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DEGREES OF PARTIAL FUNCTIONS

JAN BERGSTRA

In this paper we consider a new notion of relative recursion on partial
functions, which allows for an easy definition of the recursive infimum of
two functions.

1 Let U be the set of partial mappings: w — {0, 1}. We write f(x) = * if f(x)
is undefined. U will be the universum for our recursion theory. Computa-
tions are introduced using Kleene brackets [1]. So we have a relation

{e}Y'(m) = n

where e, m;, new, ae U. A computation {e}a(ﬁ) is undefined if either it
never stops or it uses a(n) for an n s.t. a(n) = *.

1.1 Definition a is recursive in B(a < ) if for some e€w
acC Ax-{e}ﬂ(x).

It is easy to see that < is a transitive relation on U. We writea =3 ifa <j
and B <a. Of course = is an equivalence relation. The equivalence classes
are called degrees. The lowest degree, 0, is the degree of the partial
recursive functions.

Motivation We see ae U as an object containing information (concerning its
arguments). If a C 3 then B contains at least as much information as «
does. Hence we insist to have a < 3 in this case. A similar argument holds
if @ = xx{e}?(x) for some e. These two requirements generate <.

As the total functions are included in U, U/= has cardinality 2% cf. [2]. On
the other hand some equivalence classes of = do have cardinality 2%o
themselves. It is not difficult to find a which is not equivalent to any total
function. Furthermore a straightforward spoiling construction shows that
there are no minimal degrees in U. Some motivation for considering U lies
in the following theorem.

1.2 Definition 1 - sc(a) is the set of fotal functions recursive in a.

1.3 Theorem Let V C w® be countable and closed undev vecursion. Then
for someae UV =1- sc(a).
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Proof: Straightforward construction.

Example Let "F be a type -n functional. Let a=2p-{p}("F). Then
1-sc(@)=1- sc("F).

(The following problem is open: Va3*F([1 - sc(a) = 1 - sc(F)]?)

2 In U/= we can define easily the supermum and infimum of two degrees.
2.1 Definition (i) for @, Be U, av B is defined by

if n = 2k then a(k)

avp(n) = {if n= 2k + 1 then B(k)

(ii) for @, Be U, a B is defined by
if {x}°(2) = p = {»}"(2) then p(pe (0, 1))

* otherwise.

anB(n) = anBlx, y, 2) = {

2.2 Theorem v and A give sup and inf in U/=,

Proof: v: Suppose a <y and B <y then av 3 <y immediately.
A: Suppose y < @ and y < . Choose x, ¥y such that

y C an{x}°m) and y € An-{y}’(n).

Clearly y C An-{x}*(n) N A n- {y}ﬂ(n). Now y C an-aap((x,y, n)). Hence
Yy <aaf.

An interesting problem is whether or not there exist @ and 8 of non-zero
degree such that aap is of degree zero. We were unable to solve this
question. However we can solve it for an operation A which assigns, in a
natural way, a function @ A B to @ and 8 which is below a a .

2.3 Definition

if a(x) = B(y) = p then p

a A f(x, 3)) = else *.

a A B allows one to compare all values of a with all values of f3.
2.4 Theorem Theve arve a, Be U such thata #0, 8 #0and a A B=0.
Proof: We find @ and 3 such that

(i) a A B((x,y)) is defined implies a A B((x, ) = {x}(y) (hence @ A B =0).
(ii) for all #, @ & Ax-{n}(x) and B & rxx{n} (k).

a and B are defined in an infinite construction. We, in fact, define strictly
increasing infinite sequences I, and Iinew) and initial segments a,, B, of @
and B with lengths [, Iyol,= 13 =0, a, B, are the empty sequence. At step
2n we extend @,,., to ensure ,, ¢ Ax-{n}(x). And at step 2z + 1 we extend
Ba; to ensure that By, & Ax-{n}(x) (and hence B & xx-{n}(x)). During the
construction we ensure that the following two conditions remain satisfied.

a. Whenever a,(i) = ¢ = B.(j) then ¢ = {i}(j) (g€ {0, 1})
b. If a,(i) # * then for some #ew we have: Vy > t{i}(y) = {y} ().
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The motivation of condition a. is clear. Condition b. helps us to do the odd
steps (and complicates the even ones). We will now describe the steps:

Step 2n. Suppose B,,-, is defined on y, . .. y, with values z, . . . 2;. Find,
using the recursion theorem, an index x € w such that:
1) x> 1z,

if y = y; for some j < k then z;
(i) {x}(y) =~ {else if y < I3,_, then »
else {y}(x).

We take lp,= x + 1, I3, = I3,-, - @3, is found as follows:

if i < I,,-, then @p,-,(7)
else if 7 = x then p else x.

A7) = {

Here pe {0, 1} is a value such that {n}(x) # p (this ensures a Z xx{n}(x)). We
must verify conditions a. and b.

a. Suppose @z(i) = q = Bon(§)(i < loy, j < 13,) then g = Bay-1(j). Clearly j =y,
for some I <k. Further we may assume that i = x. Thus: ¢ = Bs-,(¥)) =

z; = e} () = {i}(5).

b. Immediate by the construction of x.

Step 2n + 1. Let a,, be defined on x, . .. x; with values 2z, . . . z;. Choose
t > I3, such that for i <7 and ¢' > ¢
{3 (") = {#}H(x).

Using the recursion theorem we find an y > ¢ such that: {y}(x;) = z; for
i<l. We extend B,, to B+, by giving it a value ¢ on y which ensures that
Ban € Ax{n}(x). Again we must check conditions a. and b. (We have Ip,4, =
lzm l;rri'l =y + 1).

b. Immediate (no change).

a. Suppose g,4,(2) = ¢ = Bansi(), (g€ {0,1). We may assume that j =y and
i=%n for some m<l. q=0uu(¥m) = zn = {y}(*n) = {xn}(») = {i}(»). This
completes the proof of 2.4.
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