗

2)→X (A∗
1) of the extension h∗ :A∗

1 →A∗
2 of h. This map is a

pointed Esakia function which satisfies that X (h∗)[CA2 ]⊆CA1 and X (h∗)−1[OA1 ]⊆OA2 . The proof
of this is analogous to that of Lemma 3.5. Therefore X (h∗) is a pNE-morphism from X ∗(A2) to
X ∗(A1). In this context we denote X (h∗) by X ∗(h).

Let now X1 =〈X1,≤1,τ1,C1,O1〉 and X2 =〈X2,≤2,τ2,C2,O2〉 be pointed NE-spaces and
f : X1 →X2 a pNE-morphism. Since f is a pointed Esakia function, the dual A(f ) :A(X2)→A(X1)
of f as a pointed Esakia function when restricted to A∗(X2) is a Brouwerian lattice homomorphism
from A∗(X2) to A∗(X1). We denote this restriction by A∗(f ). By a proof similar to that of Lemma
3.6, and taking into account that f (t1)= t2, we obtain that A∗(f )[∇C2 ]⊆∇C1 and A∗(f )[ ∇

O2 ]⊆

∇

O1 .
Therefore A∗(f ) is a twist-structure morphism from A∗(X2) to A∗(X1). We take the map A∗(f ) as the
dual of f in the category Twist.

If A= (A,∇, ∇

) is a twist-structure, it can be shown with a proof similar to that of Lemma 3.7
that the map σA∗ restricted to A is an isomorphism between A and A∗(X ∗(A)).

Let X =〈X ,≤,τ,C,O〉 be a pointed NE-space and consider the space X ∗(A∗(X )) corresponding
to its dual twist-structure A∗(X ). We have that X ∗(A∗(X )) is the pointed Esakia space dual to
the Brouwerian lattice of the twist-structure A∗(X ), so X ∗(A∗(X )) is the dual Esakia space of the
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FIG. 4. Equivalence between N4-lattices and pointed NE-spaces.

Heyting algebra A(X ) of clopen up-sets of X . Hence, the map εX :X →X (A(X ))=X ∗(A∗(X ) is a
homeomorphism and an order isomorphism. Moreover, εX [C]=CA∗(X ) and εX [O]=OA∗(X ). The
proof is analogous to the proof of Lemma 3.8. Therefore εX is an isomorphism in the category
pNE-Sp.

From the above considerations the next theorem easily follows (Figure 4).

THEOREM 3.15
X ∗ : Twist→pNE-Sp and A∗ : pNE-Sp→Twist are contravariant functors that establish a dual
equivalence between the category Twist of twist-structures and the category pNE-Sp of pointed
NE-spaces.

COROLLARY 3.16
The category N4 of N4-lattices and the category pNE-Sp of pointed NE-spaces are dually equivalent
via functors X ∗ ◦T : N4→pNE-Sp and N ◦A∗ : pNE-Sp→N4.

4 Modal N4-lattices

We are now going to extend the topological duality introduced in the previous section to N4-lattices
with unary modal operations.

DEFINITION 4.1 ([24])
A monotone modal N4-lattice (MN4-lattice) is an algebra B=〈B,∧,∨,→,∼,�〉 such that the reduct
〈B,∧,∨,→,∼〉 is an N4-lattice and, for all a,b∈B,

(Q1) if a�b, then �a��b,
(Q2) if ∼a�∼b, then ∼�a�∼�b,

where � is the pre-order introduced in Definition 2.1. An MN4⊥-lattice (or a bounded MN4-lattice)
is an MN4-lattice whose lattice reduct is bounded.

It is easy to check that by defining � :=∼�∼ we obtain another unary operation satisfying (Q1)
and (Q2), i.e. for all a,b∈B,

if a�b, then �a��b,
if ∼a�∼b, then ∼�a�∼�b.

MN4-lattices obviously form a quasivariety; at present we do not know whether this class is in
fact a variety or not. Let us mention one subvariety of MN4-lattices that is already known in the
literature.

DEFINITION 4.2
A BK-lattice is an algebra B=〈B,∧,∨,→,∼,�,⊥〉 such that the reduct 〈B,∧,∨,→,∼,�〉 is a
bounded MN4-lattice (with bottom element ⊥) and, for all a,b∈B,

(E1) (a→b)→a�a,
(E2) �a∧�b��(a∧b),
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(E3) �(a→a)=�(a→a)→�(a→a),
(E4) −�a≡�−a,
(E5) −�a≡�−a.

where a≡b abbreviates the two equalities a�b and b�a, while −a abbreviates a→⊥.

BK-lattices were introduced in [20] as an algebraic counterpart of the modal expansion of the
Belnap–Dunn logic of [21], although the definition presented above is adapted from [24, Definition
3.5]. It is worth pointing out that, since BK-lattices are particular examples of (bounded) MN4-
lattices, all the results that we will prove about the latter apply to BK-lattices as well.

Conditions (Q1) and (Q2) ensure that in any MN4-lattice operations � and � are compatible with
the relation ≡ introduced in Definition 2.1. So we can define operations �, � on the Brouwerian
lattice B�� =〈B,∧,∨,→〉/≡ as follows:

�[a]=[�a] and �[a]=[∼�∼a].

These operations satisfy the following monotonicity properties (here ≤ denotes the lattice order of
B��):

if [a]≤[b], then �[a]≤�[b],
if [a]≤[b], then �[a]≤�[b].

These properties explain the choice of the terminology ‘monotone modal N4-lattice’.
Moreover, the filter ∇(B)⊆B/≡ and the ideal

∇
(B)⊆B/≡ satisfy:

• if a∨b∈∇(B) and a∧b∈ ∇
(B), then �a∨�b∈∇(B) and �a∧�b∈ ∇

(B).

These observations suggest a way to represent MN4-lattices as twist-structure products. We will
need the following definitions.

DEFINITION 4.3
A monotone bimodal Brouwerian lattice is an algebra A=〈A,∧,∨,→�,�〉 such that the reduct
〈A,∧,∨,→〉 is a Brouwerian lattice and �,� : A→A are monotone maps. A monotone bimodal
Heyting algebra is a bounded monotone bimodal Brouwerian lattice.

Given a monotone bimodal Brouwerian lattice A, we can construct an MN4-lattice A�� in the
following way:

• the N4-lattice reduct of A�� is the twist-structure 〈A,∧,∨,→〉�� introduced above,
• �〈a,b〉=〈�a,�b〉 for any 〈a,b〉∈A×A.

Routine checking shows that the algebra A�� is in fact an MN4-lattice [24, Proposition 4.3]. However,
as in the case of N4-lattices, not all MN4-lattices arise in this way as we need to consider all
subalgebras of A��. These can be characterized in the following way.

Let A=〈A,∧,∨,→�,�〉 be a bimodal Brouwerian lattice, ∇ ⊆A a filter containing the dense
elements of A and

∇⊆A an ideal satisfying:

• if a∨b∈∇ and a∧b∈ ∇

, then �a∨�b∈∇ and �a∧�b∈ ∇

.

It is easy to check that the set

B :={〈a,b〉∈A×A : a∨b∈∇, a∧b∈ ∇}
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is a subalgebra of A��. Let us denote by Tw(A,∇, ∇

) the MN4-lattice obtained through this con-
struction. The following result shows that all MN4-lattices arise in this way.

PROPOSITION 4.4
Every MN4-lattice (bounded MN4-lattice) B is isomorphic to the twist-structure Tw(B��,∇(B),

∇

(B)),
where B�� is a monotone bimodal Brouwerian lattice (Heyting algebra), through the map
jB :B→B/≡×B/≡ defined, for all a∈B, as

jB(a) :=〈[a],[∼a]〉.

PROOF. We know by Proposition 2.2 that the map jB is an isomorphism between the N4-lattice
reducts of B and Tw(B��,∇(B),

∇

(B)). By [24, Theorem 4.5], we have that jB preserves the modal
operator, which concludes our proof.

Using the above result, we are going to extend the categorial equivalence between N4-lattices
and twist-structures to MN4-lattices and modal twist-structures, defined as follows.

DEFINITION 4.5
A monotone modal twist-structure is a triple A=〈A,∇, ∇〉 where

(i) A is a monotone bimodal Brouwerian lattice,
(ii) ∇ is a filter that includes the dense elements of A,
(iii)

∇

is an ideal of A,
(iv) for every a,b∈A, if a∨b∈∇ and a∧b∈ ∇

, then �a∨�b∈∇ and �a∧�b∈ ∇

.

DEFINITION 4.6
Let A1 =〈A1,∇1,

∇

1〉 and A2 =〈A2,∇2,

∇

2〉 be monotone modal twist-structures. A morphism from
A1 to A2 is an homomorphism of monotone bimodal Brouwerian lattices h :A1 →A2 such that

(i) h[∇1]⊆∇2,
(ii) h[ ∇

1]⊆ ∇

2.

The category of monotone modal twist-structures, denoted MTwist, has as objects monotone
modal twist-structures and as morphisms the above-defined maps between them. We define the
category MTwist⊥ by restricting the objects to bounded Brouwerian lattices (i.e. Heyting algebras)
and by requiring that the morphisms preserve the bounds. We are going to prove that MTwist
(MTwist⊥) is equivalent to the category MN4 (MN4⊥) having as objects (bounded) MN4-lattices
and as morphisms algebraic (bounded) MN4-lattice homomorphisms.

We define functors T : MN4→MTwist and N : MTwist→MN4 in the same way as in the non-
modal case, and likewise for the functions jB : B→N (H (B)) and ηA : A→T (N (A)). We proceed
to check that these definitions work in the modal case as well.

LEMMA 4.7
For any monotone modal twist-structure A, the map ηA : A→T (N (A)) defined in (2.1) is an iso-
morphism in the category MTwist.
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PROOF. We need only to show that ηA(�a)=�ηA(a) and ηA(�a)=�ηA(a) for all a∈A. We have

ηA(�a)=[〈�a,(�a)′〉]≡
=[〈�a,�(a′)〉]≡
=[�〈a,a′〉]≡
=�[〈a,a′〉]≡
=�ηA(a).

We recall once more that the equality [〈�a,(�a)′〉]≡ =[〈�a,�(a′)〉]≡ holds because it only depends
on the first component of each pair. A similar argument allows us to prove that ηA(�a)=�ηA(a).

LEMMA 4.8
Let h : A1 →A1 be a morphism of monotone modal twist-structures. Then the map
N (h) : N (A1)→N (A2) is such that N (h)(�〈a,b〉)=�N (h)(〈a,b〉) for all 〈a,b〉∈N (A1). Therefore
N (h) is an MN4-lattice morphism.

PROOF. It is sufficient to observe that N (h)(�〈a,b〉)=N (h)(〈�a,�b〉=〈h(�a),h(�b)〉=〈�h(a),
�h(b)〉=�〈h(a),h(b)〉=�N (h)(〈a,b〉).
LEMMA 4.9
Let f : B1 →B2 be an MN4-lattice homomorphism. Then:

T (f )(�[a]≡)=�T (f )([a]≡) and T (f )(�[a]≡)=�T (f )([a]≡).

Therefore T (f ) : T (B1)→T (B2) is a monotone modal twist-structure morphism.

PROOF. It is sufficient to observe that T (f )(�[a]≡)=T (f )([�a]≡)=[f (�a)]≡ =[�f (a)]≡ =
�[f (a)]≡ =�T (f )([a]≡). Similarly, T (f )(�[a]≡)=T (f )([∼�∼a]≡)=[f (∼�∼a)]≡ =[∼�∼f (a)]≡
=�[f (a)]≡ =�T (f )([a]≡)

The previous lemmas (together with Proposition 4.4) immediately imply the announced equiva-
lence result.

THEOREM 4.10
Functors T : MN4→MTwist and N : MTwist→MN4 establish a natural equivalence between the
category MN4 of (bounded) MN4-lattices and the category MTwist of twist-structures over monotone
bimodal Brouwerian lattices (Heyting algebras).

As mentioned above, BK-lattices are particular examples of bounded MN4-lattices. To be more
precise, we can rephrase the representation result proved in [20] in our terms saying that BK-lattices
correspond exactly to modal twist-structures A=〈A,∇, ∇〉 such that:

• A is a modal Boolean algebra
• a∈∇ implies �a∈∇
• a∈ ∇

implies �a∈ ∇

.

We remind the reader that a modal Boolean algebra or simply a modal algebra [4] is an algebra
〈A,∧,∨,→,�,�,0,1〉 such that the reduct 〈A,∧,∨,→,0,1〉 is a Boolean algebra and the modal
operations satisfy, for all a,b∈A: �(a∧b)=�a∧�b, �1=1 and �a=¬�¬a, where ¬a denotes
the Boolean complement of a.

It is easy to prove that the equivalence stated in Theorem 4.10 restricts to an equivalence between
full sub-categories corresponding to BK-lattices and to twist-structures over modal Boolean algebras
(Figure 5).
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FIG. 5. Equivalence between modal N4-lattices and monotone bimodal Brouwerian lattices.

5 Duality for modal twist-structures

In this section we extend our topological duality for twist-structures to modal twist-structures. As
in the non-modal case we relied on Esakia duality for Heyting algebras, we will now build on the
duality for distributive lattices with monotone operators of [14].

Let A=〈A,∧,∨,→�,�〉 be a monotone bimodal Heyting algebra and denote by 〈X (A),τA,⊆〉
the corresponding Esakia space. We denote by P↑(X (A)) the collection of upward subsets of X (A)
and by Fi(A) the set of all lattice filters of A. For each operation •∈{�,�} we define a neighbourhood
function ν• : X (A)→P(P↑(X (A))) as follows: for every prime filter P∈X (A),

ν•(P)={U ∈A(X (A)) :∃F ∈Fi(A) s.t.•[F]⊆P and {Q∈X (A) :F ⊆Q}⊆U }.

Notice that ν•(P) is an up-set of 〈P↑(X (A)),⊆〉. It is also obvious that ν• is monotone with respect
to the Esakia order of X (A). The structure 〈X (A),τA,⊆,ν�,ν�〉 will be called the monotone modal
Esakia space of A.

Using the neighbourhood function ν• we can represent the algebraic operation • in the Heyting
algebra of clopen up-sets of X (A) through the following definition: for any U ∈A(X (A)),

•ν• (U ) :={P∈X (A) :U ∈ν•(P)}.

The following proposition shows that the above definitions make sense and that, using them, we
obtain that the isomorphism σA : A→A(X (A)) preserves the monotone modal operators as well.

PROPOSITION 5.1
For every a∈A, σA(•a)=•ν•σA(a).

PROOF. Let P∈σA(•a). Then •a∈P. Since • is monotone in A, it follows that •[↑a]⊆P. Moreover,
if Q∈X (A) is such that ↑a⊆Q, then Q∈σA(a). From the fact that ↑a is a filter, it then follows
that P∈•ν•σA(a). Suppose now that P∈•ν•σA(a). Let F be a filter of A such that •[F]⊆P and
{Q∈X (A) :F ⊆Q}⊆σA(a). We have to show that •a∈P. Suppose the contrary. Then a �∈F . So there
is a prime filter Q such that F ⊆Q and a �∈Q. This contradicts the fact that {Q∈X (A) :F ⊆Q}⊆σA(a).
Hence we conclude that •a∈P.

By Proposition 5.1 we already know that σA is an isomorphism between the monotone bimodal
Heyting algebra A=〈A,∧,∨,→,0,1,�,�〉 and 〈A(X (A)),∩,∪,→,∅, X (A),�ν� ,�ν�〉. Thus, in
order to extend this to a monotone modal twist-structure 〈A,∇, ∇〉, we only need to take care of
representing ∇ and

∇

. Let us look at how properties (ii)-(iv) of Definition 4.5 are reflected on the
NE-space corresponding to a monotone modal twist-structure.
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PROPOSITION 5.2
For any monotone modal twist-structure A=〈A,∇, ∇〉 over a monotone bimodal Heyting alge-
bra, the maps ν�,ν� : X (A)→P(P↑(X (A))) satisfy the following condition: for all clopen up-sets
U ,V ∈X (A),

if CA ⊆U ∪V and U ∩V ⊆OA, then CA ⊆�ν�U ∪�ν�V and �ν�U ∩�ν�V ⊆OA.

PROOF. Let a,b∈A be such that σA(a)=U and σA(b)=V . Assume CA ⊆U ∪V and U ∩V ⊆OA.
From the first assumption we have CA ⊆σA(a)∪σA(b)=σA(a∨b), from the second σA(a)∩σA(b)=
σA(a∧b)⊆OA. Let us check that a∨b∈∇ and a∧b∈ ∇

. The first assumption means that, for
every prime filter P⊇∇, one has a∨b∈P. Now, if a∨b /∈∇, there would be a prime filter P⊇∇ such that
a∨b �∈P, a contradiction. Similarly, a∧b /∈ ∇

implies that there is a prime filter P such that a∧b∈P and∇∩P=∅. Then P∈σA(a∧b) and therefore P∈OA. This means P∩ ∇�=∅, a contradiction. We conclude
that a∨b∈∇ and a∧b∈ ∇

. Applying Definition 4.5 (iv), we have �a∨�b∈∇ and �a∧�b∈ ∇

.
Therefore, CA ⊆σA(�a∨�b)=σA(�a)∪σA(�b)=�ν�σA(a)∪�ν�σA(b)=�ν�U ∪�ν�V . Similarly
we obtain σA(�a∧�b)=σA(�a)∩σA(�b)=�ν�U ∩�ν�V ⊆OA.

We put the above observations together to introduce our formal definition of spaces corresponding
to monotone modal twist-structures over Heyting algebras.

Let 〈X ,≤,τ,C,O〉 be an NE-space and let ν be a neighborhood function. Recall that the corre-
sponding modal operation on the set of clopen up-sets is defined by

•ν(U )={x∈X :U ∈ν(x)}.

DEFINITION 5.3
A monotone modal NE-space (MNE-space) is a structure X =〈X ,≤, τ,ν1,ν2,C,O〉 such that
〈X ,≤,τ,C,O〉 is an NE-space and νi : X →P(P↑(X )) are neighbourhood functions satisfying the
following properties: for all x,y∈X and all clopen up-sets U ,V ∈A(X ),

(i) x≤y implies νi(x)⊆νi(y) with i∈{1,2},
(ii) �ν1U , �ν2U ∈A(X ),
(iii) if C ⊆U ∪V and U ∩V ⊆O, then C ⊆�ν1U ∪�ν2V and �ν1U ∩�ν2V ⊆O,
(iv) νi(x) is an up-set for each i∈{1,2} and for all x∈X ,

where �ν1 ,�ν2 are, respectively, the modal operations corresponding to the neighborhood functions
ν1 and ν2.

The above observations immediately imply that the space corresponding to a monotone modal
twist-structure satisfies the properties of Definition 5.3.

PROPOSITION 5.4
Let A=〈A,∇, ∇〉 be a monotone modal twist-structure over a Heyting algebra. Then

X (A)=〈X (A),⊆,τA,ν�,ν�,CA,OA〉

is an MNE-space.

Conversely, let us check that the Heyting algebra of clopen up-sets of an MNE-space is the
algebraic reduct of a monotone modal twist-structure.
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PROPOSITION 5.5
Let X =〈X ,≤,τ,ν1,ν2,C,O〉 be an MNE-space. Then the twist-structure A(X )=〈A(X ),∇C,

∇

O〉 is
a monotone modal twist-structure over a Heyting algebra, when we endow A(X ) with the operations
�ν1 and �ν2 .

PROOF. Let U ,V ∈A(X ). If U ⊆V , then �ν1U ⊆�ν1V and �ν2U ⊆�ν2V because ν1(x),ν2(x)∈
P↑(X ) for all x∈X . Hence, 〈A(X ),�ν1 ,�ν2〉 is a monotone bimodal Heyting algebra. It remains
to check that ∇C and

∇

O satisfy property (iv) of Definition 4.5. Suppose that U ∪V ∈∇C and
U ∩V ∈ ∇

O. The former means that C ⊆U ∪V , the latter that U ∩V ⊆O. Then, by Definition 5.3
(iii), we have C ⊆�ν1U ∪�ν2V and �ν1U ∩�ν2V ⊆O. Hence we obtain �ν1U ∪�ν2V ∈∇C and
�ν1U ∩�ν2V ∈ ∇

O.

In order to view MNE-spaces as a category, we need to specify the morphisms. This is done
through the following definition.

DEFINITION 5.6
A map f :X →X ′ between two MNE-spaces X and X ′ is an MNE-morphism if f is an NE-morphism
which additionally satisfies that, for every x∈X and every clopen up-set U ∈A(X ′),

(i) U ∈ν ′
1(f (x)) if and only if f −1[U ]∈ν1(x),

(ii) U ∈ν ′
2(f (x)) if and only if f −1[U ]∈ν2(x).

It is easy to see that the composition of MNE-morphisms is an MNE-morphism and that the
identity map of an MNE-space is a morphism. We can thus define a category MNE-Sp having
as objects MNE-spaces and as morphisms MNE-morphisms. We proceed to introduce functors
X : MTwist⊥ →MNE-Sp and A : MNE-Sp→MTwist⊥ adopting the same definitions as for (non-
modal) twist-structures and NE-spaces.

Let us check that Definition 5.6 is actually capturing the essential properties of morphisms between
spaces that are dual to modal twist-structures.

LEMMA 5.7
Let h : A→A′ be a morphism between monotone modal twist-structures A=〈A,∇, ∇〉 and A′ =
〈A′,∇′,

∇′〉 over a Heyting algebra. Then X (h) : X (A′)→X (A) is an MNE-morphism between the
corresponding spaces.

PROOF. By Lemma 3.5, we just need to check that conditions (i) and (ii) of Definition 5.6 are sat-
isfied. We only prove (i) as the proof of (ii) is analogous. Let P∈X (A′) and U ∈A(X (A)). We can
assume that U =σA(a) for some a∈A. Suppose U ∈ν1(X (h)(P)). Let F ⊆A be a filter such that
�[F]⊆X (h)(P)=h−1[P] and such that {Q∈X (A) :F ⊆Q}⊆σA(a). This implies that a∈F . Thus,
�a∈h−1[P], i.e. h(�a)=�′h(a)∈P. From the monotonicity of �′ it follows that �′[↑h(a)]⊆P.
Moreover, if Q∈X (A) is such that ↑h(a)⊆Q, then Q∈σ (h(a)). Therefore, since ↑h(a) is a filter of
A′, we conclude that σA′ (h(a))∈ν ′

1(P). Note that Q∈X (h)−1[σA(a)] iff h−1[Q]∈σ (a) iff h(a)∈Q iff
Q∈σA′ (h(a)). Thus, X (h)−1[σA(a)]=σA′ (h(a))∈ν ′

1(P).
To prove the other implication of (i), suppose X (h)−1[σ (a)]∈ν ′

1(P). Then, σA′ (h(a))∈ν ′
1(P). Let

G⊆A′ be a filter such that �′[G]⊆P and {Q∈X (A′) :G⊆Q}⊆σA′ (h(a)). Then h−1[G]⊆h−1

[�′−1[P]]⊆�[h−1[P]]=�−1[X (h)(P)]. Suppose Q′ ∈X (A) is such that h−1[G]⊆Q′ but a �∈Q′. Then
h(a) �∈G. So there is Q∈X (A′) such that G⊆Q and h(a) �∈Q, a contradiction. Thus {Q′ ∈X (A) :
h−1[G]⊆Q′}⊆σA(a). We conclude that U =σA(a)∈ν1(X (h)(P)).

Next we check that the NE-space isomorphism εX : X ∼=X (A(X )) is an MNE-morphism, and
therefore an isomorphism in the category MNE-Sp.
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LEMMA 5.8
Let X =〈X ,≤,τ,C,O,ν1,ν2〉 be an MNE-space. Then the map εX :X →X (A(X )) satisfies:

(i) ν�ν1
(εX (x))={εX [U ] :U ∈ν1(x)},

(ii) ν�ν2
(εX (x))={εX [U ] :U ∈ν2(x)}.

PROOF. We only prove (i) as the proof of (ii) is analogous. Suppose V ∈ν�ν1
(εX (x)). Let D be a

closed up-set of X (A(X )) such that D⊆V and with the property that for every clopen up-set W
of X (A(X )) with D⊆W it holds that W ∈ν�ν1

(εX (x)). Then ε−1
X [D] is a closed set. We consider

U =ε−1
X [V ], which is a clopen up-set of X . So, ε−1

X [D]⊆U . Suppose now that W is a clopen up-
set of X such that ε−1

X [D]⊆W . Then D⊆εX [W ] and εX [W ] is a clopen up-set of X (A(X )). So,
εX [W ]∈ν�ν1

(εX (x)). Note that, for every clopen up-set V of X , it holds that σX + (V )=εX [V ]. So
from Proposition 5.1 we have �ν�ν1

σA(X )(W )=σA(X )(�ν1W ). Thus, �ν�ν1
εX [W ]=εX [�ν1W ]. Since

εX [W ]∈ν�ν1
(εX (x)), we have εX (x)∈�ν�ν1

εX [W ] and so εX (x)∈εX [�ν1W ]. Thus, x∈�ν1W and

so W ∈ν1(x). It follows that U ∈ν1(x). Therefore εX [U ]=εX [ε−1
X [V ]]=V ∈{εX [U ] :U ∈ν1(x)}.

Suppose now that U ∈ν1(x). Then x∈�ν1U . So εX (x)∈εX [�ν1U ]=σA(X )(�ν1U )=�ν�ν1
σA(X )(U )=

�ν�ν1
εX [U ]. So, εX [U ]∈ν�ν1

(εX (x)).

Finally, let us check that MNE-morphisms give rise to monotone modal twist-structure morphisms
between the corresponding monotone modal twist-structures.

LEMMA 5.9
Let f :X →X ′ be a morphism of MNE-spaces. Then A(f ) : A(X ′)→A(X ) is a monotone modal
twist-structure morphism.

PROOF. Recalling Lemma 3.6, we only need to prove that for every clopen up-set U ∈A(X ′), it holds
that A(f )(�ν ′

1
U )=�ν1A(f )(U ) and A(f )(�ν ′

2
U )=�ν2A(f )(U ). We only prove the first equality as

the proof of the second one is similar. Let x∈X ′. Then x∈A(f )(�ν ′
1
U ) if and only if f (x)∈�ν ′

1
U if

and only if U ∈ν ′
1(f (x)) if and only if A(f )(U )= f −1[U ]∈ν1(x) if and only if x∈�ν1A(f )(U ).

Joining the previous results, one immediately sees that functors defined in the same way as for
(non-modal) twist-structures and NE-spaces yield an equivalence in the modal case.

THEOREM 5.10
The functors X : MTwist⊥ →MNE-Sp and A : MNE-Sp→MTwist⊥ establish a dual equivalence

between the category MTwist⊥ of modal twist-structures over bimodal Heyting algebras and the
category MNE-Sp of MNE-spaces.

COROLLARY 5.11
The category MN4⊥ of bounded MN4-lattices and the category MNE-Sp of MNE-spaces are dually

equivalent via the functors X ◦T : MN4⊥ →MNE-Sp and N ◦A : MNE-Sp→MN4⊥.

The above result can be used to obtain a topological duality for BK-lattices by restricting the
objects of MTwist to modal twist-structures A=〈A,∇, ∇〉 corresponding to BK-lattices, in which
case we know that A is a modal Boolean algebra. It is then easy to see that the objects of the dual
category are structures X =〈X ,≤,τ,C,O,ν1,ν2〉 such that 〈X ,τ 〉 is a Stone space and, for every
U ∈A(X ),

• if C ⊆U , then C ⊆�ν1U ,
• if U ⊆O, then �ν2V ⊆O.
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FIG. 6. Equivalence between bounded MN4-lattices and MNE-spaces.

Moreover, since � and � are modal operators in the classical sense (i.e. they preserve, respectively,
finite meets and finite joins and are dual of one another), we can replace the neigbourhood functions
ν1,ν2 by a relation R and follow the duality theory for Boolean algebras with operators [3, Chapter 5].

The equivalences obtained so far are displayed in Figure 6.
We are now going to expound how to extend the above duality between MNE-Sp and MTwist⊥ to

a duality between the category of MTwist⊥ and a category of monotone modal NE-spaces. For this
purpose we are interested in monotone bimodal Heyting algebras A=〈A,∧,∨,→�,�〉 satisfying
the properties that �0=0, �0=0 and that, for all a∈A−{0}, �a,�a �=0.

PROPOSITION 5.12
Let A=〈A,∧,∨,→�,�〉 be a monotone bimodal Heyting algebra.

(i) if �0=0, �0=0, then for every neighbourhood function ν• with •∈{�,�} and every prime
filter P, ∅ �∈ν•(P), and therefore •ν• (∅)=∅,

(ii) if for all a∈A−{0}, �a,�a �=0, then for every neighborhood function ν• with •∈{�,�} and
every a∈A−{0}, •ν• (σA(a)) �=∅.

PROOF. (i). Suppose ∅∈ν•(P). Thus there is a filter F of A such that •[F]⊆P and {Q∈X (A) :
F ⊆Q}⊆∅. Since every proper filter is included in some prime filter, it follows that F =A. There-
fore {•a :a∈A}⊆P. Now since •0=0, 0∈P, a contradiction. Therefore, ∅ �∈ν•(P). Hence, •ν• (∅)=∅.
(ii) Let a∈A−{0}. Then �a �=0. Let P be a prime filter such that �a∈P. Then �[↑a]⊆P. Moreover,
{Q∈X (A) :↑a⊆Q}⊆σA(a). Therefore, P∈�ν� (σA(a)). In a similar way we obtain that
�ν�(σA(a)) �=∅.

Now we are in a position to introduce the dual space of a monotone modal twist-structure
A=〈A,∇, ∇〉. Let us consider the dual pointed NE-space X ∗(A)=〈X (A∗),τA∗ ,⊆, CA,OA〉 of the
twist-structure A (disregarding the monotone modal operations). Recall that the Heyting algebra
A∗ is obtained from A by adding a new bottom element 0∗. We expand the operations � and � to
A∗ =A∪{0∗} by setting �0∗ =0∗ and �0∗ =0∗. Then we consider the dual monotone modal Esakia
space X (A∗)=〈X (A∗),⊆,τA∗ ,ν�,ν�〉 of 〈A∗,�,�〉. Recall that A is a prime filter of A∗. Also note
that 〈X (A∗),⊆,τA∗ 〉 is a pointed Esakia space. The structure X ∗(A)=〈X (A∗),⊆,τA∗ ,ν�,ν�,CA,OA〉
will be the dual of A.

For a monotone modal twist-structure A=〈A,∇, ∇〉, we already know that σA∗ : A∼=A∗(X ∗(A)) is
an isomorphism of twist-structures between A and the twist-structure A∗(X ∗(A)), when we disregard
the modal part of A. In order to see that σA∗ establishes an isomorphism of monotone modal twist-
structures between A and A∗(X ∗(A)), using Proposition 5.1 it only remains to see that for every
a∈A, �ν�σA∗ (a) and �ν�σA∗ (a) are non-empty. This follows from Proposition 5.12.

In order to characterize abstractly the duals of monotone modal twist-structures, we are now going
to study some properties of the structure X ∗(A) that is dual to A.

PROPOSITION 5.13
Let A=〈A,∇, ∇〉 be a monotone modal twist-structure. Then in the dual structure 〈X (A∗),⊆,
τA∗ ,ν�,ν�〉 we have ν�(A)={σA∗ (a) :a∈A} and ν�(A)={σA∗ (a) :a∈A}.
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PROOF. Let a∈A. Consider the filter ↑a. Then {Q∈X (A∗) :↑a⊆Q}=σA∗ (a). Moreover, it is obvious
that �[↑a]⊆A. Thus, σA∗ (a)∈ν�(A). Since ∅ �∈ν�(A), σA∗ (0∗)=∅ �∈ν�(A). Hence, ν�(A)={σA∗ (a) :
a∈A}. In a similar way we obtain that ν�(A)={σA∗ (a) :a∈A}.

Let A=〈A,∇, ∇〉 be a monotone modal twist-structure. By a proof similar to that of Proposition
5.2 we obtain that conditions (i)-(iv) in Definition 5.3 hold in 〈X (A∗),⊆,τA∗ ,ν�,ν�〉. This and
Proposition 5.13 lead us to the next definition.

DEFINITION 5.14
A pointed monotone modal NE-space (pointed MNE-space) is a structure X =〈X ,≤, τ,C,O,ν1,ν2〉
such that 〈X ,≤,τ,C,O〉 is a pointed NE-space and νi : X →P(P↑(X )) are neighbourhood functions
satisfying conditions (i)-(iv) in Definition 5.3 as well as the following ones:

(i) ∅ �∈ν1(x) and ∅ �∈ν2(x), for every x∈X ,
(ii) ν1(1X )=ν2(1X )=A∗(X ), where 1X is the greatest element of 〈X ,≤〉.

From Propositions 5.12 and 5.13 it follows that if A=〈A,∇, ∇〉 is a monotone modal twist-
structure, then X (A∗) is a pointed monotone modal NE-space. In this context we denote it by X ∗(A).

We are now going to obtain the monotone modal twist-structure dual of a pointed monotone
modal NE-space.

LEMMA 5.15
Let X =〈X ,≤, τ,C,O,ν1,ν2〉 be a pointed monotone modal NE-space. Then for every non-empty
clopen up-set U , �ν1 (U ) and �ν2 (U ) are non-empty.

PROOF. Let U be a non-empty clopen up-set and let 1X be the greatest element of 〈X ,≤〉. Then
U ∈ν1(1X ). Therefore 1X ∈�ν1 (U ) and hence �ν1 (U ) �=∅. In a similar way we obtain that �ν2 (U ) �=∅.

The above lemma implies that the restrictions of �ν1 and �ν2 to non-empty clopen up-sets are
monotone operations on the algebra of non-empty clopen up-sets of X . Therefore, we take as dual
of X the algebra A−(X )= (A∗(X ),∇C,

∇

O) corresponding to the pointed NE-space 〈X ,≤,τ,C,O〉
with A∗(X ) endowed with the operations �ν1 and �ν2 restricted to the universe of A∗(X ). It is then
easy to see that A−(X )= (A∗(X ),∇C,

∇

O) is a monotone modal twist-structure.
Let h :A1 →A2 be a morphism of monotone modal twist-structures A1 =〈A1,∇1,

∇

1〉 and A2 =
〈A2,∇2,

∇

2〉. Then the extension of h to the homomorphism h∗ :A∗
1 →A∗

2 of Heyting algebras that
maps 0∗

1 to 0∗
2 is also a homomorphism from the monotone modal Heyting algebra A∗

1 to the mono-
tone modal Heyting algebra A∗

2, because h∗(�10∗
1)=h∗(0∗

1)=0∗
2 =�20∗ =�2h∗(0∗

1), and similarly
h∗(�10∗

1)=�2h∗(0∗
1). We already know that X (h∗) is a pNE-morphism from X ∗(A2) to X ∗(A1), if

we disregard the modal part. With a proof similar to that of Lemma 5.7 we obtain that, for every
P∈X (A∗

2) and every clopen up-set U of X ∗(A1),

• U ∈ν�1 (X (h∗)(P)) if and only if X (h∗)−1[U ]∈ν�2 (P),
• U ∈ν�1 (X (h∗)(P)) if and only if X (h∗)−1[U ]∈ν�2 (P).

Thus we define morphisms between pointed monotone modal NE-spaces as follows.

DEFINITION 5.16
A map f :X →X ′ between two pointed monotone modal NE-spaces X and X ′ is an pMNE-morphism
if f is a pNE-morphism and for every x∈X and every clopen up-set U ∈A∗(X ′),

(i) U ∈ν ′
1(f (x)) if and only if f −1[U ]∈ν1(x),

(ii) U ∈ν ′
2(f (x)) if and only if f −1[U ]∈ν2(x).
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TABLE 1. Summary of (dual) equivalences.

topological
twist-structures over structures

N4-lattices Brouwerian lattices pointed
NE-spaces

bounded N4-lattices Heyting algebras NE-spaces

monotone modal
N4-lattices

monotone bimodal
Brouwerian lattices

pointed
MNE-spaces

bounded monotone
modal N4-lattices

monotone bimodal
Heyting algebras

MNE-spaces

BK-lattices modal Boolean algebras BK-spaces

The definition implies that if h :A1 →A2 is a morphism of monotone modal twist-structures, then
X (h∗) :X ∗(A2)→X ∗(A1) is an pMNE-morphism, which we denote by X ∗(h).

Let f :X →X ′ be an pMNE-morphism from a pointed monotone modal NE-space X to a pointed
monotone modal NE-space X ′. The dual A∗(f ) :A−(X ′)→A−(X ) of f as a pNE-morphism preserves
also the modal operations (the proof is similar to that of Lemma 5.9). Therefore, it is a monotone
modal twist-structure homomorphism.

If X is a pointed MNE-space, then we know that the map εX :X →X ∗(A−(X )) is an pNE-
isomorphism (if we disregard the neighborhood maps). A proof analogous to that of Lemma 5.8
allows us to establish that εX is an pMNE-isomorphism.

Let pMNE-Sp be the category of pointed MNE-spaces with pMNE-morphisms. Using the duality
between MTwist⊥ and MNE-Sp together with the considerations above, it is not difficult to prove
the following theorem. Let X ∗(.) and A∗(.) be the maps we obtain from the above definitions.

THEOREM 5.17
The maps X ∗ : MTwist→pMNE-Sp and A∗ : pMNE-Sp→MTwist are contravariant functors which
establish a dual equivalence between the category MTwist of modal twist-structures and the category
pMNE-Sp of pointed MNE-spaces.

COROLLARY 5.18
The category MN4 of MN4-lattices and the category pMNE-Sp of pointed MNE-spaces are dually
equivalent via the functors X ∗ ◦T : MN4→pMNE-Sp and N ◦A∗ : pMNE-Sp→MN4.

The equivalences established by the above results are displayed below:

Table 1 below summarizes all the equivalence results established in this article (we have called
BK-spaces the topological structures corresponding to BK-lattices, which can be easily obtained by
restricting Definition 5.3 to modal spaces [2, Definition 3.1]).

 at B
ibliotheek T

U
 D

elft on July 23, 2014
http://jigpal.oxfordjournals.org/

D
ow

nloaded from
 

http://jigpal.oxfordjournals.org/


[12:46 9/7/2014 jzu002.tex] Paper Size: a4 paper Job: JIGPAL Page: 634 608–637

634 Dualities for modal N4-lattices

6 A semantics for paraconsistent modal logic MN4

Pointed monotone modal NE-spaces can be used to provide a semantics for the paraconsistent
modal logic MN4 introduced in [24]. This is a logic in the language 〈∧,∨,→,∼,�〉 that can be
syntactically defined by adding to any complete calculus for paraconsistent Nelson logic (see, e.g.
[24, Definition 2.1]) the following rules [24, Definition 3.1]:

(�1)
p→q

�p→�q
(�2)

¬p→¬q

¬�p→¬�q

This calculus, the consequence thereof we denote by �MN 4, is complete with respect to the algebraic
semantics given by MN4-lattices as follows. Define the relation |=MN4 by

� |=MN4ϕ if and only if for every MN4-lattice B and every homomorphism h :Fm→B, if for every
ψ ∈�, h(ψ)=h(ψ→ψ), then h(ϕ)=h(ϕ→ϕ).

Then [24, Theorem 3.6] implies the following:

THEOREM 6.1
For every set of formulas � and every formula ϕ,

��MN 4ϕ iff � |=MN4ϕ.

We are going to show that �MN 4 is also complete with respect to a semantics provided by pointed
MNE-spaces.

Let X =〈X ,≤, τ,C,O,ν1,ν2〉 be a pointed MNE-space. A valuation on X is a map
V :Var →A∗(X )×A∗(X ) such that for every propositional variable p∈Var,

(i) C ⊆π1(V (p))∪π2(V (p)),
(ii) π1(V (p))∩π2(V (p))⊆O.

Let V be a valuation on a pointed NE-space X =〈X ,≤, τ,C,O,ν1,ν2〉. We extend it to a map
V :For →A∗(X )×A∗(X ) by setting

• V (ϕ∧ψ)=〈π1(V (ϕ))∩π1(V (ψ)),π2(V (π )∪π2(V (ψ))〉,
• V (ϕ∨ψ)=〈π1(V (ϕ))∪π1(V (ψ)),π2(V (ϕ)∩π2(V (ψ))〉,
• V (ϕ→ψ)=〈π1(V (ϕ))→π1(V (ψ)),π1(V (ϕ))∩π2(V (ψ))〉,
• V (∼ϕ)=〈π2(V (ϕ)),π1(V (ϕ))〉,
• V (�ϕ)=〈�ν1V (ϕ),�ν2V (ϕ)〉.
Let V be a valuation on a pointed NE-space X =〈X ,≤, τ,C,O,ν1,ν2〉. For every ϕ we let

V1(ϕ) :=π1(V (ϕ)) and V2(ϕ) :=π2(V (ϕ)).

LEMMA 6.2
Let V be a valuation on a pointed NE-space X =〈X ,≤, τ,C,O,ν1,ν2〉. Then for every formula ϕ,
C ⊆V1(ϕ)∪V2(ϕ) and V1(ϕ)∩V2(ϕ)⊆O.

PROOF. By definition the valuation of the statement holds for every propositional variable. So V is
a map from the set of variables to the domain of the MN4-lattice Tw(A∗(X ),∇C,

∇

O). Therefore, if
the conditions corresponding to (i) and (ii) of the definition of valuation hold for ϕ and ψ , then the
corresponding conditions hold for ϕ∧ψ , ϕ∨ψ , ϕ→ψ and ∼ϕ. Moreover, from the definition of
pointed NE-space it immediately follows that the corresponding condition holds for �ϕ.
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COROLLARY 6.3
Let V be a valuation on a pointed NE-space X =〈X ,≤, τ,C,O,ν1,ν2〉. Then the extension of V to
the algebra of formulas is a homomorphism from this algebra to Tw(A∗(X ),∇C,

∇

O). Moreover, for
every formula ϕ,

V1(ϕ)=X if and only if V (ϕ)=V (ϕ→ϕ).

PROOF. The rightward implication follows from the lemma. Suppose that V1(ϕ)=X . Since
V (ϕ→ϕ)=〈V1(ϕ)→V1(ϕ),V1(ϕ)∩V2(ϕ)〉 we have V (ϕ→ϕ)=〈X ,V2(ϕ)〉=〈V1(ϕ),V2(ϕ)〉=V (ϕ).
Assume now that V (ϕ)=V (ϕ→ϕ). Then V1(ϕ)=V1(ϕ)→V1(ϕ)=X .

We are now in a position to define a consequence relation.

DEFINITION 6.4
For every set of formulas � and every formula ϕ, let

� |=pMNE ϕ if and only if for every pointed MNE-space X and every valuation V on X , if for every
ψ ∈�, V1(ψ)=X , then V1(ϕ)=X .

In order to show that the paraconsistent modal logic MN4 is complete with respect to the
semantics provided by pointed MNE-spaces, we need to make some observations. Let B be an MN4-
lattice and h a homomorphism from the algebra of formulas to B. We consider the monotone modal
twist-structure (B��,∇(B),

∇

(B)) and its dual pointed NE-space 〈X (B��),⊆, τB�� ,CB�� ,OB�� ,ν�,ν�〉.
Recall that B is isomorphic to Tw(B��,∇(B),

∇

(B)) via the map jB defined by jB(a)=〈[a],[∼a]〉 for
every a∈B and that (B��,∇(B),

∇
(B)) is isomorphic to (A∗(X ∗(B��)),∇CB�� ,

∇
OB�� ) via the map σB�� .

Thus, Tw(B��,∇(B),
∇

(B)) is isomorphic to Tw(A∗(X ∗(B��)),∇CB�� ,
∇

OB�� ) via the map k defined by

k(〈[a],[∼a]〉)=〈σB�� ([a]),σB�� ([∼a])〉.
Therefore, B is isomorphic to Tw(A∗(X ∗(B��)),∇CB�� ,

∇

OB�� ) through the map k ◦jB. Then, the map
k ◦jB ◦h is a valuation on X ∗(B��). Recall that the set of points of X ∗(B��) is the set X ((B��)∗) of
prime filters of (B��)∗, which is the set of prime filters of B�� together with B��.

LEMMA 6.5
Let B be an MN4-lattice and h a homomorphism from the algebra of formulas to B. The valuation
k ◦jB ◦h on X ∗(B��) satisfies, for every formula ψ ,

h(ψ)=h(ψ→ψ) if and only if (k ◦jB ◦h)1(ψ)=X ((B��)∗).

PROOF. For every formula ψ ,

(k ◦jB ◦h)(ψ)=k(jB(h(ψ)))=〈σB�� ([h(ψ)])],σB�� ([h(∼ψ)])〉.
Suppose h(ψ)=h(ψ→ψ). Then [h(ψ)]=[h(ψ→ψ)]=[h(ψ)]→[h(ψ)]. Therefore,

(k ◦jB ◦h)1(ψ)=σB�� ([h(ψ)])=σB�� ([h(ψ)]→[h(ψ)])=X ((B��)∗).

Suppose now (k ◦jB ◦h)1(ψ)=X ((B��)∗). That is, σB�� ([h(ψ)])]=X ((B��)∗). Since
σB�� ([h(ψ)]→[h(ψ)])=X ((B��)∗), injectivity of σB�� implies that [h(ψ)]→[h(ψ)]=[h(ψ)]. But then
[h(ψ)] is the top element of the Heyting algebra (B��)∗ which is also the top element of B��. There-
fore, h(ψ)=h(ψ)→h(ψ).
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PROPOSITION 6.6
For every set of formulas � and every formula ϕ,

� |=pMNE ϕ if and only if � |=MN4ϕ.

PROOF. Suppose � |=MN4ϕ and � �|=pMNE ϕ. Then, let X =〈X ,≤, τ,C,O,ν1,ν2〉 be an pointed NE-
space and V a valuation on X such that for every ψ ∈�, V1(ψ)=X and V1(ϕ) �=X . We consider
the MN4-lattice Tw(A∗(X ),∇C,

∇

0). The valuation V gives a homomorphism from the algebra of
formulas to Tw(A∗(X ),∇C,

∇

0). It holds that for every ψ ∈�, V (ψ)=V (ψ→ψ). Therefore, since
� |=MN4ϕ, V (ϕ)=V (ϕ→ϕ), and so V1(ϕ)=X , a contradiction.
To prove the converse suppose � |=pMNE ϕ. Let B be an MN4-lattice and h a homomorphism from the
algebra of formulas to B such that for everyψ ∈�, h(ψ)=h(ψ→ψ). Consider the space X ∗(B��) and
the valuation k ◦jB ◦h. Then for every ψ ∈�, (k ◦jB ◦h)1(ψ)=X (B��). Therefore, (k ◦jB ◦h)1(ϕ)=
X ((B��)∗), and so h(ϕ)=h(ϕ→ϕ). We conclude that � |=MN4ϕ.

As a corollary we obtain the announced completeness result.

THEOREM 6.7
For every set of formulas � and every formula ϕ,

��MN 4ϕ iff � |=pMNE ϕ.
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