Chapter 1

Learning local transductions is hard

MARTIN JANSCHE

ABSTRACT.  Local deterministic string-to-string transductions generalizations of mor-
phisms on free monoids. Learning local transductions resldo inference of monoid mor-
phisms. However, learning a restricted class of morphishesso-called fine morphisms, is an
intractable problem, because the decision version of thgirezal risk minimization problem
contains arNP-complete subproblem.

1.1 Introduction

Symbolic approaches to natural language processing)(based on finite au-
tomata (Roche and Schabes, 1997) suffer from a shortagébo$t;gpractical in-
ference procedures. If inductive inference is understaotdentification in the
limit’ (Gold, 1967), then regular languages cannot be irdeon the basis of posi-
tive data alone. Most learning algorithms proposedviop tasks therefore employ
different notions of inference, or aim at more restrictegisses of languages, and
they generally have to work with imperfect data.

This paper is about the problem of learning local transdsjcerestricted sub-
class of the generalized sequential machines (Eilenb&©4)1 and inference is
understood as empirical risk minimization. The generabjpem is illustrated by a
specificNLP task, namely learning letter-to-sound rules (see for examgn den
Bosch, 1997) from a pronunciation dictionary. In this table training samples are
pairs of strings, consisting of a string of letters — for exder{shoe$ — and a string
of phonemes — for exampléuZz/. Note that no relation between individual letters
and phonemes is specified, which is to say one do¢&now whether the second
symbol in fuz/, the phonemeu/, corresponds to the second symbol(ghoe$,
the letter(h). In this sense the present task is markedly different froneiotom-
monNLP tasks — such as learning part-of-speech assignment rulbgrewexplicit
correspondences between input and output symbols exist.
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In general, a letter string may correspond to a longer phansimng, for ex-
amplé

(mutualism) (9 letters) mjutfowoalizom/ (12 phonemes),
or to a shorter phoneme string, such as
(featherweight (13 letters) fedawet/ (7 phonemes);
and even if the two strings happen to have the same length, as i
(parliamentarianism(18 letters) pailomonterionizom/ (18 phonemes),

no alignment is implied. One usually assumes that letterggrare of equal length

or longer than their corresponding phoneme strings. WHhéarty false in an ab-
solute sense, this assumption is true for most English wordse than 98% of
the entries in themu pronouncing dictionary), and workarounds for cases where
it seems to break down have been suggested, for exampleatisetiption system
used byNETtalk (Sejnowski and Rosenberg, 1987).

Learning letter-to-sound rules can be conceptualizedasgratical inference
of specific subclasses of rational transductions. For thesaf subsequential trans-
ductions, limit-identification is possible (Oncina et 4993) and has been applied
to the closely related problem of phonemic modeling (Gilded Jurafsky, 1996),
but only after modifications and incorporation of domairaific knowledge. It
can be shown that the algorithm proposed by Oncina et al.3)188s poor out-
of-class behavior and is brittle in the presence of imperfieda; furthermore its
hypothesis space, the class of subsequential transdsgcisoarguably too general
for the present task. Almost all approaches to learningtgti-sound rules as-
sume, justifiably, that the hypothesis space is restrici¢lde analog of the locally
testable languages in the strict sense (McNaughton andtP&p&2), which are
limit-identifiable (Gar¢a and Vidal, 1990). We call the analogous class of trans-
ductionslocal transductions

Local transductions are computed by scanner transduclishuwnove a slid-
ing window of fixed size across the input string and producériags of output
symbols for each window position; concatenating thesewdgpings yields the
overall output of the transducer. Since the size of the rajdivindow is fixed,
one can assume without loss of generality that it is 1. If gdawindow sizen is
needed, one can simply change the input alphabet to considtiples of symbols,
and such a modified alphabet is obviously still finite; al&ively, one can think of

1The following examples are taken from thetu pronouncing dictionary (Weide, 1998). Phone-
mic transcriptions have been changed to we(International Phonetic Association, 1999).
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this modification as a preprocessing step that applies dsisupsequential trans-
ducer to each input string. Functional transductions tRatréne individual input

symbols (letters, on-tuples of letters) without taking any context into acco(ant

finite amount of history or lookahead can be incorporated the modified sym-

bols created by the preprocessing step) can be realizedrnsraezed sequential
machines with a trivial one-state topology and corresporat#y to morphisms

on free monoids (Eilenberg, 1974, p. 299).

The subsequent discussion will refer to a finite Beidf input symbols and a
finite setl" of output symbols. The free monoid generatedbig calledz* and
has the property that every element (strikgd Z* has a unique factorization in
terms of elements df. This means that a morphisgt 2* — ' on free monoids
is completely characterized lgys, its restriction toX. Conversely, this allows us
to define the following notion:

Definition 1.1 (Free monoid morphism). Given a functionf : Z — I'* definef*
to be the unique monoid morphisii : £* — I'* such thatf*(x) = f(x) for all
xe Z; f¥e) =¢; andf¥(yz) = f*(y) ¥z forally,ze =*.

At the core of the learning task is then the problem of findirsy@able func-
tion f : £ — '™ mapping from individual input symbols to output strings. this
paper we focus on two classes of functions. The first claggatssthe codomain
to strings of length one. If : Z — I is such a function — an alphabetic substitu-
tion — thenf* is avery fine morphismaccording to Eilenberg (1974, p. 6). The
second class is a superset of the first and allows the emptyg strthe codomain.
Eilenberg (1974) calls the morphisfri afine morphisnif its underlying function
f is of typeXZ — {e} UT. For the specific problem of learning letter to sound rules
we can restrict our attention to fine morphisms, since by eewvipus assumption
letter strings are never shorter than their correspondimanpme strings, so a fine
morphism is formally adequate. In general we may want to icenther kinds
of morphisms, for example those arising from functions @iet¥ — {e} UT U2,
However, most practically relevant classes of morphisntisprdbably contain the
class of fine morphisms, and therefore many of their propentill carry over to
more general settings. By restricting our attention to firephisms we have nar-
rowed down the initial learning task considerably, as thedtlgesis spadd is now
the set of functions of typE — {e} U, which is always finite (though usually very
large) for fixed finite alphabets andl". Moreover, since IfH| = |Z| In(1+|T|)
the sample complexity of this hypothesis space is polynbmia

Our conceptualization of learning is not limit-identifigat, but empirical risk
minimization. Although empirical risk minimization is s@what problematic
(Minka, 2000), particularly if the training data are not regentative of the dis-
tribution of future data, it underlies most symbolic approes to learning letter-to-
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sound rules, as well as many otharp tasks. The empirical risk of a hypothesis
h:Z* — I'*is its average loss on a set of training sames Z* x I'*, namely

1
R= D] <X’%ED L(h(x),y)

whereL : * x ' — Rxq is the loss function. The most commonly used generally
applicable loss functions for comparing strings are the-zare loss

Lidentity()/vy) = {0 Ty =y

1 otherwise

andLevenshtein the string edit distance (see for example Kruskal, 1988jhRinds
of loss play a role in the evaluation of letter-to-sound sullor example, Damper
et al. (1999, p. 164) use zero-one loss, and Fisher (1999)stgag edit distance.
One generally requires thiaty,y) = 0, which is obviously the case fbfgentity, and
also holds folLeyenshieinprovided the cost for matching symbols is zero.

Empirical risk minimization under zero-one loss can meaea ohtwo things:
minimizing the total number of mistakes a hypothesis makethe training data,
or maximizing the number of correct predictions. These twtans are equivalent
if optimal solutions can be found exactly, but differ for apgimate solutiong.

1.2 Exact optimization

The problem of finding a functioh: ~ — {€} UT such that the empirical risk df*
is minimal is fundamentally a combinatorial optimizatioroplem. Like all such
problems it can be stated formally in different ways (Papailiou and Steiglitz,
1998, p. 345f.): the optimization version asks for the opfifhfor a given set of
sampledD C 2* x I'*; the evaluation version asks for the total loss incurre®dry
the optimalf*; and the decision version asks whether there existtauch that
the total loss incurred by it oD is less than or equal to a given budgef solution
to the optimization version could be used to construct amvanso the evaluation
version, which in turn could be used to solve the decisioriear. Contrapositively,
if the decision version is hard to solve, so are the other tarsions.

Becausé (y,y) = O for the loss functionk considered here, there is a common
subproblem of the decision version which is independerti®fass function used:

2Suppose the true global optimum among 100 samples is 10kaistand the optimum can
be approximated within a ratio of 1.2. Approximate maxintiza would find a solution with at
most 100- 90/1.2 = 25 mistakes, but approximate minimization yields a sotutigth at most
10x 1.2 = 12 mistakes.
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the restricted decision version asks whether there exists' auch that the total
loss incurred by it orD is exactly zero. We call this the consistency problem.
Obviously, if the decision version can be solved efficigrdly can the consistency
problem.

Before we can formally state this key problem underlyinglé@ning task, we
need another auxiliary definition:

Definition 1.2 (Graph of a relation). Given a relatiorR: A — B on sets, define
#R, thegraph of R to be the sef(a,b) € (A x B) |aRb}.

The consistency problems for the two classes of morphismssated in a
format similar to the one used by Garey and Johnson (1979)aswer to the
questions asked by these problem would tell us whether aldaitnorphism exists
that perfectly fits the training data.

Problem 1.1 (Very Fine Morphism Consistency — VFMC)
Instance:A finite (multi)setD C Z* x I'* of training samples.

Question:Does there exist a very fine morphism consistent with all eleisi0fD,
i. e., is there a functiori : £ — I such thaD C #(*)?

Problem 1.2 (Fine Morphism Consistency — FMC)
Instance:A finite (multi)setD C Z* x I'* of training samples.

Question:Does there exist a fine morphism consistent with all elemafis i. e.,
is there a functiorf : £ — {e}UT such thaD C #(*)?

The size of an instance of one of these problems is the totgtheof all strings
in the training dictionanD:

Definition 1.3 (Dictionary size). Define the siz¢/D|| of a dictionaryD C Z* x ['*
as
D[ = g X[+ 1yl
(xy)eD

where|x| is the length of string.

Of the two problems formulated heremc is intuitively more difficult than
VFMC, since one has to decide which input symbols are mapped &mipéy string,
or equivalently, how the output strings should be alignddtiee to the inputs.
This issue does not arise wittFMmc, since only strings of equal length need to
be considered (ib contained a pair of strings with different lengths, then royv
fine morphism can be consistent wiiy). It will be shown thatrmc is a complete
problem for the complexity clagdP (see for example Garey and Johnson, 1979).
Membership oFmc in NP can be established straightforwardly:
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1: {Input: instancé, certificatef }
2: forall (x,y) € Ddo

3: di---ap <X

4 by---bp—y

5  j<1

6. fori<—1ltondo

7: if f(a) # € then

8: if j > mthen

9: return false

10: else iff (&) # b; then
11: return false

12: else{ f (a;) matched; }
13: j—]j+1

14: if j#m+1then

15: return false

16: return true

Figure 1.1: Certificate verification algorithm femc.

Theorem 1.1. ProblemFMc has succinct certificates that can be verified in poly-
nomial time.

Proof. A certificate forFmc is a partial functionf : £ — ' U {&}, which can be
represented in space linear|jD|| (because only needs to mention elements of
2 that occur inD). Verification amounts to applying* to each input string ib
and comparing the results to the corresponding referentmutuTl he verification
procedure, shown in Figure 1.1, runs in linear time and libiganic space. O

As an aside, note that problemFmc for very fine morphisms can be solved
efficiently in linear time and space by the following procesiuterate oveD, and
for each input symbatr setf (a) < y, wherey is the output symbol alignédvith
o; then run the verification algorithm from Figure 1.1 Bnand f, and return its
answer.

NP-hardness ofmMmc is established by a reduction frons&r, the decision
problem asking whether there is a satisfying truth assignrue a set of disjunc-
tive clauses with at most three literals each. We first defirgecbnstruction and
then prove that it correctly preserves the structure 413

3A consistent very fine morphism can only exispif = |y| for all (x,y) € D, which means that
andy are aligned, in the sense that titt symbol ofx corresponds to theth symbol ofy.
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Definition 1.4 (Boolean variable gadget).For any Boolean variablg, the set
¥ (v) contains the following pairs( andb, are two new symbols dependentyn

(aywWhy,FTF),
(ayby,F).

Definition 1.5 (3SAT clause gadget) For any FAT clauseC; of the form(li1 Vv
liz V1i3) (where eachy; is a literal of the formv or V) the set#’(C;) contains the
following pairs €ij, dij, & and f; for 1 < j < 3 are eight new symbols dependent
oni):

(Cialiadia, FT),

(Cizlizdiz, FT),

(Cializdia, FT),
(diadiodize fi, TT).

Definition 1.6 (Reduction from 3SAT). Given an instance = A" ; Ci of 3SAT,
define?(¢) as the collectiot?' ; ¢ (Ci) U U{¥ (v) | variablev occurs ing }.

Theorem 1.2. The reduction fronBSAT to FMC can be computed in logarithmic
space and creates an instance whose size is polynomial isizbef the original
instance.

Proof. The reductionz, which can be made to run in linear time, builds a collec-
tion 2(¢) with the following properties: lein be the number of distinct variables
of ¢ (som<3n); then||Z(¢)| =10m+22n < 52n, |Z(¢)| =2m+4n < 10n,

|X| =4m-+8n < 20n, and|l| = 2. Only counters need to be stored for comput-
ing the reduction (in order to keep track of clauses and éamrepresented by
integers), which requires logarithmic space. O

Theorem 1.3. ProblemrFmc is NP-hard.

Proof. We show thatp = Al ,Ci is satisfiable iff there exists a fine morphism
f* consistent withz(¢). It will be convenient to leV denote the set of distinct
variables ofg.

(=) Assume thatp is satisfiable, i. e., there exists a satisfying assignment
T:V — {T,F}. Incrementally define a fine morphisfii consistent withz(¢) as
follows: forallve V, let f(v) = 1(v) and f (V) = T(v). If T(v) =T, let f(ay) =F
and f (by) = &, which makesf* consistent with?’(v); otherwise, ift(v) = F, let
f(ay) = € andf(by) = F to makef* consistent with¥'(v). In either casd* can be
made consistent with(v), and becausa, andby, do not occur outside the gadget

forv, f* can be made consistent with all variable gadgets.
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The fact thatr is a satisfying assignment means that in each cl@usg least
one literal is made true by. So f will map at most twod;; in €(Ci) to T, and
therefore the definition of* can always be extended to make it consistent with
the fourth pair in%(C;) and hence consistent with the entire clause gadgeg;for
Since all symbols in a clause gadget other than literal$ @iccur only in that
gadget, the definition of* can be extended to make it consistent with all gadgets
and therefore consistent with(¢). Hence there exists a consistent fine morphism
f* constructible front.

(«) Conversely, assume that a fine morphigroonsistent withZ(¢) exists.
Show thag|y, i. e.grestricted to the variables @f, is a satisfying truth assignment
for ¢. The morphisng being consistent witl¥ (¢ ) means thag is consistent with
all variable gadgets and all clause gadgets.

Pick any variable gadget' (v). Then, because of the second pairftiv), g
must map exactly one &, andb, to F: if g(a,) = F theng(by) = &, and for the
first pairg(v) = T andg(v) = F; otherwise ifg(by) = F theng(a,) = €, g(v) =F,
andg(v) = T. Note in particular thatg|v)(v) € {T,F}, sogly is formally a truth
assignment.

Now pick any clause gadget(C;) and suppose thatmaps nd; in ¢'(C) toT.
Then alld;; in €' (C;) are mapped td because of the first three pairs in that clause
gadget. But this would makginconsistent with the fourth pair, contradicting the
assumption thag is consistent with all clause gadgets. gmust map at least one
lij in €(Gi) to T, which means thagly makes the claugg true, and is therefore a
satisfying truth assignment fqr. O

The preceding three theorems together imply that the ctamsig problenFmc
is NP-complete. The existence of efficient algorithms for sajMmiC is therefore
unlikely. SinceFmc is a subproblem of empirical risk minimization, the decisio
version of this optimization problem is al$¢tP-complete’

The evaluation and optimization version of empirical riskiimization do not
seem to fall within the analogous classIP of function problems. The reason for
this is that an optimal solutiof only certifies the existence of a feasible solution
(namelyf) within a certain budget (namely the aggregate loss tf on the train-
ing data), but does not seem to provide enough informatieetidy in polynomial
time that no better solution within a budgetiof 1 can exist. It is doubtful whether

“4Strictly speaking, the previous discussion only estabkdtP-hardness of the decision version.
Showing membership ilNP is straightforward, but requires separate proofs dependimwhich
loss function is used. For zero-one loss only a few minor fications to the certificate verification
algorithm in Figure 1.1 are required, which now has to agatethe number of mistakes and compare
it to the budgek. For loss based on edit distance, using the standard dymaogeamming algorithm
(Kruskal, 1983) ensures that certificates can be verifie@iprmmial time.
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there are any polynomial-length certificates of optimaNije conjecture that these
problems are in fadEPNP-complete, just likersp (Papadimitriou, 1994).

1.3 Approximations and heuristics

Since the existence of exact efficient algorithms for s@\tre overall optimization
problem is unlikely, one should consider the alternativeggproximate, heuristic,
and/or inefficient algorithms.

Even for highly restricted problems the prospects are rdtteak. The opti-
mization problem that maximizes empirical string-levelssdification accuracy (the
dual of empirical zero-one loss, i. e. string-level classifion error) for very fine
morphisms will be callediax -vEMC. It is far from clear whethemAX -vFMC is
an easy or a hard problem, as we had shown earliemhiat can be solved very
efficiently. We define the decision versioniXx -vFmc as follows:

Problem 1.3 (Very Fine Morphism Maximization — MAX-VFMC) _
Instance:A finite sequenc® = (sy,...,s,) where eacls € Ujen Y xTlforl<
i < n; and a natural numbéerwith k < n.

Question:Does there exist a very fine morphism consistent with at leaments
of D, i. e., is there a functiorf : Z — I and a lengthk unordered subsequence
(t1,...,t) of D such that; € #(f*) forall 1 <i <k?

We show thatvax -vEMC has probably (unlesB = NP) no polynomial time
approximation scheme®tAs, which would allow us to find arbitrarily good ap-
proximations efficiently). In the best case, there may bempraimation algo-
rithm for MAX -vFMC with a fixed approximation ratio, which would makexx -
VFMC a member of the clagsPX (Ausiello et al., 1999); whether or not this is the
case is an open question.

Theorem 1.4. ProblemmAX -VEMC is APX-hard.

Proof. Show this by exhibiting alP-reduction from arAPX-complete problem.
It suffices to show thattAX -k-csPis L-reducible (Papadimitriou, 1994, 309ff.) to
MAX -VFMC. MAX -k-CSPis a constraint satisfaction problem (Khanna et al., 1997)
with conjunctive constraints containing at maditerals (see also Ausiello et al.,
1999).

Given an instanc& = ((I11 A -+ Alw), ..., (lma A -+ Alnk)) of MAX-k-CSP,
construct an instance ofAX -vFMC by mapping thath constraint(liy A - - - Ali)
to the pair(liliz ... lilix, TF... TF) to form D (if a literal | is negative, i. e. of the
form v, thenl is simplyv). SoZ consist of the negated and unnegated variables
of ¢, andl = {T,F}. This construction ensures that there is a truth assignment
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T that makes exactlyn constraints o true iff there exists a very fine morphism
f* which is consistent with exactiy elements oD. One can construdt from t
(and vice versa) vid (v) = 1(v) and f (V) = 1(v) wherev is a variable occurring
ing. O

Exact global optimization ofiax -vFMC is theoretically possible via branch-
and-bound search. While this inefficient algorithm can keduer very small prob-
lem instances (learning English letter-to-sound rule§iwit conditioning context,
for which only a few trillion morphisms have to be exploreitihecomes intractable
for even slightly larger problems (for English letter-tousd rules conditioned on
one letter of context there are more than one trequadréigintieasible solutions).
Heuristic algorithms, especially those based on localcteéPapadimitriou and
Steiglitz, 1998), are efficient and do in practice improvegveedily constructed
initial solutions, but offer no performance guarantees.

1.4 Conclusions

We have reduced the problem of learning local transductiorthe problem of

learning morphisms on free monoids (the reduction may wevdieterministic pre-

processing of the training data). The restricted problerdexfiding whether there
exists a fine morphism consistent with a set of training samplas shown to be
NP-complete. Since this problem is a specialization of thesiea version of em-

pirical risk minimization under any loss functianfor which L(y,y) = 0, the larger

optimization problems which generalize the consistenoplam are generally in-
tractable.

Acknowledgements

This paper is based, occasionally verbatim, on the autbd@®ertation (Jansche, to
appear 2003), which contains further details. Many thankShris Brew, Gerald
Penn, and Richard Sproat, as well as two anonymous reviefeeomments and
feedback. The usual disclaimers apply.

Bibliography

Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Mardhgftaccamela, and
M. Protasi (1999)Complexity and Approximation: Combinatorial Optimizatio
Problems and Their Approximability PropertieSpringer, Berlin.



11\ Mathematics of Language 8, 2003

Damper, R. I., Y. Marchand, M. J. Adamson, and K. Gustafs@89). Evaluating
the pronunciation component of text-to-speech systemg&mfglish: A perfor-
mance comparison of different approaché&somputer Speech and Language
13(2):155-176.

Eilenberg, S. (1974)Automata, Languages, and Machineslume A. Academic
Press, New York.

Fisher, W. M. (1999). A statistical text-to-phone functiasing ngrams and rules.
In International Conference on Acoustics, Speech, and Sigraessing pp.
649-652. Phoenix, AZ.

Garda, P. and E. Vidal (1990). Inferencelotestable languages in the strict sense
and application to syntactic pattern recognitidEEE Transaction on Pattern
Analysis and Machine Intelligenc#2(9):920-925.

Garey, M. R. and D. S. Johnson (197@omputers and Intractability: A Guide to
the Theory of NP-Completened¥. H. Freeman, San Francisco.

Gildea, D. and D. Jurafsky (1996). Learning bias and phayiofd-rule induction.
Computational Linguistic22(4):497-530.

Gold, E. M. (1967). Language identification in the liminformation and Contrgl
10(5):447-474.

International Phonetic Association (1999Handbook of the International Pho-
netic Association: A Guide to the Use of the Internationabiédtic Alphabet
Cambridge University Press, Cambridge, England.

Jansche, M. (to appear 2003nference of String MappingsPh.D. thesis, The
Ohio State University, Columbus, OH.

Khanna, S., M. Sudan, and D. P. Williamson (1997). A compissification of
the approximability of maximization problems derived fr@nolean constraint
satisfaction. IrProceedings of the 29th Annual ACM Symposium on Theory of
Computing pp. 11-20. El Paso, TX.

Kruskal, J. B. (1983). An overview of sequence comparisonD] Sankoff and
J. Kruskal, eds.Time Warps, String Edits, and Macromolecules: The Theody an
Practice of Sequence Comparis@p. 1-44. Addison-Wesley, Reading, MA.
Reissued by CSLI Publications, Stanford, CA, 1999.

McNaughton, R. and S. Papert (1972ounter-Free AutomataMIT Press, Cam-
bridge, MA.



Learning local transductions is harMartin Jansche 112

Minka, T. P. (2000). Empirical risk minimization is an incpfate inductive prin-
ciple. http://www.stat.cmu.edu/"minka/papers/erm.html

Oncina, J., P. Gata, and E. Vidal (1993). Learning subsequential transdufcer
pattern recognition interpretation taskcEE Transaction on Pattern Analysis
and Machine Intelligencel 5(5):448-458.

Papadimitriou, C. H. (1994)Computational ComplexityAddison-Wesley, Read-
ing, MA.

Papadimitriou, C. H. and K. Steiglitz (1998Lombinatorial Optimization: Algo-
rithms and ComplexityDover Publications, Mineola, NY. Originally published
by Prentice Hall, Englewood Cliffs, NJ, 1982.

Roche, E. and Y. Schabes, eds. (199%nite-State Language Processingan-
guage, Speech and Communication. MIT Press, Cambridge, MA.

Sejnowski, T. J. and C. R. Rosenberg (1987). Parallel né&isvbrat learn to pro-
nounce English textComplex System#(1):145-168.

van den Bosch, A. P. J. (1997)earning to Pronounce Written Words: A Study in
Inductive Language Learning’h.D. thesis, Universiteit Maastricht, Maastricht,
The Netherlands.

Weide, R. L. (1998). The Carnegie Mellon pronouncing dicéiry version 0.6.
Electronic document, School of Computer Science, Carridgiéon University,
Pittsburgh, PAftp://ftp.cs.cmu.edu/project/fgdata/dict/



