
152
Notre Dame Journal of Formal Logic
Volume XIX, Number 1, January 1978
NDJFAM

DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial
functions, which allows for an easy definition of the recursive infimum of
two functions.

1 Let U be the set of partial mappings: co 10,11. We write fix) = * if f(x)
is undefined. U will be the universum for our recursion theory. Computa-
tions are introduced using Kleene brackets [1]. So we have a relation

-ter (Tn') n
rwhere e, mi, new, ae U. A computation tela (m) is undefined if either it

never stops or it uses a(n) for an n s.t. a(n) = *.

1.1 Definition a is recursive in 0(a 0) if for some e E

a c xx [el° (x).

It is easy to see that is a transitive relation on U. We write a --- 3 if a
and 13 s a. Of course is an equivalence relation. The equivalence classes
are called degrees. The lowest degree, 0, is the degree of the partial
recursive functions.

Motivation We see a E U as an object containing information (concerning its
arguments). If a c 13 then 13 contains at least as much information as a
does. Hence we insist to have a /3 in this case. A similar argument holds
if a = xx{e}(x) for some e. These two requirements generate

As the total functions are included in U, U/ has cardinality cf. [2]. On
the other hand some equivalence classes of E do have cardinality
themselves. It is not difficult to find a which is not equivalent to any total
function. Furthermore a straightforward spoiling construction shows that
there are no minimal degrees in U. Some motivation for considering U lies
in the following theorem.

1.2 Definition 1 sc(a) is the set of total functions recursive in a.

1.3 Theorem Let V C w' be countable and closed under recursion. Then
for some aeUV=1- sc(a).
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Proof: Straightforward construction.

Example Let "F be a type -n functional. Let a = Ap {p}("F). Then
1 - sc (a) = 1 sc ("F).

(The following problem is open: VaE4F[1 - sc (a) = 1 - sc(F)1?)

2 In U/s we can define easily the supermum and infimum of two degrees.

2.1 Definition (i) for a, OE U, a v 0 is defined by

if n = 2k then a(k)
a v 0(n) = if n = 2k + 1 then 0(k)

(ii) for a, 0 U, a n 0 is defined by

a (n)13 = a 0((x, y, z)) = if Ixr (z) = p = {y}'(z) then p(p (0, 1))
A A

{* otherwise.

2.2 Theorem v and A give sup and inf in U/s.

Proof: v: Suppose a y and 0 y then a v y immediately.
A: Suppose y a and y 0. Choose x, y such that

c Xn{x}a(n) and y C Xn{y}13(n).

Clearly y C n-{x}a(n) n n fyr(n). Now y c X n a A y, n)). Hence
a A" 13.

An interesting problem is whether or not there exist a and 0 of non-zero
degree such that a n 0 is of degree zero. We were unable to solve this
question. However we can solve it for an operation A which assigns, in a
natural way, a function a A 0 to a and 0 which is below a A 13.

2.3 Definition

if a(x) = 0(y) = p then p
a A R((x, Y)) else *.

a A 0 allows one to compare all values of a with all values of P.

2.4 Theorem There are a, 0 U such that a 0, 0 0 and a A 0 -= 0.

Proof: We find a and 0 such that

(i) a A 0((x, y)) is defined implies a A 0((x, y)) = {x}(y) (hence a A 0 -7- 0).
(ii) for all n, aVxx.{n}(x) and 0 Xx{n}(k).

a and 0 are defined in an infinite construction. We, in fact, define strictly
increasing infinite sequences 1 and /4(n E co) and initial segments an, 13 of a
and [3 with lengths 1, 14 .10= 14 = 0, ao, Po are the empty sequence. At step
2n we extend a,_, to ensure ot, V x.{n}(x). And at step 2n + 1 we extend
I32 to ensure that 132n-H. xx {n}(x) (and hence 0 V xx {n}(x)). During the
construction we ensure that the following two conditions remain satisfied.

a. Whenever a(i) = q = 0( j) then q = (q 1})

b. If a(i) * then for some tE co we have: Vy > t{i}(y) {y}(i).
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The motivation of condition a. is clear. Condition b. helps us to do the odd
steps (and complicates the even ones). We will now describe the steps:

Step 2n. Suppose 02n-1 is defined on yi . . . yk with values z1 . . . zk. Find,
using the recursion theorem, an index xE CO such that:

(i) x > 1 1

if y = yi for some j -5. k then zi
(ii) {x}(y) .! else if y .ts 4,1 then *1

else {y}(x).

We take /2.= x + 1, g = gn-I. a2,2 is found as follows:

{ if
a2k(i)

i < l2._1 then a2,2-1(i)
= else if i = x then p else *.

Here pE 10, il is a value such that {n}(x) i p (this ensures a V xx{n}(x)). We
must verify conditions a. and b.

a. Suppose a(i) = q = 132.(j)(i -5 12., j -5 IL) then q = 02,3_1(j). Clearly j = yi
for some l -5 k. Further we may assume that i = x. Thus: q = 3an-160 =
zi = {x}(yr) = W(j).

b. Immediate by the construction of x.

Step 2n + 1. Let a2 be defined on x1 . . . xi with values z1 . . . zi. Choose
t > IL such that for i 1 and t' > t:

{xi}(r)

Using the recursion theorem we find an y > t such that: {y}(xi) = zi for
i 4 1. We extend 3 2n, to 3 2n 1 by giving it a value q on y which ensures that
02n xx{n}(x). Again we must check conditions a. and b. (We have 12.+1 =
12, 12n+1 = y + 1).

b. Immediate (no change).
a. Suppose a2,,+1(i) = q = 021(j), (q E 1}). We may assume that j = y and
i = xi,, for some m 1. q = etz.+1(xm) = Zm = {Y}(xm) = {x,}(y) = {i}(y). This
completes the proof of 2.4.
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