
Chapter 1

Learning local transductions is hard

MARTIN JANSCHE

ABSTRACT. Local deterministic string-to-string transductions aregeneralizations of mor-
phisms on free monoids. Learning local transductions reduces to inference of monoid mor-
phisms. However, learning a restricted class of morphisms,the so-called fine morphisms, is an
intractable problem, because the decision version of the empirical risk minimization problem
contains anNP-complete subproblem.

1.1 Introduction

Symbolic approaches to natural language processing (NLP) based on finite au-
tomata (Roche and Schabes, 1997) suffer from a shortage of robust, practical in-
ference procedures. If inductive inference is understood as ‘identification in the
limit’ (Gold, 1967), then regular languages cannot be inferred on the basis of posi-
tive data alone. Most learning algorithms proposed forNLP tasks therefore employ
different notions of inference, or aim at more restricted classes of languages, and
they generally have to work with imperfect data.

This paper is about the problem of learning local transducers, a restricted sub-
class of the generalized sequential machines (Eilenberg, 1974), and inference is
understood as empirical risk minimization. The general problem is illustrated by a
specificNLP task, namely learning letter-to-sound rules (see for example van den
Bosch, 1997) from a pronunciation dictionary. In this task,the training samples are
pairs of strings, consisting of a string of letters – for example〈shoes〉 – and a string
of phonemes – for example /Suz/. Note that no relation between individual letters
and phonemes is specified, which is to say one doesnot know whether the second
symbol in /Suz/, the phoneme /u/, corresponds to the second symbol in〈shoes〉,
the letter〈h〉. In this sense the present task is markedly different from other com-
monNLP tasks – such as learning part-of-speech assignment rules – where explicit
correspondences between input and output symbols exist.
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In general, a letter string may correspond to a longer phoneme string, for ex-
ample1

〈mutualism〉 (9 letters) /mjuÙ@w@lIz@m/ (12 phonemes),

or to a shorter phoneme string, such as

〈featherweight〉 (13 letters) /fEDÄwet/ (7 phonemes);

and even if the two strings happen to have the same length, as in

〈parliamentarianism〉 (18 letters) /paôl@m@ntEôi@nIz@m/ (18 phonemes),

no alignment is implied. One usually assumes that letter strings are of equal length
or longer than their corresponding phoneme strings. While clearly false in an ab-
solute sense, this assumption is true for most English words(more than 98% of
the entries in theCMU pronouncing dictionary), and workarounds for cases where
it seems to break down have been suggested, for example the transcription system
used byNETtalk (Sejnowski and Rosenberg, 1987).

Learning letter-to-sound rules can be conceptualized as grammatical inference
of specific subclasses of rational transductions. For the class of subsequential trans-
ductions, limit-identification is possible (Oncina et al.,1993) and has been applied
to the closely related problem of phonemic modeling (Gildeaand Jurafsky, 1996),
but only after modifications and incorporation of domain-specific knowledge. It
can be shown that the algorithm proposed by Oncina et al. (1993) has poor out-
of-class behavior and is brittle in the presence of imperfect data; furthermore its
hypothesis space, the class of subsequential transductions, is arguably too general
for the present task. Almost all approaches to learning letter-to-sound rules as-
sume, justifiably, that the hypothesis space is restricted to the analog of the locally
testable languages in the strict sense (McNaughton and Papert, 1972), which are
limit-identifiable (Garćıa and Vidal, 1990). We call the analogous class of trans-
ductionslocal transductions.

Local transductions are computed by scanner transducers, which move a slid-
ing window of fixed size across the input string and produce a string of output
symbols for each window position; concatenating these output strings yields the
overall output of the transducer. Since the size of the sliding window is fixed,
one can assume without loss of generality that it is 1. If a larger window sizen is
needed, one can simply change the input alphabet to consist of n-tuples of symbols,
and such a modified alphabet is obviously still finite; alternatively, one can think of

1The following examples are taken from theCMU pronouncing dictionary (Weide, 1998). Phone-
mic transcriptions have been changed to useIPA (International Phonetic Association, 1999).
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this modification as a preprocessing step that applies a simple subsequential trans-
ducer to each input string. Functional transductions that examine individual input
symbols (letters, orn-tuples of letters) without taking any context into account(a
finite amount of history or lookahead can be incorporated into the modified sym-
bols created by the preprocessing step) can be realized by generalized sequential
machines with a trivial one-state topology and correspond exactly to morphisms
on free monoids (Eilenberg, 1974, p. 299).

The subsequent discussion will refer to a finite setΣ of input symbols and a
finite setΓ of output symbols. The free monoid generated byΣ is calledΣ∗ and
has the property that every element (string)x ∈ Σ∗ has a unique factorization in
terms of elements ofΣ. This means that a morphismg : Σ∗→ Γ∗ on free monoids
is completely characterized byg|Σ, its restriction toΣ. Conversely, this allows us
to define the following notion:

Definition 1.1 (Free monoid morphism). Given a functionf : Σ→ Γ∗ define f ∗

to be the unique monoid morphismf ∗ : Σ∗ → Γ∗ such thatf ∗(x) = f (x) for all
x∈ Σ; f ∗(ε) = ε ; and f ∗(yz) = f ∗(y) f ∗(z) for all y,z∈ Σ∗.

At the core of the learning task is then the problem of finding asuitable func-
tion f : Σ→ Γ∗ mapping from individual input symbols to output strings. Inthis
paper we focus on two classes of functions. The first class restricts the codomain
to strings of length one. Iff : Σ→ Γ is such a function – an alphabetic substitu-
tion – then f ∗ is a very fine morphism, according to Eilenberg (1974, p. 6). The
second class is a superset of the first and allows the empty string in the codomain.
Eilenberg (1974) calls the morphismf ∗ a fine morphismif its underlying function
f is of typeΣ→{ε}∪Γ. For the specific problem of learning letter to sound rules
we can restrict our attention to fine morphisms, since by our previous assumption
letter strings are never shorter than their corresponding phoneme strings, so a fine
morphism is formally adequate. In general we may want to consider other kinds
of morphisms, for example those arising from functions of typeΣ→{ε}∪Γ∪Γ2.
However, most practically relevant classes of morphisms will probably contain the
class of fine morphisms, and therefore many of their properties will carry over to
more general settings. By restricting our attention to fine morphisms we have nar-
rowed down the initial learning task considerably, as the hypothesis spaceH is now
the set of functions of typeΣ→{ε}∪Γ, which is always finite (though usually very
large) for fixed finite alphabetsΣ andΓ. Moreover, since ln|H| = |Σ| ln(1+ |Γ|)
the sample complexity of this hypothesis space is polynomial.

Our conceptualization of learning is not limit-identification, but empirical risk
minimization. Although empirical risk minimization is somewhat problematic
(Minka, 2000), particularly if the training data are not representative of the dis-
tribution of future data, it underlies most symbolic approaches to learning letter-to-
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sound rules, as well as many otherNLP tasks. The empirical riskRof a hypothesis
h : Σ∗→ Γ∗ is its average loss on a set of training samplesD⊆ Σ∗×Γ∗, namely

R=
1
|D| ∑

〈x,y〉∈D

L(h(x),y)

whereL : Γ∗×Γ∗→ R≥0 is the loss function. The most commonly used generally
applicable loss functions for comparing strings are the zero-one loss

Lidentity(y
′,y) =

{

0 if y′ = y

1 otherwise

andLevenshtein, the string edit distance (see for example Kruskal, 1983). Both kinds
of loss play a role in the evaluation of letter-to-sound rules: for example, Damper
et al. (1999, p. 164) use zero-one loss, and Fisher (1999) uses string edit distance.
One generally requires thatL(y,y) = 0, which is obviously the case forLidentity, and
also holds forLevenshteinprovided the cost for matching symbols is zero.

Empirical risk minimization under zero-one loss can mean one of two things:
minimizing the total number of mistakes a hypothesis makes on the training data,
or maximizing the number of correct predictions. These two notions are equivalent
if optimal solutions can be found exactly, but differ for approximate solutions.2

1.2 Exact optimization

The problem of finding a functionf : Σ→{ε}∪Γ such that the empirical risk off ∗

is minimal is fundamentally a combinatorial optimization problem. Like all such
problems it can be stated formally in different ways (Papadimitriou and Steiglitz,
1998, p. 345f.): the optimization version asks for the optimal f for a given set of
samplesD⊆ Σ∗×Γ∗; the evaluation version asks for the total loss incurred onD by
the optimal f ∗; and the decision version asks whether there exists anf ∗ such that
the total loss incurred by it onD is less than or equal to a given budgetk. A solution
to the optimization version could be used to construct an answer to the evaluation
version, which in turn could be used to solve the decision version. Contrapositively,
if the decision version is hard to solve, so are the other two versions.

BecauseL(y,y) = 0 for the loss functionsL considered here, there is a common
subproblem of the decision version which is independent of the loss function used:

2Suppose the true global optimum among 100 samples is 10 mistakes, and the optimum can
be approximated within a ratio of 1.2. Approximate maximization would find a solution with at
most 100− 90/1.2 = 25 mistakes, but approximate minimization yields a solution with at most
10×1.2 = 12 mistakes.
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the restricted decision version asks whether there exists an f ∗ such that the total
loss incurred by it onD is exactly zero. We call this the consistency problem.
Obviously, if the decision version can be solved efficiently, so can the consistency
problem.

Before we can formally state this key problem underlying thelearning task, we
need another auxiliary definition:

Definition 1.2 (Graph of a relation). Given a relationR : A→ B on sets, define
#R, thegraph of R, to be the set{〈a,b〉 ∈ (A×B) |aRb}.

The consistency problems for the two classes of morphisms are stated in a
format similar to the one used by Garey and Johnson (1979). Ananswer to the
questions asked by these problem would tell us whether a suitable morphism exists
that perfectly fits the training dataD.

Problem 1.1 (Very Fine Morphism Consistency – VFMC)
Instance:A finite (multi)setD⊆ Σ∗×Γ∗ of training samples.

Question:Does there exist a very fine morphism consistent with all elements ofD,
i. e., is there a functionf : Σ→ Γ such thatD⊆ #( f ∗)?

Problem 1.2 (Fine Morphism Consistency – FMC)
Instance:A finite (multi)setD⊆ Σ∗×Γ∗ of training samples.

Question:Does there exist a fine morphism consistent with all elementsof D, i. e.,
is there a functionf : Σ→{ε}∪Γ such thatD⊆ #( f ∗)?

The size of an instance of one of these problems is the total length of all strings
in the training dictionaryD:

Definition 1.3 (Dictionary size). Define the size‖D‖ of a dictionaryD⊆ Σ∗×Γ∗
as

‖D‖= ∑
〈x,y〉∈D

|x|+ |y|

where|x| is the length of stringx.

Of the two problems formulated here,FMC is intuitively more difficult than
VFMC, since one has to decide which input symbols are mapped to theempty string,
or equivalently, how the output strings should be aligned relative to the inputs.
This issue does not arise withVFMC, since only strings of equal length need to
be considered (ifD contained a pair of strings with different lengths, then no very
fine morphism can be consistent withD). It will be shown thatFMC is a complete
problem for the complexity classNP (see for example Garey and Johnson, 1979).
Membership ofFMC in NP can be established straightforwardly:
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1: {Input: instanceD, certificatef }
2: for all 〈x,y〉 ∈ D do
3: a1 · · ·an← x
4: b1 · · ·bm← y
5: j ← 1
6: for i← 1 to n do
7: if f (ai) 6= ε then
8: if j > m then
9: return false

10: else if f (ai) 6= b j then
11: return false
12: else{ f (ai) matchesb j}
13: j ← j +1
14: if j 6= m+1 then
15: return false
16: return true

Figure 1.1: Certificate verification algorithm forFMC.

Theorem 1.1. ProblemFMC has succinct certificates that can be verified in poly-
nomial time.

Proof. A certificate forFMC is a partial functionf : Σ→ Γ∪{ε}, which can be
represented in space linear in‖D‖ (becausef only needs to mention elements of
Σ that occur inD). Verification amounts to applyingf ∗ to each input string inD
and comparing the results to the corresponding reference output. The verification
procedure, shown in Figure 1.1, runs in linear time and logarithmic space.

As an aside, note that problemVFMC for very fine morphisms can be solved
efficiently in linear time and space by the following procedure: iterate overD, and
for each input symbolσ set f (σ)← γ , whereγ is the output symbol aligned3 with
σ ; then run the verification algorithm from Figure 1.1 onD and f , and return its
answer.

NP-hardness ofFMC is established by a reduction from 3SAT, the decision
problem asking whether there is a satisfying truth assignment for a set of disjunc-
tive clauses with at most three literals each. We first define the construction and
then prove that it correctly preserves the structure of 3SAT.

3A consistent very fine morphism can only exist if|x|= |y| for all 〈x,y〉 ∈ D, which means thatx
andy are aligned, in the sense that thenth symbol ofx corresponds to thenth symbol ofy.
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Definition 1.4 (Boolean variable gadget).For any Boolean variablev, the set
V (v) contains the following pairs (av andbv are two new symbols dependent onv):

〈avvvbv,FTF〉,

〈avbv,F〉.

Definition 1.5 (3SAT clause gadget).For any 3SAT clauseCi of the form(l i1∨
l i2∨ l i3) (where eachl i j is a literal of the formv or v) the setC (Ci) contains the
following pairs (ci j , di j , ei and fi for 1≤ j ≤ 3 are eight new symbols dependent
on i):

〈ci1l i1di1,FT〉,

〈ci2l i2di2,FT〉,

〈ci3l i3di3,FT〉,

〈di1di2di3ei fi,TT〉.

Definition 1.6 (Reduction from 3SAT). Given an instanceϕ =
∧n

i=1Ci of 3SAT,
defineD(ϕ) as the collection

⋃n
i=1C (Ci) ∪

⋃

{V (v) |variablev occurs inϕ}.

Theorem 1.2. The reduction from3SAT to FMC can be computed in logarithmic
space and creates an instance whose size is polynomial in thesize of the original
instance.

Proof. The reductionD , which can be made to run in linear time, builds a collec-
tion D(ϕ) with the following properties: letm be the number of distinct variables
of ϕ (som≤ 3n); then‖D(ϕ)‖= 10m+22n≤ 52n, |D(ϕ)|= 2m+4n≤ 10n,
|Σ| = 4m+8n≤ 20n, and|Γ| = 2. Only counters need to be stored for comput-
ing the reduction (in order to keep track of clauses and variables represented by
integers), which requires logarithmic space.

Theorem 1.3. ProblemFMC is NP-hard.

Proof. We show thatϕ =
∧n

i=1Ci is satisfiable iff there exists a fine morphism
f ∗ consistent withD(ϕ). It will be convenient to letV denote the set of distinct
variables ofϕ .

(⇒) Assume thatϕ is satisfiable, i. e., there exists a satisfying assignment
τ : V→ {T,F}. Incrementally define a fine morphismf ∗ consistent withD(ϕ) as
follows: for all v∈V, let f (v) = τ(v) and f (v) = τ(v). If τ(v) = T, let f (av) = F
and f (bv) = ε , which makesf ∗ consistent withV (v); otherwise, ifτ(v) = F, let
f (av) = ε and f (bv) = F to makef ∗ consistent withV (v). In either casef ∗ can be
made consistent withV (v), and becauseav andbv do not occur outside the gadget
for v, f ∗ can be made consistent with all variable gadgets.
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The fact thatτ is a satisfying assignment means that in each clauseCi at least
one literal is made true byτ . So f will map at most twodi j in C (Ci) to T, and
therefore the definition off ∗ can always be extended to make it consistent with
the fourth pair inC (Ci) and hence consistent with the entire clause gadget forCi .
Since all symbols in a clause gadget other than literals ofϕ occur only in that
gadget, the definition off ∗ can be extended to make it consistent with all gadgets
and therefore consistent withD(ϕ). Hence there exists a consistent fine morphism
f ∗ constructible fromτ .

(⇐) Conversely, assume that a fine morphismg consistent withD(ϕ) exists.
Show thatg|V , i. e.g restricted to the variables ofϕ , is a satisfying truth assignment
for ϕ . The morphismg being consistent withD(ϕ) means thatg is consistent with
all variable gadgets and all clause gadgets.

Pick any variable gadgetV (v). Then, because of the second pair inV (v), g
must map exactly one ofav andbv to F: if g(av) = F theng(bv) = ε , and for the
first pairg(v) = T andg(v) = F ; otherwise ifg(bv) = F theng(av) = ε , g(v) = F,
andg(v) = T. Note in particular that(g|V)(v) ∈ {T,F}, sog|V is formally a truth
assignment.

Now pick any clause gadgetC (Ci) and suppose thatgmaps nol i j in C (Ci) toT.
Then alldi j in C (Ci) are mapped toT because of the first three pairs in that clause
gadget. But this would makeg inconsistent with the fourth pair, contradicting the
assumption thatg is consistent with all clause gadgets. Sog must map at least one
l i j in C (Ci) to T, which means thatg|V makes the clauseCi true, and is therefore a
satisfying truth assignment forϕ .

The preceding three theorems together imply that the consistency problemFMC

is NP-complete. The existence of efficient algorithms for solving FMC is therefore
unlikely. SinceFMC is a subproblem of empirical risk minimization, the decision
version of this optimization problem is alsoNP-complete.4

The evaluation and optimization version of empirical risk minimization do not
seem to fall within the analogous classFNP of function problems. The reason for
this is that an optimal solutionf only certifies the existence of a feasible solution
(namely f ) within a certain budgetk (namely the aggregate loss off ∗ on the train-
ing data), but does not seem to provide enough information toverify in polynomial
time that no better solution within a budget ofk−1 can exist. It is doubtful whether

4Strictly speaking, the previous discussion only establishesNP-hardness of the decision version.
Showing membership inNP is straightforward, but requires separate proofs depending on which
loss function is used. For zero-one loss only a few minor modifications to the certificate verification
algorithm in Figure 1.1 are required, which now has to aggregate the number of mistakes and compare
it to the budgetk. For loss based on edit distance, using the standard dynamicprogramming algorithm
(Kruskal, 1983) ensures that certificates can be verified in polynomial time.
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there are any polynomial-length certificates of optimality. We conjecture that these
problems are in factFPNP-complete, just likeTSP(Papadimitriou, 1994).

1.3 Approximations and heuristics

Since the existence of exact efficient algorithms for solving the overall optimization
problem is unlikely, one should consider the alternatives:approximate, heuristic,
and/or inefficient algorithms.

Even for highly restricted problems the prospects are rather bleak. The opti-
mization problem that maximizes empirical string-level classification accuracy (the
dual of empirical zero-one loss, i. e. string-level classification error) for very fine
morphisms will be calledMAX -VFMC. It is far from clear whetherMAX -VFMC is
an easy or a hard problem, as we had shown earlier thatVFMC can be solved very
efficiently. We define the decision version ofMAX -VFMC as follows:

Problem 1.3 (Very Fine Morphism Maximization – MAX-VFMC)
Instance:A finite sequenceD = 〈s1, . . . ,sn〉 where eachsi ∈

⋃

j∈N Σ j ×Γ j for 1≤
i ≤ n; and a natural numberk with k≤ n.

Question:Does there exist a very fine morphism consistent with at leastk elements
of D, i. e., is there a functionf : Σ→ Γ and a lengthk unordered subsequence
〈t1, . . . , tk〉 of D such thatti ∈ #( f ∗) for all 1≤ i ≤ k?

We show thatMAX -VFMC has probably (unlessP = NP) no polynomial time
approximation schemes (PTAS, which would allow us to find arbitrarily good ap-
proximations efficiently). In the best case, there may be an approximation algo-
rithm for MAX -VFMC with a fixed approximation ratio, which would makeMAX -
VFMC a member of the classAPX (Ausiello et al., 1999); whether or not this is the
case is an open question.

Theorem 1.4. ProblemMAX -VFMC is APX-hard.

Proof. Show this by exhibiting anAP-reduction from anAPX-complete problem.
It suffices to show thatMAX -k-CSPis L-reducible (Papadimitriou, 1994, 309ff.) to
MAX -VFMC. MAX -k-CSPis a constraint satisfaction problem (Khanna et al., 1997)
with conjunctive constraints containing at mostk literals (see also Ausiello et al.,
1999).

Given an instanceϕ = 〈(l11∧ · · · ∧ l1k), . . . ,(ln1∧ · · · ∧ lnk)〉 of MAX -k-CSP,
construct an instance ofMAX -VFMC by mapping theith constraint(l i1∧ · · · ∧ l ik)
to the pair〈l i1l i1 . . . l ikl ik,TF . . .TF〉 to form D (if a literal l is negative, i. e. of the
form v, then l is simply v). SoΣ consist of the negated and unnegated variables
of ϕ , andΓ = {T,F}. This construction ensures that there is a truth assignment
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τ that makes exactlym constraints ofϕ true iff there exists a very fine morphism
f ∗ which is consistent with exactlym elements ofD. One can constructf from τ
(and vice versa) viaf (v) = τ(v) and f (v) = τ(v) wherev is a variable occurring
in ϕ .

Exact global optimization ofMAX -VFMC is theoretically possible via branch-
and-bound search. While this inefficient algorithm can be used for very small prob-
lem instances (learning English letter-to-sound rules with no conditioning context,
for which only a few trillion morphisms have to be explored),it becomes intractable
for even slightly larger problems (for English letter-to-sound rules conditioned on
one letter of context there are more than one trequadragintillion feasible solutions).
Heuristic algorithms, especially those based on local search (Papadimitriou and
Steiglitz, 1998), are efficient and do in practice improve ongreedily constructed
initial solutions, but offer no performance guarantees.

1.4 Conclusions

We have reduced the problem of learning local transductionsto the problem of
learning morphisms on free monoids (the reduction may involve deterministic pre-
processing of the training data). The restricted problem ofdeciding whether there
exists a fine morphism consistent with a set of training samples was shown to be
NP-complete. Since this problem is a specialization of the decision version of em-
pirical risk minimization under any loss functionL for whichL(y,y) = 0, the larger
optimization problems which generalize the consistency problem are generally in-
tractable.
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