MICHEL JANSSEN

EINSTEIN’S FIRST SYSTEMATIC EXPOSITION
OF GENERAL RELATIVITY

1. GENERAL RELATIVITY IN THE ANNALEN AND ELSEWHERE

Readers of this volume will notice that it contains only a few papers on general rela-
tivity. This is because most papers documenting the genesis and early development of
general relativity were not published in Annalen der Physik. After Einstein took up
his new prestigious position at the Prussian Academy of Sciences in the spring of
1914, the Sitzungsberichte of the Berlin academy almost by default became the main
outlet for his scientific production. Two of the more important papers on general rela-
tivity, however, did find their way into the pages of the Annalen (Einstein 1916a,
1918b). Although I shall discuss both papers in this essay, the main focus will be on
(Einstein 1916a), the first systematic exposition of general relativity, submitted in
March 1916 and published in May of that year.

Einstein’s first paper on a metric theory of gravity, co-authored with his mathema-
tician friend Marcel Grossmann, was published as a separatum in early 1913 and was
reprinted the following year in Zeitschrift fir Mathematik und Physik (Einstein and
Grossmann 1913, 1914a). Their second (and last) joint paper on the theory also
appeared in this journal (Einstein and Grossmann 1914b). Most of the formalism of
general relativity as we know it today was already in place in this Einstein-Gross-
mann theory. Still missing were the generally-covariant Einstein field equations.

As is clear from research notes on gravitation from the winter of 19121913 pre-
served in the so-called “Zurich Notebook,”1 Einstein had considered candidate field
equations of broad if not general covariance, but had found all such candidates want-
ing on physical grounds. In the end he had settled on equations constructed specifi-
cally to be compatible with energy-momentum conservation and with Newtonian
theory in the limit of weak static fields, even though it remained unclear whether
these equations would be invariant under any non-linear transformations. In view of
this uncertainty, Einstein and Grossmann chose a fairly modest title for their paper:
“Outline (“Entwurf”) of a Generalized Theory of Relativity and of a Theory of Grav-
itation.” The Einstein-Grossmann theory and its fields equations are therefore also

1 An annotated transcription of the gravitational portion of the “Zurich Notebook™ is published as
Doc. 10 in CPAE 4. For facsimile reproductions of these pages, a new transcription, and a running
commentary, see (Renn forthcoming).
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known as the “Entwurf” theory and the “Entwurf” field equations.

Much of Einstein’s subsequent work on the “Entwurf” theory went into clarifying
the covariance properties of its field equations. By the following year he had con-
vinced himself of three things. First, generally-covariant field equations are physi-
cally inadmissible since they cannot determine the metric field uniquely. This was the
upshot of the so-called “hole argument” (“Lochbetrachtung™) first published in an
appendix to (Einstein and Grossmann 1914a).2 Second, the class of transformations
leaving the “Entwurf” field equations invariant was as broad as it could possibly be
without running afoul of the kind of indeterminism lurking in the hole argument and,
more importantly, without violating energy-momentum conservation. Third, this
class contains transformations, albeit it of a peculiar kind, to arbitrarily moving
frames of reference. This, at least for the time being, removed Einstein’s doubts about
the “Entwurf” theory and he set out to write a lengthy self-contained exposition of it,
including elementary derivations of various standard results he needed from differen-
tial geometry. The title of this article reflects Einstein’s increased confidence in his
theory: “The Formal Foundation of the General Theory of Relativity” (Einstein
1914b). As a newly minted member of the Prussian Academy of Sciences, he duti-
fully submitted his work to its Sitzungsberichte, where the article appeared in
November 1914. This was the first of many papers on general relativity in the Sit-
zungsberichte, including such gems as (Einstein 1916¢) on the relation between
invariance of the action integral and energy-momentum conservation, (Einstein
1916b, 1918a) on gravitational waves, (Einstein 1917b), which launched relativistic
cosmology and introduced the cosmological constant, and (Einstein 1918d) on the
thorny issue of gravitational energy-momentum.

In the fall of 1915, Einstein came to the painful realization that the “Entwurf”
field equations are untenable.’ Casting about for new field equations, he fortuitously
found his way back to equations of broad covariance that he had reluctantly aban-
doned three years earlier. He had learned enough in the meantime to see that they
were physically viable after all. He silently dropped the hole argument, which had
supposedly shown that such equations were not to be had, and on November 4, 1915,
presented the rediscovered old equations to the Berlin Academy (Einstein 1915a). He
returned a week later with an important modification, and two weeks after that with a
further modification (Einstein 1915b, d). In between these two appearances before his
learned colleagues, he presented yet another paper showing that his new theory
explains the anomalous advance of the perihelion of Mercury (Einstein 1915c¢) # For-
tunately, this result was not affected by the final modification of the field equations

2 See sec. 2 for further discussion of the hole argument.

3 Einstein stated his reasons for abandoning the “Entwurf” field equations and recounted the subse-
quent developments in Einstein to Arnold Sommerfeld, 28 November 1915 (CPAE 8, Doc. 153).

4 See (Earman and Janssen 1993) for an analysis of this paper. That Einstein could pull this off so fast
was because he had already done the calculation of the perihelion advance of Mercury on the basis of
the “Entwurf” theory two years earlier (see the headnote, “The Einstein-Besso Manuscript on the
Motion of the Perihelion of Mercury,” in CPAE 4, 344-359).
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presented the following week.

When it was all over, Einstein commented with typical self-deprecation: “unfortu-
nately I have immortalized my final errors in the academy—papers;”5 and, referring to
(Einstein 1914b): “it’s convenient with that fellow Einstein, every year he retracts
what he wrote the year before 6 What excused Einstein’s rushing into print was that
he knew that the formidable Gottingen mathematician David Hilbert was hot on his
trail.” Nevertheless, these hastily written communications to the Berlin Academy
proved hard to follow even for Einstein’s staunchest supporters, such as the Leyden
theorists H. A. Lorentz and Paul Ehrenfest.®

Ehrenfest took Einstein to task for his confusing treatment of energy-momentum
conservation and his sudden silence about the hole argument. Ehrenfest’s queries
undoubtedly helped Einstein organize the material of November 1915 for an authori-
tative exposition of the new theory. A new treatment was badly needed, since the
developments of November 1915 had rendered much of the premature review article
of November 1914 obsolete.

In March 1916, Einstein sent his new review article, with a title almost identical
to that of the one it replaced, to Wilhelm Wien, editor of the Annalen.® This is why
(Einstein 1916a), unlike the papers mentioned so far, can be found in the volume
before you.10 Many elements of Einstein’s responses to Ehrenfest’s queries ended up
in this article. Even though there is no mention of the hole argument, for instance,
Einstein does present the so-called “point-coincidence argument”, which he had pre-
miered in letters to Ehrenfest and Michele Besso explaining where the hole argument
went wrong.11 The introduction of the field equations and the discussion of energy-
momentum conservation in the crucial Part C of the paper—which is very different
from the corresponding Part D of (Einstein 1914b)—closely follows another letter to
Ehrenfest, in which Einstein gave a self-contained statement of the energy-momen-
tum considerations leading to the final version of the field equations.12 Initially, his

5  “Die letzten Irrtiimer in diesem Kampfe habe ich leider in den Akademie-Arbeiten [...] verevigt.”
This comment comes from the letter to Sommerfeld cited in note 3.

6  “Es ist bequem mit dem Einstein. Jedes Jahr widerruft er, was er das vorige Jahr geschrieben hat.”
Einstein to Paul Ehrenfest, 26 December 1915 (CPAE 8, Doc. 173).

7  See (Corry et al. 1997), (Sauer 1999), (Renn and Stachel forthcoming) for comparisons of the work of
Einstein and Hilbert toward the field equations of general relativity.

8  See (Kox 1988) for discussion of the correspondence between Einstein, Ehrenfest, and Lorentz of late
1915 and early 1916.

Einstein to Wilhelm Wien, 18 March 1916 (CPAE 8, Doc. 196).

10 The article is still readily available in English translation in the anthology The Principle of Relativity
(Lorentz et al. 1952). Unfortunately, this reprint omits the one-page introduction to the paper in which
Einstein makes a number of interesting points. He emphasizes the importance of Minkowski’s geo-
metric formulation of special relativity, which he had originally dismissed as “superfluous erudition”
(“tiberfliissige Gelehrsamkeit;” Pais 1982, 151), and the differential geometry of Riemann and others
for the development of general relativity. He also acknowledges the help of Grossmann in the mathe-
matical formulation of the theory.

11 See sec. 2 for further discussion of the point-coincidence argument.

12 Einstein to Paul Ehrenfest, 24 January 1916 or later (CPAE 8, Doc. 185).
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readers had been forced to piece this argument together from his papers of November
1914 and 1915. As Einstein announced at the beginning of his letter to Ehrenfest: “I
shall not rely on the papers at all but show you all the calculations”'® He closed the
letter asking his friend: “Could you do me a favor and send these sheets back to me as
I do not have this material so neatly in one place anywhere else.”'* Einstein may very
well have had this letter in front of him as he was writing the relevant sections of
(Einstein 1916a).

(Einstein 1916a) presents a happy interlude in Einstein’s ultimately only partially
successful quest to banish absolute motion and absolute space and time from physics
and establish a truly general theory of relativity.15 When he wrote his review article,
Einstein still thought that general covariance automatically meant relativity of arbi-
trary motion. The astronomer Willem de Sitter, a colleague of Lorentz and Ehrenfest
in Leyden, disabused him of that illusion during a visit to Leyden in the fall of 1916.
A lengthy debate ensued between Einstein and De Sitter in the course of which Ein-
stein introduced the cosmological constant in the hope of establishing general relativ-
ity in a new way, involving what he dubbed “Mach’s principle” in (Einstein 1918b).1
In this paper he proposed a new foundation for general relativity, replacing parts of
the foundation laid in (Einstein 1916a). This may well be why he published (Einstein
1918b), like (Einstein 1916a), in the Annalen. Despite its brevity, this then is the
other major paper on general relativity contained in this volume.

Einstein had another stab at an authoritative exposition of general relativity in the
early twenties, when he agreed to publish a series of lectures he gave in Princeton in
May 1921. They appeared two years later in heavily revised form (Einstein 1923).17
The Princeton lectures superseded the 1916 review article as Einstein’s authoritative
exposition of the theory, but the review article remains worth reading and is of great
historical interest.

In (Einstein 1916a) the field equations and energy-momentum conservation are

13 “Ich stiitze mich gar nicht auf die Arbeiten, sondern rechne Dir alles vor.”

14 “Es wire mir lieb, wenn Du mir diese Blitter [...] wieder zuriickgibest, weil ich die Sachen sonst nir-
gends so hiibsch beisammen habe.”

15 There are (at least) two separate issues here (Earman 1989, 12—-15). The first issue is whether all
motion is relative or whether some motion is absolute. Put differently, is space-time structure some-
thing over and above the contents of space-time or is it just a way of talking about spatio-temporal
relations? The second issue concerns the ontological status of space-time. Is space-time structure sup-
ported by a space-time substance, some sort of container, or is it a set of relational properties? The
two views thus loosely characterized go by the names of ‘substantivalism’ and ‘relationism’, respec-
tively. Newton is associated with substantivalism as well as with absolutism about motion, Leibniz
with relationism as well as with relativism about motion (see, e.g., Alexander 1956, introduction;
Huggett 2000, Ch. 8). It is possible, however, to be an absolutist about motion and a relationist about
the ontology of space-time. Although the jury is still out on the ontological question, I shall argue that,
while non-uniform motion remains absolute in general relativity, the ontology of space-time in Ein-
stein’s theory is best understood in relational rather than substantival terms.

16  See sec. 2 for further discussion of Mach’s principle.

17 The Princeton lectures are still readily available in English translation as The Meaning of Relativity
(Einstein 1956).
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not developed in generally-covariant form but only in special coordinates. Einstein
had found the Einstein field equation in terms of these coordinates in November
1915. As explained above, this part of (Einstein 1916a) is basically a sanitized ver-
sion of the argument that had led Einstein to these equations in the first place. The
manuscript for an unpublished appendix (CPAE 6, Doc.31) to (Einstein 1916a)
makes it clear that as he was writing his review article, he was already considering
redoing the discussion of the field equations and energy-momentum conservation in
arbitrary coordinates. In November 1916, he published such a generally-covariant
account in the Berlin Sitzungsberichte (Einstein 1916c). This paper is undoubtedly
much more satisfactory mathematically than the corresponding part of (Einstein
1916a) but it does not offer any insight into how Einstein actually found his theory.
Reading (Einstein 1916c¢), without having read the November 1915 papers and the
1916 review article, one easily comes away with the impression that Einstein hit upon
the Einstein field equations simply by picking the mathematically most obvious can-
didate for the gravitational part of the Lagrangian for the metric field, namely the
Riemann curvature scalar. This is essentially how Einstein himself came to remember
his discovery of general relativity. He routinely trotted out this version of events to
justify the purely mathematical speculation he resorted to in his work on unified field
theory.18 The 1916 review article preserves the physical considerations, especially
concerning energy-momentum conservation, that originally led him to the Einstein
field equations, arguably the crowning achievement of his scientific career.

The balance of this essay is organized as follows. (Einstein 1916a) is divided into
five parts. The two most important and interesting parts are part A, “Fundamental
Considerations on the Postulate of Relativity” (secs. 1-4) and part C, “Theory of the
Gravitational Field” (secs. 13—18). These two parts are covered in secs.2 and 3,
respectively. These two sections can be read independently of one another.

2. THE DISK, THE BUCKET, THE POTS, AND THE GLOBES"®

Part A of (Einstein 1916a) brings together some of the main considerations that moti-
vated and sustained its author in his attempt to generalize the principle of relativity
for uniform motion to arbitrary motion. On the face of it, the arguments look straight-
forward and compelling, but looking just below the surface one recognizes that they
are more complex and, in several cases, quite problematic.

Einstein (1916a, 770) begins with a formulation of the principle of relativity for
uniform motion that nicely prepares the ground for the generalization he is after. Both

18 For further discussion of Einstein’s distorted memory of how he found his field equations and the role
it played in his propaganda for his unified field theory program, see (Janssen and Renn forthcoming,
sec. 10) and (Van Dongen 2002), respectively. (Norton 2000), however, accepts that Einstein actually
did find the Einstein field equations the way he later claimed he did.

19 I am indebted to Christoph Lehner for his incisive criticism of earlier versions of many of the argu-
ments presented in this section (cf. Janssen forthcoming (a)). For his own take on some of the issues
discussed here, see (Lehner forthcoming).
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in Newtonian mechanics and in special relativity there is a class of reference frames
in which the laws of nature take on a particularly simple form. These inertial frames
all move at constant velocity with respect to one another. In the presence of a gravita-
tional field the laws of nature will in general not be particularly simple in any one
frame or in any one class of frames. The simplest formulation is a generally-covariant
one, a formulation that is the same in all frames, including frames in arbitrary motion
with respect to one another. In this sense of relativity, general covariance guarantees
general relativity (ibid., 776). This does not mean that observers in arbitrary motion
with respect to one another are physically equivalent the way observers in uniform
relative motion are. In that more natural sense of relativity, general relativity does not
extend special relativity at all.

Einstein’s equating of general relativity with general covariance comes in part
from a conflation of two different approaches to geometry, a “subtractive” or “top-
down” approach associated with the Erlangen program of Felix Klein, and an “addi-
tive” or “bottom-up” approach associated with modern differential geometry, which
goes back to Bernard Riemann (Norton 1999). In Klein’s “subtractive approach” one
starts with a description of the space-time geometry with all bells and whistles and
then strips away all elements deemed to be descriptive fluff only. Only those elements
are retained that are invariant under some group of transformations. Such groups thus
characterize the essential part of the geometry. The geometrization of special relativ-
ity by Hermann Minkowski (1909) is a picture-perfect example of Klein’s “subtrac-
tive” approach. Consider Minkowski space-time described in terms of some Lorentz
frame, i.e., coordinatized with the help of four orthogonal axes (orthogonal with
respect to the standard non-positive-definite Minkowski inner product). Which
Lorentz frame is chosen does not matter. The decomposition of space-time into space
and time that comes with this choice is not an essential part of the space-time geome-
try and neither is the state of rest it picks out. These elements are not invariant under
transformations of the Lorentz group characterizing the geometry of Minkowski
space-time. For instance, a Lorentz boost will map a worldline of a particle at rest
onto a worldline of a particle in uniform motion. Lorentz invariance in special relativ-
ity is thus directly related to the relativity of uniform motion. The privileged nature of
the whole class of uniform motions is an essential part of the geometry. Lorentz
transformations will map the set of all possible worldlines of particles at rest in some
Lorentz frame onto itself.

In the Riemannian “additive approach” one starts from a bare manifold, a set of
points with only a topological and a differential structure defined on it, and adds fur-
ther structure to turn it into a space-time. Such further structure will typically include
an affine connection and a metric so that it becomes possible to tell straight lines from
crooked ones and talk about distances. To make sure that no superfluous elements
enter into the description of the space-time geometry everything is done in a coordi-
nate-independent manner, if not coordinate-free (i.e., without ever introducing coor-
dinates at all) then at least in a generally-covariant way (i.e., in a way that is exactly
the same no matter what coordinates are chosen). Such generally-covariant descrip-
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tions can be of space-times with or without preferred states of motion. This already
makes it clear that general covariance per se has nothing to do with relativity of
motion.?’

Einstein used general covariance in two different ways in his 1916 review article.
In sec. 3, he used it in the spirit of Klein’s “subtractive approach” to isolate the essen-
tial elements of general relativistic space-times (Norton 1992, 1999). In sec. 2, he
used it for the implementation of a peculiar principle of relativity distinctly his own.

In sec. 2 Einstein explained his objection against preferred frames of reference
and argued for the need of general covariance using a variant of a thought experiment
Newton had used to illustrate that rotation is absolute. These two thought experi-
ments are illustrated in fig. 1, Newton’s on the left, Einstein’s on the right.

Newton’s two globes Einstein’s two globes

Figure 1: Absolute rotation

Consider Newton’s experiment first (Cajori 1934, 12; Cohen and Whitman 1999,
414). Two globes, S, and §, , connected by a rope are rotating around their center of
gravity far away from any other gravitating matter. Can this situation be distinguished
from a situation in which the two globes are not rotating but moving at constant speed
in a straight line at a fixed distance from each other? The answer is yes: the tension in
the rope will be greater when the globes are rotating.

Einstein asks us to consider the two globes in relative rotation around the line
connecting their centers. He has no use for the rope. Newtonian theory tells us that it
makes a difference whether S, or S, is truly rotating. A rotating globe bulges out at
its equator. This, Einstein argues, violates Leibniz’s principle of sufficient reason.
The situation looks perfectly symmetric: S, rotates with respect to S, and §, rotates
with respect to S, . Yet, unless the two globes both happen to rotate with half their
relative angular velocity, they behave differently. There is no observable cause to
explain this difference in behavior. The Newtonian explanation—that the globe’s

20 See (Norton 1993) for a review of the (philosophy of) physics literature on the status of general cova-
riance in general relativity.
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rotation with respect to (the set of inertial frames of) Newton’s absolute space rather
that its rotation relative to the other globe is what causes it to bulge out—is unsatis-
factory, because the purported cause is not an “observable empirical fact”
(“beobachtbare Tatsache;” Einstein 1916a, 771). Special relativity, Einstein claims,
inherits this “epistemological defect” (“erkenntnistheoretische[n] Mangel;” ibid.), to
which he had been sensitized by Ernst Mach. Situations with two objects in relative
motion, such as the globes S, and S, always look symmetric, regardless of whether
the motion is uniform or not, but when the motion is non-uniform the two objects will
in general behave differently.

The British philosopher of science Jon Dorling (1978) was the first to put his fin-
ger on the fallacy in Einstein’s reasoning. Imagine attaching ideal clocks to both
globes somewhere on their equators. Use these clocks to measure how long one revo-
lution of the other globe takes. According to Newtonian kinematics, the two clocks
will record the same time for one revolution. According to special-relativistic kine-
matics, they will in general record different times because of the phenomenon of time
dilation. The difference will be greatest when one of the two clocks is at rest with
respect to some inertial Lorentz frame in Minkowski space-time. Focus on this spe-
cial case. The clock on the inertially moving globe measures a longer period of revo-
lution than the clock on the non-inertially moving globe. This is just a variant of the
famous twin-paradox scenario. The point of introducing these clocks is to show that
the situation of the two globes in relative rotation to one another is not symmetric, not
even at the purely kinematical level. It therefore need not surprise us that it is not
symmetric at the dynamical level either. In the special case in which one globe is
moving inertially only the other globe, the one with the lower clock reading, bulges
out at its equator.

In Ch. 21 of his popular book on relativity,
Einstein (1917, 49, 1959, 72) used a charm-
ing analogy to get his point across. It can
also be used to illustrate Dorling’s rejoinder.
Consider two identical pots sitting on a
stove, only one of which is giving off steam.
One naturally assumes that this is because
only the burner under that one is on. It
would be strange indeed to discover that the
burners under both pots are turned on (or,
for that matter, that both are turned off).
That would be a blatant violation of the
principle of sufficient reason. Einstein’s
example of the two globes is meant to con-
vince us that both Newtonian theory and
special relativity lead to similar violations of this principle. As with the two pots on
the stove, there is no observable difference between the two globes, yet they behave
differently. The analogy works for Newtonian theory but not for special relativity.

Figure 2: Absolute space seems to vio-
late the principle of sufficient reason.



FIRST SYSTEMATIC EXPOSITION OF GENERAL RELATIVITY 9

With the kinematics of special relativity, the analogy breaks down immediately. The
situation with the two globes does not look the same to observers on the two globes,
so there is no reason to expect the two globes to behave the same.

If we take Einstein at his word in 1916—that preferred frames of reference are
objectionable because they lead to violations of the principle of sufficient reason—
we must conclude that Einstein was worried about a problem he had already solved
with special relativity by making temporal distances between events, like spatial dis-
tances between points, dependent on the path connecting them. Einstein’s underesti-
mation of what he had achieved with special relativity compensates for his
overestimation of what he had achieved with general relativity. Contrary to what Ein-
stein believed when he wrote his review article in 1916, general covariance does not
eliminate absolute motion.

For the further development of physics it was a good thing that Einstein did not
fully appreciate what he had accomplished with special relativity. In trying to solve a
problem that, unbeknownst to himself, he had already solved, Einstein produced a
spectacular new theory of gravity.

The fundamental insight that Einstein would base his new theory on came to him
while he was working on a review article on special relativity (Einstein 1907). Sitting
at his desk in the Swiss patent office in Berne one day it suddenly hit him that some-
one falling from the roof would not feel his own weight.21 He later called it “the best
idea of my life.”?? 1t told Einstein that there was an intimate connection between
acceleration—the kind of motion he wanted to relativize—and gravity. In (Einstein
1912a, 360, 366), he introduced the term “equivalence principle” for this connection.
Einstein wanted to use this principle to extend the relativity principle from uniform to
non-uniform motion.

The equivalence principle explains a striking coincidence in Newton’s theory. To
account for Galileo’s principle that all bodies fall with the same acceleration in a
given gravitational field, Newton had to assign the same value to two conceptually
clearly distinct quantities, namely inertial mass, the measure of a body’s resistance to
acceleration, and gravitational mass, the measure of a body’s susceptibility to gravity.
The equivalence principle removes the mystery of the equality of inertial and gravita-
tional mass by making inertia and gravity two sides of the same coin.

Einstein only formulated the equivalence principle along these lines in his second
paper on the foundations of general relativity (Einstein 1918b). In its mature form,
the equivalence principle says that inertial effects (i.e., effects of acceleration) and
gravitational effects are manifestations of one and the same structure, nowadays
called the inertio-gravitational field. How some inertio-gravitational effect breaks
down into an inertial component and a gravitational component is not unique but
depends on the state of motion of the observer making the call, just as it depends on

21 Einstein related this story in a lecture in Kyoto on December 14, 1922 (Abiko 2000, 15).
22 “die gliicklichste Gedanke meines Lebens” (CPAE 7, Doc. 31, [p. 21]). For discussion of this oft-
quoted passage, see, e.g., (Pais 1982, 178), (Janssen 2002, 507-509; forthcoming (a)).



10 MICHEL JANSSEN

the state of motion of the observer how an electromagnetic field breaks down into an
electric field and a magnetic field (Janssen 2002, 507-509; forthcoming (a)). In other
words, what is relative according to the mature equivalence principle is not motion
but the split of the inertio-gravitational field into an inertial and a gravitational com-
ponent.

Einstein initially did not distinguish these two notions carefully and instead of
unifying acceleration and gravity, thereby implementing what I shall call the relativ-
ity of the gravitational field, he tried to reduce acceleration to gravity, thereby hoping
to extend the relativity principle to accelerated motion. Invoking the equivalence
principle, one can reduce a state of acceleration in a gravitational field (i.e., free fall)
to a state of rest with no gravitational field present. The man falling from the roof of
the Berne patent office and a modern astronaut orbiting the earth in a space shuttle
provide examples of this type of situation. One can similarly reduce a state of accel-
eration in the absence of a gravitational field to a state of rest in the presence of one.
An astronaut firing up the engines of her rocket ship somewhere in outer space far
from the nearest gravitating matter provides an example of this type of situation. This
then is the general principle of relativity that Einstein was able to establish on the
basis of the equivalence principle: two observers in non-uniform relative motion can
both claim to be at rest if they agree to disagree on whether or not there is a gravita-
tional field present.

This principle is very different from the principle of relativity for uniform motion.
Two observers in uniform relative motion are physically equivalent. Two observers in
non-uniform relative motion obviously are not. Sitting at one’s desk in the patent
office does not feel the same as falling from the roof of the building, even though the
man falling from the roof can, if he were so inclined, claim that he is at rest and that
the disheveled patent clerk whose eyes he meets on the way down is accelerating
upward in a space with no gravitational field at all. Likewise, the astronaut accelerat-
ing in her rocket in outer space can claim that she is at rest in a gravitational field that
suddenly came into being when she fired up her engines and that her hapless col-
league, who was hovering in space next to the rocket at that point, is now in free fall
in that gravitational field. Despite this nominal relativity of acceleration, the two
astronauts will experience this situation very differently.23

The physical equivalence in the paradigmatic examples examined above is not
between the observers in relative motion with respect to one another, it is between the
man at his desk in the first example and the astronaut inside the rocket in the second,
and between the man falling from the roof in the first example and the astronaut out-

23 As late as November 1918 —more than half a year after clarifying the foundations of general relativity
(Einstein 1918b)—Einstein saw fit to publish an account of the twin paradox along these lines (Ein-
stein 1918e). This 1918 paper not only offered a solution for a problem that had already been solved,
it also raised suspicion about the earlier solution by suggesting that the problem called for general rel-
ativity. Einstein thus bears some responsibility for the endless confusion over the twin paradox, which
is nothing but a vivid example of the path dependence of temporal distances in special as well as in
general relativity.
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side the rocket in the second. Resisting the pull of gravity and accelerating in the
absence of gravity feel the same. Likewise, free fall in a gravitational field and being
at rest or in uniform motion in the absence of a gravitational field feel the same.
These are examples of inertial and gravitational effects that are physically indistin-
guishable and that get lumped together in the new taxonomy for such effects sug-
gested by the mature equivalence principle. This is arguably one of Einstein’s
greatest contributions to modern physics. The peculiar general relativity principle for
which Einstein originally tried to use the equivalence principle did not make it into
the canons of modern physics. It was nonetheless extremely important as a heuristic
principle guiding Einstein on his path to general relativity.

The equivalence principle, understood as a heuristic principle, allowed Einstein to
infer effects of gravity from effects of acceleration in Minkowski space-time. The
most fruitful example of this kind was that of the rotating disk, which is discussed in
sec. 3 of the review article (Einstein 1916a, 774—775) and which played a pivotal role
in the development of general relativity (Stachel 1989a).

gravitational
field

Figure 3: Rotating disk

Consider a circular disk serving as a merry-go-round in Minkowski space-time
(see Fig. 3). Let one observer stand on the merry-go-round and let another stand next
to it. The person next to the disk will say that he is at rest and that the person on the
disk is subject to centrifugal forces due to the disk’s rotation (see the drawing on the
left in Fig. 3). Invoking the equivalence principle, the person on the disk will say that
she is at rest in a radial gravitational field and that the person next to the disk is in free
fall in this field (see the drawing on the right in Fig. 3). 24

Now have both observers measure the ratio of the circumference and the diameter
of the disk. The person next to the disk will find the Euclidean value s . The person
on the disk will find a ratio greater than s . After all, according to special relativity,
the rods she uses to measure the circumference are subject to the Lorentz contraction,
whereas the rods she uses to measure the diameter are not.>> The spatial geometry for

24 For the person on the disk, the person standing next to it is rotating and subject to both centrifugal and
Coriolis forces. If this person has mass M and moves with angular frequency ® on a circle of radius
R, the centrifugal force is M w2R . The Coriolis force provides a centripetal force twice that size, both
compensating the centrifugal force and keeping the person in orbit.
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the rotating observer is therefore non-Euclidean. Invoking the equivalence principle,
Einstein concluded that this will be true for an observer in a gravitational field as
well. This then is what first suggested to Einstein that gravity should be represented
by curved space-time.

To describe curved space-time Einstein turned to Gauss’s theory of curved sur-
faces, a subject he vaguely remembered from his student days at the Eidgenossische
Technische Hochschule (ETH) in Zurich. He had learned it from the notes of his
classmate Marcel Grossmann. Upon his return to their alma mater as a full professor
of physics in 1912, Einstein learned from Grossmann, now a colleague in the mathe-
matics department of the ETH, about the extension of Gauss’s theory to spaces of
higher dimension by Riemann and others 26 Riemann’s theory provided Einstein with
the mathematical object with which he could unify the effects of gravity and acceler-
ation: the metric field. The metric makes it possible to identify lines of extremal
length in curved space-time, so-called metric geodesics. In Riemannian geometry
these are also the straightest possible lines, so-called affine geodesics.27 Free fall in a
gravitational field and being at rest or in uniform motion in the absence of a gravita-
tional field are represented by motion along geodesics. Resisting the pull of gravity
and accelerating in the absence of gravity are represented by motion that is not along
geodesics. In the scenario envisioned in the twin paradox, the stay-at-home moves on
a geodesic, whereas the traveller does not. In the example of the rotating disk, the
person next to the disk is moving on a geodesic, whereas the person on the disk is not.

No coordinate transformation can turn a geodesic into a non-geodesic or vice
versa. Observers moving on geodesics and observers moving on non-geodesics are
physically not equivalent to one another. This is just another way of saying that gen-
eral relativity does not extend the principle of relativity for uniform motion to arbi-
trary motion. Both in special and in general relativity there are preferred states of
motion, namely motion along geodesics.28

The relativity principle that Einstein had established on the basis of the equiva-
lence principle, however, will be satisfied if all laws of this new metric theory of
gravity, including the field equations for the metric field, are generally covariant. In
that case one can choose any wordline, a geodesic or a non-geodesic, as the time axis
of one’s coordinate system. An observer travelling on that worldline will be at rest in
that coordinate system. If her worldline is not a geodesic, she will attribute the iner-
tial forces she experiences to a gravitational field, which will satisfy the generally-
covariant field equations. A geodesic and a non-geodesic observer in an arbitrarily
curved space-time can thus both claim to be at rest if they agree to disagree about the

25 This simple argument has been the source of endless confusion. Einstein’s clearest exposition can be
found in two letters written in response to a particularly muddled discussion of the situation (see Ein-
stein to Joseph Petzoldt, 19 and 23 August 1919 [CPAE 9, Docs. 93 and 94]).

26 For accounts of how Einstein’s collaboration with Grossmann began, see the Kyoto lecture (Abiko
2000, 16) as well as (Pais 1982, 213) and (Folsing 1993, 355-356).

27 The affine connection, which was not introduced until after the formulation of general relativity, is
better suited to Einstein’s purposes than the metric (Stachel forthcoming).
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presence of a gravitational field. As I mentioned above, however, it seems more natu-
ral to call this relativity of the gravitational field than relativity of motion.

Either way it was a serious setback for Einstein when his search for field equa-
tions in the winter of 1912-1913, undertaken with the help of Grossmann and
recorded in the “Zurich Notebook”, did not turn up any physically acceptable gener-
ally-covariant candidates. The problem continued to bother him in the months fol-
lowing the publication of the “Entwurf” field equations. Eventually (but not
ultimately), Einstein made his peace with the limited covariance of these equations.
In August 1913, in a vintage Einstein maneuver, he convinced himself that he had not
been able to find generally-covariant field equations simply because there were none
to be found. Einstein produced two arguments to show that generally-covariant field
equations are physically unacceptable. Both arguments are fallacious, but both signif-
icantly deepened Einstein’s understanding of his own theory.

The first argument, which can be dated with unusual precision to August 15,
1913, was that energy-momentum conservation restricts the covariance of acceptable
field equations to linear transformations.?® Einstein soon realized that the argument
turns on the unwarranted assumption that gravitational energy-momentum can be
represented by a generally-covariant tensor. The argument was retracted in (Einstein
and Grossmann 1914b, 218, note). The general insight, however, that there is an inti-
mate connection between energy-momentum conservation and the covariance of the
field equations survived the demise of this specific argument and was a key element
in Einstein’s return to generally-covariant field equations in the fall of 1915 (see
sec. 3 below).

By the time Einstein retracted this first argument against generally-covariant field
equations, it had already been eclipsed by a second one, the infamous hole argument
mentioned in the introduction.>? A memo dated August 28, 1913, in the hand of Ein-
stein’s lifelong friend Michele Besso and found among the latter’s papers in 1998,
sheds some light on the origin of this argument.31 Shortly after the publication of

28 A German Gymnasium teacher, Erich Kretschmann (1917), clearly formulated what it takes for a
space-time theory to satisfy a genuine relativity principle. Kretschmann first pointed out that a theory
does not satisfy a relativity principle simply by virtue of being cast in a form that is covariant under
the group of transformations associated with that principle. With a little ingenuity one can cast just
about any theory in such a form. Einstein (1918b) granted this point, but did not address
Kretschmann’s proposal in the spirit of Klein’s Erlangen program to characterize relativity principles
in terms of symmetry groups of the set of geodesics of all space-times allowed by the theory. In spe-
cial relativity, this would be the group of Lorentz transformations that map the set of all geodesics of
Minkowski space-time, the only space-time allowed by the theory, back onto itself. The set of geode-
sics of all space-times allowed by general relativity has no non-trivial symmetries, so the theory fails
to satisfy any relativity principle in Kretschmann’s sense. Einstein still did not comment on
Kretschmann’s proposal after he was reminded of it in correspondence (see Gustav Mie to Einstein,
17-19 February 1918 [CPAE 8, Doc. 465]). For further discussion of Kretschmann’s proposal, see
(Norton 1992, sec. 8; 1993, sec. 5) and (Rynasiewicz 1999).

29 The date can be inferred from Einstein to H. A. Lorentz, 16 August 1913 (CPAE 5, Doc. 470), in
which Einstein mentions that he had found the argument the day before. For discussion of the argu-
ment and its flaws, see (Norton 1984, sec. 5).
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(Einstein and Grossmann 1913), Einstein and Besso had done extensive calculations
to see whether the “Entwurf” theory can account for the anomalous advance of the
perihelion of Mercury (see note 4 above). In this context Besso had raised the ques-
tion whether the field equations uniquely determine the field of the sun (CPAE 4,
Doc. 14, [16]). This query may well have been the seed for the following argument
recorded in the Besso memo:

The requirement of covariance of the gravitational equations under arbitrary transforma-
tions cannot be imposed: if all matter were contained in one part of space and for this
part of space a coordinate system [is given], then outside of it the coordinate system
could, except for boundary conditions, still be chosen arbitrarily, so that a unique deter-
minability of the g ’s cannot occur.*?

This argument, presumably communicated to Besso by Einstein, turns into the hole
argument when space is replaced by space-time and the regions with and without
matter are interchanged. In the published version of the argument the point is that the
metric field in some small matter-free region of space-time—the “hole” from which
the argument derives it name —is not uniquely determined by the matter distribution
and the metric field outside the hole.

The hole argument works as follows. Suppose we have generally-covariant field
equations that at every point set the result of some differential operator acting on the
metric field g, equal to the energy-momentum tensor 7', of matter at that point.
Consider a matter distribution such that Tw(x) = 0 for all points inside the hole.
Suppose g,,(x) is a solution for this particular matter distribution. Now consider a
coordinate transformation x — x' that only differs from the identity inside the hole
and express the energy-momentum tensor and the metric field in terms of the new
primed coordinates. Because of the general covariance we assumed, the field equa-
tions in primed coordinates will have the exact same form as the field equations in
unprimed coordinates and {g’,,(x"), T",,(x")} will be a solution of them. This will
still be true—and this is the key observation—if we read x for x' everywhere. Since
the energy-momentum tensor vanishes inside the hole and since the coordinate trans-
formation x — x’ is the identity outside the hole, 7", (x) = T (x) everywhere.
That means that both g,,(x) and g, (x) are solutions of the field equations in
unprimed coordinates for one and the same matter distribution 7, (x) . These two

30 See (Norton 1984) and (Stachel 1989b) for the classic historical discussions of the hole argument. The
argument has also spawned a huge philosophical literature following the publication in (Earman and
Norton 1987) of an argument inspired by and named after Einstein’s. See, e.g., (Norton 1987), (But-
terfield 1987), (Earman 1989, Ch. 9), (Maudlin 1990), and (Stachel 1993, 2002).

31 For detailed analysis of this memo, see (Janssen forthcoming (b)).

32 “Die Anforderung der Covarianz der Gravitationsgleichungen fiir beliebige Transformationen kann
nicht aufgestellt werden: wenn in einem Teile des Raumes alle Materie enthalten wire und fiir diesen
Teil ein Coordinatensystem, so konnte doch ausserhalb desselben das Coordinatensystem noch, abge-
sehen von den Grenzbedingungen, beliebig gewihlt werden, so dass eine eindeutige Bestimmbarkeit
der g s nicht eintreten konne.” See Fig. 2 of (Janssen forthcoming (b)) for a facsimile of the page of
the Besso memo with this passage.
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solutions are identical outside the hole but differ inside. The matter distribution
(along with boundary conditions for g, ) thus fails to determine the metric field
inside the hole uniquely. The only way to avoid this kind of indeterminism, the argu-
ment concludes, is to rule out field equations that retain their form under transforma-
tions x — x' such as the one that was used in the construction of the alternative
solution g’ (x) from the original solution g, (x) 33

Einstein never explicitly retracted the hole argument in print and it was only after
he had returned to generally-covariant field equations in November 1915 that he at
least addressed the issue in correspondence. Before we turn to this denouement of the
hole story, however, we need to examine another strand in Einstein’s quest for a gen-
eral relativity of motion that made it into the 1916 review article.

During the period that he accepted that there could not be generally-covariant
field equations, Einstein explored another strategy for eliminating absolute motion.
This strategy was directly inspired by his reading of Ernst Mach’s response to New-
ton’s famous bucket experiment.34 When a bucket filled with water in the gravita-
tional field of the earth is set spinning, the water will climb up the wall of the bucket
as it catches up with the bucket’s rotation. Newton famously argued that it cannot be
the relative rotation of the water with respect to the bucket that is causing this
effect.’® After all, the effect increases as the relative rotation between water and
bucket decreases and is maximal when both are rotating with the same angular veloc-
ity. The effect, according to Newton, was due to the rotation of the water with respect
to absolute space. Mach argued that Newton had overlooked a third possibility: the
effect could be due to the relative rotation of the water with respect to other matter in
the universe. “Try to fix Newton’s bucket,” he challenged those taken in by Newton’s
argument, “and rotate the heaven of fixed stars and then prove the absence of centrif-
ugal forces” (Mach 1960, 279).36 Mach implied that it should make no difference
whether the bucket or the heavens are rotating: in both cases the water surface should

33 Another passage in the Besso memo quoted above makes it clear that, even in the embryonic version
of the hole argument, Einstein saw the inequality guv(x) = g'w(x) as expressing indeterminism, not,
as older commentators have suggested (see, e.g., Pais 1982, 222), the inequality guv(x) = g’w(x') s
which merely expresses the non-uniqueness of the coordinate representation of the metric field. Besso
wrote: “If in coordinate system 1 [with coordinates x |, there is a solution K, [i.e., guv(x) 1, then this
same construct [modulo a coordinate transformation] is also a solution in [coordinate system] 2 [with
coordinates x' ], K, [ie., g'm,(x’) 1; K, , however, [is] also a solution in 1 [i.e., g’u\,(x) 1”7 (“Ist im
Coordinatensystem 1 eine Losung K, , so ist dieses selbe Gebilde auch eine Losung in 2, K, ; K,
aber auch eine Losung in 17). See (Janssen forthcoming (b), sec. 4) for further discussion.

34 Looking back on this period in late 1916, Einstein wrote about these Machian ideas: “Psychologi-
cally, this conception played an important role for me, since it gave me the courage to continue to
work on the problem when I absolutely could not find covariant field equations” (“Psychologisch hat
diese Auffassung bei mir eine bedeutende Rolle gespielt; denn sie gab mir den Mut, an dem Problem
weiterzuarbeiten, als es mir absolut nicht gelingen wollte, kovariante Feldgleichungen zu erlangen.”
Einstein to Willem de Sitter, 4 November 1916 [CPAE 8, Doc. 273]).

35 (Cajori 1934, 10-11; Cohen and Whitman 1999, 412-413). For Newton this argument was not so
much an argument for absolute space or absolute acceleration as an argument against the Cartesian
concept of motion (Laymon 1978; Huggett 2000, Ch. 7).
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become concave.

Mach’s idea is illustrated in Fig. 4, depicting the bucket, the water, and the earth
sitting at the center of a giant spherical shell representing all other matter in the uni-
verse.3’ According to Mach, the water surface should be concave no matter whether
the bucket and the water or the earth and the shell are rotating. According to Newto-
nian theory, however, the rotation of the shell will have no effect whatsoever on the
water in the bucket.

<<

= ||

S
~ o

bucket & water rotating bucket & water at rest
shell at rest shell rotating

Figure 4: Mach’s response to Newton’s bucket experiment

For most of the reign of the “Entwurf” theory and beyond, Einstein was con-
vinced that this was a problem not for Mach’s analysis but for Newton’s theory and
that his own theory vindicated Mach’s account of the bucket experiment. In the spirit
of the equivalence principle, Einstein (1914b, 1031) argued that the centrifugal forces
responsible for the concave surface of the water in the rotating bucket might just well
be looked upon as gravitational forces due to distant rotating masses acting on the
water in a bucket at rest.

To guarantee that Einstein’s theory predicts that we get the same concave water
surface in both cases in Fig. 4, the field equations need to satisfy two requirements.
First, the Minkowski metric expressed in terms of the coordinates of a rotating frame
of reference has to be a solution of the vacuum field equations. This was the kind of
requirement that Einstein retreated to when he accepted that general covariance could
not be had. He hoped that the “Entwurf” field equations would at least allow the
Minkowski metric expressed in the coordinates of arbitrarily moving frames as vac-
uum solutions. Second, the metric field produced by the shell near its center has to be

36 “Man versuche das Newtonsche Wassergefdf festzuhalten, den Fixsternhimmel dagegen zu rotieren
und das Fehlen der Fliehkrifte nun nachzuweisen” (Mach 1988, 222). For extensive discussion of
Mach'’s response to Newton’s bucket experiment and Einstein’s reading and use of it, see (Barbour
and Pfister 1995).

37 The sad faces that one can discern in these drawings may serve as warning signs that the arguments of
Mach and Einstein do not hold up under scrutiny.
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the Minkowski metric in rotating coordinates.

The “Entwurf” field equations satisfy neither of these two requirements. Einstein
went back and forth for two years on whether or not the Minkowski metric in rotating
coordinates is a vacuum solution. A sloppy calculation preserved in the Einstein-
Besso manuscript reassured him in 1913 that it is (CPAE 4, Doc. 14, [41-42]). Later
in 1913 Besso told him it is not.>® Einstein appears to have accepted that verdict for a
few months, but in early 1914 convinced himself on general grounds that it had to
be.> That the “Entwurf” theory thus seems to account for the bucket experiment
along Machian lines is hailed as a great triumph in the systematic exposition of the
theory of late 1914 (Einstein 1914b, 1031). In September 1915, possibly at the insti-
gation of Besso, Einstein redid the calculation of the Einstein-Besso manuscript and
discovered to his dismay that his friend had been right two years earlier** A month
later Einstein replaced the “Entwurf” field equations by equations of much broader
and ultimately general covariance. The Minkowski metric in its standard diagonal
form is a solution of these equations. Their covariance guarantees that it is a solution
in rotating coordinates as well.

The second requirement is satisfied neither by the “Entwurf” theory nor by gen-
eral relativity, although it took a long time for Einstein to recognize this and even
longer to accept it. When he calculated the metric field of a rotating shell in 1913
using the “Entwurf” field equations, he chose Minkowskian boundary conditions at
infinity and determined how the rotating shell would perturb the metric field of
Minkowski space-time.41 This perturbation does indeed have the form of the
Minkowski metric in rotating coordinates near the center of the shell but is much too
small to make a dent in the water surface. More importantly, treating the effect of the
rotating shell as a perturbation of the metric field of Minkowski space-time defeats
the purpose of vindicating Mach’s account of the bucket experiment. In this way,
after all, the leading term in the perturbative expansion of the field acting on the
bucket will not come from distant matter at all but from absolute space, albeit of the
Minkowskian rather than the Newtonian variety. This problem will arise for any non-
degenerate physically plausible boundary conditions (Thirring 1918, 38). Einstein
seems to have had a blind spot for the role of boundary conditions in this problem.

It is important to note that even if both requirements were satisfied so that the
water surfaces have the same shape in the two situations shown in Fig. 4, we would
still not have reduced these two situations to one and the same situation looked at
from two different perspectives. In that sense we would still fall short of implement-
ing Mach’s account of the bucket experiment. Consider the shell in the two cases. Its
particles are assumed to move on geodesics in both cases, but while the case with the
rotating shell requires cohesive forces preventing them from flying apart,42 the case

38 This can be inferred from the Besso memo discussed above (Janssen forthcoming (b), sec. 3).

39 See Einstein to H. A. Lorentz, 23 March 1915 (CPAE 8, Doc. 47).

40 See Einstein to Erwin Freundlich, 30 September 1930 (CPAE 8, Doc. 123).

41 This calculation can be found in the Einstein-Besso manuscript (CPAE 4, Doc. 14, [36-37]). For fur-
ther analysis of this calculation, see (Janssen forthcoming (b), sec. 3).
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with the shell at rest does not. This in and of itself shows that the rotation of the water
and bucket with respect to the shell and the earth is not relative in the “Entwurf” the-
ory or in general relativity. Einstein added the metric field to the shell, the earth, the
bucket, and the water—the material components that for Mach exhausted the sys-
tem—and the relation between field and matter is very different in the two situations
shown in Fig. 4.

Provided that the first of the two requirements distinguished above is satisfied,
however, Einstein’s own peculiar principle of relativity is satisfied in this case. We
can start from the situation on the left with the bucket rotating in Minkowski space-
time and transform to a rotating frame in which the bucket is at rest. We would have
to accept the resulting unphysical degenerate values of the metric at inﬁnity,43 but we
can if we want. Invoking the equivalence principle, an observer at rest in this frame
can claim to be at rest in a gravitational field. This observer will claim that the centrif-
ugal forces on the water come from this gravitational field and that the particles that
make up the shell are in free fall in this field, which exerts centrifugal as well as Cori-
olis forces on them **

Einstein conflated the situation on the left in Fig. 3, redescribed in a coordinate
system in which the bucket is at rest, with the very different situation on the right. He
thus believed that meeting the first of the two requirements distinguished above suf-
ficed for the implementation of a Machian account of the bucket experiment. This is
clear from a letter he wrote in July 1916. Explaining to Besso how to calculate the
field of a rotating ring, a case very similar to that of the rotating shell which Einstein
himself had considered in the Einstein-Besso manuscript (see note 41), he wrote

In first approximation, the field is obtained easily by direct integration of the field equa-
tions.*3) The second approximation is obtained from the vacuum field equations as the
next approximation. The first approximation gives the Coriolis forces, the second the
centrifugal forces. That the latter come out correctly is obvious given the general covari-
ance of the equations, so that it is of no further interest whatsoever to actually do the cal-
culation. This is of interest only if one does not know whether rotation-transformations
are among the “allowed” ones, i.e., if one is not clear about the transformation properties
of the equations, a stage which, thank God, has definitively been surpassed 46

The general covariance of the Einstein field equations does guarantee that the

42 Without such cohesive forces, to put it differently, the shell, as the source of the inertio-gravitational
field, will not satisfy the law of energy-momentum conservation as it must both in the “Entwurf” the-
ory and in general relativity (see sec. 3).

43 The components g, = g4 = WY, 854 = 84p = —Wx, and g,y = 1 —w?r? of the Minkowski
metric in a coordinate system rotating with angular velocity ® around the z -axis go to infinity as
r=A/x2+y? goes to infinity.

44 For a particle of mass m rotating with angular frequency w at a distance r from the axis of rotation
the centrifugal force and the Coriolis force add up to a centripetal force of size mw2r needed to keep
the particle in its circular orbit (cf. note 24). This is explained in Einstein to Hans Thirring, 7 Decem-
ber 1918 (CPAE 8, Doc. 405).

45 Note that no mention is made of the Minkowskian boundary conditions that Einstein had used in his
calculation for the case of a rotating shell.
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Minkowski metric in rotating coordinates is a vacuum solution. But it does not follow
that this metric field is the same as the metric field near the center of a rotating shell.
This would follow if the two situations in Fig. 4 were related to one another simply
by a transformation to rotating coordinates. But, notwithstanding Einstein’s sugges-
tion to the contrary, they are not.

Einstein’s correspondence with Hans Thirring in 1917 shows that this misunder-
standing persisted for at least another year and a half*” When Thirring first calcu-
lated the metric field inside a rotating shell, he was puzzled that he did not simply
find the Minkowski metric in rotating coordinates as he expected on the basis of
remarks in the introduction of (Einstein 1914b). He asked Einstein about this and
Einstein’s responses indicate that he shared Thirring’s puzzlement and expected there
to be an error in Thirring’s calculations. When he published his final results, Thirring
(1918, 33, 38) explained that the metric field inside a rotating shell is not identical to
the Minkowski metric in rotating coordinates because of the role of boundary condi-
tions. He cites (Einstein 1917) and (De Sitter 1916) for the discussion of the role of
boundary conditions. But although they were at the focus of his discussions with De
Sitter, Einstein did not breathe a word about boundary conditions in his letters to
Thirring.

Not surprisingly, given the above, Einstein’s account of the two globes rotating
with respect to one another in sec. 2 of the 1916 review article is modelled on his
Machian account of Newton’s bucket experiment. This is illustrated in Fig. 5, the
analogue of Fig. 4. Recall the puzzle that Einstein drew attention to: why do the two
globes take on different shapes, one becoming an ellipsoid, the other retaining its
spherical shape?48 Einstein (1916a, 772) identifies distant masses as the cause of this
difference. He does not elaborate but after the discussion of Einstein’s account of the
bucket experiment, it is easy to fill in the details.

For Einstein, the distant masses (once again represented by a large shell in Fig. 5)
function as the source of the metric field in the vicinity of the two globes. The globe

46 “Das Feld in erster Naherung ergibt sich leicht durch unmittelbare Integration der Feldgleichungen.
Die zweite Néherung ergibt sich aus den Vakuumfeldgleichungen als nidchste Niherung. Die erste
Niherung liefert die Korioliskrifte, die zweite die Zentrifugalkrifte. Dass letztere richtig heraus kom-
men, ist bei der allgemeinen Kovarianz der Gleichungen selbstverstindlich, sodass ein wirkliches
Durchrechnen keinerlei Interesse mehr hat. Dies Interesse ist nur dann vorhanden, wenn man nicht
weiss ob Rotations-transformationen zu den ,,erlaubten gehoren, d. h. wenn man sich iiber die Trans-
formationseigenschaften der Gleichungen nicht im Klaren ist, welches Stadium gottlob endgiiltig
iiberwunden ist.” Einstein to Michele Besso, 31 July 1916 (CPAE 8, Doc. 245). For further discus-
sion, see (Janssen 1999, sec. 11; forthcoming (b), sec. 3).

47 See Hans Thirring to Einstein, 11-17 July 1917 (CPAE 8, Doc. 361), Einstein to Thirring, 2 August
1917 (CPAE 8, Doc. 369), Thirring to Einstein, 3 December 1917 (CPAE 8, Doc. 401), and the letter
cited in note 44.

48 In terms of the somewhat more technical language that has meanwhile been introduced the simple
answer of (Dorling 1978) to this puzzle is that the spherical globe moves on a geodesic, while the
ellipsoidal one does not. Hence, the symmetry between the two globes in Einstein’s example is illu-
sory, like the symmetry between the two twins in the twin paradox, and there is nothing puzzling
about them behaving differently.
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that is rotating with respect to this metric field is the one that bulges out at the equa-
tor. As with the motion of the bucket with respect to the shell, the motion of the bulg-
ing globe with respect to the shell is not relative: the situation on the left in Fig. 5
with the bulging globe rotating and the shell (and the other globe) at rest is not equiv-
alent to the situation on the right with the bulging globe at rest and the shell (and the
other globe) rotating in the opposite direction. The relation between matter and met-
ric field is different in these two cases. For one thing, the boundary conditions at

infinity are different.

Figure 5: Einstein’s Machian solution to the problem of the two globes

Still, Einstein’s idiosyncratic relativity principle based on the equivalence princi-
ple—or, what amounts to the same thing, the relativity of the gravitational field—is
satisfied in this case. Depending on which perspective we adopt in the situation pic-
tured on the left in Fig. 5, that of an observer on the bulging globe or that of an
observer on the other globe, we will attribute the forces on the bulging globe either as
gravitational or as inertial forces. It is important that all perspectives are equally justi-
fied. Otherwise, as Einstein points out, we would still have a violation of the principle
of sufficient reason. Einstein’s analysis of the example of the two globes thus
becomes an argument for general covariance. Note that general covariance in this
context serves the purpose not of making rotation relative but of making the presence
or absence of the gravitational field relative ¥

As in the case of the bucket experiment, Einstein overlooked the role of boundary
conditions. He proceeded as if the distant matter fully determines the metric field.
References to motion with respect to the metric field could then be interpreted as
shorthand for motion with respect to the sources of the field. But the metric field is
determined by material sources plus boundary conditions. General relativity thus
retains vestiges of absolute motion. This point was driven home by Willem de Sitter
in discussions with Einstein in Leyden in the fall of 1916,° although Einstein’s let-

49 A similar way of interpreting the covariance properties of the “Entwurf” theory and general relativity
in terms of the relativity of the gravitational potential or the gravitational field rather than in terms of
the relativity of motion was proposed in (Mie 1915, 1917). See Gustav Mie to Einstein, 30 May 1917
(CPAE 8, Doc. 346).



FIRST SYSTEMATIC EXPOSITION OF GENERAL RELATIVITY 21

ters to Thirring a full year later (see note 47) give no indication that their author was
aware of the problem. This is all the more puzzling since by that time Einstein had
come up with an ingenious response to De Sitter.

In his paper on cosmology published in February 1917, Einstein (1917b) circum-
vented the need for boundary conditions by eliminating boundaries! He proposed a
cosmological model that is spatially closed. The metric field of such a model could
thus be attributed in full to matter. He picked a model that was not only closed but
static as well. To prevent this model from collapsing he had to modify the Einstein
field equations and add a term with what came to be known as the cosmological con-
stant. This term produces a gravitational repulsion, which exactly balances the gravi-
tational attraction in the model.

De Sitter (1917) promptly produced an alternative cosmological model that is also
allowed by Einstein’s modified field equations. This model is completely empty.
Absolute motion thus returned with a vengeance. Einstein’s modified field equations
still allow space-times with no matter to explain why test particles prefer to move on
geodesics. Before publishing his new solution, De Sitter reported it to Einstein.>! In
his response Einstein finally articulated the principle that he had tacitly been using in
his Machian accounts of Newton’s bucket experiment and of his own variant on New-
ton’s thought experiment with the two globes. He wrote:

It would be unsatisfactory, in my opinion, if a world without matter were possible.

Rather, the g"V -field should be fully determined by matter and not be able to exist with-
52

out it.

This passage is quoted in the postscript of (De Sitter 1917). Einstein rephrased and
published it as “Mach’s principle” in (Einstein 1918b): “The [metric] field is com-
pletely determined by the masses of bodies.”? In a footnote he conceded that he had
not been careful in the past to distinguish this principle from general covariance. A
day after submitting (Einstein 1918b), he submitted (Einstein 1918c) in which he
argued that there was matter tugged away on a singular surface in De Sitter’s cosmo-
logical model. In that case the De Sitter solution would not be a counter-example to
Mach’s principle. The following June, Einstein had to admit that this singular surface
is nothing but an artifact of the coordinates used.>* The De Sitter solution is a per-
fectly regular vacuum solution and thus a genuine counter-example to Mach’s princi-
ple after all. Einstein never retracted his earlier claim to the contrary, but he gradually
lost his enthusiasm for Mach’s principle over the next few years. The principle is still
prominently discussed in the Princeton lectures, but its limitations are also empha-

50 See the editorial note, “The Einstein—De Sitter—Weyl-Klein Debate,” in CPAE 8, 351-357.

51 Willem de Sitter to Einstein, 20 March 1917 (CPAE 8, Doc. 313)

52 “Es wiire nach meiner Meinung unbefriedigend, wenn es eine denkbare Welt ohne Materie gibe. Das
gV -Feld soll vielmehr durch die Materie bedingt sein, ohne dieselbe nicht bestehen konnen.” Ein-
stein to Willem de Sitter, 24 March 1917 (CPAE 8, Doc. 317).

53 “Das G-Feld ist restlos durch die Massen der Korper bestimmt” (Einstein 1918b, 241, note).

54  Einstein to Felix Klein, 20 June 1918 (CPAE 8, Doc. 567).
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sized (Einstein 1923, 64-70; 1956, 99-108)

Much of the appeal of Mach’s ideas disappears when one switches from a particle
to a field ontology. Among the sources of the metric field in general relativity is the
electromagnetic field. Mach’s principle then amounts to the requirement that the met-
ric field be reduced to the electromagnetic field. But why privilege one field over
another? Einstein, to my knowledge, never explicitly raised this question, but by the
early 1920s he was trying to unify the electromagnetic field and the metric field rather
than trying to reduce one to the other.

Einstein thus accepted that the shape of the water surface in Newton’s bucket and
the bulging out of one of the globes in his own thought experiment is caused by the
rotation of the water and the globe with respect to the metric field and that the metric
field cannot be reduced to matter. Even in general relativity these effects are the result
of acceleration with respect to space(-time) just as in Newtonian theory and in special
relativity. That does not mean, however, that Einstein’s objection in the 1916 review
article, that Newtonian theory and special relativity violate the principle of sufficient
reason, now also applies to general relativity. Space-time in general relativity, Ein-
stein argued in his Princeton lectures, is a bona fide physical entity to which causal
efficacy can be ascribed.” Unlike Newtonian absolute space or Minkowski space-
time, he pointed out, space-time in general relativity both acts and is acted upon (Ein-
stein 1923, 36; 1956, 55-56). As (Misner et al. 1973, 5) put it: “Space acts on matter,
telling it how to move. In turn, matter reacts back on space, telling it how to curve.”
Newtonian absolute space and Minkowski space-time only do the former. This is how
Einstein was able to accept that general relativity did not eradicate absolute motion
(in the sense of motion with respect to space-time rather than with respect to other
matter).

As the simple solution of (Dorling 1978) to Einstein’s problem of the rotating
globes shows, it is not necessary to turn space-time into a causally efficacious sub-
stance to avoid violations of the principle of sufficient reason. In the course of devel-
oping general relativity, Einstein in fact provided ammunition for a strong argument
against a substantival and in support of a relational ontology of space-time. This
argument is based on the resolution of the hole argument against generally-covariant
field equations.

Einstein first explained what was wrong with the hole argument, which can be
found in four of his papers of 19146 in a letter to Ehrenfest written about a month
after reaffirming general covariance in November 19157 He told Ehrenfest that the
hole argument should be replaced by a new argument that has come to be known as
the “point-coincidence alrgument”.58 A week later he told Besso the same thing.59

55 In 1920, Ehrenfest and Lorentz arranged for a special professorship for Einstein in Leyden. In his
inaugural lecture, Einstein (1920) talked about the metric field as a new kind of ether.

56 (Einstein and Grossmann 1914a, 260; 1914b, 217-218; Einstein 1914a, 178; 1914b, 1067).

57 Einstein to Paul Ehrenfest, 26 December 1915 (CPAE 8, Doc. 173).

58 For discussions of the point-coincidence argument, see (Norton 1987), (Stachel 1989b, 1993),
(Howard and Norton 1993), (Janssen forthcoming (b), sec. 4), and, especially, (Howard 1999).
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The field equations, Einstein argued, need not determine the metric field uniquely,
only such things as the intersections of worldlines, i.e., the “point coincidences” from
which the new argument derives its name. Generally-covariant field equations will
certainly do that. Two years earlier Besso had suggested that the escape from what
was to become the hole argument might be that only worldlines need to be deter-
mined uniquely, but that suggestion had immediately been rejected.60 In August
1913, Einstein had no use for an escape from the hole argument. The argument was
mainly a fig leaf at that point for Einstein’s inability to find generally-covariant field
equations. Now that he had found and published such equations, however, he did
need a escape from the hole argument. It is probably no coincidence (no pun
intended) that five days before the letter to Ehrenfest in which the point-coincidence
argument makes its first appearance a paper by Kretschmann (1915) was published in
which the notion of point coincidences, if not the term, is introduced (Howard and
Norton 1993, 54). Kretschmann thus provided Einstein with just the right tools at just
the right time.

In his letters to Ehrenfest and Besso, Einstein did more than substitute the point-
coincidence argument for the hole argument. He also explained in these letters, albeit
rather cryptically, where the hole argument went wrong 51 The notion of point coinci-
dences almost certainly helped Einstein put his finger on the problem with the hole
argument. Once again consider the transformation x — x’ used in the hole construc-
tion. Suppose two geodesics of the metric field gw(x) intersect one another at a
point inside the hole with coordinates x = a. Let the primed coordinates of that
point be x" = b. In the metric field g’ (x) , obtained from g',,(x") by reading x
for x', the two corresponding geodesics will intersect at the point x = b . If the two
points labeled x = a and x = b can somehow be identified before we assign values
of the metric field to them, g, (x) and g',,(x) describe different situations. This
suggests that the escape from the hole argument is simply to deny that bare manifold
points can be individuated independently of the metric field. Solutions such as
guv(x) and g’m(x) related to one another through Einstein’s hole construction dress
up the bare manifold differently to become a space-time. The original solution
glw(x) may dress up the bare manifold point p to become the space-time point P
where two geodesics intersect, whereas the alternative solution g’w(x) dresses up
the bare manifold point g to become that same space-time point P . If the bare mani-

59 Einstein to Michele Besso, 3 January 1916 (CPAE 8, Doc. 178).

60 Immediately following the passage quoted in note 32, Besso’s memo of 28 August 1913 says: “It is,
however, not necessary that the g themselves are determined uniquely, only the observable phenom-
ena in the gravitation space, e.g., the motion of a material point, must be” (“Es ist nun allerdings nicht
notig, dass die g selbst eindeutig bestimmt sind, sondern nur die im Gravitationsraum beobachtbaren
Erscheinungen, z.B. die Bewegung des materiellen Punktes, miissen es sein”). Appended to this pas-
sage is the following comment: “Of no use, since with a solution a motion is also fully given” (“Niitzt
nichts, denn durch eine Losung ist auch eine Bewegung voll gegeben”). For further discussion, see
(Janssen forthcoming (b), sec. 3).

61 A clearer version can be found in a follow-up letter: Einstein to Paul Ehrenfest, 5 January 1916
(CPAE 8, Doc. 180).
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fold points p and g have their identities only by virtue of having the properties of the
space-time point P, there is no difference between g, (x) and g',,(x) . Point coin-
cidences can be used to individuate such space-time points. Most modern commenta-
tors read Einstein’s comments on the hole argument in his letters to Ehrenfest and
Besso in this way.62

This resolution of the hole argument amounts to an argument against space-time
substantivalism. What it shows is that are many indistinguishable ways of assigning
spatio-temporal properties to bare manifold points. According to Leibniz’s “Principle
of the Identity of Indiscernibles” all such assignments must be physically identical.
But then the points themselves cannot be physically real for that would make the
indistinguishable ways of ascribing properties to them physically distinct. This argu-
ment can be seen as a stronger version of a famous argument due to Leibniz himself
against Newton’s substantival ontology of space (Earman and Norton 1987). In his
correspondence with Clarke, Leibniz objected that on Newton’s view of space as a
container for matter God, in creating the universe, had to violate the principle of suf-
ficient reason (Alexander 1956, 26).63 Without any discernible difference, He could
have switched East and West, to use Leibniz’s own example, or shifted the whole
world to a different place in Newton’s container. The Principle of the Identity of
Indiscernibles tells us that these indistinguishable creations should all be identical.
That in turn leaves no room for the container. In the hole argument, a violation of
determinism takes over the role of the violation of the principle of sufficient reason in
Leibniz’s argument. This is what makes the hole argument the stronger of the two. In
this secular age it is hardly a source of great distress that God for no apparent reason
had to actualize one member of a class of empirically equivalent worlds rather than
another. Ruling out determinism, however, as the substantivalist seems forced to do is
clearly less palatable. To give determinism as much as “a fighting chance” (Earman
1989, 180) in general relativity, we had thus better adopt a relational rather than a
substantival ontology of space-time.

After his return to general covariance, Einstein never mentioned the hole argu-
ment again in any of his publications, but he did use the point-coincidence argument
in the 1916 review paper. He did not use it as part of an argument against space-time
substantivalism, however, but as another argument against preferred frames of refer-
ence (Einstein 1916a, 776-777). Since all our measurements eventually consist of
observations of point coincidences, he argued,64 and since such point coincidences
are preserved under arbitrary coordinate transformations, physical laws should be
generally covariant. Reformulated in the spirit of Klein’s Erlangen plrogram:65 the
group of general point transformations preserves the set of point coincidences, which

62 See the papers cited in note 58.

63  For detailed analysis of this argument, see (Earman 1989, Ch. 6). For an abridged annotated version
of the Leibniz-Clarke correspondence, see (Huggett 2000, Ch. 8).

64 Earman (1989, 186) thus charges Einstein with “a crude verificationism and an impoverished concep-
tion of physical reality.” For a detailed critique of this reading of the point-coincidence argument, see
(Howard 1999).
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supposedly exhaust the essential content of the geometries allowed by general relativ-
ity. Of course, this group of transformations also preserves the difference between
geodesics and non-geodesics. Einstein nonetheless continued to tie general covari-
ance to the relativity of motion. Revisiting the foundations of general relativity two
years later, Einstein no longer used the point-coincidence argument to argue for a rel-
ativity principle but to define it:

Relativity principle: The laws of nature are merely statements about point coincidences;
the only natural way to express them is therefore in terms of generally-covariant equa-
. 66

tions.

As Einstein realized at this point, this principle will only give full relativity of motion
in conjunction with the other two principles on which he based his theory in 1918, the
equivalence principle and Mach’s principle. Only a few months later, as we saw ear-
lier, Einstein had to concede that the latter does not hold in general relativity.

3. THE “FATEFUL PREJUDICE” AND THE “KEY TO THE SOLUTION"®’

In his search for satisfactory field equations for g, in 1912-1913, Einstein had con-
sciously pursued the analogy with Maxwell’s theory of electrodynamics.68 He con-
tinued to pursue this analogy in developing a variational formalism for the “Entwurf”
theory in 1914 (Einstein and Grossmann 1914b, Einstein 1914b) 59 In his lecture on
gravity at the 85th Naturforscherversammlung in Vienna in the fall of 1913 (Einstein
1913), he had already shown that the “Entwurf” field equations, like Maxwell’s equa-
tions, can be cast in the form “divergence of field = source.” In Maxwell’s equations,
9, W = j“ the tensor F"V represents the electromagnetic field and the charge-cur-
rent density j* its source. In Einstein’s gravitational theory, the source is represented
by the sum of 7%V, the energy-momentum tensor of ‘matter’ (which can be anything
from particles to an electromagnetic field) and #*V, the energy-momentum pseudo-
tensor of the gravitational field itself.
Einstein used the energy-momentum balance law,

™, =0 1

(with the semi-colon indicating a covariant derivative), to identify both the pseudo-

65 In one of his physics textbooks, Sommerfeld (1949, 316-317), citing (Einstein 1923), explicitly
endorses such a reading of Einstein’s presentation of general relativity.

66 “Relativitatsprinzip: Die Naturgesetze sind nur Aussagen liber zeitrdumliche Koinzidenzen; sie finden
deshalb ihren einzig natiirlichen Ausdruck in allgemein kovarianten Gleichungen” (Einstein 1918b,
241).

67 This section is based on (Janssen and Renn forthcoming).

68 See (Renn and Sauer forthcoming) for a detailed reconstruction of Einstein’s reliance on this analogy.

69 See sec. 3 of (Janssen and Renn forthcoming) for a detailed analysis of this variational formalism the
use of which runs like a red thread through Einstein’s work on general relativity from 1914 through
1918.
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tensor Vv and the expression for the gravitational field. He had derived this equation
early on in his work on the metric theory of gravity as the natural generalization of
the special-relativistic law of energy-momentum conservation, 7"V, = 0 (with the
comma indicating an ordinary coordinate derivative).”’ For a charge distribution
described by the four-current density j* in an electromagnetic field F*V, we have

™, = jF*v, 2

where THV is the energy-momentum tensor of the electromagnetic field.”! The right-
hand side has the form “source x field.” It gives the density of the four-force that the
electromagnetic field exerts on the charges, or, equivalently, the energy-momentum
transfer from field to charges. The equation 7%, = 0 (where TV is the energy-
momentum tensor of arbitrary ‘matter’ again) can be interpreted in the same way.
Eq. (1) can be rewritten as

o B o —
¢ {W}Tﬁ -0, 3)
where T! = «/—7gT\F} is a mixed tensor density, and where
Bl _1
{Ma}=Egﬁp(gpu,q-'-gpa,u_gluu,p) (4)

are the Christoffel symbols of the second kind. Because TV is symmetric, eq. (3)
can be further reduced to:

1
Tg’a—igﬁpgpa’uTg =0. (5)

Compare the second term on the left-hand sides of egs. (3) and (5) to the term on the
right-hand side of eq. (2). All three terms are of the form “source x field.” In egs. (3)
and (5), these terms represent the density of the four-force that the gravitational field
exerts on matter (the source Tf ), or, equivalently, the energy-momentum transfer
from field to matter. One can thus read off an expression for the gravitational field
from these terms. Using the field equations to eliminate T§ from these terms and
writing the resulting expression as a divergence, d, % , one can identify the gravita-
tional energy-momentum pseudo-tensor (& = A/—igty ).

Einstein used the notation I'li for the components of the gravitational field.
Unfortunately, different forms of eq. (1) lead to different choices for It . Eq.(5)
gives

70 See the “Zurich Notebook”, [p. 5R] (CPAE 4, Doc. 10, [p 10]; a facsimile of this page graces the dust
cover of this volume). For analysis of this page, see (Norton 2000, Appendix C) and (Janssen et al.
forthcoming), sec. 3.

71 Cf, e.g., (Einstein 1916a, sec. 20, 814-815), egs. (65), (65a), (66), and (66a) for Buv = My > the
flat Minkowski metric.
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1
rgﬁ E_Egupgpa,ﬁ ’ (6)
which is essentially the gradient of the metric tensor. This makes perfect sense since
the metric is the gravitational potential in Einstein’s theory. But the relation between
field and potential could also be the one suggested by eq. (3):

T = _{a“ﬁ} : (7)

With this definition of the field there are three terms with a gradient of the potential.
In fact, I'l}g ineq. (6) is nothing but a truncated version of I'l{s in eq. (7).

For the “Entwurf” theory Einstein chose definition (6) (omitting the minus
sign).72 It was only in the fall of 1915 that he realized that he should have gone with
definition (7) instead. In Einstein’s own estimation this was a crucial mistake. In the
first of his four papers of November 1915, he wrote:

This conservation law [in the form of eq. (5)] has led me in the past to look upon the
quantities [in eq. (6)] as the natural expressions of the components of the gravitational
field, even though the formulas of the absolute differential calculus suggest the Christof-
fel symbols [...] instead. This was afatefulprejudice,73

Later that month, after he had completed the theory, he wrote in a letter:

The key to this solution was my realization that not [the quantities in eq. (6)] but the
related Christoffel symbols [...] are to be regarded as the natural expression for the
“components” of the gravitational field 74

To understand why eq. (6) was a “fateful prejudice” and eq. (7) was “the key to
[the] solution,” we need to look at Einstein’s 1914 derivation of the “Entwurf” field
equations from the action principle 8J = 0. The action functional,

J = fHJfgd‘*x , (8)

is determined by the Lagrangian H (Hamilton’s function in Einstein’s terminology).
Drawing on the electrodynamical analogy, Einstein modelled H on _ZF WF ., the
Lagrangian for the free Maxwell field:

wv

72 See (Einstein 1914b, 1058, eq. (46)). In a footnote on p. 1060, Einstein explains why he used eq. (5)
rather than eq. (3) to identify I o

73 “Diese Erhaltungsgleichung hat mich frither dazu verleitet, die Grofen [...] als den natiirlichen Aus-
druck fiir die Komponenten des Gravitationsfeldes anzusehen, obwohl es im Hinblick auf die Formeln
des absoluten Differentialkalkiils néher liegt, die Christoffelschen Symbole statt jener Groien einzu-
fithren. Dies war ein verhangnisvolles Vorurteil” (Einstein 1915a, 782; my emphasis).

74  “Den Schliissel zu dieser Losung lieferte mir die Erkenntnis, dass nicht [...] sondern die damit ver-
wandten Christoffel’schen Symbole [...] als natiirlichen Ausdruck fiir die ,,Komponente* des Gravita-
tionsfeldes anzusehen ist.” This comment comes from the letter to Sommerfeld cited in note 3. The
empbhasis is mine.
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H = —g"Ig,Th,. 9

Inserting (minus) eq. (6) for the gravitational field and evaluating the Euler-Lagrange
equations, he recovered the vacuum “Entwurf” field equations

3o (N-gg*PThy) = x4, (10)

where the left-hand side is essentially the divergence of the gravitational field and
where

K4 = g(gHTETE, - 20hen Ty, L) (an

is the energy-momentum pseudo-tensor for the gravitational field (Einstein 1914b,
1077, eq. (81b)). This quantity was chosen is such a way that the energy-momentum
balance law (5) can be written as a proper conservation law:

9 (Th+) = 0. (12)

The field equations in the presence of matter are found by adding —x Tf; to the right-
hand side of eq. (10) on the argument that all energy-momentum—of matter and of
the gravitational field itself —should enter the field equations the same way. One thus
arrives at:

3, (-8gPThg) = —(Th+ ). (13)

Having the four-divergence operator 9, act on both sides of eq. (13), one sees that
energy-momentum is conserved if and only if7?

W= 0,0, (J-gg*PTh;) = 0 (14)

Einstein showed that these same conditions also determine the covariance proper-
ties of the action (8).76 He argued that the corresponding Euler-Lagrange equations —
i.e., the vacuum “Entwurf” field equations (10) — will inherit these covariance proper-
ties from the action. Since T"V is a generally-covariant tensor, the four conditions
B, = 0 would then determine the covariance properties of the full “Entwurt™ field
equations (13) as well.

How do these conditions select transformations that leave the “Entwurf” field
equations (13) invariant? Start with a metric field g, given in coordinates x* that
satisfies both the field equations (13) and conditions (14). Now consider a transfor-
mation from x* to x'* under which g, goes to g',, . Einstein believed that g',,

75 Einstein had learned the hard way that he had better make sure that the field equations be compatible
with energy-momentum conservation. In 1912 he had been forced to modify the field equation of his
theory for static gravitational fields because the original one violated energy-momentum conservation
(Einstein 1912b, sec. 4).

76 See (Janssen and Renn forthcoming, sec. 3.3).
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would also be solution of the field equations (13) if and only if g’MV satisfies condi-
tions (14). The transformations picked out by the conditions B, = 0 are thus of a
somewhat peculiar nature. The condition selects transformations from x* to x'®
leaving the “Entwurf” field equations invariant given a metric field that is a solution
of the field equations in the original x* -coordinates. Because of their dependence on
the metric, Einstein called such transformations ‘“non-autonomous”
(“unselbstidndig”) at one point.77 The Italian mathematician Tullio Levi-Civita wrote
the Minkowski metric in two different coordinate systems and showed that both
forms satisfy the condition Bu = 0, while only one form is a (vacuum) solution of
the “Entwurf” field equations.78 Despite this clear-cut counter-example, Einstein
stubbornly continued to believe that the condition guaranteeing energy-momentum
conservation was also the necessary and sufficient condition for a solution of the
“Entwurf” field equations in one coordinate system to be a solution in some other
coordinate system. In Einstein’s defense, it must be said that he was on to an impor-
tant result even if his math did not quite add up. The connection between the invari-
ance of the action for the “Entwurf” field equations (as opposed to the field equations
themselves) and energy-momentum conservation is a special case of one of Noether’s
celebrated theorems connecting symmetries and conservation laws.”® Einstein had
intuitively recognized this special case almost five years before Emmy Noether
(1918) published the general theorem. “What can be more beautiful,” he had written
in 1913 when he believed that energy-momentum conservation restricted the covari-
ance of acceptable field equations to linear transformations (see sec. 2), “than that the
necessary specialization [of admissible coordinate systems] follows from the conser-
vation laws?80

Given this clarification of the structure of the “Entwurf” theory, one can under-
stand why Einstein felt that the time was ripe for an authoritative self-contained expo-
sition of the theory. The result was (Einstein 1914b), which appeared in November
1914.

In the fall of 1915, a number of worrisome cracks were beginning to show in the
“Entwurf” edifice. Most importantly, Einstein was finally forced to accept that the
“Entwurf” field equations are not invariant under the (non-autonomous) transforma-
tion to rotating coordinates in the special case of the standard diagonal Minkowski
metric (see the discussion in sec. 2 and the letter cited in note 40). His Machian solu-
tion to the problem of Newton’s rotating bucket experiment required the Minkowski
metric in rotating coordinates to be a vacuum solution of the field equations. The
“Entwurf” field equations were no longer acceptable now that it had become clear
that they do not meet this requirement. Einstein needed new field equations.

77 Einstein to H. A. Lorentz, 14 August 1913 (CPAE 5, Doc. 467).

78 Tullio Levi-Civita to Einstein, 28 March 1915 (CPAE 8, Doc. 67).

79 See (Brading 2002) for an insightful analysis of Noether’s theorems. For historical discussion, see
(Renn and Stachel 1999), (Rowe 1999), and (Sauer 1999).

80 “Was kann es schoneres geben, als dies, dass jene notige Spezialisierung aus den Erhaltungssitzen
fliesst?” Einstein to Paul Ehrenfest, before 7 November 1913 (CPAE 5, Doc. 481).
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If we take him at his word when he identified definition (6) of the gravitational
field as a “fateful prejudice” and definition (7) as “the key to [the] solution,” a plausi-
ble scenario of how Einstein found the successor(s) to the “Entwurf” field equations
suggests itself 31 The scenario runs as follows. Einstein decided to keep the Maxwell-
inspired Lagrangian (9), with the exception of the immaterial minus sign,

H = gWI'g, Tk (15)

av 2

and change only the definition of the gravitational field entering into it. Inserting

eq. (7) into eq. (15), setting «/—7g = 1 in eq. (8) for the action J, and evaluating the

Euler-Lagrange equations for the resulting variational problem 8J = 0, he arrived
2

at:3
P P L | (16)
“Uuv | |Buf|ve ‘

Einstein had encountered these two terms before. They are two of the four terms
in the Ricci tensor, a direct descendant of the Riemann curvature tensor. The other

two terms areS>
a a B
o) i en) "

TVE{ “} = 0,(lgd—g), (18)
v

Introducing the quantity

which transforms as a vector under unimodular transformations (i.e., transformations
with a Jacobian equal to one), one recognizes that expression (17) is the covariant
derivative of T, ,

o

%TV—{ }TG =T,.,. (19)
. v ;

which transforms as a tensor under unimodular transformations. Since the full Ricci
tensor is a generally-covariant tensor and one half transforms as a tensor under uni-
modular transformations, the other half (i.e., the left-hand side of eq. (16)) must
transform as a tensor under unimodular transformations as well.

In the “Zurich Notebook” Einstein had actually looked carefully into the possibil-

81 The bulk of (Janssen and Renn forthcoming) is concerned with making the case for this scenario on
the basis of all extant primary source material.

82 This calculation can be found in sec. 15 of (Einstein 1916a).

83 See (Einstein 1916a, 801, eq. (44)) for this decomposition of the Ricci tensor.
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ity of using this unimodular tensor as the basis for gravitational field equations.84

One of the problems that had defeated him back then was that he could not show that
such equations would be compatible with energy-momentum conservation. In the
course of developing his variational formalism for the “Entwurf” theory in 1914, Ein-
stein had learned how to deal with that problem (cf. egs. (12)—-(13) above). This made
field equations based on the unimodular tensor in eq. (16) extremely attractive.

By this time, October 1915, Einstein had been struggling with the intractable
covariance properties of the “Entwurf” field equations for almost three years. Chang-
ing the definition of the gravitational field in the Lagrangian for the “Entwurf” theory
had now led him back to field equations covariant under a broad class of transforma-
tions. The only fly in the ointment was the hole argument, according to which there
could be no such field equations. Sooner or later he would have to deal with this
objection of his own making. But that could wait. As we saw sec.2, he only
addressed this issue in correspondence of late December and early January.

So Einstein went ahead and decided on the vacuum field equations

AT, + rgurgv =0, (20)

which are obtained by replacing the Christoffel symbols in eq. (16) by minus the
components I'%, of the gravitational field (see eq. (7)). He generalized these equa-
tions to situations with matter present by putting (minus) the energy-momentum ten-
sor for matter on the right-hand side

I I, + rgurﬁ = —«T,. . 21

v av wv

With Hilbert in hot pursuit, he rushed these equations into print (Einstein 1915a). He
realized soon afterwards that they were still not quite right. Within a three-week span,
he published two modifications of the equations (Einstein 1915b, d). The second time
he got it right. He had found the generally-covariant field equations still bearing his
name.

In sections 14-18 on the field equations and energy-momentum conservation in
(Einstein 1916a) the reader is spared the detour through the erroneous field equations
of November 1915. Using the derivation rehearsed in one of his letters to Ehrenfest
(see note 12), Einstein introduced the correct equations right away, albeit not in their
generally-covariant form, but, as in the November 1915 papers, in unimodular coor-
dinates (picked out by the condition Jjg = 1). It turns out that Einstein’s generali-
zation of eq. (20) to eq. (21) violates the requirement that all energy-momentum enter
the field equations the same way. This becomes clear when the vacuum field equa-
tions are rewritten in terms of the energy-momentum pseudo-tensor for the gravita-
tional field in the new theory. This pseudo-tensor is found in the same way as the one
for the “Entwurf” theory in eq. (11) and has the exact same structure:

84 See (Janssen et al. forthcoming), sec. 5.5, for a detailed analysis of the relevant pages of the notebook,
[pp. 22L-24L] and [pp. 42L-43L] (CPAE 4, Doc. 10, [pp. 43—47] and [pp. 7-9]).
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Ktk = %6gguvrgurgv —gMVFl‘}GI‘éV (22)
(Einstein 1916a, 806, eq.(50)). Eq.(22) is obtained from eq.(11) by setting
=g = 1 (reflecting the restriction to unimodular coordinates), introducing an over-
all minus sign (since the Lagrangians (9) and (15) have opposite signs), and —most
importantly —replacing definition (6) of the components of the gravitational field
'y, by definition (7). With the help of eq.(22) and its trace,
kt=xt} = gT§, T, the vacuum field equations (20) can be rewritten as (Ibid.,
806, eq. (51)):

9,(87°T%,) = —K<t§—%6fjt> 23)

Notice how closely this equation (along with eq. (22) for 77) resembles the vacuum
“Entwurf” field equations (10) (along with eq. (11) for f;‘ = A/—7gtﬁ ). The crucial dif-
ference —besides immaterial minus signs, factors of /g, and a slightly different
ordering of indices—is the presence of the trace term (1/ Z)BSKZ‘ on the right-hand
side of eq. (23). On the by now familiar argument that all energy-momentum enter
the field equations the same way, this means that the field equations in the presence of
matter should likewise have a term with the trace of the energy-momentum tensor of
matter (Ibid., 807, eq. (52)):

98T = {1y + g1 %ag[t +7) (24)

Now recall that eq. (23) is just an alternative way of writing eq. (20). Eq. (24) can
thus also be written as:

1
aargv + r[(ixplrgv = _K<Tuv - zguvT> (25)

(Ibid., 808, eq. (53)). In November 1915, Einstein had found his way from eq. (21) to
eq. (25) following a more circuitous route.

In the unimodular coordinates used in this calculation ~/—g = 1 and the quantity
T, ineq. (18) vanishes. This means that expression (17) vanishes as well and that the
Ricci tensor reduces to the left-hand side of eq. (25) (cf. eq. (16)). The field equations
(25) can thus be looked upon as generally covariant equations expressed in unimodu-
lar coordinates. The corresponding generally-covariant equations are:

1
Ry = =K(Ty =580 T) (26)
where RMV is the Ricci tensor (denoted by BMV in ibid., 801, eq. (44)). The reader, I

trust, will immediately recognize eq. (26) as the Einstein field equations.
Returning now to eq. (24), the original form of the field equations in unimodular
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coordinates, one sees that energy-momentum is conserved, i.e, T"V,, = 0, or, equiv-
alently, d,(10+7g) = 0, if and only if

ao[aa(gvorgv) - %xag(t + T)J = 0. 7

These conditions are the analogues of the conditions B, = 0 in the “Entwurf” the-
ory (cf.eq.(12)—(14)). Using the trace of eq.(24), d,(g¥°T%,) = x(r+7T), to
replace k(¢ + T') by an expression in terms of the metric and its derivatives, one can
rewrite eq. (27) as

1
ao[aa(gwrgv)—§6gau(gvﬁrgv)} 0. (28)

Einstein showed that these four relations, unlike the conditions Bu = 0, hold identi-
cally. In other words, the field equations (24) guarantee energy-momentum conserva-
tion without the need for restrictions on admissible coordinates over and above the
condition J:g = 1 for unimodular coordinates (ibid., 808-810, sec. 17-18).

This came as no surprise to Einstein. He expected there to be a close connection
between covariance of the field equations and energy-momentum conservation. In
(Einstein 1914b) he had shown that the four conditions B, = 0 (eq.(14)) that
together with the “Entwurf” field equations guarantee energy-momentum conserva-
tion double as the conditions restricting the range of coordinate systems in which
these field equations hold. The dual role of such conditions played a central role in
the breakthrough of November 1915.8% What made the field equations (21) replacing
the “Entwurf” field equations in (Einstein 1915a) so attractive was that the range of
coordinate systems in which they hold was restricted only by one condition, viz. that
the determinant g of the metric transform as a scalar, as opposed to the four condi-
tions restricting the range of coordinate systems in which the “Entwurf” equations
hold. Given the dual role of these conditions in the “Entwurf” theory, this suggested
to Einstein that it would suffice to add this one condition on g to the new field equa-
tions to guarantee energy-momentum conservation in the new theory. In (Einstein
1915a) he showed that the analogues of the four conditions B, = 0 in the new the-
ory can indeed be replaced by one condition on g . He presumably expected this con-
dition to be that g transform as a scalar, since this expresses the restriction to
unimodular transformations. Instead he found that g cannot be a constant, which
though compatible with unimodular transformations is a stronger condition and rules
out unimodular coordinates (with g = —1).

The transition from the field equations of the first November paper (Einstein
1915a) to those of the second and the fourth (Einstein 1915b, d) was driven by the
desire to change the field equations in such a way that the condition that g cannot be

85 This is one of the central claims argued for in (Janssen and Renn forthcoming; see, in particular,
secs. 6-7).
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a constant can be replaced by the more congenial condition /=g = 1 for unimodular
coordinates. These amended field equations could then be looked upon as generally-
covariant field equations expressed in special coordinates. In (Einstein 1915b) this
goal is reached at the expense of the assumption, largely discredited at that point, that
all matter (represented by 7', ) somehow consists of electromagnetic fields (in which
case the trace T vanishes). In (Einstein 1915d) generally-covariant field equations in
unimodular coordinates are obtained without specifying T',, but by adding a term
with the trace T to the right-hand side of eq. (20).

The “Zurich Notebook” shows that Einstein had already considered adding such a
term three years earlier to render field equations based on the Ricci tensor compatible
with energy-momentum conservation in the weak-field limit.8% What had stopped
him from doing so was that the resulting weak-field equations rule out a spatially flat
metric of the form g, = (-1,-1,-1, ¢?(x, y, z)) . For such a metric the ten com-
ponents of the gravitétional potential reduce to one component, the variable speed of
light ¢(x,y, z) of the theory for static fields of (Einstein 1912a, 1912b). Einstein
firmly believed that this was how weak static fields had to be represented in his the-
ory.87 This changed only when he calculated the perihelion advance of Mercury on
the basis of the field equations of (Einstein 1915b). He realized that if v/~g = 1 and
844 1s variable, the components g;; cannot all be constants (Norton 1984, 147; Ear-
man and Janssen 1993, 144-145). This removed his old objection to adding a term
with the trace T to the field equations. At that point Einstein realized that such a trace
term was needed anyway to make sure that all energy-momentum enter the field
equations in exactly the same way. This told him that he had finally got it right. He
had found the Einstein field equations in unimodular coordinates (see eq. (25)).

In his 1916 review article Einstein still derived the field equations in unimodular
coordinates only. The manuscript for an unpublished appendix to the article (CPAE 6,
Doc. 31) shows that he at least started an alternative discussion of the field equations
and energy-momentum conservation in arbitrary coordinates. The numbering of the
sections in this document suggests that at one point he considered substituting this
discussion for the one in unimodular coordinates. He then considered adding it as an
appendix. In the end he did neither. Instead he published the generally-covariant
treatment separately a few months later (Einstein 1916c¢).

In this paper he derived the generally-covariant field equations from an action
principle with the Riemann curvature scalar as the Lagrangian. Terms with second-
order derivatives of the metric in this quantity do not contribute to the action integral,
so the effective Lagrangian becomes:

86 See the “Zurich Notebook”, [p. 20L] (CPAE 4, Doc. 10, [p. 39]). For analysis of this page, see (Jans-
sen et al. forthcoming), sec. 5.4.3.

87 Einstein checked and confirmed this assumption on at least two occasions, in the “Zurich Notebook”,
[p. 21R] (CPAE 4, Doc. 10, [p. 42]; for analysis, see Janssen et al. forthcoming, sec. 5.4.4 and 5.4.6),
and in Einstein to Erwin Freundlich, 19 March 1915 (CPAE 8, Doc. 63)
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Gl

For J:g = 1 the second term vanishes (cf. eq. (18)) and the expression reduces to
the Lagrangian (15) used in the November 1915 papers and in the 1916 review arti-
cle. (Einstein 1916c¢) fills two important gaps in (Einstein 1916a). First, Einstein
derived the generally-covariant version of the identities (28), which in conjunction
with the field equations imply energy-momentum conservation. These generally-
covariant identities are the now famous contracted Bianchi identities. Second, Ein-
stein showed—proceeding exactly the way he did in the premature review article
(Einstein 1914b)—that the identities guaranteeing energy-momentum conservation
are a direct consequence of the covariance of the action functional. Einstein had thus,
in a mathematically impeccable way, found a special case of one of Noether’s theo-
rems published two years later.

From a purely mathematical point of view, the discussion of the field equations
and energy-momentum conservation in (Einstein 1916c¢) is far more elegant than in
(Einstein 1916a). This more elegant treatment, however, obscures the way in which
Einstein found the Einstein field equations. It makes it look as if it was a matter of
picking the most obvious candidate for the Lagrangian, the Riemann curvature scalar,
at which point everything else fell into place. Ironically, this is exactly what Einstein
in his later years came to believe himself, in part no doubt because it made his suc-
cessful search for the field equations of general relativity look so similar to his fruit-
less search for a unified field theory. The clumsier discussion in unimodular
coordinates in (Einstein 1916a), however, may serve as a reminder that— whatever he
believed, said, or wrote about it later on—FEinstein only discovered the mathematical
high road to the Einstein field equations after he had already found these equations at
the end of a poorly paved road through physics. Serving as road signs were Newton’s
gravitational theory, Maxwell’s electrodynamics, and such key results of special rela-
tivity as the law of energy-momentum conservation. Considerations of mathematical
elegance played only a subsidiary role.
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